• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/fs/binfmt_elf.c
4  *
5  * These are the functions used to load ELF format executables as used
6  * on SVr4 machines.  Information on the format may be found in the book
7  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
8  * Tools".
9  *
10  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
11  */
12 
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/fs.h>
16 #include <linux/log2.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/errno.h>
20 #include <linux/signal.h>
21 #include <linux/binfmts.h>
22 #include <linux/string.h>
23 #include <linux/file.h>
24 #include <linux/slab.h>
25 #include <linux/personality.h>
26 #include <linux/elfcore.h>
27 #include <linux/init.h>
28 #include <linux/highuid.h>
29 #include <linux/compiler.h>
30 #include <linux/highmem.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vmalloc.h>
34 #include <linux/security.h>
35 #include <linux/random.h>
36 #include <linux/elf.h>
37 #include <linux/elf-randomize.h>
38 #include <linux/utsname.h>
39 #include <linux/coredump.h>
40 #include <linux/sched.h>
41 #include <linux/sched/coredump.h>
42 #include <linux/sched/task_stack.h>
43 #include <linux/sched/cputime.h>
44 #include <linux/sizes.h>
45 #include <linux/types.h>
46 #include <linux/cred.h>
47 #include <linux/dax.h>
48 #include <linux/uaccess.h>
49 #include <asm/param.h>
50 #include <asm/page.h>
51 
52 #ifndef ELF_COMPAT
53 #define ELF_COMPAT 0
54 #endif
55 
56 #ifndef user_long_t
57 #define user_long_t long
58 #endif
59 #ifndef user_siginfo_t
60 #define user_siginfo_t siginfo_t
61 #endif
62 
63 /* That's for binfmt_elf_fdpic to deal with */
64 #ifndef elf_check_fdpic
65 #define elf_check_fdpic(ex) false
66 #endif
67 
68 static int load_elf_binary(struct linux_binprm *bprm);
69 
70 #ifdef CONFIG_USELIB
71 static int load_elf_library(struct file *);
72 #else
73 #define load_elf_library NULL
74 #endif
75 
76 /*
77  * If we don't support core dumping, then supply a NULL so we
78  * don't even try.
79  */
80 #ifdef CONFIG_ELF_CORE
81 static int elf_core_dump(struct coredump_params *cprm);
82 #else
83 #define elf_core_dump	NULL
84 #endif
85 
86 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
87 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
88 #else
89 #define ELF_MIN_ALIGN	PAGE_SIZE
90 #endif
91 
92 #ifndef ELF_CORE_EFLAGS
93 #define ELF_CORE_EFLAGS	0
94 #endif
95 
96 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
97 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
98 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
99 
100 static struct linux_binfmt elf_format = {
101 	.module		= THIS_MODULE,
102 	.load_binary	= load_elf_binary,
103 	.load_shlib	= load_elf_library,
104 	.core_dump	= elf_core_dump,
105 	.min_coredump	= ELF_EXEC_PAGESIZE,
106 };
107 
108 #define BAD_ADDR(x) (unlikely((unsigned long)(x) >= TASK_SIZE))
109 
set_brk(unsigned long start,unsigned long end,int prot)110 static int set_brk(unsigned long start, unsigned long end, int prot)
111 {
112 	start = ELF_PAGEALIGN(start);
113 	end = ELF_PAGEALIGN(end);
114 	if (end > start) {
115 		/*
116 		 * Map the last of the bss segment.
117 		 * If the header is requesting these pages to be
118 		 * executable, honour that (ppc32 needs this).
119 		 */
120 		int error = vm_brk_flags(start, end - start,
121 				prot & PROT_EXEC ? VM_EXEC : 0);
122 		if (error)
123 			return error;
124 	}
125 	current->mm->start_brk = current->mm->brk = end;
126 	return 0;
127 }
128 
129 /* We need to explicitly zero any fractional pages
130    after the data section (i.e. bss).  This would
131    contain the junk from the file that should not
132    be in memory
133  */
padzero(unsigned long elf_bss)134 static int padzero(unsigned long elf_bss)
135 {
136 	unsigned long nbyte;
137 
138 	nbyte = ELF_PAGEOFFSET(elf_bss);
139 	if (nbyte) {
140 		nbyte = ELF_MIN_ALIGN - nbyte;
141 		if (clear_user((void __user *) elf_bss, nbyte))
142 			return -EFAULT;
143 	}
144 	return 0;
145 }
146 
147 /* Let's use some macros to make this stack manipulation a little clearer */
148 #ifdef CONFIG_STACK_GROWSUP
149 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
150 #define STACK_ROUND(sp, items) \
151 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
152 #define STACK_ALLOC(sp, len) ({ \
153 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
154 	old_sp; })
155 #else
156 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
157 #define STACK_ROUND(sp, items) \
158 	(((unsigned long) (sp - items)) &~ 15UL)
159 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
160 #endif
161 
162 #ifndef ELF_BASE_PLATFORM
163 /*
164  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
165  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
166  * will be copied to the user stack in the same manner as AT_PLATFORM.
167  */
168 #define ELF_BASE_PLATFORM NULL
169 #endif
170 
171 static int
create_elf_tables(struct linux_binprm * bprm,const struct elfhdr * exec,unsigned long interp_load_addr,unsigned long e_entry,unsigned long phdr_addr)172 create_elf_tables(struct linux_binprm *bprm, const struct elfhdr *exec,
173 		unsigned long interp_load_addr,
174 		unsigned long e_entry, unsigned long phdr_addr)
175 {
176 	struct mm_struct *mm = current->mm;
177 	unsigned long p = bprm->p;
178 	int argc = bprm->argc;
179 	int envc = bprm->envc;
180 	elf_addr_t __user *sp;
181 	elf_addr_t __user *u_platform;
182 	elf_addr_t __user *u_base_platform;
183 	elf_addr_t __user *u_rand_bytes;
184 	const char *k_platform = ELF_PLATFORM;
185 	const char *k_base_platform = ELF_BASE_PLATFORM;
186 	unsigned char k_rand_bytes[16];
187 	int items;
188 	elf_addr_t *elf_info;
189 	int ei_index;
190 	const struct cred *cred = current_cred();
191 	struct vm_area_struct *vma;
192 
193 	/*
194 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
195 	 * evictions by the processes running on the same package. One
196 	 * thing we can do is to shuffle the initial stack for them.
197 	 */
198 
199 	p = arch_align_stack(p);
200 
201 	/*
202 	 * If this architecture has a platform capability string, copy it
203 	 * to userspace.  In some cases (Sparc), this info is impossible
204 	 * for userspace to get any other way, in others (i386) it is
205 	 * merely difficult.
206 	 */
207 	u_platform = NULL;
208 	if (k_platform) {
209 		size_t len = strlen(k_platform) + 1;
210 
211 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
212 		if (copy_to_user(u_platform, k_platform, len))
213 			return -EFAULT;
214 	}
215 
216 	/*
217 	 * If this architecture has a "base" platform capability
218 	 * string, copy it to userspace.
219 	 */
220 	u_base_platform = NULL;
221 	if (k_base_platform) {
222 		size_t len = strlen(k_base_platform) + 1;
223 
224 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
225 		if (copy_to_user(u_base_platform, k_base_platform, len))
226 			return -EFAULT;
227 	}
228 
229 	/*
230 	 * Generate 16 random bytes for userspace PRNG seeding.
231 	 */
232 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
233 	u_rand_bytes = (elf_addr_t __user *)
234 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
235 	if (copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
236 		return -EFAULT;
237 
238 	/* Create the ELF interpreter info */
239 	elf_info = (elf_addr_t *)mm->saved_auxv;
240 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
241 #define NEW_AUX_ENT(id, val) \
242 	do { \
243 		*elf_info++ = id; \
244 		*elf_info++ = val; \
245 	} while (0)
246 
247 #ifdef ARCH_DLINFO
248 	/*
249 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
250 	 * AUXV.
251 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
252 	 * ARCH_DLINFO changes
253 	 */
254 	ARCH_DLINFO;
255 #endif
256 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
257 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
258 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
259 	NEW_AUX_ENT(AT_PHDR, phdr_addr);
260 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
261 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
262 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
263 	NEW_AUX_ENT(AT_FLAGS, 0);
264 	NEW_AUX_ENT(AT_ENTRY, e_entry);
265 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
266 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
267 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
268 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
269 	NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
270 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
271 #ifdef ELF_HWCAP2
272 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
273 #endif
274 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
275 	if (k_platform) {
276 		NEW_AUX_ENT(AT_PLATFORM,
277 			    (elf_addr_t)(unsigned long)u_platform);
278 	}
279 	if (k_base_platform) {
280 		NEW_AUX_ENT(AT_BASE_PLATFORM,
281 			    (elf_addr_t)(unsigned long)u_base_platform);
282 	}
283 	if (bprm->have_execfd) {
284 		NEW_AUX_ENT(AT_EXECFD, bprm->execfd);
285 	}
286 #undef NEW_AUX_ENT
287 	/* AT_NULL is zero; clear the rest too */
288 	memset(elf_info, 0, (char *)mm->saved_auxv +
289 			sizeof(mm->saved_auxv) - (char *)elf_info);
290 
291 	/* And advance past the AT_NULL entry.  */
292 	elf_info += 2;
293 
294 	ei_index = elf_info - (elf_addr_t *)mm->saved_auxv;
295 	sp = STACK_ADD(p, ei_index);
296 
297 	items = (argc + 1) + (envc + 1) + 1;
298 	bprm->p = STACK_ROUND(sp, items);
299 
300 	/* Point sp at the lowest address on the stack */
301 #ifdef CONFIG_STACK_GROWSUP
302 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
303 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
304 #else
305 	sp = (elf_addr_t __user *)bprm->p;
306 #endif
307 
308 
309 	/*
310 	 * Grow the stack manually; some architectures have a limit on how
311 	 * far ahead a user-space access may be in order to grow the stack.
