1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/binfmt_elf.c
4 *
5 * These are the functions used to load ELF format executables as used
6 * on SVr4 machines. Information on the format may be found in the book
7 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8 * Tools".
9 *
10 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
11 */
12
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/fs.h>
16 #include <linux/log2.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/errno.h>
20 #include <linux/signal.h>
21 #include <linux/binfmts.h>
22 #include <linux/string.h>
23 #include <linux/file.h>
24 #include <linux/slab.h>
25 #include <linux/personality.h>
26 #include <linux/elfcore.h>
27 #include <linux/init.h>
28 #include <linux/highuid.h>
29 #include <linux/compiler.h>
30 #include <linux/highmem.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vmalloc.h>
34 #include <linux/security.h>
35 #include <linux/random.h>
36 #include <linux/elf.h>
37 #include <linux/elf-randomize.h>
38 #include <linux/utsname.h>
39 #include <linux/coredump.h>
40 #include <linux/sched.h>
41 #include <linux/sched/coredump.h>
42 #include <linux/sched/task_stack.h>
43 #include <linux/sched/cputime.h>
44 #include <linux/sizes.h>
45 #include <linux/types.h>
46 #include <linux/cred.h>
47 #include <linux/dax.h>
48 #include <linux/uaccess.h>
49 #include <asm/param.h>
50 #include <asm/page.h>
51
52 #ifndef ELF_COMPAT
53 #define ELF_COMPAT 0
54 #endif
55
56 #ifndef user_long_t
57 #define user_long_t long
58 #endif
59 #ifndef user_siginfo_t
60 #define user_siginfo_t siginfo_t
61 #endif
62
63 /* That's for binfmt_elf_fdpic to deal with */
64 #ifndef elf_check_fdpic
65 #define elf_check_fdpic(ex) false
66 #endif
67
68 static int load_elf_binary(struct linux_binprm *bprm);
69
70 #ifdef CONFIG_USELIB
71 static int load_elf_library(struct file *);
72 #else
73 #define load_elf_library NULL
74 #endif
75
76 /*
77 * If we don't support core dumping, then supply a NULL so we
78 * don't even try.
79 */
80 #ifdef CONFIG_ELF_CORE
81 static int elf_core_dump(struct coredump_params *cprm);
82 #else
83 #define elf_core_dump NULL
84 #endif
85
86 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
87 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
88 #else
89 #define ELF_MIN_ALIGN PAGE_SIZE
90 #endif
91
92 #ifndef ELF_CORE_EFLAGS
93 #define ELF_CORE_EFLAGS 0
94 #endif
95
96 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
97 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
98 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
99
100 static struct linux_binfmt elf_format = {
101 .module = THIS_MODULE,
102 .load_binary = load_elf_binary,
103 .load_shlib = load_elf_library,
104 .core_dump = elf_core_dump,
105 .min_coredump = ELF_EXEC_PAGESIZE,
106 };
107
108 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE))
109
set_brk(unsigned long start,unsigned long end,int prot)110 static int set_brk(unsigned long start, unsigned long end, int prot)
111 {
112 start = ELF_PAGEALIGN(start);
113 end = ELF_PAGEALIGN(end);
114 if (end > start) {
115 /*
116 * Map the last of the bss segment.
117 * If the header is requesting these pages to be
118 * executable, honour that (ppc32 needs this).
119 */
120 int error = vm_brk_flags(start, end - start,
121 prot & PROT_EXEC ? VM_EXEC : 0);
122 if (error)
123 return error;
124 }
125 current->mm->start_brk = current->mm->brk = end;
126 return 0;
127 }
128
129 /* We need to explicitly zero any fractional pages
130 after the data section (i.e. bss). This would
131 contain the junk from the file that should not
132 be in memory
133 */
padzero(unsigned long elf_bss)134 static int padzero(unsigned long elf_bss)
135 {
136 unsigned long nbyte;
137
138 nbyte = ELF_PAGEOFFSET(elf_bss);
139 if (nbyte) {
140 nbyte = ELF_MIN_ALIGN - nbyte;
141 if (clear_user((void __user *) elf_bss, nbyte))
142 return -EFAULT;
143 }
144 return 0;
145 }
146
147 /* Let's use some macros to make this stack manipulation a little clearer */
148 #ifdef CONFIG_STACK_GROWSUP
149 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
150 #define STACK_ROUND(sp, items) \
151 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
152 #define STACK_ALLOC(sp, len) ({ \
153 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
154 old_sp; })
155 #else
156 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
157 #define STACK_ROUND(sp, items) \
158 (((unsigned long) (sp - items)) &~ 15UL)
159 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
160 #endif
161
162 #ifndef ELF_BASE_PLATFORM
163 /*
164 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
165 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
166 * will be copied to the user stack in the same manner as AT_PLATFORM.
167 */
168 #define ELF_BASE_PLATFORM NULL
169 #endif
170
171 static int
create_elf_tables(struct linux_binprm * bprm,const struct elfhdr * exec,unsigned long interp_load_addr,unsigned long e_entry,unsigned long phdr_addr)172 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec,
173 unsigned long interp_load_addr,
174 unsigned long e_entry, unsigned long phdr_addr)
175 {
176 struct mm_struct *mm = current->mm;
177 unsigned long p = bprm->p;
178 int argc = bprm->argc;
179 int envc = bprm->envc;
180 elf_addr_t __user *sp;
181 elf_addr_t __user *u_platform;
182 elf_addr_t __user *u_base_platform;
183 elf_addr_t __user *u_rand_bytes;
184 const char *k_platform = ELF_PLATFORM;
185 const char *k_base_platform = ELF_BASE_PLATFORM;
186 unsigned char k_rand_bytes[16];
187 int items;
188 elf_addr_t *elf_info;
189 int ei_index;
190 const struct cred *cred = current_cred();
191 struct vm_area_struct *vma;
192
193 /*
194 * In some cases (e.g. Hyper-Threading), we want to avoid L1
195 * evictions by the processes running on the same package. One
196 * thing we can do is to shuffle the initial stack for them.
197 */
198
199 p = arch_align_stack(p);
200
201 /*
202 * If this architecture has a platform capability string, copy it
203 * to userspace. In some cases (Sparc), this info is impossible
204 * for userspace to get any other way, in others (i386) it is
205 * merely difficult.
206 */
207 u_platform = NULL;
208 if (k_platform) {
209 size_t len = strlen(k_platform) + 1;
210
211 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
212 if (copy_to_user(u_platform, k_platform, len))
213 return -EFAULT;
214 }
215
216 /*
217 * If this architecture has a "base" platform capability
218 * string, copy it to userspace.
219 */
220 u_base_platform = NULL;
221 if (k_base_platform) {
222 size_t len = strlen(k_base_platform) + 1;
223
224 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
225 if (copy_to_user(u_base_platform, k_base_platform, len))
226 return -EFAULT;
227 }
228
229 /*
230 * Generate 16 random bytes for userspace PRNG seeding.
231 */
232 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
233 u_rand_bytes = (elf_addr_t __user *)
234 STACK_ALLOC(p, sizeof(k_rand_bytes));
235 if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
236 return -EFAULT;
237
238 /* Create the ELF interpreter info */
239 elf_info = (elf_addr_t *)mm->saved_auxv;
240 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
241 #define NEW_AUX_ENT(id, val) \
242 do { \
243 *elf_info++ = id; \
244 *elf_info++ = val; \
245 } while (0)
246
247 #ifdef ARCH_DLINFO
248 /*
249 * ARCH_DLINFO must come first so PPC can do its special alignment of
250 * AUXV.
251 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
252 * ARCH_DLINFO changes
253 */
254 ARCH_DLINFO;
255 #endif
256 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
257 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
258 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
259 NEW_AUX_ENT(AT_PHDR, phdr_addr);
260 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
261 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
262 NEW_AUX_ENT(AT_BASE, interp_load_addr);
263 NEW_AUX_ENT(AT_FLAGS, 0);
264 NEW_AUX_ENT(AT_ENTRY, e_entry);
265 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
266 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
267 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
268 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
269 NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
270 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
271 #ifdef ELF_HWCAP2
272 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
273 #endif
274 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
275 if (k_platform) {
276 NEW_AUX_ENT(AT_PLATFORM,
277 (elf_addr_t)(unsigned long)u_platform);
278 }
279 if (k_base_platform) {
280 NEW_AUX_ENT(AT_BASE_PLATFORM,
281 (elf_addr_t)(unsigned long)u_base_platform);
282 }
283 if (bprm->have_execfd) {
284 NEW_AUX_ENT(AT_EXECFD, bprm->execfd);
285 }
286 #undef NEW_AUX_ENT
287 /* AT_NULL is zero; clear the rest too */
288 memset(elf_info, 0, (char *)mm->saved_auxv +
289 sizeof(mm->saved_auxv) - (char *)elf_info);
290
291 /* And advance past the AT_NULL entry. */
292 elf_info += 2;
293
294 ei_index = elf_info - (elf_addr_t *)mm->saved_auxv;
295 sp = STACK_ADD(p, ei_index);
296
297 items = (argc + 1) + (envc + 1) + 1;
298 bprm->p = STACK_ROUND(sp, items);
299
300 /* Point sp at the lowest address on the stack */
301 #ifdef CONFIG_STACK_GROWSUP
302 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
303 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
304 #else
305 sp = (elf_addr_t __user *)bprm->p;
306 #endif
307
308
309 /*
310 * Grow the stack manually; some architectures have a limit on how
311 * far ahead a user-space access may be in order to grow the stack.
