1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 struct extent_io_tree *dirty_pages,
60 int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66 /*
67 * btrfs_end_io_wq structs are used to do processing in task context when an IO
68 * is complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
71 struct btrfs_end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 blk_status_t status;
77 enum btrfs_wq_endio_type metadata;
78 struct btrfs_work work;
79 };
80
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82
btrfs_end_io_wq_init(void)83 int __init btrfs_end_io_wq_init(void)
84 {
85 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 sizeof(struct btrfs_end_io_wq),
87 0,
88 SLAB_MEM_SPREAD,
89 NULL);
90 if (!btrfs_end_io_wq_cache)
91 return -ENOMEM;
92 return 0;
93 }
94
btrfs_end_io_wq_exit(void)95 void __cold btrfs_end_io_wq_exit(void)
96 {
97 kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)100 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101 {
102 if (fs_info->csum_shash)
103 crypto_free_shash(fs_info->csum_shash);
104 }
105
106 /*
107 * async submit bios are used to offload expensive checksumming
108 * onto the worker threads. They checksum file and metadata bios
109 * just before they are sent down the IO stack.
110 */
111 struct async_submit_bio {
112 void *private_data;
113 struct bio *bio;
114 extent_submit_bio_start_t *submit_bio_start;
115 int mirror_num;
116 /*
117 * bio_offset is optional, can be used if the pages in the bio
118 * can't tell us where in the file the bio should go
119 */
120 u64 bio_offset;
121 struct btrfs_work work;
122 blk_status_t status;
123 };
124
125 /*
126 * Lockdep class keys for extent_buffer->lock's in this root. For a given
127 * eb, the lockdep key is determined by the btrfs_root it belongs to and
128 * the level the eb occupies in the tree.
129 *
130 * Different roots are used for different purposes and may nest inside each
131 * other and they require separate keysets. As lockdep keys should be
132 * static, assign keysets according to the purpose of the root as indicated
133 * by btrfs_root->root_key.objectid. This ensures that all special purpose
134 * roots have separate keysets.
135 *
136 * Lock-nesting across peer nodes is always done with the immediate parent
137 * node locked thus preventing deadlock. As lockdep doesn't know this, use
138 * subclass to avoid triggering lockdep warning in such cases.
139 *
140 * The key is set by the readpage_end_io_hook after the buffer has passed
141 * csum validation but before the pages are unlocked. It is also set by
142 * btrfs_init_new_buffer on freshly allocated blocks.
143 *
144 * We also add a check to make sure the highest level of the tree is the
145 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
146 * needs update as well.
147 */
148 #ifdef CONFIG_DEBUG_LOCK_ALLOC
149 # if BTRFS_MAX_LEVEL != 8
150 # error
151 # endif
152
153 static struct btrfs_lockdep_keyset {
154 u64 id; /* root objectid */
155 const char *name_stem; /* lock name stem */
156 char names[BTRFS_MAX_LEVEL + 1][20];
157 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
158 } btrfs_lockdep_keysets[] = {
159 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
160 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
161 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
162 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
163 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
164 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
165 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
166 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
167 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
168 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
169 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
170 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
171 { .id = 0, .name_stem = "tree" },
172 };
173
btrfs_init_lockdep(void)174 void __init btrfs_init_lockdep(void)
175 {
176 int i, j;
177
178 /* initialize lockdep class names */
179 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
180 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
181
182 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
183 snprintf(ks->names[j], sizeof(ks->names[j]),
184 "btrfs-%s-%02d", ks->name_stem, j);
185 }
186 }
187
btrfs_set_buffer_lockdep_class(u64 objectid,struct extent_buffer * eb,int level)188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189 int level)
190 {
191 struct btrfs_lockdep_keyset *ks;
192
193 BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195 /* find the matching keyset, id 0 is the default entry */
196 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197 if (ks->id == objectid)
198 break;
199
200 lockdep_set_class_and_name(&eb->lock,
201 &ks->keys[level], ks->names[level]);
202 }
203
204 #endif
205
206 /*
207 * Compute the csum of a btree block and store the result to provided buffer.