312 	 */
313 	if (mmap_read_lock_killable(mm))
314 		return -EINTR;
315 	vma = find_extend_vma(mm, bprm->p);
316 	mmap_read_unlock(mm);
317 	if (!vma)
318 		return -EFAULT;
319 
320 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
321 	if (put_user(argc, sp++))
322 		return -EFAULT;
323 
324 	/* Populate list of argv pointers back to argv strings. */
325 	p = mm->arg_end = mm->arg_start;
326 	while (argc-- > 0) {
327 		size_t len;
328 		if (put_user((elf_addr_t)p, sp++))
329 			return -EFAULT;
330 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
331 		if (!len || len > MAX_ARG_STRLEN)
332 			return -EINVAL;
333 		p += len;
334 	}
335 	if (put_user(0, sp++))
336 		return -EFAULT;
337 	mm->arg_end = p;
338 
339 	/* Populate list of envp pointers back to envp strings. */
340 	mm->env_end = mm->env_start = p;
341 	while (envc-- > 0) {
342 		size_t len;
343 		if (put_user((elf_addr_t)p, sp++))
344 			return -EFAULT;
345 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
346 		if (!len || len > MAX_ARG_STRLEN)
347 			return -EINVAL;
348 		p += len;
349 	}
350 	if (put_user(0, sp++))
351 		return -EFAULT;
352 	mm->env_end = p;
353 
354 	/* Put the elf_info on the stack in the right place.  */
355 	if (copy_to_user(sp, mm->saved_auxv, ei_index * sizeof(elf_addr_t)))
356 		return -EFAULT;
357 	return 0;
358 }
359 
elf_map(struct file * filep,unsigned long addr,const struct elf_phdr * eppnt,int prot,int type,unsigned long total_size)360 static unsigned long elf_map(struct file *filep, unsigned long addr,
361 		const struct elf_phdr *eppnt, int prot, int type,
362 		unsigned long total_size)
363 {
364 	unsigned long map_addr;
365 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
366 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
367 	addr = ELF_PAGESTART(addr);
368 	size = ELF_PAGEALIGN(size);
369 
370 	/* mmap() will return -EINVAL if given a zero size, but a
371 	 * segment with zero filesize is perfectly valid */
372 	if (!size)
373 		return addr;
374 
375 	/*
376 	* total_size is the size of the ELF (interpreter) image.
377 	* The _first_ mmap needs to know the full size, otherwise
378 	* randomization might put this image into an overlapping
379 	* position with the ELF binary image. (since size < total_size)
380 	* So we first map the 'big' image - and unmap the remainder at
381 	* the end. (which unmap is needed for ELF images with holes.)
382 	*/
383 	if (total_size) {
384 		total_size = ELF_PAGEALIGN(total_size);
385 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
386 		if (!BAD_ADDR(map_addr))
387 			vm_munmap(map_addr+size, total_size-size);
388 	} else
389 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
390 
391 	if ((type & MAP_FIXED_NOREPLACE) &&
392 	    PTR_ERR((void *)map_addr) == -EEXIST)
393 		pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
394 			task_pid_nr(current), current->comm, (void *)addr);
395 
396 	return(map_addr);
397 }
398 
total_mapping_size(const struct elf_phdr * cmds,int nr)399 static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr)
400 {
401 	int i, first_idx = -1, last_idx = -1;
402 
403 	for (i = 0; i < nr; i++) {
404 		if (cmds[i].p_type == PT_LOAD) {
405 			last_idx = i;
406 			if (first_idx == -1)
407 				first_idx = i;
408 		}
409 	}
410 	if (first_idx == -1)
411 		return 0;
412 
413 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
414 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
415 }
416 
elf_read(struct file * file,void * buf,size_t len,loff_t pos)417 static int elf_read(struct file *file, void *buf, size_t len, loff_t pos)
418 {
419 	ssize_t rv;
420 
421 	rv = kernel_read(file, buf, len, &pos);
422 	if (unlikely(rv != len)) {
423 		return (rv < 0) ? rv : -EIO;
424 	}
425 	return 0;
426 }
427 
maximum_alignment(struct elf_phdr * cmds,int nr)428 static unsigned long maximum_alignment(struct elf_phdr *cmds, int nr)
429 {
430 	unsigned long alignment = 0;
431 	int i;
432 
433 	for (i = 0; i < nr; i++) {
434 		if (cmds[i].p_type == PT_LOAD) {
435 			unsigned long p_align = cmds[i].p_align;
436 
437 			/* skip non-power of two alignments as invalid */
438 			if (!is_power_of_2(p_align))
439 				continue;
440 			alignment = max(alignment, p_align);
441 		}
442 	}
443 
444 	/* ensure we align to at least one page */
445 	return ELF_PAGEALIGN(alignment);
446 }
447 
448 /**
449  * load_elf_phdrs() - load ELF program headers
450  * @elf_ex:   ELF header of the binary whose program headers should be loaded
451  * @elf_file: the opened ELF binary file
452  *
453  * Loads ELF program headers from the binary file elf_file, which has the ELF
454  * header pointed to by elf_ex, into a newly allocated array. The caller is
455  * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
456  */
load_elf_phdrs(const struct elfhdr * elf_ex,struct file * elf_file)457 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
458 				       struct file *elf_file)
459 {
460 	struct elf_phdr *elf_phdata = NULL;
461 	int retval, err = -1;
462 	unsigned int size;
463 
464 	/*
465 	 * If the size of this structure has changed, then punt, since
466 	 * we will be doing the wrong thing.
467 	 */
468 	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
469 		goto out;
470 
471 	/* Sanity check the number of program headers... */
472 	/* ...and their total size. */
473 	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
474 	if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
475 		goto out;
476 
477 	elf_phdata = kmalloc(size, GFP_KERNEL);
478 	if (!elf_phdata)
479 		goto out;
480 
481 	/* Read in the program headers */
482 	retval = elf_read(elf_file, elf_phdata, size, elf_ex->e_phoff);
483 	if (retval < 0) {
484 		err = retval;
485 		goto out;
486 	}
487 
488 	/* Success! */
489 	err = 0;
490 out:
491 	if (err) {
492 		kfree(elf_phdata);
493 		elf_phdata = NULL;
494 	}
495 	return elf_phdata;
496 }
497 
498 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
499 
500 /**
501  * struct arch_elf_state - arch-specific ELF loading state
502  *
503  * This structure is used to preserve architecture specific data during
504  * the loading of an ELF file, throughout the checking of architecture
505  * specific ELF headers & through to the point where the ELF load is
506  * known to be proceeding (ie. SET_PERSONALITY).
507  *
508  * This implementation is a dummy for architectures which require no
509  * specific state.
510  */
511 struct arch_elf_state {
512 };
513 
514 #define INIT_ARCH_ELF_STATE {}
515 
516 /**
517  * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
518  * @ehdr:	The main ELF header
519  * @phdr:	The program header to check
520  * @elf:	The open ELF file
521  * @is_interp:	True if the phdr is from the interpreter of the ELF being
522  *		loaded, else false.
523  * @state:	Architecture-specific state preserved throughout the process
524  *		of loading the ELF.
525  *
526  * Inspects the program header phdr to validate its correctness and/or
527  * suitability for the system. Called once per ELF program header in the
528  * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
529  * interpreter.
530  *
531  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
532  *         with that return code.
533  */
arch_elf_pt_proc(struct elfhdr * ehdr,struct elf_phdr * phdr,struct file * elf,bool is_interp,struct arch_elf_state * state)534 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
535 				   struct elf_phdr *phdr,
536 				   struct file *elf, bool is_interp,
537 				   struct arch_elf_state *state)
538 {
539 	/* Dummy implementation, always proceed */
540 	return 0;
541 }
542 
543 /**
544  * arch_check_elf() - check an ELF executable
545  * @ehdr:	The main ELF header
546  * @has_interp:	True if the ELF has an interpreter, else false.
547  * @interp_ehdr: The interpreter's ELF header
548  * @state:	Architecture-specific state preserved throughout the process
549  *		of loading the ELF.
550  *
551  * Provides a final opportunity for architecture code to reject the loading
552  * of the ELF & cause an exec syscall to return an error. This is called after
553  * all program headers to be checked by arch_elf_pt_proc have been.
554  *
555  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
556  *         with that return code.
557  */
arch_check_elf(struct elfhdr * ehdr,bool has_interp,struct elfhdr * interp_ehdr,struct arch_elf_state * state)558 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
559 				 struct elfhdr *interp_ehdr,
560 				 struct arch_elf_state *state)
561 {
562 	/* Dummy implementation, always proceed */
563 	return 0;
564 }
565 
566 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
567 
make_prot(u32 p_flags,struct arch_elf_state * arch_state,bool has_interp,bool is_interp)568 static inline int make_prot(u32 p_flags, struct arch_elf_state *arch_state,
569 			    bool has_interp, bool is_interp)
570 {
571 	int prot = 0;
572 
573 	if (p_flags & PF_R)
574 		prot |= PROT_READ;
575 	if (p_flags & PF_W)
576 		prot |= PROT_WRITE;
577 	if (p_flags & PF_X)
578 		prot |= PROT_EXEC;
579 
580 	return arch_elf_adjust_prot(prot, arch_state, has_interp, is_interp);
581 }
582 
583 /* This is much more generalized than the library routine read function,
584    so we keep this separate.  Technically the library read function
585    is only provided so that we can read a.out libraries that have
586    an ELF header */
587 
load_elf_interp(struct elfhdr * interp_elf_ex,struct file * interpreter,unsigned long no_base,struct elf_phdr * interp_elf_phdata,struct arch_elf_state * arch_state)588 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
589 		struct file *interpreter,
590 		unsigned long no_base, struct elf_phdr *interp_elf_phdata,
591 		struct arch_elf_state *arch_state)
592 {
593 	struct elf_phdr *eppnt;
594 	unsigned long load_addr = 0;
595 	int load_addr_set = 0;
596 	unsigned long last_bss = 0, elf_bss = 0;
597 	int bss_prot = 0;
598 	unsigned long error = ~0UL;
599 	unsigned long total_size;
600 	int i;
601 
602 	/* First of all, some simple consistency checks */
603 	if (interp_elf_ex->e_type != ET_EXEC &&
604 	    interp_elf_ex->e_type != ET_DYN)
605 		goto out;
606 	if (!elf_check_arch(interp_elf_ex) ||
607 	    elf_check_fdpic(interp_elf_ex))
608 		goto out;
609 	if (!interpreter->f_op->mmap)
610 		goto out;
611 
612 	total_size = total_mapping_size(interp_elf_phdata,
613 					interp_elf_ex->e_phnum);
614 	if (!total_size) {
615 		error = -EINVAL;
616 		goto out;
617 	}
618 
619 	eppnt = interp_elf_phdata;
620 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
621 		if (eppnt->p_type == PT_LOAD) {
622 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
623 			int elf_prot = make_prot(eppnt->p_flags, arch_state,
624 						 true, true);
625 			unsigned long vaddr = 0;
626 			unsigned long k, map_addr;
627 
628 			vaddr = eppnt->p_vaddr;
629 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
630 				elf_type |= MAP_FIXED;
631 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
632 				load_addr = -vaddr;
633 
634 			map_addr = elf_map(interpreter, load_addr + vaddr,
635 					eppnt, elf_prot, elf_type, total_size);
636 			total_size = 0;
637 			error = map_addr;
638 			if (BAD_ADDR(map_addr))
639 				goto out;
640 
641 			if (!load_addr_set &&
642 			    interp_elf_ex->e_type == ET_DYN) {
643 				load_addr = map_addr - ELF_PAGESTART(vaddr);
644 				load_addr_set = 1;
645 			}
646 
647 			/*
648 			 * Check to see if the section's size will overflow the
649 			 * allowed task size. Note that p_filesz must always be
650 			 * <= p_memsize so it's only necessary to check p_memsz.