312 */
313 if (mmap_read_lock_killable(mm))
314 return -EINTR;
315 vma = find_extend_vma(mm, bprm->p);
316 mmap_read_unlock(mm);
317 if (!vma)
318 return -EFAULT;
319
320 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
321 if (put_user(argc, sp++))
322 return -EFAULT;
323
324 /* Populate list of argv pointers back to argv strings. */
325 p = mm->arg_end = mm->arg_start;
326 while (argc-- > 0) {
327 size_t len;
328 if (put_user((elf_addr_t)p, sp++))
329 return -EFAULT;
330 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
331 if (!len || len > MAX_ARG_STRLEN)
332 return -EINVAL;
333 p += len;
334 }
335 if (put_user(0, sp++))
336 return -EFAULT;
337 mm->arg_end = p;
338
339 /* Populate list of envp pointers back to envp strings. */
340 mm->env_end = mm->env_start = p;
341 while (envc-- > 0) {
342 size_t len;
343 if (put_user((elf_addr_t)p, sp++))
344 return -EFAULT;
345 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
346 if (!len || len > MAX_ARG_STRLEN)
347 return -EINVAL;
348 p += len;
349 }
350 if (put_user(0, sp++))
351 return -EFAULT;
352 mm->env_end = p;
353
354 /* Put the elf_info on the stack in the right place. */
355 if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t)))
356 return -EFAULT;
357 return 0;
358 }
359
elf_map(struct file * filep,unsigned long addr,const struct elf_phdr * eppnt,int prot,int type,unsigned long total_size)360 static unsigned long elf_map(struct file *filep, unsigned long addr,
361 const struct elf_phdr *eppnt, int prot, int type,
362 unsigned long total_size)
363 {
364 unsigned long map_addr;
365 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
366 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
367 addr = ELF_PAGESTART(addr);
368 size = ELF_PAGEALIGN(size);
369
370 /* mmap() will return -EINVAL if given a zero size, but a
371 * segment with zero filesize is perfectly valid */
372 if (!size)
373 return addr;
374
375 /*
376 * total_size is the size of the ELF (interpreter) image.
377 * The _first_ mmap needs to know the full size, otherwise
378 * randomization might put this image into an overlapping
379 * position with the ELF binary image. (since size < total_size)
380 * So we first map the 'big' image - and unmap the remainder at
381 * the end. (which unmap is needed for ELF images with holes.)
382 */
383 if (total_size) {
384 total_size = ELF_PAGEALIGN(total_size);
385 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
386 if (!BAD_ADDR(map_addr))
387 vm_munmap(map_addr+size, total_size-size);
388 } else
389 map_addr = vm_mmap(filep, addr, size, prot, type, off);
390
391 if ((type & MAP_FIXED_NOREPLACE) &&
392 PTR_ERR((void *)map_addr) == -EEXIST)
393 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
394 task_pid_nr(current), current->comm, (void *)addr);
395
396 return(map_addr);
397 }
398
total_mapping_size(const struct elf_phdr * cmds,int nr)399 static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr)
400 {
401 int i, first_idx = -1, last_idx = -1;
402
403 for (i = 0; i < nr; i++) {
404 if (cmds[i].p_type == PT_LOAD) {
405 last_idx = i;
406 if (first_idx == -1)
407 first_idx = i;
408 }
409 }
410 if (first_idx == -1)
411 return 0;
412
413 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
414 ELF_PAGESTART(cmds[first_idx].p_vaddr);
415 }
416
elf_read(struct file * file,void * buf,size_t len,loff_t pos)417 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos)
418 {
419 ssize_t rv;
420
421 rv = kernel_read(file, buf, len, &pos);
422 if (unlikely(rv != len)) {
423 return (rv < 0) ? rv : -EIO;
424 }
425 return 0;
426 }
427
maximum_alignment(struct elf_phdr * cmds,int nr)428 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr)
429 {
430 unsigned long alignment = 0;
431 int i;
432
433 for (i = 0; i < nr; i++) {
434 if (cmds[i].p_type == PT_LOAD) {
435 unsigned long p_align = cmds[i].p_align;
436
437 /* skip non-power of two alignments as invalid */
438 if (!is_power_of_2(p_align))
439 continue;
440 alignment = max(alignment, p_align);
441 }
442 }
443
444 /* ensure we align to at least one page */
445 return ELF_PAGEALIGN(alignment);
446 }
447
448 /**
449 * load_elf_phdrs() - load ELF program headers
450 * @elf_ex: ELF header of the binary whose program headers should be loaded
451 * @elf_file: the opened ELF binary file
452 *
453 * Loads ELF program headers from the binary file elf_file, which has the ELF
454 * header pointed to by elf_ex, into a newly allocated array. The caller is
455 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
456 */
load_elf_phdrs(const struct elfhdr * elf_ex,struct file * elf_file)457 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
458 struct file *elf_file)
459 {
460 struct elf_phdr *elf_phdata = NULL;
461 int retval, err = -1;
462 unsigned int size;
463
464 /*
465 * If the size of this structure has changed, then punt, since
466 * we will be doing the wrong thing.
467 */
468 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
469 goto out;
470
471 /* Sanity check the number of program headers... */
472 /* ...and their total size. */
473 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
474 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
475 goto out;
476
477 elf_phdata = kmalloc(size, GFP_KERNEL);
478 if (!elf_phdata)
479 goto out;
480
481 /* Read in the program headers */
482 retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff);
483 if (retval < 0) {
484 err = retval;
485 goto out;
486 }
487
488 /* Success! */
489 err = 0;
490 out:
491 if (err) {
492 kfree(elf_phdata);
493 elf_phdata = NULL;
494 }
495 return elf_phdata;
496 }
497
498 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
499
500 /**
501 * struct arch_elf_state - arch-specific ELF loading state
502 *
503 * This structure is used to preserve architecture specific data during
504 * the loading of an ELF file, throughout the checking of architecture
505 * specific ELF headers & through to the point where the ELF load is
506 * known to be proceeding (ie. SET_PERSONALITY).
507 *
508 * This implementation is a dummy for architectures which require no
509 * specific state.
510 */
511 struct arch_elf_state {
512 };
513
514 #define INIT_ARCH_ELF_STATE {}
515
516 /**
517 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
518 * @ehdr: The main ELF header
519 * @phdr: The program header to check
520 * @elf: The open ELF file
521 * @is_interp: True if the phdr is from the interpreter of the ELF being
522 * loaded, else false.
523 * @state: Architecture-specific state preserved throughout the process
524 * of loading the ELF.
525 *
526 * Inspects the program header phdr to validate its correctness and/or
527 * suitability for the system. Called once per ELF program header in the
528 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
529 * interpreter.
530 *
531 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
532 * with that return code.
533 */
arch_elf_pt_proc(struct elfhdr * ehdr,struct elf_phdr * phdr,struct file * elf,bool is_interp,struct arch_elf_state * state)534 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
535 struct elf_phdr *phdr,
536 struct file *elf, bool is_interp,
537 struct arch_elf_state *state)
538 {
539 /* Dummy implementation, always proceed */
540 return 0;
541 }
542
543 /**
544 * arch_check_elf() - check an ELF executable
545 * @ehdr: The main ELF header
546 * @has_interp: True if the ELF has an interpreter, else false.
547 * @interp_ehdr: The interpreter's ELF header
548 * @state: Architecture-specific state preserved throughout the process
549 * of loading the ELF.
550 *
551 * Provides a final opportunity for architecture code to reject the loading
552 * of the ELF & cause an exec syscall to return an error. This is called after
553 * all program headers to be checked by arch_elf_pt_proc have been.
554 *
555 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
556 * with that return code.
557 */
arch_check_elf(struct elfhdr * ehdr,bool has_interp,struct elfhdr * interp_ehdr,struct arch_elf_state * state)558 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
559 struct elfhdr *interp_ehdr,
560 struct arch_elf_state *state)
561 {
562 /* Dummy implementation, always proceed */
563 return 0;
564 }
565
566 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
567
make_prot(u32 p_flags,struct arch_elf_state * arch_state,bool has_interp,bool is_interp)568 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state,
569 bool has_interp, bool is_interp)
570 {
571 int prot = 0;
572
573 if (p_flags & PF_R)
574 prot |= PROT_READ;
575 if (p_flags & PF_W)
576 prot |= PROT_WRITE;
577 if (p_flags & PF_X)
578 prot |= PROT_EXEC;
579
580 return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp);
581 }
582
583 /* This is much more generalized than the library routine read function,
584 so we keep this separate. Technically the library read function
585 is only provided so that we can read a.out libraries that have
586 an ELF header */
587
load_elf_interp(struct elfhdr * interp_elf_ex,struct file * interpreter,unsigned long no_base,struct elf_phdr * interp_elf_phdata,struct arch_elf_state * arch_state)588 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
589 struct file *interpreter,
590 unsigned long no_base, struct elf_phdr *interp_elf_phdata,
591 struct arch_elf_state *arch_state)
592 {
593 struct elf_phdr *eppnt;
594 unsigned long load_addr = 0;
595 int load_addr_set = 0;
596 unsigned long last_bss = 0, elf_bss = 0;
597 int bss_prot = 0;
598 unsigned long error = ~0UL;
599 unsigned long total_size;
600 int i;
601
602 /* First of all, some simple consistency checks */
603 if (interp_elf_ex->e_type != ET_EXEC &&
604 interp_elf_ex->e_type != ET_DYN)
605 goto out;
606 if (!elf_check_arch(interp_elf_ex) ||
607 elf_check_fdpic(interp_elf_ex))
608 goto out;
609 if (!interpreter->f_op->mmap)
610 goto out;
611
612 total_size = total_mapping_size(interp_elf_phdata,
613 interp_elf_ex->e_phnum);
614 if (!total_size) {
615 error = -EINVAL;
616 goto out;
617 }
618
619 eppnt = interp_elf_phdata;
620 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
621 if (eppnt->p_type == PT_LOAD) {
622 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
623 int elf_prot = make_prot(eppnt->p_flags, arch_state,
624 true, true);
625 unsigned long vaddr = 0;
626 unsigned long k, map_addr;
627
628 vaddr = eppnt->p_vaddr;
629 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
630 elf_type |= MAP_FIXED;
631 else if (no_base && interp_elf_ex->e_type == ET_DYN)
632 load_addr = -vaddr;
633
634 map_addr = elf_map(interpreter, load_addr + vaddr,
635 eppnt, elf_prot, elf_type, total_size);
636 total_size = 0;
637 error = map_addr;
638 if (BAD_ADDR(map_addr))
639 goto out;
640
641 if (!load_addr_set &&
642 interp_elf_ex->e_type == ET_DYN) {
643 load_addr = map_addr - ELF_PAGESTART(vaddr);
644 load_addr_set = 1;
645 }
646
647 /*
648 * Check to see if the section's size will overflow the
649 * allowed task size. Note that p_filesz must always be
650 * <= p_memsize so it's only necessary to check p_memsz.