208 */
csum_tree_block(struct extent_buffer * buf,u8 * result)209 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
210 {
211 struct btrfs_fs_info *fs_info = buf->fs_info;
212 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
213 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
214 char *kaddr;
215 int i;
216
217 shash->tfm = fs_info->csum_shash;
218 crypto_shash_init(shash);
219 kaddr = page_address(buf->pages[0]);
220 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
221 PAGE_SIZE - BTRFS_CSUM_SIZE);
222
223 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
224 kaddr = page_address(buf->pages[i]);
225 crypto_shash_update(shash, kaddr, PAGE_SIZE);
226 }
227 memset(result, 0, BTRFS_CSUM_SIZE);
228 crypto_shash_final(shash, result);
229 }
230
231 /*
232 * we can't consider a given block up to date unless the transid of the
233 * block matches the transid in the parent node's pointer. This is how we
234 * detect blocks that either didn't get written at all or got written
235 * in the wrong place.
236 */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)237 static int verify_parent_transid(struct extent_io_tree *io_tree,
238 struct extent_buffer *eb, u64 parent_transid,
239 int atomic)
240 {
241 struct extent_state *cached_state = NULL;
242 int ret;
243 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
244
245 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 return 0;
247
248 if (atomic)
249 return -EAGAIN;
250
251 if (need_lock) {
252 btrfs_tree_read_lock(eb);
253 btrfs_set_lock_blocking_read(eb);
254 }
255
256 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
257 &cached_state);
258 if (extent_buffer_uptodate(eb) &&
259 btrfs_header_generation(eb) == parent_transid) {
260 ret = 0;
261 goto out;
262 }
263 btrfs_err_rl(eb->fs_info,
264 "parent transid verify failed on %llu wanted %llu found %llu",
265 eb->start,
266 parent_transid, btrfs_header_generation(eb));
267 ret = 1;
268
269 /*
270 * Things reading via commit roots that don't have normal protection,
271 * like send, can have a really old block in cache that may point at a
272 * block that has been freed and re-allocated. So don't clear uptodate
273 * if we find an eb that is under IO (dirty/writeback) because we could
274 * end up reading in the stale data and then writing it back out and
275 * making everybody very sad.
276 */
277 if (!extent_buffer_under_io(eb))
278 clear_extent_buffer_uptodate(eb);
279 out:
280 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
281 &cached_state);
282 if (need_lock)
283 btrfs_tree_read_unlock_blocking(eb);
284 return ret;
285 }
286
btrfs_supported_super_csum(u16 csum_type)287 static bool btrfs_supported_super_csum(u16 csum_type)
288 {
289 switch (csum_type) {
290 case BTRFS_CSUM_TYPE_CRC32:
291 case BTRFS_CSUM_TYPE_XXHASH:
292 case BTRFS_CSUM_TYPE_SHA256:
293 case BTRFS_CSUM_TYPE_BLAKE2:
294 return true;
295 default:
296 return false;
297 }
298 }
299
300 /*
301 * Return 0 if the superblock checksum type matches the checksum value of that
302 * algorithm. Pass the raw disk superblock data.
303 */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,char * raw_disk_sb)304 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
305 char *raw_disk_sb)
306 {
307 struct btrfs_super_block *disk_sb =
308 (struct btrfs_super_block *)raw_disk_sb;
309 char result[BTRFS_CSUM_SIZE];
310 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
311
312 shash->tfm = fs_info->csum_shash;
313
314 /*
315 * The super_block structure does not span the whole
316 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
317 * filled with zeros and is included in the checksum.
318 */
319 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
320 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
321
322 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
323 return 1;
324
325 return 0;
326 }
327
btrfs_verify_level_key(struct extent_buffer * eb,int level,struct btrfs_key * first_key,u64 parent_transid)328 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
329 struct btrfs_key *first_key, u64 parent_transid)
330 {
331 struct btrfs_fs_info *fs_info = eb->fs_info;
332 int found_level;
333 struct btrfs_key found_key;
334 int ret;
335
336 found_level = btrfs_header_level(eb);
337 if (found_level != level) {
338 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
339 KERN_ERR "BTRFS: tree level check failed\n");
340 btrfs_err(fs_info,
341 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
342 eb->start, level, found_level);
343 return -EIO;
344 }
345
346 if (!first_key)
347 return 0;
348
349 /*
350 * For live tree block (new tree blocks in current transaction),
351 * we need proper lock context to avoid race, which is impossible here.