651 			 */
652 			k = load_addr + eppnt->p_vaddr;
653 			if (BAD_ADDR(k) ||
654 			    eppnt->p_filesz > eppnt->p_memsz ||
655 			    eppnt->p_memsz > TASK_SIZE ||
656 			    TASK_SIZE - eppnt->p_memsz < k) {
657 				error = -ENOMEM;
658 				goto out;
659 			}
660 
661 			/*
662 			 * Find the end of the file mapping for this phdr, and
663 			 * keep track of the largest address we see for this.
664 			 */
665 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
666 			if (k > elf_bss)
667 				elf_bss = k;
668 
669 			/*
670 			 * Do the same thing for the memory mapping - between
671 			 * elf_bss and last_bss is the bss section.
672 			 */
673 			k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
674 			if (k > last_bss) {
675 				last_bss = k;
676 				bss_prot = elf_prot;
677 			}
678 		}
679 	}
680 
681 	/*
682 	 * Now fill out the bss section: first pad the last page from
683 	 * the file up to the page boundary, and zero it from elf_bss
684 	 * up to the end of the page.
685 	 */
686 	if (padzero(elf_bss)) {
687 		error = -EFAULT;
688 		goto out;
689 	}
690 	/*
691 	 * Next, align both the file and mem bss up to the page size,
692 	 * since this is where elf_bss was just zeroed up to, and where
693 	 * last_bss will end after the vm_brk_flags() below.
694 	 */
695 	elf_bss = ELF_PAGEALIGN(elf_bss);
696 	last_bss = ELF_PAGEALIGN(last_bss);
697 	/* Finally, if there is still more bss to allocate, do it. */
698 	if (last_bss > elf_bss) {
699 		error = vm_brk_flags(elf_bss, last_bss - elf_bss,
700 				bss_prot & PROT_EXEC ? VM_EXEC : 0);
701 		if (error)
702 			goto out;
703 	}
704 
705 	error = load_addr;
706 out:
707 	return error;
708 }
709 
710 /*
711  * These are the functions used to load ELF style executables and shared
712  * libraries.  There is no binary dependent code anywhere else.
713  */
714 
parse_elf_property(const char * data,size_t * off,size_t datasz,struct arch_elf_state * arch,bool have_prev_type,u32 * prev_type)715 static int parse_elf_property(const char *data, size_t *off, size_t datasz,
716 			      struct arch_elf_state *arch,
717 			      bool have_prev_type, u32 *prev_type)
718 {
719 	size_t o, step;
720 	const struct gnu_property *pr;
721 	int ret;
722 
723 	if (*off == datasz)
724 		return -ENOENT;
725 
726 	if (WARN_ON_ONCE(*off > datasz || *off % ELF_GNU_PROPERTY_ALIGN))
727 		return -EIO;
728 	o = *off;
729 	datasz -= *off;
730 
731 	if (datasz < sizeof(*pr))
732 		return -ENOEXEC;
733 	pr = (const struct gnu_property *)(data + o);
734 	o += sizeof(*pr);
735 	datasz -= sizeof(*pr);
736 
737 	if (pr->pr_datasz > datasz)
738 		return -ENOEXEC;
739 
740 	WARN_ON_ONCE(o % ELF_GNU_PROPERTY_ALIGN);
741 	step = round_up(pr->pr_datasz, ELF_GNU_PROPERTY_ALIGN);
742 	if (step > datasz)
743 		return -ENOEXEC;
744 
745 	/* Properties are supposed to be unique and sorted on pr_type: */
746 	if (have_prev_type && pr->pr_type <= *prev_type)
747 		return -ENOEXEC;
748 	*prev_type = pr->pr_type;
749 
750 	ret = arch_parse_elf_property(pr->pr_type, data + o,
751 				      pr->pr_datasz, ELF_COMPAT, arch);
752 	if (ret)
753 		return ret;
754 
755 	*off = o + step;
756 	return 0;
757 }
758 
759 #define NOTE_DATA_SZ SZ_1K
760 #define GNU_PROPERTY_TYPE_0_NAME "GNU"
761 #define NOTE_NAME_SZ (sizeof(GNU_PROPERTY_TYPE_0_NAME))
762 
parse_elf_properties(struct file * f,const struct elf_phdr * phdr,struct arch_elf_state * arch)763 static int parse_elf_properties(struct file *f, const struct elf_phdr *phdr,
764 				struct arch_elf_state *arch)
765 {
766 	union {
767 		struct elf_note nhdr;
768 		char data[NOTE_DATA_SZ];
769 	} note;
770 	loff_t pos;
771 	ssize_t n;
772 	size_t off, datasz;
773 	int ret;
774 	bool have_prev_type;
775 	u32 prev_type;
776 
777 	if (!IS_ENABLED(CONFIG_ARCH_USE_GNU_PROPERTY) || !phdr)
778 		return 0;
779 
780 	/* load_elf_binary() shouldn't call us unless this is true... */
781 	if (WARN_ON_ONCE(phdr->p_type != PT_GNU_PROPERTY))
782 		return -ENOEXEC;
783 
784 	/* If the properties are crazy large, that's too bad (for now): */
785 	if (phdr->p_filesz > sizeof(note))
786 		return -ENOEXEC;
787 
788 	pos = phdr->p_offset;
789 	n = kernel_read(f, &note, phdr->p_filesz, &pos);
790 
791 	BUILD_BUG_ON(sizeof(note) < sizeof(note.nhdr) + NOTE_NAME_SZ);
792 	if (n < 0 || n < sizeof(note.nhdr) + NOTE_NAME_SZ)
793 		return -EIO;
794 
795 	if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
796 	    note.nhdr.n_namesz != NOTE_NAME_SZ ||
797 	    strncmp(note.data + sizeof(note.nhdr),
798 		    GNU_PROPERTY_TYPE_0_NAME, n - sizeof(note.nhdr)))
799 		return -ENOEXEC;
800 
801 	off = round_up(sizeof(note.nhdr) + NOTE_NAME_SZ,
802 		       ELF_GNU_PROPERTY_ALIGN);
803 	if (off > n)
804 		return -ENOEXEC;
805 
806 	if (note.nhdr.n_descsz > n - off)
807 		return -ENOEXEC;
808 	datasz = off + note.nhdr.n_descsz;
809 
810 	have_prev_type = false;
811 	do {
812 		ret = parse_elf_property(note.data, &off, datasz, arch,
813 					 have_prev_type, &prev_type);
814 		have_prev_type = true;
815 	} while (!ret);
816 
817 	return ret == -ENOENT ? 0 : ret;
818 }
819 
load_elf_binary(struct linux_binprm * bprm)820 static int load_elf_binary(struct linux_binprm *bprm)
821 {
822 	struct file *interpreter = NULL; /* to shut gcc up */
823 	unsigned long load_addr, load_bias = 0, phdr_addr = 0;
824 	int load_addr_set = 0;
825 	unsigned long error;
826 	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
827 	struct elf_phdr *elf_property_phdata = NULL;
828 	unsigned long elf_bss, elf_brk;
829 	int bss_prot = 0;
830 	int retval, i;
831 	unsigned long elf_entry;
832 	unsigned long e_entry;
833 	unsigned long interp_load_addr = 0;
834 	unsigned long start_code, end_code, start_data, end_data;
835 	unsigned long reloc_func_desc __maybe_unused = 0;
836 	int executable_stack = EXSTACK_DEFAULT;
837 	struct elfhdr *elf_ex = (struct elfhdr *)bprm->buf;
838 	struct elfhdr *interp_elf_ex = NULL;
839 	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
840 	struct mm_struct *mm;
841 	struct pt_regs *regs;
842 
843 	retval = -ENOEXEC;
844 	/* First of all, some simple consistency checks */
845 	if (memcmp(elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
846 		goto out;
847 
848 	if (elf_ex->e_type != ET_EXEC && elf_ex->e_type != ET_DYN)
849 		goto out;
850 	if (!elf_check_arch(elf_ex))
851 		goto out;
852 	if (elf_check_fdpic(elf_ex))
853 		goto out;
854 	if (!bprm->file->f_op->mmap)
855 		goto out;
856 
857 	elf_phdata = load_elf_phdrs(elf_ex, bprm->file);
858 	if (!elf_phdata)
859 		goto out;
860 
861 	elf_ppnt = elf_phdata;
862 	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++) {
863 		char *elf_interpreter;
864 
865 		if (elf_ppnt->p_type == PT_GNU_PROPERTY) {
866 			elf_property_phdata = elf_ppnt;
867 			continue;
868 		}
869 
870 		if (elf_ppnt->p_type != PT_INTERP)
871 			continue;
872 
873 		/*
874 		 * This is the program interpreter used for shared libraries -
875 		 * for now assume that this is an a.out format binary.
876 		 */
877 		retval = -ENOEXEC;
878 		if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
879 			goto out_free_ph;
880 
881 		retval = -ENOMEM;
882 		elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
883 		if (!elf_interpreter)
884 			goto out_free_ph;
885 
886 		retval = elf_read(bprm->file, elf_interpreter, elf_ppnt->p_filesz,
887 				  elf_ppnt->p_offset);
888 		if (retval < 0)
889 			goto out_free_interp;
890 		/* make sure path is NULL terminated */
891 		retval = -ENOEXEC;
892 		if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
893 			goto out_free_interp;
894 
895 		interpreter = open_exec(elf_interpreter);
896 		kfree(elf_interpreter);
897 		retval = PTR_ERR(interpreter);
898 		if (IS_ERR(interpreter))
899 			goto out_free_ph;
900 
901 		/*
902 		 * If the binary is not readable then enforce mm->dumpable = 0
903 		 * regardless of the interpreter's permissions.