651 */
652 k = load_addr + eppnt->p_vaddr;
653 if (BAD_ADDR(k) ||
654 eppnt->p_filesz > eppnt->p_memsz ||
655 eppnt->p_memsz > TASK_SIZE ||
656 TASK_SIZE - eppnt->p_memsz < k) {
657 error = -ENOMEM;
658 goto out;
659 }
660
661 /*
662 * Find the end of the file mapping for this phdr, and
663 * keep track of the largest address we see for this.
664 */
665 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
666 if (k > elf_bss)
667 elf_bss = k;
668
669 /*
670 * Do the same thing for the memory mapping - between
671 * elf_bss and last_bss is the bss section.
672 */
673 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
674 if (k > last_bss) {
675 last_bss = k;
676 bss_prot = elf_prot;
677 }
678 }
679 }
680
681 /*
682 * Now fill out the bss section: first pad the last page from
683 * the file up to the page boundary, and zero it from elf_bss
684 * up to the end of the page.
685 */
686 if (padzero(elf_bss)) {
687 error = -EFAULT;
688 goto out;
689 }
690 /*
691 * Next, align both the file and mem bss up to the page size,
692 * since this is where elf_bss was just zeroed up to, and where
693 * last_bss will end after the vm_brk_flags() below.
694 */
695 elf_bss = ELF_PAGEALIGN(elf_bss);
696 last_bss = ELF_PAGEALIGN(last_bss);
697 /* Finally, if there is still more bss to allocate, do it. */
698 if (last_bss > elf_bss) {
699 error = vm_brk_flags(elf_bss, last_bss - elf_bss,
700 bss_prot & PROT_EXEC ? VM_EXEC : 0);
701 if (error)
702 goto out;
703 }
704
705 error = load_addr;
706 out:
707 return error;
708 }
709
710 /*
711 * These are the functions used to load ELF style executables and shared
712 * libraries. There is no binary dependent code anywhere else.
713 */
714
parse_elf_property(const char * data,size_t * off,size_t datasz,struct arch_elf_state * arch,bool have_prev_type,u32 * prev_type)715 static int parse_elf_property(const char *data, size_t *off, size_t datasz,
716 struct arch_elf_state *arch,
717 bool have_prev_type, u32 *prev_type)
718 {
719 size_t o, step;
720 const struct gnu_property *pr;
721 int ret;
722
723 if (*off == datasz)
724 return -ENOENT;
725
726 if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN))
727 return -EIO;
728 o = *off;
729 datasz -= *off;
730
731 if (datasz < sizeof(*pr))
732 return -ENOEXEC;
733 pr = (const struct gnu_property *)(data + o);
734 o += sizeof(*pr);
735 datasz -= sizeof(*pr);
736
737 if (pr->pr_datasz > datasz)
738 return -ENOEXEC;
739
740 WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN);
741 step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN);
742 if (step > datasz)
743 return -ENOEXEC;
744
745 /* Properties are supposed to be unique and sorted on pr_type: */
746 if (have_prev_type && pr->pr_type <= *prev_type)
747 return -ENOEXEC;
748 *prev_type = pr->pr_type;
749
750 ret = arch_parse_elf_property(pr->pr_type, data + o,
751 pr->pr_datasz, ELF_COMPAT, arch);
752 if (ret)
753 return ret;
754
755 *off = o + step;
756 return 0;
757 }
758
759 #define NOTE_DATA_SZ SZ_1K
760 #define GNU_PROPERTY_TYPE_0_NAME "GNU"
761 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME))
762
parse_elf_properties(struct file * f,const struct elf_phdr * phdr,struct arch_elf_state * arch)763 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr,
764 struct arch_elf_state *arch)
765 {
766 union {
767 struct elf_note nhdr;
768 char data[NOTE_DATA_SZ];
769 } note;
770 loff_t pos;
771 ssize_t n;
772 size_t off, datasz;
773 int ret;
774 bool have_prev_type;
775 u32 prev_type;
776
777 if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr)
778 return 0;
779
780 /* load_elf_binary() shouldn't call us unless this is true... */
781 if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY))
782 return -ENOEXEC;
783
784 /* If the properties are crazy large, that's too bad (for now): */
785 if (phdr->p_filesz > sizeof(note))
786 return -ENOEXEC;
787
788 pos = phdr->p_offset;
789 n = kernel_read(f, ¬e, phdr->p_filesz, &pos);
790
791 BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ);
792 if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ)
793 return -EIO;
794
795 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
796 note.nhdr.n_namesz != NOTE_NAME_SZ ||
797 strncmp(note.data + sizeof(note.nhdr),
798 GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr)))
799 return -ENOEXEC;
800
801 off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ,
802 ELF_GNU_PROPERTY_ALIGN);
803 if (off > n)
804 return -ENOEXEC;
805
806 if (note.nhdr.n_descsz > n - off)
807 return -ENOEXEC;
808 datasz = off + note.nhdr.n_descsz;
809
810 have_prev_type = false;
811 do {
812 ret = parse_elf_property(note.data, &off, datasz, arch,
813 have_prev_type, &prev_type);
814 have_prev_type = true;
815 } while (!ret);
816
817 return ret == -ENOENT ? 0 : ret;
818 }
819
load_elf_binary(struct linux_binprm * bprm)820 static int load_elf_binary(struct linux_binprm *bprm)
821 {
822 struct file *interpreter = NULL; /* to shut gcc up */
823 unsigned long load_addr, load_bias = 0, phdr_addr = 0;
824 int load_addr_set = 0;
825 unsigned long error;
826 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
827 struct elf_phdr *elf_property_phdata = NULL;
828 unsigned long elf_bss, elf_brk;
829 int bss_prot = 0;
830 int retval, i;
831 unsigned long elf_entry;
832 unsigned long e_entry;
833 unsigned long interp_load_addr = 0;
834 unsigned long start_code, end_code, start_data, end_data;
835 unsigned long reloc_func_desc __maybe_unused = 0;
836 int executable_stack = EXSTACK_DEFAULT;
837 struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf;
838 struct elfhdr *interp_elf_ex = NULL;
839 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
840 struct mm_struct *mm;
841 struct pt_regs *regs;
842
843 retval = -ENOEXEC;
844 /* First of all, some simple consistency checks */
845 if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
846 goto out;
847
848 if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN)
849 goto out;
850 if (!elf_check_arch(elf_ex))
851 goto out;
852 if (elf_check_fdpic(elf_ex))
853 goto out;
854 if (!bprm->file->f_op->mmap)
855 goto out;
856
857 elf_phdata = load_elf_phdrs(elf_ex, bprm->file);
858 if (!elf_phdata)
859 goto out;
860
861 elf_ppnt = elf_phdata;
862 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) {
863 char *elf_interpreter;
864
865 if (elf_ppnt->p_type == PT_GNU_PROPERTY) {
866 elf_property_phdata = elf_ppnt;
867 continue;
868 }
869
870 if (elf_ppnt->p_type != PT_INTERP)
871 continue;
872
873 /*
874 * This is the program interpreter used for shared libraries -
875 * for now assume that this is an a.out format binary.
876 */
877 retval = -ENOEXEC;
878 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
879 goto out_free_ph;
880
881 retval = -ENOMEM;
882 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
883 if (!elf_interpreter)
884 goto out_free_ph;
885
886 retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz,
887 elf_ppnt->p_offset);
888 if (retval < 0)
889 goto out_free_interp;
890 /* make sure path is NULL terminated */
891 retval = -ENOEXEC;
892 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
893 goto out_free_interp;
894
895 interpreter = open_exec(elf_interpreter);
896 kfree(elf_interpreter);
897 retval = PTR_ERR(interpreter);
898 if (IS_ERR(interpreter))
899 goto out_free_ph;
900
901 /*
902 * If the binary is not readable then enforce mm->dumpable = 0
903 * regardless of the interpreter's permissions.