352 * So we only checks tree blocks which is read from disk, whose
353 * generation <= fs_info->last_trans_committed.
354 */
355 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
356 return 0;
357
358 /* We have @first_key, so this @eb must have at least one item */
359 if (btrfs_header_nritems(eb) == 0) {
360 btrfs_err(fs_info,
361 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
362 eb->start);
363 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
364 return -EUCLEAN;
365 }
366
367 if (found_level)
368 btrfs_node_key_to_cpu(eb, &found_key, 0);
369 else
370 btrfs_item_key_to_cpu(eb, &found_key, 0);
371 ret = btrfs_comp_cpu_keys(first_key, &found_key);
372
373 if (ret) {
374 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
375 KERN_ERR "BTRFS: tree first key check failed\n");
376 btrfs_err(fs_info,
377 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
378 eb->start, parent_transid, first_key->objectid,
379 first_key->type, first_key->offset,
380 found_key.objectid, found_key.type,
381 found_key.offset);
382 }
383 return ret;
384 }
385
386 /*
387 * helper to read a given tree block, doing retries as required when
388 * the checksums don't match and we have alternate mirrors to try.
389 *
390 * @parent_transid: expected transid, skip check if 0
391 * @level: expected level, mandatory check
392 * @first_key: expected key of first slot, skip check if NULL
393 */
btree_read_extent_buffer_pages(struct extent_buffer * eb,u64 parent_transid,int level,struct btrfs_key * first_key)394 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
395 u64 parent_transid, int level,
396 struct btrfs_key *first_key)
397 {
398 struct btrfs_fs_info *fs_info = eb->fs_info;
399 struct extent_io_tree *io_tree;
400 int failed = 0;
401 int ret;
402 int num_copies = 0;
403 int mirror_num = 0;
404 int failed_mirror = 0;
405
406 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
407 while (1) {
408 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
409 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
410 if (!ret) {
411 if (verify_parent_transid(io_tree, eb,
412 parent_transid, 0))
413 ret = -EIO;
414 else if (btrfs_verify_level_key(eb, level,
415 first_key, parent_transid))
416 ret = -EUCLEAN;
417 else
418 break;
419 }
420
421 num_copies = btrfs_num_copies(fs_info,
422 eb->start, eb->len);
423 if (num_copies == 1)
424 break;
425
426 if (!failed_mirror) {
427 failed = 1;
428 failed_mirror = eb->read_mirror;
429 }
430
431 mirror_num++;
432 if (mirror_num == failed_mirror)
433 mirror_num++;
434
435 if (mirror_num > num_copies)
436 break;
437 }
438
439 if (failed && !ret && failed_mirror)
440 btrfs_repair_eb_io_failure(eb, failed_mirror);
441
442 return ret;
443 }
444
445 /*
446 * checksum a dirty tree block before IO. This has extra checks to make sure
447 * we only fill in the checksum field in the first page of a multi-page block
448 */
449
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct page * page)450 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
451 {
452 u64 start = page_offset(page);
453 u64 found_start;
454 u8 result[BTRFS_CSUM_SIZE];
455 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
456 struct extent_buffer *eb;
457 int ret;
458
459 eb = (struct extent_buffer *)page->private;
460 if (page != eb->pages[0])
461 return 0;
462
463 found_start = btrfs_header_bytenr(eb);
464 /*
465 * Please do not consolidate these warnings into a single if.
466 * It is useful to know what went wrong.