904 		 */
905 		would_dump(bprm, interpreter);
906 
907 		interp_elf_ex = kmalloc(sizeof(*interp_elf_ex), GFP_KERNEL);
908 		if (!interp_elf_ex) {
909 			retval = -ENOMEM;
910 			goto out_free_file;
911 		}
912 
913 		/* Get the exec headers */
914 		retval = elf_read(interpreter, interp_elf_ex,
915 				  sizeof(*interp_elf_ex), 0);
916 		if (retval < 0)
917 			goto out_free_dentry;
918 
919 		break;
920 
921 out_free_interp:
922 		kfree(elf_interpreter);
923 		goto out_free_ph;
924 	}
925 
926 	elf_ppnt = elf_phdata;
927 	for (i = 0; i < elf_ex->e_phnum; i++, elf_ppnt++)
928 		switch (elf_ppnt->p_type) {
929 		case PT_GNU_STACK:
930 			if (elf_ppnt->p_flags & PF_X)
931 				executable_stack = EXSTACK_ENABLE_X;
932 			else
933 				executable_stack = EXSTACK_DISABLE_X;
934 			break;
935 
936 		case PT_LOPROC ... PT_HIPROC:
937 			retval = arch_elf_pt_proc(elf_ex, elf_ppnt,
938 						  bprm->file, false,
939 						  &arch_state);
940 			if (retval)
941 				goto out_free_dentry;
942 			break;
943 		}
944 
945 	/* Some simple consistency checks for the interpreter */
946 	if (interpreter) {
947 		retval = -ELIBBAD;
948 		/* Not an ELF interpreter */
949 		if (memcmp(interp_elf_ex->e_ident, ELFMAG, SELFMAG) != 0)
950 			goto out_free_dentry;
951 		/* Verify the interpreter has a valid arch */
952 		if (!elf_check_arch(interp_elf_ex) ||
953 		    elf_check_fdpic(interp_elf_ex))
954 			goto out_free_dentry;
955 
956 		/* Load the interpreter program headers */
957 		interp_elf_phdata = load_elf_phdrs(interp_elf_ex,
958 						   interpreter);
959 		if (!interp_elf_phdata)
960 			goto out_free_dentry;
961 
962 		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
963 		elf_property_phdata = NULL;
964 		elf_ppnt = interp_elf_phdata;
965 		for (i = 0; i < interp_elf_ex->e_phnum; i++, elf_ppnt++)
966 			switch (elf_ppnt->p_type) {
967 			case PT_GNU_PROPERTY:
968 				elf_property_phdata = elf_ppnt;
969 				break;
970 
971 			case PT_LOPROC ... PT_HIPROC:
972 				retval = arch_elf_pt_proc(interp_elf_ex,
973 							  elf_ppnt, interpreter,
974 							  true, &arch_state);
975 				if (retval)
976 					goto out_free_dentry;
977 				break;
978 			}
979 	}
980 
981 	retval = parse_elf_properties(interpreter ?: bprm->file,
982 				      elf_property_phdata, &arch_state);
983 	if (retval)
984 		goto out_free_dentry;
985 
986 	/*
987 	 * Allow arch code to reject the ELF at this point, whilst it's
988 	 * still possible to return an error to the code that invoked
989 	 * the exec syscall.
990 	 */
991 	retval = arch_check_elf(elf_ex,
992 				!!interpreter, interp_elf_ex,
993 				&arch_state);
994 	if (retval)
995 		goto out_free_dentry;
996 
997 	/* Flush all traces of the currently running executable */
998 	retval = begin_new_exec(bprm);
999 	if (retval)
1000 		goto out_free_dentry;
1001 
1002 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
1003 	   may depend on the personality.  */
1004 	SET_PERSONALITY2(*elf_ex, &arch_state);
1005 	if (elf_read_implies_exec(*elf_ex, executable_stack))
1006 		current->personality |= READ_IMPLIES_EXEC;
1007 
1008 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1009 		current->flags |= PF_RANDOMIZE;
1010 
1011 	setup_new_exec(bprm);
1012 
1013 	/* Do this so that we can load the interpreter, if need be.  We will
1014 	   change some of these later */
1015 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
1016 				 executable_stack);
1017 	if (retval < 0)
1018 		goto out_free_dentry;
1019 
1020 	elf_bss = 0;
1021 	elf_brk = 0;
1022 
1023 	start_code = ~0UL;
1024 	end_code = 0;
1025 	start_data = 0;
1026 	end_data = 0;
1027 
1028 	/* Now we do a little grungy work by mmapping the ELF image into
1029 	   the correct location in memory. */
1030 	for(i = 0, elf_ppnt = elf_phdata;
1031 	    i < elf_ex->e_phnum; i++, elf_ppnt++) {
1032 		int elf_prot, elf_flags;
1033 		unsigned long k, vaddr;
1034 		unsigned long total_size = 0;
1035 		unsigned long alignment;
1036 
1037 		if (elf_ppnt->p_type == PT_OHOS_RANDOMDATA) {
1038 			void *temp_buf = NULL;
1039 
1040 			if (elf_ppnt->p_memsz > PT_OHOS_RANDOMDATA_SIZE_LIMIT) {
1041 				retval = -EINVAL;
1042 				goto out_free_dentry;
1043 			}
1044 
1045 			temp_buf = vmalloc(elf_ppnt->p_memsz);
1046 			if (!temp_buf) {
1047 				retval = -ENOMEM;
1048 				goto out_free_dentry;
1049 			}
1050 
1051 			get_random_bytes(temp_buf, (int)elf_ppnt->p_memsz);
1052 			if (copy_to_user((void *)(elf_ppnt->p_vaddr + load_bias), temp_buf, (unsigned long)elf_ppnt->p_memsz)) {
1053 				retval = -EFAULT;
1054 				vfree(temp_buf);
1055 				goto out_free_dentry;
1056 			}
1057 			vfree(temp_buf);
1058 			continue;
1059 		}
1060 
1061 		if (elf_ppnt->p_type != PT_LOAD)
1062 			continue;
1063 
1064 		if (unlikely (elf_brk > elf_bss)) {
1065 			unsigned long nbyte;
1066 
1067 			/* There was a PT_LOAD segment with p_memsz > p_filesz
1068 			   before this one. Map anonymous pages, if needed,
1069 			   and clear the area.  */
1070 			retval = set_brk(elf_bss + load_bias,
1071 					 elf_brk + load_bias,
1072 					 bss_prot);
1073 			if (retval)
1074 				goto out_free_dentry;
1075 			nbyte = ELF_PAGEOFFSET(elf_bss);
1076 			if (nbyte) {
1077 				nbyte = ELF_MIN_ALIGN - nbyte;
1078 				if (nbyte > elf_brk - elf_bss)
1079 					nbyte = elf_brk - elf_bss;
1080 				if (clear_user((void __user *)elf_bss +
1081 							load_bias, nbyte)) {
1082 					/*
1083 					 * This bss-zeroing can fail if the ELF
1084 					 * file specifies odd protections. So
1085 					 * we don't check the return value
1086 					 */
1087 				}
1088 			}
1089 		}
1090 
1091 		elf_prot = make_prot(elf_ppnt->p_flags, &arch_state,
1092 				     !!interpreter, false);
1093 
1094 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
1095 
1096 		vaddr = elf_ppnt->p_vaddr;
1097 		/*
1098 		 * If we are loading ET_EXEC or we have already performed
1099 		 * the ET_DYN load_addr calculations, proceed normally.
1100 		 */
1101 		if (elf_ex->e_type == ET_EXEC || load_addr_set) {
1102 			elf_flags |= MAP_FIXED;
1103 		} else if (elf_ex->e_type == ET_DYN) {
1104 			/*
1105 			 * This logic is run once for the first LOAD Program
1106 			 * Header for ET_DYN binaries to calculate the
1107 			 * randomization (load_bias) for all the LOAD
1108 			 * Program Headers, and to calculate the entire
1109 			 * size of the ELF mapping (total_size). (Note that
1110 			 * load_addr_set is set to true later once the
1111 			 * initial mapping is performed.)
1112 			 *
1113 			 * There are effectively two types of ET_DYN
1114 			 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
1115 			 * and loaders (ET_DYN without INTERP, since they
1116 			 * _are_ the ELF interpreter). The loaders must
1117 			 * be loaded away from programs since the program
1118 			 * may otherwise collide with the loader (especially
1119 			 * for ET_EXEC which does not have a randomized
1120 			 * position). For example to handle invocations of
1121 			 * "./ld.so someprog" to test out a new version of
1122 			 * the loader, the subsequent program that the
1123 			 * loader loads must avoid the loader itself, so
1124 			 * they cannot share the same load range. Sufficient
1125 			 * room for the brk must be allocated with the
1126 			 * loader as well, since brk must be available with
1127 			 * the loader.
1128 			 *
1129 			 * Therefore, programs are loaded offset from
1130 			 * ELF_ET_DYN_BASE and loaders are loaded into the
1131 			 * independently randomized mmap region (0 load_bias
1132 			 * without MAP_FIXED).
1133 			 */
1134 			if (interpreter) {
1135 				load_bias = ELF_ET_DYN_BASE;
1136 				if (current->flags & PF_RANDOMIZE)
1137 					load_bias += arch_mmap_rnd();
1138 				alignment = maximum_alignment(elf_phdata, elf_ex->e_phnum);
1139 				if (alignment)
1140 					load_bias &= ~(alignment - 1);
1141 				elf_flags |= MAP_FIXED;
1142 			} else
1143 				load_bias = 0;
1144 
1145 			/*
1146 			 * Since load_bias is used for all subsequent loading
1147 			 * calculations, we must lower it by the first vaddr
1148 			 * so that the remaining calculations based on the
1149 			 * ELF vaddrs will be correctly offset. The result
1150 			 * is then page aligned.