904 */
905 would_dump(bprm, interpreter);
906
907 interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL);
908 if (!interp_elf_ex) {
909 retval = -ENOMEM;
910 goto out_free_file;
911 }
912
913 /* Get the exec headers */
914 retval = elf_read(interpreter, interp_elf_ex,
915 sizeof(*interp_elf_ex), 0);
916 if (retval < 0)
917 goto out_free_dentry;
918
919 break;
920
921 out_free_interp:
922 kfree(elf_interpreter);
923 goto out_free_ph;
924 }
925
926 elf_ppnt = elf_phdata;
927 for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
928 switch (elf_ppnt->p_type) {
929 case PT_GNU_STACK:
930 if (elf_ppnt->p_flags & PF_X)
931 executable_stack = EXSTACK_ENABLE_X;
932 else
933 executable_stack = EXSTACK_DISABLE_X;
934 break;
935
936 case PT_LOPROC ... PT_HIPROC:
937 retval = arch_elf_pt_proc(elf_ex, elf_ppnt,
938 bprm->file, false,
939 &arch_state);
940 if (retval)
941 goto out_free_dentry;
942 break;
943 }
944
945 /* Some simple consistency checks for the interpreter */
946 if (interpreter) {
947 retval = -ELIBBAD;
948 /* Not an ELF interpreter */
949 if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
950 goto out_free_dentry;
951 /* Verify the interpreter has a valid arch */
952 if (!elf_check_arch(interp_elf_ex) ||
953 elf_check_fdpic(interp_elf_ex))
954 goto out_free_dentry;
955
956 /* Load the interpreter program headers */
957 interp_elf_phdata = load_elf_phdrs(interp_elf_ex,
958 interpreter);
959 if (!interp_elf_phdata)
960 goto out_free_dentry;
961
962 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
963 elf_property_phdata = NULL;
964 elf_ppnt = interp_elf_phdata;
965 for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++)
966 switch (elf_ppnt->p_type) {
967 case PT_GNU_PROPERTY:
968 elf_property_phdata = elf_ppnt;
969 break;
970
971 case PT_LOPROC ... PT_HIPROC:
972 retval = arch_elf_pt_proc(interp_elf_ex,
973 elf_ppnt, interpreter,
974 true, &arch_state);
975 if (retval)
976 goto out_free_dentry;
977 break;
978 }
979 }
980
981 retval = parse_elf_properties(interpreter ?: bprm->file,
982 elf_property_phdata, &arch_state);
983 if (retval)
984 goto out_free_dentry;
985
986 /*
987 * Allow arch code to reject the ELF at this point, whilst it's
988 * still possible to return an error to the code that invoked
989 * the exec syscall.
990 */
991 retval = arch_check_elf(elf_ex,
992 !!interpreter, interp_elf_ex,
993 &arch_state);
994 if (retval)
995 goto out_free_dentry;
996
997 /* Flush all traces of the currently running executable */
998 retval = begin_new_exec(bprm);
999 if (retval)
1000 goto out_free_dentry;
1001
1002 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
1003 may depend on the personality. */
1004 SET_PERSONALITY2(*elf_ex, &arch_state);
1005 if (elf_read_implies_exec(*elf_ex, executable_stack))
1006 current->personality |= READ_IMPLIES_EXEC;
1007
1008 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1009 current->flags |= PF_RANDOMIZE;
1010
1011 setup_new_exec(bprm);
1012
1013 /* Do this so that we can load the interpreter, if need be. We will
1014 change some of these later */
1015 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
1016 executable_stack);
1017 if (retval < 0)
1018 goto out_free_dentry;
1019
1020 elf_bss = 0;
1021 elf_brk = 0;
1022
1023 start_code = ~0UL;
1024 end_code = 0;
1025 start_data = 0;
1026 end_data = 0;
1027
1028 /* Now we do a little grungy work by mmapping the ELF image into
1029 the correct location in memory. */
1030 for(i = 0, elf_ppnt = elf_phdata;
1031 i < elf_ex->e_phnum; i++, elf_ppnt++) {
1032 int elf_prot, elf_flags;
1033 unsigned long k, vaddr;
1034 unsigned long total_size = 0;
1035 unsigned long alignment;
1036
1037 if (elf_ppnt->p_type == PT_OHOS_RANDOMDATA) {
1038 void *temp_buf = NULL;
1039
1040 if (elf_ppnt->p_memsz > PT_OHOS_RANDOMDATA_SIZE_LIMIT) {
1041 retval = -EINVAL;
1042 goto out_free_dentry;
1043 }
1044
1045 temp_buf = vmalloc(elf_ppnt->p_memsz);
1046 if (!temp_buf) {
1047 retval = -ENOMEM;
1048 goto out_free_dentry;
1049 }
1050
1051 get_random_bytes(temp_buf, (int)elf_ppnt->p_memsz);
1052 if (copy_to_user((void *)(elf_ppnt->p_vaddr + load_bias), temp_buf, (unsigned long)elf_ppnt->p_memsz)) {
1053 retval = -EFAULT;
1054 vfree(temp_buf);
1055 goto out_free_dentry;
1056 }
1057 vfree(temp_buf);
1058 continue;
1059 }
1060
1061 if (elf_ppnt->p_type != PT_LOAD)
1062 continue;
1063
1064 if (unlikely (elf_brk > elf_bss)) {
1065 unsigned long nbyte;
1066
1067 /* There was a PT_LOAD segment with p_memsz > p_filesz
1068 before this one. Map anonymous pages, if needed,
1069 and clear the area. */
1070 retval = set_brk(elf_bss + load_bias,
1071 elf_brk + load_bias,
1072 bss_prot);
1073 if (retval)
1074 goto out_free_dentry;
1075 nbyte = ELF_PAGEOFFSET(elf_bss);
1076 if (nbyte) {
1077 nbyte = ELF_MIN_ALIGN - nbyte;
1078 if (nbyte > elf_brk - elf_bss)
1079 nbyte = elf_brk - elf_bss;
1080 if (clear_user((void __user *)elf_bss +
1081 load_bias, nbyte)) {
1082 /*
1083 * This bss-zeroing can fail if the ELF
1084 * file specifies odd protections. So
1085 * we don't check the return value
1086 */
1087 }
1088 }
1089 }
1090
1091 elf_prot = make_prot(elf_ppnt->p_flags, &arch_state,
1092 !!interpreter, false);
1093
1094 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
1095
1096 vaddr = elf_ppnt->p_vaddr;
1097 /*
1098 * If we are loading ET_EXEC or we have already performed
1099 * the ET_DYN load_addr calculations, proceed normally.
1100 */
1101 if (elf_ex->e_type == ET_EXEC || load_addr_set) {
1102 elf_flags |= MAP_FIXED;
1103 } else if (elf_ex->e_type == ET_DYN) {
1104 /*
1105 * This logic is run once for the first LOAD Program
1106 * Header for ET_DYN binaries to calculate the
1107 * randomization (load_bias) for all the LOAD
1108 * Program Headers, and to calculate the entire
1109 * size of the ELF mapping (total_size). (Note that
1110 * load_addr_set is set to true later once the
1111 * initial mapping is performed.)
1112 *
1113 * There are effectively two types of ET_DYN
1114 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
1115 * and loaders (ET_DYN without INTERP, since they
1116 * _are_ the ELF interpreter). The loaders must
1117 * be loaded away from programs since the program
1118 * may otherwise collide with the loader (especially
1119 * for ET_EXEC which does not have a randomized
1120 * position). For example to handle invocations of
1121 * "./ld.so someprog" to test out a new version of
1122 * the loader, the subsequent program that the
1123 * loader loads must avoid the loader itself, so
1124 * they cannot share the same load range. Sufficient
1125 * room for the brk must be allocated with the
1126 * loader as well, since brk must be available with
1127 * the loader.
1128 *
1129 * Therefore, programs are loaded offset from
1130 * ELF_ET_DYN_BASE and loaders are loaded into the
1131 * independently randomized mmap region (0 load_bias
1132 * without MAP_FIXED).
1133 */
1134 if (interpreter) {
1135 load_bias = ELF_ET_DYN_BASE;
1136 if (current->flags & PF_RANDOMIZE)
1137 load_bias += arch_mmap_rnd();
1138 alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum);
1139 if (alignment)
1140 load_bias &= ~(alignment - 1);
1141 elf_flags |= MAP_FIXED;
1142 } else
1143 load_bias = 0;
1144
1145 /*
1146 * Since load_bias is used for all subsequent loading
1147 * calculations, we must lower it by the first vaddr
1148 * so that the remaining calculations based on the
1149 * ELF vaddrs will be correctly offset. The result
1150 * is then page aligned.
1151 */
1152 load_bias = ELF_PAGESTART(load_bias - vaddr);
1153
1154 total_size = total_mapping_size(elf_phdata,
1155 elf_ex->e_phnum);
1156 if (!total_size) {
1157 retval = -EINVAL;
1158 goto out_free_dentry;
1159 }
1160 }
1161
1162 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1163 elf_prot, elf_flags, total_size);
1164 if (BAD_ADDR(error)) {
1165 retval = IS_ERR((void *)error) ?
1166 PTR_ERR((void*)error) : -EINVAL;
1167 goto out_free_dentry;
1168 }
1169
1170 if (!load_addr_set) {
1171 load_addr_set = 1;
1172 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1173 if (elf_ex->e_type == ET_DYN) {
1174 load_bias += error -
1175 ELF_PAGESTART(load_bias + vaddr);
1176 load_addr += load_bias;
1177 reloc_func_desc = load_bias;
1178 }
1179 }
1180
1181 /*
1182 * Figure out which segment in the file contains the Program
1183 * Header table, and map to the associated memory address.
1184 */
1185 if (elf_ppnt->p_offset <= elf_ex->e_phoff &&
1186 elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) {
1187 phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset +
1188 elf_ppnt->p_vaddr;
1189 }
1190
1191 k = elf_ppnt->p_vaddr;
1192 if ((elf_ppnt->p_flags & PF_X) && k < start_code)
1193 start_code = k;
1194 if (start_data < k)
1195 start_data = k;
1196
1197 /*
1198 * Check to see if the section's size will overflow the
1199 * allowed task size. Note that p_filesz must always be
1200 * <= p_memsz so it is only necessary to check p_memsz.
1201 */
1202 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1203 elf_ppnt->p_memsz > TASK_SIZE ||
1204 TASK_SIZE - elf_ppnt->p_memsz < k) {
1205 /* set_brk can never work. Avoid overflows. */
1206 retval = -EINVAL;
1207 goto out_free_dentry;
1208 }
1209
1210 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1211
1212 if (k > elf_bss)
1213 elf_bss = k;
1214 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1215 end_code = k;
1216 if (end_data < k)
1217 end_data = k;
1218 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1219 if (k > elf_brk) {
1220 bss_prot = elf_prot;
1221 elf_brk = k;
1222 }
1223 }
1224
1225 e_entry = elf_ex->e_entry + load_bias;
1226 phdr_addr += load_bias;
1227 elf_bss += load_bias;
1228 elf_brk += load_bias;
1229 start_code += load_bias;
1230 end_code += load_bias;
1231 start_data += load_bias;
1232 end_data += load_bias;
1233
1234 /* Calling set_brk effectively mmaps the pages that we need
1235 * for the bss and break sections. We must do this before
1236 * mapping in the interpreter, to make sure it doesn't wind
1237 * up getting placed where the bss needs to go.
1238 */
1239 retval = set_brk(elf_bss, elf_brk, bss_prot);
1240 if (retval)
1241 goto out_free_dentry;
1242 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1243 retval = -EFAULT; /* Nobody gets to see this, but.. */
1244 goto out_free_dentry;
1245 }
1246
1247 if (interpreter) {
1248 elf_entry = load_elf_interp(interp_elf_ex,
1249 interpreter,
1250 load_bias, interp_elf_phdata,
1251 &arch_state);
1252 if (!IS_ERR((void *)elf_entry)) {
1253 /*
1254 * load_elf_interp() returns relocation
1255 * adjustment
1256 */
1257 interp_load_addr = elf_entry;
1258 elf_entry += interp_elf_ex->e_entry;
1259 }
1260 if (BAD_ADDR(elf_entry)) {
1261 retval = IS_ERR((void *)elf_entry) ?
1262 (int)elf_entry : -EINVAL;
1263 goto out_free_dentry;
1264 }
1265 reloc_func_desc = interp_load_addr;
1266
1267 allow_write_access(interpreter);
1268 fput(interpreter);
1269
1270 kfree(interp_elf_ex);
1271 kfree(interp_elf_phdata);
1272 } else {
1273 elf_entry = e_entry;
1274 if (BAD_ADDR(elf_entry)) {
1275 retval = -EINVAL;
1276 goto out_free_dentry;
1277 }
1278 }
1279
1280 kfree(elf_phdata);
1281
1282 set_binfmt(&elf_format);
1283
1284 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1285 retval = arch_setup_additional_pages(bprm, !!interpreter);
1286 if (retval < 0)
1287 goto out;
1288 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1289
1290 retval = create_elf_tables(bprm, elf_ex, interp_load_addr,
1291 e_entry, phdr_addr);
1292 if (retval < 0)
1293 goto out;
1294
1295 mm = current->mm;
1296 mm->end_code = end_code;
1297 mm->start_code = start_code;
1298 mm->start_data = start_data;
1299 mm->end_data = end_data;
1300 mm->start_stack = bprm->p;
1301
1302 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1303 /*
1304 * For architectures with ELF randomization, when executing
1305 * a loader directly (i.e. no interpreter listed in ELF
1306 * headers), move the brk area out of the mmap region
1307 * (since it grows up, and may collide early with the stack
1308 * growing down), and into the unused ELF_ET_DYN_BASE region.
1309 */
1310 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1311 elf_ex->e_type == ET_DYN && !interpreter) {
1312 mm->brk = mm->start_brk = ELF_ET_DYN_BASE;
1313 }
1314
1315 mm->brk = mm->start_brk = arch_randomize_brk(mm);
1316 #ifdef compat_brk_randomized
1317 current->brk_randomized = 1;
1318 #endif
1319 }
1320
1321 if (current->personality & MMAP_PAGE_ZERO) {
1322 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1323 and some applications "depend" upon this behavior.
1324 Since we do not have the power to recompile these, we
1325 emulate the SVr4 behavior. Sigh. */
1326 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1327 MAP_FIXED | MAP_PRIVATE, 0);
1328 }
1329
1330 regs = current_pt_regs();
1331 #ifdef ELF_PLAT_INIT
1332 /*
1333 * The ABI may specify that certain registers be set up in special
1334 * ways (on i386 %edx is the address of a DT_FINI function, for
1335 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1336 * that the e_entry field is the address of the function descriptor
1337 * for the startup routine, rather than the address of the startup
1338 * routine itself. This macro performs whatever initialization to
1339 * the regs structure is required as well as any relocations to the
1340 * function descriptor entries when executing dynamically links apps.
1341 */
1342 ELF_PLAT_INIT(regs, reloc_func_desc);
1343 #endif
1344
1345 finalize_exec(bprm);
1346 start_thread(regs, elf_entry, bprm->p);
1347 retval = 0;
1348 out:
1349 return retval;
1350
1351 /* error cleanup */
1352 out_free_dentry:
1353 kfree(interp_elf_ex);
1354 kfree(interp_elf_phdata);
1355 out_free_file:
1356 allow_write_access(interpreter);
1357 if (interpreter)
1358 fput(interpreter);
1359 out_free_ph:
1360 kfree(elf_phdata);
1361 goto out;
1362 }
1363
1364 #ifdef CONFIG_USELIB
1365 /* This is really simpleminded and specialized - we are loading an
1366 a.out library that is given an ELF header. */
load_elf_library(struct file * file)1367 static int load_elf_library(struct file *file)
1368 {
1369 struct elf_phdr *elf_phdata;
1370 struct elf_phdr *eppnt;
1371 unsigned long elf_bss, bss, len;
1372 int retval, error, i, j;
1373 struct elfhdr elf_ex;
1374
1375 error = -ENOEXEC;
1376 retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0);
1377 if (retval < 0)
1378 goto out;
1379
1380 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1381 goto out;
1382
1383 /* First of all, some simple consistency checks */
1384 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1385 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1386 goto out;
1387 if (elf_check_fdpic(&elf_ex))
1388 goto out;
1389
1390 /* Now read in all of the header information */
1391
1392 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1393 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1394
1395 error = -ENOMEM;
1396 elf_phdata = kmalloc(j, GFP_KERNEL);
1397 if (!elf_phdata)
1398 goto out;
1399
1400 eppnt = elf_phdata;
1401 error = -ENOEXEC;
1402 retval = elf_read(file, eppnt, j, elf_ex.e_phoff);
1403 if (retval < 0)
1404 goto out_free_ph;
1405
1406 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1407 if ((eppnt + i)->p_type == PT_LOAD)
1408 j++;
1409 if (j != 1)
1410 goto out_free_ph;
1411
1412 while (eppnt->p_type != PT_LOAD)
1413 eppnt++;
1414
1415 /* Now use mmap to map the library into memory. */
1416 error = vm_mmap(file,
1417 ELF_PAGESTART(eppnt->p_vaddr),
1418 (eppnt->p_filesz +
1419 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1420 PROT_READ | PROT_WRITE | PROT_EXEC,
1421 MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE,
1422 (eppnt->p_offset -
1423 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1424 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1425 goto out_free_ph;
1426
1427 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1428 if (padzero(elf_bss)) {
1429 error = -EFAULT;
1430 goto out_free_ph;
1431 }
1432
1433 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1434 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1435 if (bss > len) {
1436 error = vm_brk(len, bss - len);
1437 if (error)
1438 goto out_free_ph;
1439 }
1440 error = 0;
1441
1442 out_free_ph:
1443 kfree(elf_phdata);
1444 out:
1445 return error;
1446 }
1447 #endif /* #ifdef CONFIG_USELIB */
1448
1449 #ifdef CONFIG_ELF_CORE
1450 /*
1451 * ELF core dumper
1452 *
1453 * Modelled on fs/exec.c:aout_core_dump()
1454 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1455 */
1456
1457 /* An ELF note in memory */
1458 struct memelfnote
1459 {
1460 const char *name;
1461 int type;
1462 unsigned int datasz;
1463 void *data;
1464 };
1465
notesize(struct memelfnote * en)1466 static int notesize(struct memelfnote *en)
1467 {
1468 int sz;
1469
1470 sz = sizeof(struct elf_note);
1471 sz += roundup(strlen(en->name) + 1, 4);
1472 sz += roundup(en->datasz, 4);
1473
1474 return sz;
1475 }
1476
writenote(struct memelfnote * men,struct coredump_params * cprm)1477 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1478 {
1479 struct elf_note en;
1480 en.n_namesz = strlen(men->name) + 1;
1481 en.n_descsz = men->datasz;
1482 en.n_type = men->type;
1483
1484 return dump_emit(cprm, &en, sizeof(en)) &&
1485 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1486 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1487 }
1488
fill_elf_header(struct elfhdr * elf,int segs,u16 machine,u32 flags)1489 static void fill_elf_header(struct elfhdr *elf, int segs,
1490 u16 machine, u32 flags)
1491 {
1492 memset(elf, 0, sizeof(*elf));
1493
1494 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1495 elf->e_ident[EI_CLASS] = ELF_CLASS;
1496 elf->e_ident[EI_DATA] = ELF_DATA;
1497 elf->e_ident[EI_VERSION] = EV_CURRENT;
1498 elf->e_ident[EI_OSABI] = ELF_OSABI;
1499
1500 elf->e_type = ET_CORE;
1501 elf->e_machine = machine;
1502 elf->e_version = EV_CURRENT;
1503 elf->e_phoff = sizeof(struct elfhdr);
1504 elf->e_flags = flags;
1505 elf->e_ehsize = sizeof(struct elfhdr);
1506 elf->e_phentsize = sizeof(struct elf_phdr);
1507 elf->e_phnum = segs;
1508 }
1509
fill_elf_note_phdr(struct elf_phdr * phdr,int sz,loff_t offset)1510 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1511 {
1512 phdr->p_type = PT_NOTE;
1513 phdr->p_offset = offset;
1514 phdr->p_vaddr = 0;
1515 phdr->p_paddr = 0;
1516 phdr->p_filesz = sz;
1517 phdr->p_memsz = 0;
1518 phdr->p_flags = 0;
1519 phdr->p_align = 0;
1520 }
1521
fill_note(struct memelfnote * note,const char * name,int type,unsigned int sz,void * data)1522 static void fill_note(struct memelfnote *note, const char *name, int type,
1523 unsigned int sz, void *data)
1524 {
1525 note->name = name;
1526 note->type = type;
1527 note->datasz = sz;
1528 note->data = data;
1529 }
1530
1531 /*
1532 * fill up all the fields in prstatus from the given task struct, except
1533 * registers which need to be filled up separately.