1151 			 */
1152 			load_bias = ELF_PAGESTART(load_bias - vaddr);
1153 
1154 			total_size = total_mapping_size(elf_phdata,
1155 							elf_ex->e_phnum);
1156 			if (!total_size) {
1157 				retval = -EINVAL;
1158 				goto out_free_dentry;
1159 			}
1160 		}
1161 
1162 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1163 				elf_prot, elf_flags, total_size);
1164 		if (BAD_ADDR(error)) {
1165 			retval = IS_ERR((void *)error) ?
1166 				PTR_ERR((void*)error) : -EINVAL;
1167 			goto out_free_dentry;
1168 		}
1169 
1170 		if (!load_addr_set) {
1171 			load_addr_set = 1;
1172 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1173 			if (elf_ex->e_type == ET_DYN) {
1174 				load_bias += error -
1175 				             ELF_PAGESTART(load_bias + vaddr);
1176 				load_addr += load_bias;
1177 				reloc_func_desc = load_bias;
1178 			}
1179 		}
1180 
1181 		/*
1182 		 * Figure out which segment in the file contains the Program
1183 		 * Header table, and map to the associated memory address.
1184 		 */
1185 		if (elf_ppnt->p_offset <= elf_ex->e_phoff &&
1186 		    elf_ex->e_phoff < elf_ppnt->p_offset + elf_ppnt->p_filesz) {
1187 			phdr_addr = elf_ex->e_phoff - elf_ppnt->p_offset +
1188 				    elf_ppnt->p_vaddr;
1189 		}
1190 
1191 		k = elf_ppnt->p_vaddr;
1192 		if ((elf_ppnt->p_flags & PF_X) && k < start_code)
1193 			start_code = k;
1194 		if (start_data < k)
1195 			start_data = k;
1196 
1197 		/*
1198 		 * Check to see if the section's size will overflow the
1199 		 * allowed task size. Note that p_filesz must always be
1200 		 * <= p_memsz so it is only necessary to check p_memsz.
1201 		 */
1202 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1203 		    elf_ppnt->p_memsz > TASK_SIZE ||
1204 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
1205 			/* set_brk can never work. Avoid overflows. */
1206 			retval = -EINVAL;
1207 			goto out_free_dentry;
1208 		}
1209 
1210 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1211 
1212 		if (k > elf_bss)
1213 			elf_bss = k;
1214 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1215 			end_code = k;
1216 		if (end_data < k)
1217 			end_data = k;
1218 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1219 		if (k > elf_brk) {
1220 			bss_prot = elf_prot;
1221 			elf_brk = k;
1222 		}
1223 	}
1224 
1225 	e_entry = elf_ex->e_entry + load_bias;
1226 	phdr_addr += load_bias;
1227 	elf_bss += load_bias;
1228 	elf_brk += load_bias;
1229 	start_code += load_bias;
1230 	end_code += load_bias;
1231 	start_data += load_bias;
1232 	end_data += load_bias;
1233 
1234 	/* Calling set_brk effectively mmaps the pages that we need
1235 	 * for the bss and break sections.  We must do this before
1236 	 * mapping in the interpreter, to make sure it doesn't wind
1237 	 * up getting placed where the bss needs to go.
1238 	 */
1239 	retval = set_brk(elf_bss, elf_brk, bss_prot);
1240 	if (retval)
1241 		goto out_free_dentry;
1242 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1243 		retval = -EFAULT; /* Nobody gets to see this, but.. */
1244 		goto out_free_dentry;
1245 	}
1246 
1247 	if (interpreter) {
1248 		elf_entry = load_elf_interp(interp_elf_ex,
1249 					    interpreter,
1250 					    load_bias, interp_elf_phdata,
1251 					    &arch_state);
1252 		if (!IS_ERR((void *)elf_entry)) {
1253 			/*
1254 			 * load_elf_interp() returns relocation
1255 			 * adjustment
1256 			 */
1257 			interp_load_addr = elf_entry;
1258 			elf_entry += interp_elf_ex->e_entry;
1259 		}
1260 		if (BAD_ADDR(elf_entry)) {
1261 			retval = IS_ERR((void *)elf_entry) ?
1262 					(int)elf_entry : -EINVAL;
1263 			goto out_free_dentry;
1264 		}
1265 		reloc_func_desc = interp_load_addr;
1266 
1267 		allow_write_access(interpreter);
1268 		fput(interpreter);
1269 
1270 		kfree(interp_elf_ex);
1271 		kfree(interp_elf_phdata);
1272 	} else {
1273 		elf_entry = e_entry;
1274 		if (BAD_ADDR(elf_entry)) {
1275 			retval = -EINVAL;
1276 			goto out_free_dentry;
1277 		}
1278 	}
1279 
1280 	kfree(elf_phdata);
1281 
1282 	set_binfmt(&elf_format);
1283 
1284 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1285 	retval = arch_setup_additional_pages(bprm, !!interpreter);
1286 	if (retval < 0)
1287 		goto out;
1288 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1289 
1290 	retval = create_elf_tables(bprm, elf_ex, interp_load_addr,
1291 				   e_entry, phdr_addr);
1292 	if (retval < 0)
1293 		goto out;
1294 
1295 	mm = current->mm;
1296 	mm->end_code = end_code;
1297 	mm->start_code = start_code;
1298 	mm->start_data = start_data;
1299 	mm->end_data = end_data;
1300 	mm->start_stack = bprm->p;
1301 
1302 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1303 		/*
1304 		 * For architectures with ELF randomization, when executing
1305 		 * a loader directly (i.e. no interpreter listed in ELF
1306 		 * headers), move the brk area out of the mmap region
1307 		 * (since it grows up, and may collide early with the stack
1308 		 * growing down), and into the unused ELF_ET_DYN_BASE region.
1309 		 */
1310 		if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1311 		    elf_ex->e_type == ET_DYN && !interpreter) {
1312 			mm->brk = mm->start_brk = ELF_ET_DYN_BASE;
1313 		}
1314 
1315 		mm->brk = mm->start_brk = arch_randomize_brk(mm);
1316 #ifdef compat_brk_randomized
1317 		current->brk_randomized = 1;
1318 #endif
1319 	}
1320 
1321 	if (current->personality & MMAP_PAGE_ZERO) {
1322 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1323 		   and some applications "depend" upon this behavior.
1324 		   Since we do not have the power to recompile these, we
1325 		   emulate the SVr4 behavior. Sigh. */
1326 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1327 				MAP_FIXED | MAP_PRIVATE, 0);
1328 	}
1329 
1330 	regs = current_pt_regs();
1331 #ifdef ELF_PLAT_INIT
1332 	/*
1333 	 * The ABI may specify that certain registers be set up in special
1334 	 * ways (on i386 %edx is the address of a DT_FINI function, for
1335 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1336 	 * that the e_entry field is the address of the function descriptor
1337 	 * for the startup routine, rather than the address of the startup
1338 	 * routine itself.  This macro performs whatever initialization to
1339 	 * the regs structure is required as well as any relocations to the
1340 	 * function descriptor entries when executing dynamically links apps.
1341 	 */
1342 	ELF_PLAT_INIT(regs, reloc_func_desc);
1343 #endif
1344 
1345 	finalize_exec(bprm);
1346 	start_thread(regs, elf_entry, bprm->p);
1347 	retval = 0;
1348 out:
1349 	return retval;
1350 
1351 	/* error cleanup */
1352 out_free_dentry:
1353 	kfree(interp_elf_ex);
1354 	kfree(interp_elf_phdata);
1355 out_free_file:
1356 	allow_write_access(interpreter);
1357 	if (interpreter)
1358 		fput(interpreter);
1359 out_free_ph:
1360 	kfree(elf_phdata);
1361 	goto out;
1362 }
1363 
1364 #ifdef CONFIG_USELIB
1365 /* This is really simpleminded and specialized - we are loading an
1366    a.out library that is given an ELF header. */
load_elf_library(struct file * file)1367 static int load_elf_library(struct file *file)
1368 {
1369 	struct elf_phdr *elf_phdata;
1370 	struct elf_phdr *eppnt;
1371 	unsigned long elf_bss, bss, len;
1372 	int retval, error, i, j;
1373 	struct elfhdr elf_ex;
1374 
1375 	error = -ENOEXEC;
1376 	retval = elf_read(file, &elf_ex, sizeof(elf_ex), 0);
1377 	if (retval < 0)
1378 		goto out;
1379 
1380 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1381 		goto out;
1382 
1383 	/* First of all, some simple consistency checks */
1384 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1385 	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1386 		goto out;
1387 	if (elf_check_fdpic(&elf_ex))
1388 		goto out;
1389 
1390 	/* Now read in all of the header information */
1391 
1392 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1393 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1394 
1395 	error = -ENOMEM;
1396 	elf_phdata = kmalloc(j, GFP_KERNEL);
1397 	if (!elf_phdata)
1398 		goto out;
1399 
1400 	eppnt = elf_phdata;
1401 	error = -ENOEXEC;
1402 	retval = elf_read(file, eppnt, j, elf_ex.e_phoff);
1403 	if (retval < 0)
1404 		goto out_free_ph;
1405 
1406 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1407 		if ((eppnt + i)->p_type == PT_LOAD)
1408 			j++;
1409 	if (j != 1)
1410 		goto out_free_ph;
1411 
1412 	while (eppnt->p_type != PT_LOAD)
1413 		eppnt++;
1414 
1415 	/* Now use mmap to map the library into memory. */
1416 	error = vm_mmap(file,
1417 			ELF_PAGESTART(eppnt->p_vaddr),
1418 			(eppnt->p_filesz +
1419 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1420 			PROT_READ | PROT_WRITE | PROT_EXEC,
1421 			MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE,
1422 			(eppnt->p_offset -
1423 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1424 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1425 		goto out_free_ph;
1426 
1427 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1428 	if (padzero(elf_bss)) {
1429 		error = -EFAULT;
1430 		goto out_free_ph;
1431 	}
1432 
1433 	len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1434 	bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1435 	if (bss > len) {
1436 		error = vm_brk(len, bss - len);
1437 		if (error)
1438 			goto out_free_ph;
1439 	}
1440 	error = 0;
1441 
1442 out_free_ph:
1443 	kfree(elf_phdata);
1444 out:
1445 	return error;
1446 }
1447 #endif /* #ifdef CONFIG_USELIB */
1448 
1449 #ifdef CONFIG_ELF_CORE
1450 /*
1451  * ELF core dumper
1452  *
1453  * Modelled on fs/exec.c:aout_core_dump()
1454  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1455  */
1456 
1457 /* An ELF note in memory */
1458 struct memelfnote
1459 {
1460 	const char *name;
1461 	int type;
1462 	unsigned int datasz;
1463 	void *data;
1464 };
1465 
notesize(struct memelfnote * en)1466 static int notesize(struct memelfnote *en)
1467 {
1468 	int sz;
1469 
1470 	sz = sizeof(struct elf_note);
1471 	sz += roundup(strlen(en->name) + 1, 4);
1472 	sz += roundup(en->datasz, 4);
1473 
1474 	return sz;
1475 }
1476 
writenote(struct memelfnote * men,struct coredump_params * cprm)1477 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1478 {
1479 	struct elf_note en;
1480 	en.n_namesz = strlen(men->name) + 1;
1481 	en.n_descsz = men->datasz;
1482 	en.n_type = men->type;
1483 
1484 	return dump_emit(cprm, &en, sizeof(en)) &&
1485 	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1486 	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1487 }
1488 
fill_elf_header(struct elfhdr * elf,int segs,u16 machine,u32 flags)1489 static void fill_elf_header(struct elfhdr *elf, int segs,
1490 			    u16 machine, u32 flags)
1491 {
1492 	memset(elf, 0, sizeof(*elf));
1493 
1494 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1495 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1496 	elf->e_ident[EI_DATA] = ELF_DATA;
1497 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1498 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1499 
1500 	elf->e_type = ET_CORE;
1501 	elf->e_machine = machine;
1502 	elf->e_version = EV_CURRENT;
1503 	elf->e_phoff = sizeof(struct elfhdr);
1504 	elf->e_flags = flags;
1505 	elf->e_ehsize = sizeof(struct elfhdr);
1506 	elf->e_phentsize = sizeof(struct elf_phdr);
1507 	elf->e_phnum = segs;
1508 }
1509 
fill_elf_note_phdr(struct elf_phdr * phdr,int sz,loff_t offset)1510 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1511 {
1512 	phdr->p_type = PT_NOTE;
1513 	phdr->p_offset = offset;
1514 	phdr->p_vaddr = 0;
1515 	phdr->p_paddr = 0;
1516 	phdr->p_filesz = sz;
1517 	phdr->p_memsz = 0;
1518 	phdr->p_flags = 0;
1519 	phdr->p_align = 0;
1520 }
1521 
fill_note(struct memelfnote * note,const char * name,int type,unsigned int sz,void * data)1522 static void fill_note(struct memelfnote *note, const char *name, int type,
1523 		unsigned int sz, void *data)
1524 {
1525 	note->name = name;
1526 	note->type = type;
1527 	note->datasz = sz;
1528 	note->data = data;
1529 }
1530 
1531 /*
1532  * fill up all the fields in prstatus from the given task struct, except
1533  * registers which need to be filled up separately.
1534  */
fill_prstatus(struct elf_prstatus * prstatus,struct task_struct * p,long signr)1535 static void fill_prstatus(struct elf_prstatus *prstatus,
1536 		struct task_struct *p, long signr)
1537 {
1538 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1539 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1540 	prstatus->pr_sighold = p->blocked.sig[0];
1541 	rcu_read_lock();
1542 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1543 	rcu_read_unlock();
1544 	prstatus->pr_pid = task_pid_vnr(p);
1545 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1546 	prstatus->pr_sid = task_session_vnr(p);
1547 	if (thread_group_leader(p)) {
1548 		struct task_cputime cputime;
1549 
1550 		/*
1551 		 * This is the record for the group leader.  It shows the
1552 		 * group-wide total, not its individual thread total.
1553 		 */
1554 		thread_group_cputime(p, &cputime);
1555 		prstatus->pr_utime = ns_to_kernel_old_timeval(cputime.utime);
1556 		prstatus->pr_stime = ns_to_kernel_old_timeval(cputime.stime);
1557 	} else {
1558 		u64 utime, stime;
1559 
1560 		task_cputime(p, &utime, &stime);
1561 		prstatus->pr_utime = ns_to_kernel_old_timeval(utime);
1562 		prstatus->pr_stime = ns_to_kernel_old_timeval(stime);
1563 	}
1564 
1565 	prstatus->pr_cutime = ns_to_kernel_old_timeval(p->signal->cutime);
1566 	prstatus->pr_cstime = ns_to_kernel_old_timeval(p->signal->cstime);
1567 }
1568 
fill_psinfo(struct elf_prpsinfo * psinfo,struct task_struct * p,struct mm_struct * mm)1569 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1570 		       struct mm_struct *mm)
1571 {
1572 	const struct cred *cred;
1573 	unsigned int i, len;
1574 
1575 	/* first copy the parameters from user space */
1576 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1577 
1578 	len = mm->arg_end - mm->arg_start;
1579 	if (len >= ELF_PRARGSZ)
1580 		len = ELF_PRARGSZ-1;
1581 	if (copy_from_user(&psinfo->pr_psargs,
1582 		           (const char __user *)mm->arg_start, len))
1583 		return -EFAULT;
1584 	for(i = 0; i < len; i++)
1585 		if (psinfo->pr_psargs[i] == 0)
1586 			psinfo->pr_psargs[i] = ' ';
1587 	psinfo->pr_psargs[len] = 0;
1588 
1589 	rcu_read_lock();
1590 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1591 	rcu_read_unlock();
1592 	psinfo->pr_pid = task_pid_vnr(p);
1593 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1594 	psinfo->pr_sid = task_session_vnr(p);
1595 
1596 	i = p->state ? ffz(~p->state) + 1 : 0;
1597 	psinfo->pr_state = i;
1598 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1599 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1600 	psinfo->pr_nice = task_nice(p);
1601 	psinfo->pr_flag = p->flags;
1602 	rcu_read_lock();
1603 	cred = __task_cred(p);
1604 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1605 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1606 	rcu_read_unlock();
1607 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1608 
1609 	return 0;
1610 }
1611 
fill_auxv_note(struct memelfnote * note,struct mm_struct * mm)1612 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1613 {
1614 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1615 	int i = 0;
1616 	do
1617 		i += 2;
1618 	while (auxv[i - 2] != AT_NULL);
1619 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1620 }
1621 
fill_siginfo_note(struct memelfnote * note,user_siginfo_t * csigdata,const kernel_siginfo_t * siginfo)1622 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1623 		const kernel_siginfo_t *siginfo)
1624 {
1625 	copy_siginfo_to_external(csigdata, siginfo);
1626 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1627 }
1628 
1629 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1630 /*
1631  * Format of NT_FILE note:
1632  *
1633  * long count     -- how many files are mapped
1634  * long page_size -- units for file_ofs
1635  * array of [COUNT] elements of
1636  *   long start
1637  *   long end
1638  *   long file_ofs
1639  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1640  */
fill_files_note(struct memelfnote * note,struct coredump_params * cprm)1641 static int fill_files_note(struct memelfnote *note, struct coredump_params *cprm)
1642 {
1643 	unsigned count, size, names_ofs, remaining, n;
1644 	user_long_t *data;
1645 	user_long_t *start_end_ofs;
1646 	char *name_base, *name_curpos;
1647 	int i;
1648 
1649 	/* *Estimated* file count and total data size needed */
1650 	count = cprm->vma_count;
1651 	if (count > UINT_MAX / 64)
1652 		return -EINVAL;
1653 	size = count * 64;
1654 
1655 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1656  alloc:
1657 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1658 		return -EINVAL;
1659 	size = round_up(size, PAGE_SIZE);
1660 	/*
1661 	 * "size" can be 0 here legitimately.
1662 	 * Let it ENOMEM and omit NT_FILE section which will be empty anyway.
1663 	 */
1664 	data = kvmalloc(size, GFP_KERNEL);
1665 	if (ZERO_OR_NULL_PTR(data))
1666 		return -ENOMEM;
1667 
1668 	start_end_ofs = data + 2;
1669 	name_base = name_curpos = ((char *)data) + names_ofs;
1670 	remaining = size - names_ofs;
1671 	count = 0;
1672 	for (i = 0; i < cprm->vma_count; i++) {
1673 		struct core_vma_metadata *m = &cprm->vma_meta[i];
1674 		struct file *file;
1675 		const char *filename;
1676 
1677 		file = m->file;
1678 		if (!file)
1679 			continue;
1680 		filename = file_path(file, name_curpos, remaining);
1681 		if (IS_ERR(filename)) {
1682 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1683 				kvfree(data);
1684 				size = size * 5 / 4;
1685 				goto alloc;
1686 			}
1687 			continue;
1688 		}
1689 
1690 		/* file_path() fills at the end, move name down */
1691 		/* n = strlen(filename) + 1: */
1692 		n = (name_curpos + remaining) - filename;
1693 		remaining = filename - name_curpos;
1694 		memmove(name_curpos, filename, n);
1695 		name_curpos += n;
1696 
1697 		*start_end_ofs++ = m->start;
1698 		*start_end_ofs++ = m->end;
1699 		*start_end_ofs++ = m->pgoff;
1700 		count++;
1701 	}
1702 
1703 	/* Now we know exact count of files, can store it */
1704 	data[0] = count;
1705 	data[1] = PAGE_SIZE;
1706 	/*
1707 	 * Count usually is less than mm->map_count,
1708 	 * we need to move filenames down.
1709 	 */
1710 	n = cprm->vma_count - count;
1711 	if (n != 0) {
1712 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1713 		memmove(name_base - shift_bytes, name_base,
1714 			name_curpos - name_base);
1715 		name_curpos -= shift_bytes;
1716 	}
1717 
1718 	size = name_curpos - (char *)data;
1719 	fill_note(note, "CORE", NT_FILE, size, data);
1720 	return 0;
1721 }
1722 
1723 #ifdef CORE_DUMP_USE_REGSET
1724 #include <linux/regset.h>
1725 
1726 struct elf_thread_core_info {
1727 	struct elf_thread_core_info *next;
1728 	struct task_struct *task;
1729 	struct elf_prstatus prstatus;
1730 	struct memelfnote notes[];
1731 };
1732 
1733 struct elf_note_info {
1734 	struct elf_thread_core_info *thread;
1735 	struct memelfnote psinfo;
1736 	struct memelfnote signote;
1737 	struct memelfnote auxv;
1738 	struct memelfnote files;
1739 	user_siginfo_t csigdata;
1740 	size_t size;
1741 	int thread_notes;
1742 };
1743 
1744 /*
1745  * When a regset has a writeback hook, we call it on each thread before
1746  * dumping user memory.  On register window machines, this makes sure the
1747  * user memory backing the register data is up to date before we read it.