1534 */
fill_prstatus(struct elf_prstatus * prstatus,struct task_struct * p,long signr)1535 static void fill_prstatus(struct elf_prstatus *prstatus,
1536 struct task_struct *p, long signr)
1537 {
1538 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1539 prstatus->pr_sigpend = p->pending.signal.sig[0];
1540 prstatus->pr_sighold = p->blocked.sig[0];
1541 rcu_read_lock();
1542 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1543 rcu_read_unlock();
1544 prstatus->pr_pid = task_pid_vnr(p);
1545 prstatus->pr_pgrp = task_pgrp_vnr(p);
1546 prstatus->pr_sid = task_session_vnr(p);
1547 if (thread_group_leader(p)) {
1548 struct task_cputime cputime;
1549
1550 /*
1551 * This is the record for the group leader. It shows the
1552 * group-wide total, not its individual thread total.
1553 */
1554 thread_group_cputime(p, &cputime);
1555 prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime);
1556 prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime);
1557 } else {
1558 u64 utime, stime;
1559
1560 task_cputime(p, &utime, &stime);
1561 prstatus->pr_utime = ns_to_kernel_old_timeval(utime);
1562 prstatus->pr_stime = ns_to_kernel_old_timeval(stime);
1563 }
1564
1565 prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime);
1566 prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime);
1567 }
1568
fill_psinfo(struct elf_prpsinfo * psinfo,struct task_struct * p,struct mm_struct * mm)1569 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1570 struct mm_struct *mm)
1571 {
1572 const struct cred *cred;
1573 unsigned int i, len;
1574
1575 /* first copy the parameters from user space */
1576 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1577
1578 len = mm->arg_end - mm->arg_start;
1579 if (len >= ELF_PRARGSZ)
1580 len = ELF_PRARGSZ-1;
1581 if (copy_from_user(&psinfo->pr_psargs,
1582 (const char __user *)mm->arg_start, len))
1583 return -EFAULT;
1584 for(i = 0; i < len; i++)
1585 if (psinfo->pr_psargs[i] == 0)
1586 psinfo->pr_psargs[i] = ' ';
1587 psinfo->pr_psargs[len] = 0;
1588
1589 rcu_read_lock();
1590 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1591 rcu_read_unlock();
1592 psinfo->pr_pid = task_pid_vnr(p);
1593 psinfo->pr_pgrp = task_pgrp_vnr(p);
1594 psinfo->pr_sid = task_session_vnr(p);
1595
1596 i = p->state ? ffz(~p->state) + 1 : 0;
1597 psinfo->pr_state = i;
1598 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1599 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1600 psinfo->pr_nice = task_nice(p);
1601 psinfo->pr_flag = p->flags;
1602 rcu_read_lock();
1603 cred = __task_cred(p);
1604 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1605 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1606 rcu_read_unlock();
1607 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1608
1609 return 0;
1610 }
1611
fill_auxv_note(struct memelfnote * note,struct mm_struct * mm)1612 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1613 {
1614 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1615 int i = 0;
1616 do
1617 i += 2;
1618 while (auxv[i - 2] != AT_NULL);
1619 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1620 }
1621
fill_siginfo_note(struct memelfnote * note,user_siginfo_t * csigdata,const kernel_siginfo_t * siginfo)1622 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1623 const kernel_siginfo_t *siginfo)
1624 {
1625 copy_siginfo_to_external(csigdata, siginfo);
1626 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1627 }
1628
1629 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1630 /*
1631 * Format of NT_FILE note:
1632 *
1633 * long count -- how many files are mapped
1634 * long page_size -- units for file_ofs
1635 * array of [COUNT] elements of
1636 * long start
1637 * long end
1638 * long file_ofs
1639 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1640 */
fill_files_note(struct memelfnote * note,struct coredump_params * cprm)1641 static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm)
1642 {
1643 unsigned count, size, names_ofs, remaining, n;
1644 user_long_t *data;
1645 user_long_t *start_end_ofs;
1646 char *name_base, *name_curpos;
1647 int i;
1648
1649 /* *Estimated* file count and total data size needed */
1650 count = cprm->vma_count;
1651 if (count > UINT_MAX / 64)
1652 return -EINVAL;
1653 size = count * 64;
1654
1655 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1656 alloc:
1657 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1658 return -EINVAL;
1659 size = round_up(size, PAGE_SIZE);
1660 /*
1661 * "size" can be 0 here legitimately.
1662 * Let it ENOMEM and omit NT_FILE section which will be empty anyway.
1663 */
1664 data = kvmalloc(size, GFP_KERNEL);
1665 if (ZERO_OR_NULL_PTR(data))
1666 return -ENOMEM;
1667
1668 start_end_ofs = data + 2;
1669 name_base = name_curpos = ((char *)data) + names_ofs;
1670 remaining = size - names_ofs;
1671 count = 0;
1672 for (i = 0; i < cprm->vma_count; i++) {
1673 struct core_vma_metadata *m = &cprm->vma_meta[i];
1674 struct file *file;
1675 const char *filename;
1676
1677 file = m->file;
1678 if (!file)
1679 continue;
1680 filename = file_path(file, name_curpos, remaining);
1681 if (IS_ERR(filename)) {
1682 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1683 kvfree(data);
1684 size = size * 5 / 4;
1685 goto alloc;
1686 }
1687 continue;
1688 }
1689
1690 /* file_path() fills at the end, move name down */
1691 /* n = strlen(filename) + 1: */
1692 n = (name_curpos + remaining) - filename;
1693 remaining = filename - name_curpos;
1694 memmove(name_curpos, filename, n);
1695 name_curpos += n;
1696
1697 *start_end_ofs++ = m->start;
1698 *start_end_ofs++ = m->end;
1699 *start_end_ofs++ = m->pgoff;
1700 count++;
1701 }
1702
1703 /* Now we know exact count of files, can store it */
1704 data[0] = count;
1705 data[1] = PAGE_SIZE;
1706 /*
1707 * Count usually is less than mm->map_count,
1708 * we need to move filenames down.
1709 */
1710 n = cprm->vma_count - count;
1711 if (n != 0) {
1712 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1713 memmove(name_base - shift_bytes, name_base,
1714 name_curpos - name_base);
1715 name_curpos -= shift_bytes;
1716 }
1717
1718 size = name_curpos - (char *)data;
1719 fill_note(note, "CORE", NT_FILE, size, data);
1720 return 0;
1721 }
1722
1723 #ifdef CORE_DUMP_USE_REGSET
1724 #include <linux/regset.h>
1725
1726 struct elf_thread_core_info {
1727 struct elf_thread_core_info *next;
1728 struct task_struct *task;
1729 struct elf_prstatus prstatus;
1730 struct memelfnote notes[];
1731 };
1732
1733 struct elf_note_info {
1734 struct elf_thread_core_info *thread;
1735 struct memelfnote psinfo;
1736 struct memelfnote signote;
1737 struct memelfnote auxv;
1738 struct memelfnote files;
1739 user_siginfo_t csigdata;
1740 size_t size;
1741 int thread_notes;
1742 };
1743
1744 /*
1745 * When a regset has a writeback hook, we call it on each thread before
1746 * dumping user memory. On register window machines, this makes sure the
1747 * user memory backing the register data is up to date before we read it.