1748  */
do_thread_regset_writeback(struct task_struct * task,const struct user_regset * regset)1749 static void do_thread_regset_writeback(struct task_struct *task,
1750 				       const struct user_regset *regset)
1751 {
1752 	if (regset->writeback)
1753 		regset->writeback(task, regset, 1);
1754 }
1755 
1756 #ifndef PRSTATUS_SIZE
1757 #define PRSTATUS_SIZE(S, R) sizeof(S)
1758 #endif
1759 
1760 #ifndef SET_PR_FPVALID
1761 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1762 #endif
1763 
fill_thread_core_info(struct elf_thread_core_info * t,const struct user_regset_view * view,long signr,size_t * total)1764 static int fill_thread_core_info(struct elf_thread_core_info *t,
1765 				 const struct user_regset_view *view,
1766 				 long signr, size_t *total)
1767 {
1768 	unsigned int i;
1769 	int regset0_size;
1770 
1771 	/*
1772 	 * NT_PRSTATUS is the one special case, because the regset data
1773 	 * goes into the pr_reg field inside the note contents, rather
1774 	 * than being the whole note contents.  We fill the reset in here.
1775 	 * We assume that regset 0 is NT_PRSTATUS.
1776 	 */
1777 	fill_prstatus(&t->prstatus, t->task, signr);
1778 	regset0_size = regset_get(t->task, &view->regsets[0],
1779 		   sizeof(t->prstatus.pr_reg), &t->prstatus.pr_reg);
1780 	if (regset0_size < 0)
1781 		return 0;
1782 
1783 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1784 		  PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1785 	*total += notesize(&t->notes[0]);
1786 
1787 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1788 
1789 	/*
1790 	 * Each other regset might generate a note too.  For each regset
1791 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1792 	 * all zero and we'll know to skip writing it later.
1793 	 */
1794 	for (i = 1; i < view->n; ++i) {
1795 		const struct user_regset *regset = &view->regsets[i];
1796 		int note_type = regset->core_note_type;
1797 		bool is_fpreg = note_type == NT_PRFPREG;
1798 		void *data;
1799 		int ret;
1800 
1801 		do_thread_regset_writeback(t->task, regset);
1802 		if (!note_type) // not for coredumps
1803 			continue;
1804 		if (regset->active && regset->active(t->task, regset) <= 0)
1805 			continue;
1806 
1807 		ret = regset_get_alloc(t->task, regset, ~0U, &data);
1808 		if (ret < 0)
1809 			continue;
1810 
1811 		if (is_fpreg)
1812 			SET_PR_FPVALID(&t->prstatus, 1, regset0_size);
1813 
1814 		fill_note(&t->notes[i], is_fpreg ? "CORE" : "LINUX",
1815 			  note_type, ret, data);
1816 
1817 		*total += notesize(&t->notes[i]);
1818 	}
1819 
1820 	return 1;
1821 }
1822 
fill_note_info(struct elfhdr * elf,int phdrs,struct elf_note_info * info,struct coredump_params * cprm)1823 static int fill_note_info(struct elfhdr *elf, int phdrs,
1824 			  struct elf_note_info *info,
1825 			  struct coredump_params *cprm)
1826 {
1827 	struct task_struct *dump_task = current;
1828 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1829 	struct elf_thread_core_info *t;
1830 	struct elf_prpsinfo *psinfo;
1831 	struct core_thread *ct;
1832 	unsigned int i;
1833 
1834 	info->size = 0;
1835 	info->thread = NULL;
1836 
1837 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1838 	if (psinfo == NULL) {
1839 		info->psinfo.data = NULL; /* So we don't free this wrongly */
1840 		return 0;
1841 	}
1842 
1843 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1844 
1845 	/*
1846 	 * Figure out how many notes we're going to need for each thread.
1847 	 */
1848 	info->thread_notes = 0;
1849 	for (i = 0; i < view->n; ++i)
1850 		if (view->regsets[i].core_note_type != 0)
1851 			++info->thread_notes;
1852 
1853 	/*
1854 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1855 	 * since it is our one special case.
1856 	 */
1857 	if (unlikely(info->thread_notes == 0) ||
1858 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1859 		WARN_ON(1);
1860 		return 0;
1861 	}
1862 
1863 	/*
1864 	 * Initialize the ELF file header.
1865 	 */
1866 	fill_elf_header(elf, phdrs,
1867 			view->e_machine, view->e_flags);
1868 
1869 	/*
1870 	 * Allocate a structure for each thread.
1871 	 */
1872 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1873 		t = kzalloc(offsetof(struct elf_thread_core_info,
1874 				     notes[info->thread_notes]),
1875 			    GFP_KERNEL);
1876 		if (unlikely(!t))
1877 			return 0;
1878 
1879 		t->task = ct->task;
1880 		if (ct->task == dump_task || !info->thread) {
1881 			t->next = info->thread;
1882 			info->thread = t;
1883 		} else {
1884 			/*
1885 			 * Make sure to keep the original task at
1886 			 * the head of the list.
1887 			 */
1888 			t->next = info->thread->next;
1889 			info->thread->next = t;
1890 		}
1891 	}
1892 
1893 	/*
1894 	 * Now fill in each thread's information.
1895 	 */
1896 	for (t = info->thread; t != NULL; t = t->next)
1897 		if (!fill_thread_core_info(t, view, cprm->siginfo->si_signo, &info->size))
1898 			return 0;
1899 
1900 	/*
1901 	 * Fill in the two process-wide notes.
1902 	 */
1903 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1904 	info->size += notesize(&info->psinfo);
1905 
1906 	fill_siginfo_note(&info->signote, &info->csigdata, cprm->siginfo);
1907 	info->size += notesize(&info->signote);
1908 
1909 	fill_auxv_note(&info->auxv, current->mm);
1910 	info->size += notesize(&info->auxv);
1911 
1912 	if (fill_files_note(&info->files, cprm) == 0)
1913 		info->size += notesize(&info->files);
1914 
1915 	return 1;
1916 }
1917 
get_note_info_size(struct elf_note_info * info)1918 static size_t get_note_info_size(struct elf_note_info *info)
1919 {
1920 	return info->size;
1921 }
1922 
1923 /*
1924  * Write all the notes for each thread.  When writing the first thread, the
1925  * process-wide notes are interleaved after the first thread-specific note.
1926  */
write_note_info(struct elf_note_info * info,struct coredump_params * cprm)1927 static int write_note_info(struct elf_note_info *info,
1928 			   struct coredump_params *cprm)
1929 {
1930 	bool first = true;
1931 	struct elf_thread_core_info *t = info->thread;
1932 
1933 	do {
1934 		int i;
1935 
1936 		if (!writenote(&t->notes[0], cprm))
1937 			return 0;
1938 
1939 		if (first && !writenote(&info->psinfo, cprm))
1940 			return 0;
1941 		if (first && !writenote(&info->signote, cprm))
1942 			return 0;
1943 		if (first && !writenote(&info->auxv, cprm))
1944 			return 0;
1945 		if (first && info->files.data &&
1946 				!writenote(&info->files, cprm))
1947 			return 0;
1948 
1949 		for (i = 1; i < info->thread_notes; ++i)
1950 			if (t->notes[i].data &&
1951 			    !writenote(&t->notes[i], cprm))
1952 				return 0;
1953 
1954 		first = false;
1955 		t = t->next;
1956 	} while (t);
1957 
1958 	return 1;
1959 }
1960 
free_note_info(struct elf_note_info * info)1961 static void free_note_info(struct elf_note_info *info)
1962 {
1963 	struct elf_thread_core_info *threads = info->thread;
1964 	while (threads) {
1965 		unsigned int i;
1966 		struct elf_thread_core_info *t = threads;
1967 		threads = t->next;
1968 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1969 		for (i = 1; i < info->thread_notes; ++i)
1970 			kfree(t->notes[i].data);
1971 		kfree(t);
1972 	}
1973 	kfree(info->psinfo.data);
1974 	kvfree(info->files.data);
1975 }
1976 
1977 #else
1978 
1979 /* Here is the structure in which status of each thread is captured. */
1980 struct elf_thread_status
1981 {
1982 	struct list_head list;
1983 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1984 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1985 	struct task_struct *thread;
1986 	struct memelfnote notes[3];
1987 	int num_notes;
1988 };
1989 
1990 /*
1991  * In order to add the specific thread information for the elf file format,
1992  * we need to keep a linked list of every threads pr_status and then create
1993  * a single section for them in the final core file.
1994  */
elf_dump_thread_status(long signr,struct elf_thread_status * t)1995 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1996 {
1997 	int sz = 0;
1998 	struct task_struct *p = t->thread;
1999 	t->num_notes = 0;
2000 
2001 	fill_prstatus(&t->prstatus, p, signr);
2002 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
2003 
2004 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
2005 		  &(t->prstatus));
2006 	t->num_notes++;
2007 	sz += notesize(&t->notes[0]);
2008 
2009 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
2010 								&t->fpu))) {
2011 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
2012 			  &(t->fpu));
2013 		t->num_notes++;
2014 		sz += notesize(&t->notes[1]);
2015 	}
2016 	return sz;
2017 }
2018 
2019 struct elf_note_info {
2020 	struct memelfnote *notes;
2021 	struct memelfnote *notes_files;
2022 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
2023 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
2024 	struct list_head thread_list;
2025 	elf_fpregset_t *fpu;
2026 	user_siginfo_t csigdata;
2027 	int thread_status_size;
2028 	int numnote;
2029 };
2030 
elf_note_info_init(struct elf_note_info * info)2031 static int elf_note_info_init(struct elf_note_info *info)
2032 {
2033 	memset(info, 0, sizeof(*info));
2034 	INIT_LIST_HEAD(&info->thread_list);
2035 
2036 	/* Allocate space for ELF notes */
2037 	info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL);
2038 	if (!info->notes)
2039 		return 0;
2040 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2041 	if (!info->psinfo)
2042 		return 0;
2043 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2044 	if (!info->prstatus)
2045 		return 0;
2046 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2047 	if (!info->fpu)
2048 		return 0;
2049 	return 1;
2050 }
2051 
fill_note_info(struct elfhdr * elf,int phdrs,struct elf_note_info * info,struct coredump_params * cprm)2052 static int fill_note_info(struct elfhdr *elf, int phdrs,
2053 			  struct elf_note_info *info,
2054 			  struct coredump_params *cprm)
2055 {
2056 	struct core_thread *ct;
2057 	struct elf_thread_status *ets;
2058 
2059 	if (!elf_note_info_init(info))
2060 		return 0;
2061 
2062 	for (ct = current->mm->core_state->dumper.next;
2063 					ct; ct = ct->next) {
2064 		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2065 		if (!ets)
2066 			return 0;
2067 
2068 		ets->thread = ct->task;
2069 		list_add(&ets->list, &info->thread_list);
2070 	}
2071 
2072 	list_for_each_entry(ets, &info->thread_list, list) {
2073 		int sz;
2074 
2075 		sz = elf_dump_thread_status(cprm->siginfo->si_signo, ets);
2076 		info->thread_status_size += sz;
2077 	}
2078 	/* now collect the dump for the current */
2079 	memset(info->prstatus, 0, sizeof(*info->prstatus));
2080 	fill_prstatus(info->prstatus, current, cprm->siginfo->si_signo);
2081 	elf_core_copy_regs(&info->prstatus->pr_reg, cprm->regs);
2082 
2083 	/* Set up header */
2084 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2085 
2086 	/*
2087 	 * Set up the notes in similar form to SVR4 core dumps made
2088 	 * with info from their /proc.