1748 */
do_thread_regset_writeback(struct task_struct * task,const struct user_regset * regset)1749 static void do_thread_regset_writeback(struct task_struct *task,
1750 const struct user_regset *regset)
1751 {
1752 if (regset->writeback)
1753 regset->writeback(task, regset, 1);
1754 }
1755
1756 #ifndef PRSTATUS_SIZE
1757 #define PRSTATUS_SIZE(S, R) sizeof(S)
1758 #endif
1759
1760 #ifndef SET_PR_FPVALID
1761 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1762 #endif
1763
fill_thread_core_info(struct elf_thread_core_info * t,const struct user_regset_view * view,long signr,size_t * total)1764 static int fill_thread_core_info(struct elf_thread_core_info *t,
1765 const struct user_regset_view *view,
1766 long signr, size_t *total)
1767 {
1768 unsigned int i;
1769 int regset0_size;
1770
1771 /*
1772 * NT_PRSTATUS is the one special case, because the regset data
1773 * goes into the pr_reg field inside the note contents, rather
1774 * than being the whole note contents. We fill the reset in here.
1775 * We assume that regset 0 is NT_PRSTATUS.
1776 */
1777 fill_prstatus(&t->prstatus, t->task, signr);
1778 regset0_size = regset_get(t->task, &view->regsets[0],
1779 sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg);
1780 if (regset0_size < 0)
1781 return 0;
1782
1783 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1784 PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1785 *total += notesize(&t->notes[0]);
1786
1787 do_thread_regset_writeback(t->task, &view->regsets[0]);
1788
1789 /*
1790 * Each other regset might generate a note too. For each regset
1791 * that has no core_note_type or is inactive, we leave t->notes[i]
1792 * all zero and we'll know to skip writing it later.
1793 */
1794 for (i = 1; i < view->n; ++i) {
1795 const struct user_regset *regset = &view->regsets[i];
1796 int note_type = regset->core_note_type;
1797 bool is_fpreg = note_type == NT_PRFPREG;
1798 void *data;
1799 int ret;
1800
1801 do_thread_regset_writeback(t->task, regset);
1802 if (!note_type) // not for coredumps
1803 continue;
1804 if (regset->active && regset->active(t->task, regset) <= 0)
1805 continue;
1806
1807 ret = regset_get_alloc(t->task, regset, ~0U, &data);
1808 if (ret < 0)
1809 continue;
1810
1811 if (is_fpreg)
1812 SET_PR_FPVALID(&t->prstatus, 1, regset0_size);
1813
1814 fill_note(&t->notes[i], is_fpreg ? "CORE" : "LINUX",
1815 note_type, ret, data);
1816
1817 *total += notesize(&t->notes[i]);
1818 }
1819
1820 return 1;
1821 }
1822
fill_note_info(struct elfhdr * elf,int phdrs,struct elf_note_info * info,struct coredump_params * cprm)1823 static int fill_note_info(struct elfhdr *elf, int phdrs,
1824 struct elf_note_info *info,
1825 struct coredump_params *cprm)
1826 {
1827 struct task_struct *dump_task = current;
1828 const struct user_regset_view *view = task_user_regset_view(dump_task);
1829 struct elf_thread_core_info *t;
1830 struct elf_prpsinfo *psinfo;
1831 struct core_thread *ct;
1832 unsigned int i;
1833
1834 info->size = 0;
1835 info->thread = NULL;
1836
1837 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1838 if (psinfo == NULL) {
1839 info->psinfo.data = NULL; /* So we don't free this wrongly */
1840 return 0;
1841 }
1842
1843 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1844
1845 /*
1846 * Figure out how many notes we're going to need for each thread.
1847 */
1848 info->thread_notes = 0;
1849 for (i = 0; i < view->n; ++i)
1850 if (view->regsets[i].core_note_type != 0)
1851 ++info->thread_notes;
1852
1853 /*
1854 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1855 * since it is our one special case.
1856 */
1857 if (unlikely(info->thread_notes == 0) ||
1858 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1859 WARN_ON(1);
1860 return 0;
1861 }
1862
1863 /*
1864 * Initialize the ELF file header.
1865 */
1866 fill_elf_header(elf, phdrs,
1867 view->e_machine, view->e_flags);
1868
1869 /*
1870 * Allocate a structure for each thread.
1871 */
1872 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1873 t = kzalloc(offsetof(struct elf_thread_core_info,
1874 notes[info->thread_notes]),
1875 GFP_KERNEL);
1876 if (unlikely(!t))
1877 return 0;
1878
1879 t->task = ct->task;
1880 if (ct->task == dump_task || !info->thread) {
1881 t->next = info->thread;
1882 info->thread = t;
1883 } else {
1884 /*
1885 * Make sure to keep the original task at
1886 * the head of the list.
1887 */
1888 t->next = info->thread->next;
1889 info->thread->next = t;
1890 }
1891 }
1892
1893 /*
1894 * Now fill in each thread's information.
1895 */
1896 for (t = info->thread; t != NULL; t = t->next)
1897 if (!fill_thread_core_info(t, view, cprm->siginfo->si_signo, &info->size))
1898 return 0;
1899
1900 /*
1901 * Fill in the two process-wide notes.
1902 */
1903 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1904 info->size += notesize(&info->psinfo);
1905
1906 fill_siginfo_note(&info->signote, &info->csigdata, cprm->siginfo);
1907 info->size += notesize(&info->signote);
1908
1909 fill_auxv_note(&info->auxv, current->mm);
1910 info->size += notesize(&info->auxv);
1911
1912 if (fill_files_note(&info->files, cprm) == 0)
1913 info->size += notesize(&info->files);
1914
1915 return 1;
1916 }
1917
get_note_info_size(struct elf_note_info * info)1918 static size_t get_note_info_size(struct elf_note_info *info)
1919 {
1920 return info->size;
1921 }
1922
1923 /*
1924 * Write all the notes for each thread. When writing the first thread, the
1925 * process-wide notes are interleaved after the first thread-specific note.
1926 */
write_note_info(struct elf_note_info * info,struct coredump_params * cprm)1927 static int write_note_info(struct elf_note_info *info,
1928 struct coredump_params *cprm)
1929 {
1930 bool first = true;
1931 struct elf_thread_core_info *t = info->thread;
1932
1933 do {
1934 int i;
1935
1936 if (!writenote(&t->notes[0], cprm))
1937 return 0;
1938
1939 if (first && !writenote(&info->psinfo, cprm))
1940 return 0;
1941 if (first && !writenote(&info->signote, cprm))
1942 return 0;
1943 if (first && !writenote(&info->auxv, cprm))
1944 return 0;
1945 if (first && info->files.data &&
1946 !writenote(&info->files, cprm))
1947 return 0;
1948
1949 for (i = 1; i < info->thread_notes; ++i)
1950 if (t->notes[i].data &&
1951 !writenote(&t->notes[i], cprm))
1952 return 0;
1953
1954 first = false;
1955 t = t->next;
1956 } while (t);
1957
1958 return 1;
1959 }
1960
free_note_info(struct elf_note_info * info)1961 static void free_note_info(struct elf_note_info *info)
1962 {
1963 struct elf_thread_core_info *threads = info->thread;
1964 while (threads) {
1965 unsigned int i;
1966 struct elf_thread_core_info *t = threads;
1967 threads = t->next;
1968 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1969 for (i = 1; i < info->thread_notes; ++i)
1970 kfree(t->notes[i].data);
1971 kfree(t);
1972 }
1973 kfree(info->psinfo.data);
1974 kvfree(info->files.data);
1975 }
1976
1977 #else
1978
1979 /* Here is the structure in which status of each thread is captured. */
1980 struct elf_thread_status
1981 {
1982 struct list_head list;
1983 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1984 elf_fpregset_t fpu; /* NT_PRFPREG */
1985 struct task_struct *thread;
1986 struct memelfnote notes[3];
1987 int num_notes;
1988 };
1989
1990 /*
1991 * In order to add the specific thread information for the elf file format,
1992 * we need to keep a linked list of every threads pr_status and then create
1993 * a single section for them in the final core file.
1994 */
elf_dump_thread_status(long signr,struct elf_thread_status * t)1995 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1996 {
1997 int sz = 0;
1998 struct task_struct *p = t->thread;
1999 t->num_notes = 0;
2000
2001 fill_prstatus(&t->prstatus, p, signr);
2002 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
2003
2004 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
2005 &(t->prstatus));
2006 t->num_notes++;
2007 sz += notesize(&t->notes[0]);
2008
2009 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
2010 &t->fpu))) {
2011 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
2012 &(t->fpu));
2013 t->num_notes++;
2014 sz += notesize(&t->notes[1]);
2015 }
2016 return sz;
2017 }
2018
2019 struct elf_note_info {
2020 struct memelfnote *notes;
2021 struct memelfnote *notes_files;
2022 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
2023 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2024 struct list_head thread_list;
2025 elf_fpregset_t *fpu;
2026 user_siginfo_t csigdata;
2027 int thread_status_size;
2028 int numnote;
2029 };
2030
elf_note_info_init(struct elf_note_info * info)2031 static int elf_note_info_init(struct elf_note_info *info)
2032 {
2033 memset(info, 0, sizeof(*info));
2034 INIT_LIST_HEAD(&info->thread_list);
2035
2036 /* Allocate space for ELF notes */
2037 info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL);
2038 if (!info->notes)
2039 return 0;
2040 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2041 if (!info->psinfo)
2042 return 0;
2043 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2044 if (!info->prstatus)
2045 return 0;
2046 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2047 if (!info->fpu)
2048 return 0;
2049 return 1;
2050 }
2051
fill_note_info(struct elfhdr * elf,int phdrs,struct elf_note_info * info,struct coredump_params * cprm)2052 static int fill_note_info(struct elfhdr *elf, int phdrs,
2053 struct elf_note_info *info,
2054 struct coredump_params *cprm)
2055 {
2056 struct core_thread *ct;
2057 struct elf_thread_status *ets;
2058
2059 if (!elf_note_info_init(info))
2060 return 0;
2061
2062 for (ct = current->mm->core_state->dumper.next;
2063 ct; ct = ct->next) {
2064 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2065 if (!ets)
2066 return 0;
2067
2068 ets->thread = ct->task;
2069 list_add(&ets->list, &info->thread_list);
2070 }
2071
2072 list_for_each_entry(ets, &info->thread_list, list) {
2073 int sz;
2074
2075 sz = elf_dump_thread_status(cprm->siginfo->si_signo, ets);
2076 info->thread_status_size += sz;
2077 }
2078 /* now collect the dump for the current */
2079 memset(info->prstatus, 0, sizeof(*info->prstatus));
2080 fill_prstatus(info->prstatus, current, cprm->siginfo->si_signo);
2081 elf_core_copy_regs(&info->prstatus->pr_reg, cprm->regs);
2082
2083 /* Set up header */
2084 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2085
2086 /*
2087 * Set up the notes in similar form to SVR4 core dumps made
2088 * with info from their /proc.
2089 */
2090
2091 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2092 sizeof(*info->prstatus), info->prstatus);
2093 fill_psinfo(info->psinfo, current->group_leader, current->mm);
2094 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2095 sizeof(*info->psinfo), info->psinfo);
2096
2097 fill_siginfo_note(info->notes + 2, &info->csigdata, cprm->siginfo);
2098 fill_auxv_note(info->notes + 3, current->mm);
2099 info->numnote = 4;
2100
2101 if (fill_files_note(info->notes + info->numnote, cprm) == 0) {
2102 info->notes_files = info->notes + info->numnote;
2103 info->numnote++;
2104 }
2105
2106 /* Try to dump the FPU. */
2107 info->prstatus->pr_fpvalid =
2108 elf_core_copy_task_fpregs(current, cprm->regs, info->fpu);
2109 if (info->prstatus->pr_fpvalid)
2110 fill_note(info->notes + info->numnote++,
2111 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2112 return 1;
2113 }
2114
get_note_info_size(struct elf_note_info * info)2115 static size_t get_note_info_size(struct elf_note_info *info)
2116 {
2117 int sz = 0;
2118 int i;
2119
2120 for (i = 0; i < info->numnote; i++)
2121 sz += notesize(info->notes + i);
2122
2123 sz += info->thread_status_size;
2124
2125 return sz;
2126 }
2127
write_note_info(struct elf_note_info * info,struct coredump_params * cprm)2128 static int write_note_info(struct elf_note_info *info,
2129 struct coredump_params *cprm)
2130 {
2131 struct elf_thread_status *ets;
2132 int i;
2133
2134 for (i = 0; i < info->numnote; i++)
2135 if (!writenote(info->notes + i, cprm))
2136 return 0;
2137
2138 /* write out the thread status notes section */
2139 list_for_each_entry(ets, &info->thread_list, list) {
2140 for (i = 0; i < ets->num_notes; i++)
2141 if (!writenote(&ets->notes[i], cprm))
2142 return 0;
2143 }
2144
2145 return 1;
2146 }
2147
free_note_info(struct elf_note_info * info)2148 static void free_note_info(struct elf_note_info *info)
2149 {
2150 while (!list_empty(&info->thread_list)) {
2151 struct list_head *tmp = info->thread_list.next;
2152 list_del(tmp);
2153 kfree(list_entry(tmp, struct elf_thread_status, list));
2154 }
2155
2156 /* Free data possibly allocated by fill_files_note(): */
2157 if (info->notes_files)
2158 kvfree(info->notes_files->data);
2159
2160 kfree(info->prstatus);
2161 kfree(info->psinfo);
2162 kfree(info->notes);
2163 kfree(info->fpu);
2164 }
2165
2166 #endif
2167
fill_extnum_info(struct elfhdr * elf,struct elf_shdr * shdr4extnum,elf_addr_t e_shoff,int segs)2168 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2169 elf_addr_t e_shoff, int segs)
2170 {
2171 elf->e_shoff = e_shoff;
2172 elf->e_shentsize = sizeof(*shdr4extnum);
2173 elf->e_shnum = 1;
2174 elf->e_shstrndx = SHN_UNDEF;
2175
2176 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2177
2178 shdr4extnum->sh_type = SHT_NULL;
2179 shdr4extnum->sh_size = elf->e_shnum;
2180 shdr4extnum->sh_link = elf->e_shstrndx;
2181 shdr4extnum->sh_info = segs;
2182 }
2183
2184 /*
2185 * Actual dumper
2186 *
2187 * This is a two-pass process; first we find the offsets of the bits,
2188 * and then they are actually written out. If we run out of core limit
2189 * we just truncate.
2190 */
elf_core_dump(struct coredump_params * cprm)2191 static int elf_core_dump(struct coredump_params *cprm)
2192 {
2193 int has_dumped = 0;
2194 int segs, i;
2195 struct elfhdr elf;
2196 loff_t offset = 0, dataoff;
2197 struct elf_note_info info = { };
2198 struct elf_phdr *phdr4note = NULL;
2199 struct elf_shdr *shdr4extnum = NULL;
2200 Elf_Half e_phnum;
2201 elf_addr_t e_shoff;
2202
2203 /*
2204 * The number of segs are recored into ELF header as 16bit value.
2205 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2206 */
2207 segs = cprm->vma_count + elf_core_extra_phdrs();
2208
2209 /* for notes section */
2210 segs++;
2211
2212 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2213 * this, kernel supports extended numbering. Have a look at
2214 * include/linux/elf.h for further information. */
2215 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2216
2217 /*
2218 * Collect all the non-memory information about the process for the
2219 * notes. This also sets up the file header.
2220 */
2221 if (!fill_note_info(&elf, e_phnum, &info, cprm))
2222 goto end_coredump;
2223
2224 has_dumped = 1;
2225
2226 offset += sizeof(elf); /* Elf header */
2227 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2228
2229 /* Write notes phdr entry */
2230 {
2231 size_t sz = get_note_info_size(&info);
2232
2233 sz += elf_coredump_extra_notes_size();
2234
2235 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2236 if (!phdr4note)
2237 goto end_coredump;
2238
2239 fill_elf_note_phdr(phdr4note, sz, offset);
2240 offset += sz;
2241 }
2242
2243 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2244
2245 offset += cprm->vma_data_size;
2246 offset += elf_core_extra_data_size();
2247 e_shoff = offset;
2248
2249 if (e_phnum == PN_XNUM) {
2250 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2251 if (!shdr4extnum)
2252 goto end_coredump;
2253 fill_extnum_info(&elf, shdr4extnum, e_shoff, segs);
2254 }
2255
2256 offset = dataoff;
2257
2258 if (!dump_emit(cprm, &elf, sizeof(elf)))
2259 goto end_coredump;
2260
2261 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2262 goto end_coredump;
2263
2264 /* Write program headers for segments dump */
2265 for (i = 0; i < cprm->vma_count; i++) {
2266 struct core_vma_metadata *meta = cprm->vma_meta + i;
2267 struct elf_phdr phdr;
2268
2269 phdr.p_type = PT_LOAD;
2270 phdr.p_offset = offset;
2271 phdr.p_vaddr = meta->start;
2272 phdr.p_paddr = 0;
2273 phdr.p_filesz = meta->dump_size;
2274 phdr.p_memsz = meta->end - meta->start;
2275 offset += phdr.p_filesz;
2276 phdr.p_flags = 0;
2277 if (meta->flags & VM_READ)
2278 phdr.p_flags |= PF_R;
2279 if (meta->flags & VM_WRITE)
2280 phdr.p_flags |= PF_W;
2281 if (meta->flags & VM_EXEC)
2282 phdr.p_flags |= PF_X;
2283 phdr.p_align = ELF_EXEC_PAGESIZE;
2284
2285 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2286 goto end_coredump;
2287 }
2288
2289 if (!elf_core_write_extra_phdrs(cprm, offset))
2290 goto end_coredump;
2291
2292 /* write out the notes section */
2293 if (!write_note_info(&info, cprm))
2294 goto end_coredump;
2295
2296 if (elf_coredump_extra_notes_write(cprm))
2297 goto end_coredump;
2298
2299 /* Align to page */
2300 if (!dump_skip(cprm, dataoff - cprm->pos))
2301 goto end_coredump;
2302
2303 for (i = 0; i < cprm->vma_count; i++) {
2304 struct core_vma_metadata *meta = cprm->vma_meta + i;
2305
2306 if (!dump_user_range(cprm, meta->start, meta->dump_size))
2307 goto end_coredump;
2308 }
2309 dump_truncate(cprm);
2310
2311 if (!elf_core_write_extra_data(cprm))
2312 goto end_coredump;
2313
2314 if (e_phnum == PN_XNUM) {
2315 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2316 goto end_coredump;
2317 }
2318
2319 end_coredump:
2320 free_note_info(&info);
2321 kfree(shdr4extnum);
2322 kfree(phdr4note);
2323 return has_dumped;
2324 }
2325
2326 #endif /* CONFIG_ELF_CORE */
2327
init_elf_binfmt(void)2328 static int __init init_elf_binfmt(void)
2329 {
2330 register_binfmt(&elf_format);
2331 return 0;
2332 }
2333
exit_elf_binfmt(void)2334 static void __exit exit_elf_binfmt(void)
2335 {
2336 /* Remove the COFF and ELF loaders. */
2337 unregister_binfmt(&elf_format);
2338 }
2339
2340 core_initcall(init_elf_binfmt);
2341 module_exit(exit_elf_binfmt);
2342 MODULE_LICENSE("GPL");
2343