2089 	 */
2090 
2091 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2092 		  sizeof(*info->prstatus), info->prstatus);
2093 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
2094 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2095 		  sizeof(*info->psinfo), info->psinfo);
2096 
2097 	fill_siginfo_note(info->notes + 2, &info->csigdata, cprm->siginfo);
2098 	fill_auxv_note(info->notes + 3, current->mm);
2099 	info->numnote = 4;
2100 
2101 	if (fill_files_note(info->notes + info->numnote, cprm) == 0) {
2102 		info->notes_files = info->notes + info->numnote;
2103 		info->numnote++;
2104 	}
2105 
2106 	/* Try to dump the FPU. */
2107 	info->prstatus->pr_fpvalid =
2108 		elf_core_copy_task_fpregs(current, cprm->regs, info->fpu);
2109 	if (info->prstatus->pr_fpvalid)
2110 		fill_note(info->notes + info->numnote++,
2111 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2112 	return 1;
2113 }
2114 
get_note_info_size(struct elf_note_info * info)2115 static size_t get_note_info_size(struct elf_note_info *info)
2116 {
2117 	int sz = 0;
2118 	int i;
2119 
2120 	for (i = 0; i < info->numnote; i++)
2121 		sz += notesize(info->notes + i);
2122 
2123 	sz += info->thread_status_size;
2124 
2125 	return sz;
2126 }
2127 
write_note_info(struct elf_note_info * info,struct coredump_params * cprm)2128 static int write_note_info(struct elf_note_info *info,
2129 			   struct coredump_params *cprm)
2130 {
2131 	struct elf_thread_status *ets;
2132 	int i;
2133 
2134 	for (i = 0; i < info->numnote; i++)
2135 		if (!writenote(info->notes + i, cprm))
2136 			return 0;
2137 
2138 	/* write out the thread status notes section */
2139 	list_for_each_entry(ets, &info->thread_list, list) {
2140 		for (i = 0; i < ets->num_notes; i++)
2141 			if (!writenote(&ets->notes[i], cprm))
2142 				return 0;
2143 	}
2144 
2145 	return 1;
2146 }
2147 
free_note_info(struct elf_note_info * info)2148 static void free_note_info(struct elf_note_info *info)
2149 {
2150 	while (!list_empty(&info->thread_list)) {
2151 		struct list_head *tmp = info->thread_list.next;
2152 		list_del(tmp);
2153 		kfree(list_entry(tmp, struct elf_thread_status, list));
2154 	}
2155 
2156 	/* Free data possibly allocated by fill_files_note(): */
2157 	if (info->notes_files)
2158 		kvfree(info->notes_files->data);
2159 
2160 	kfree(info->prstatus);
2161 	kfree(info->psinfo);
2162 	kfree(info->notes);
2163 	kfree(info->fpu);
2164 }
2165 
2166 #endif
2167 
fill_extnum_info(struct elfhdr * elf,struct elf_shdr * shdr4extnum,elf_addr_t e_shoff,int segs)2168 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2169 			     elf_addr_t e_shoff, int segs)
2170 {
2171 	elf->e_shoff = e_shoff;
2172 	elf->e_shentsize = sizeof(*shdr4extnum);
2173 	elf->e_shnum = 1;
2174 	elf->e_shstrndx = SHN_UNDEF;
2175 
2176 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2177 
2178 	shdr4extnum->sh_type = SHT_NULL;
2179 	shdr4extnum->sh_size = elf->e_shnum;
2180 	shdr4extnum->sh_link = elf->e_shstrndx;
2181 	shdr4extnum->sh_info = segs;
2182 }
2183 
2184 /*
2185  * Actual dumper
2186  *
2187  * This is a two-pass process; first we find the offsets of the bits,
2188  * and then they are actually written out.  If we run out of core limit
2189  * we just truncate.
2190  */
elf_core_dump(struct coredump_params * cprm)2191 static int elf_core_dump(struct coredump_params *cprm)
2192 {
2193 	int has_dumped = 0;
2194 	int segs, i;
2195 	struct elfhdr elf;
2196 	loff_t offset = 0, dataoff;
2197 	struct elf_note_info info = { };
2198 	struct elf_phdr *phdr4note = NULL;
2199 	struct elf_shdr *shdr4extnum = NULL;
2200 	Elf_Half e_phnum;
2201 	elf_addr_t e_shoff;
2202 
2203 	/*
2204 	 * The number of segs are recored into ELF header as 16bit value.
2205 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2206 	 */
2207 	segs = cprm->vma_count + elf_core_extra_phdrs();
2208 
2209 	/* for notes section */
2210 	segs++;
2211 
2212 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2213 	 * this, kernel supports extended numbering. Have a look at
2214 	 * include/linux/elf.h for further information. */
2215 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2216 
2217 	/*
2218 	 * Collect all the non-memory information about the process for the
2219 	 * notes.  This also sets up the file header.
2220 	 */
2221 	if (!fill_note_info(&elf, e_phnum, &info, cprm))
2222 		goto end_coredump;
2223 
2224 	has_dumped = 1;
2225 
2226 	offset += sizeof(elf);				/* Elf header */
2227 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2228 
2229 	/* Write notes phdr entry */
2230 	{
2231 		size_t sz = get_note_info_size(&info);
2232 
2233 		sz += elf_coredump_extra_notes_size();
2234 
2235 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2236 		if (!phdr4note)
2237 			goto end_coredump;
2238 
2239 		fill_elf_note_phdr(phdr4note, sz, offset);
2240 		offset += sz;
2241 	}
2242 
2243 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2244 
2245 	offset += cprm->vma_data_size;
2246 	offset += elf_core_extra_data_size();
2247 	e_shoff = offset;
2248 
2249 	if (e_phnum == PN_XNUM) {
2250 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2251 		if (!shdr4extnum)
2252 			goto end_coredump;
2253 		fill_extnum_info(&elf, shdr4extnum, e_shoff, segs);
2254 	}
2255 
2256 	offset = dataoff;
2257 
2258 	if (!dump_emit(cprm, &elf, sizeof(elf)))
2259 		goto end_coredump;
2260 
2261 	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2262 		goto end_coredump;
2263 
2264 	/* Write program headers for segments dump */
2265 	for (i = 0; i < cprm->vma_count; i++) {
2266 		struct core_vma_metadata *meta = cprm->vma_meta + i;
2267 		struct elf_phdr phdr;
2268 
2269 		phdr.p_type = PT_LOAD;
2270 		phdr.p_offset = offset;
2271 		phdr.p_vaddr = meta->start;
2272 		phdr.p_paddr = 0;
2273 		phdr.p_filesz = meta->dump_size;
2274 		phdr.p_memsz = meta->end - meta->start;
2275 		offset += phdr.p_filesz;
2276 		phdr.p_flags = 0;
2277 		if (meta->flags & VM_READ)
2278 			phdr.p_flags |= PF_R;
2279 		if (meta->flags & VM_WRITE)
2280 			phdr.p_flags |= PF_W;
2281 		if (meta->flags & VM_EXEC)
2282 			phdr.p_flags |= PF_X;
2283 		phdr.p_align = ELF_EXEC_PAGESIZE;
2284 
2285 		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2286 			goto end_coredump;
2287 	}
2288 
2289 	if (!elf_core_write_extra_phdrs(cprm, offset))
2290 		goto end_coredump;
2291 
2292  	/* write out the notes section */
2293 	if (!write_note_info(&info, cprm))
2294 		goto end_coredump;
2295 
2296 	if (elf_coredump_extra_notes_write(cprm))
2297 		goto end_coredump;
2298 
2299 	/* Align to page */
2300 	if (!dump_skip(cprm, dataoff - cprm->pos))
2301 		goto end_coredump;
2302 
2303 	for (i = 0; i < cprm->vma_count; i++) {
2304 		struct core_vma_metadata *meta = cprm->vma_meta + i;
2305 
2306 		if (!dump_user_range(cprm, meta->start, meta->dump_size))
2307 			goto end_coredump;
2308 	}
2309 	dump_truncate(cprm);
2310 
2311 	if (!elf_core_write_extra_data(cprm))
2312 		goto end_coredump;
2313 
2314 	if (e_phnum == PN_XNUM) {
2315 		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2316 			goto end_coredump;
2317 	}
2318 
2319 end_coredump:
2320 	free_note_info(&info);
2321 	kfree(shdr4extnum);
2322 	kfree(phdr4note);
2323 	return has_dumped;
2324 }
2325 
2326 #endif		/* CONFIG_ELF_CORE */
2327 
init_elf_binfmt(void)2328 static int __init init_elf_binfmt(void)
2329 {
2330 	register_binfmt(&elf_format);
2331 	return 0;
2332 }
2333 
exit_elf_binfmt(void)2334 static void __exit exit_elf_binfmt(void)
2335 {
2336 	/* Remove the COFF and ELF loaders. */
2337 	unregister_binfmt(&elf_format);
2338 }
2339 
2340 core_initcall(init_elf_binfmt);
2341 module_exit(exit_elf_binfmt);
2342 MODULE_LICENSE("GPL");
2343