467 */
468 if (WARN_ON(found_start != start))
469 return -EUCLEAN;
470 if (WARN_ON(!PageUptodate(page)))
471 return -EUCLEAN;
472
473 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
474 offsetof(struct btrfs_header, fsid),
475 BTRFS_FSID_SIZE) == 0);
476
477 csum_tree_block(eb, result);
478
479 if (btrfs_header_level(eb))
480 ret = btrfs_check_node(eb);
481 else
482 ret = btrfs_check_leaf_full(eb);
483
484 if (ret < 0) {
485 btrfs_print_tree(eb, 0);
486 btrfs_err(fs_info,
487 "block=%llu write time tree block corruption detected",
488 eb->start);
489 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
490 return ret;
491 }
492 write_extent_buffer(eb, result, 0, csum_size);
493
494 return 0;
495 }
496
check_tree_block_fsid(struct extent_buffer * eb)497 static int check_tree_block_fsid(struct extent_buffer *eb)
498 {
499 struct btrfs_fs_info *fs_info = eb->fs_info;
500 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
501 u8 fsid[BTRFS_FSID_SIZE];
502 u8 *metadata_uuid;
503
504 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
505 BTRFS_FSID_SIZE);
506 /*
507 * Checking the incompat flag is only valid for the current fs. For
508 * seed devices it's forbidden to have their uuid changed so reading
509 * ->fsid in this case is fine
510 */
511 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
512 metadata_uuid = fs_devices->metadata_uuid;
513 else
514 metadata_uuid = fs_devices->fsid;
515
516 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
517 return 0;
518
519 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
520 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
521 return 0;
522
523 return 1;
524 }
525
btrfs_validate_metadata_buffer(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)526 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, u64 phy_offset,
527 struct page *page, u64 start, u64 end,
528 int mirror)
529 {
530 u64 found_start;
531 int found_level;
532 struct extent_buffer *eb;
533 struct btrfs_fs_info *fs_info;
534 u16 csum_size;
535 int ret = 0;
536 u8 result[BTRFS_CSUM_SIZE];
537 int reads_done;
538
539 if (!page->private)
540 goto out;
541
542 eb = (struct extent_buffer *)page->private;
543 fs_info = eb->fs_info;
544 csum_size = btrfs_super_csum_size(fs_info->super_copy);
545
546 /* the pending IO might have been the only thing that kept this buffer
547 * in memory. Make sure we have a ref for all this other checks
548 */
549 atomic_inc(&eb->refs);
550
551 reads_done = atomic_dec_and_test(&eb->io_pages);
552 if (!reads_done)
553 goto err;
554
555 eb->read_mirror = mirror;
556 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
557 ret = -EIO;
558 goto err;
559 }
560
561 found_start = btrfs_header_bytenr(eb);
562 if (found_start != eb->start) {
563 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
564 eb->start, found_start);
565 ret = -EIO;
566 goto err;
567 }
568 if (check_tree_block_fsid(eb)) {
569 btrfs_err_rl(fs_info, "bad fsid on block %llu",
570 eb->start);
571 ret = -EIO;
572 goto err;
573 }
574 found_level = btrfs_header_level(eb);
575 if (found_level >= BTRFS_MAX_LEVEL) {
576 btrfs_err(fs_info, "bad tree block level %d on %llu",
577 (int)btrfs_header_level(eb), eb->start);
578 ret = -EIO;
579 goto err;
580 }
581
582 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
583 eb, found_level);
584
585 csum_tree_block(eb, result);
586
587 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
588 u8 val[BTRFS_CSUM_SIZE] = { 0 };
589
590 read_extent_buffer(eb, &val, 0, csum_size);
591 btrfs_warn_rl(fs_info,
592 "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
593 fs_info->sb->s_id, eb->start,
594 CSUM_FMT_VALUE(csum_size, val),
595 CSUM_FMT_VALUE(csum_size, result),
596 btrfs_header_level(eb));
597 ret = -EUCLEAN;
598 goto err;
599 }
600
601 /*
602 * If this is a leaf block and it is corrupt, set the corrupt bit so
603 * that we don't try and read the other copies of this block, just
604 * return -EIO.
605 */
606 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
607 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
608 ret = -EIO;
609 }
610
611 if (found_level > 0 && btrfs_check_node(eb))
612 ret = -EIO;
613
614 if (!ret)
615 set_extent_buffer_uptodate(eb);
616 else
617 btrfs_err(fs_info,
618 "block=%llu read time tree block corruption detected",
619 eb->start);
620 err:
621 if (reads_done &&
622 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
623 btree_readahead_hook(eb, ret);
624
625 if (ret) {
626 /*
627 * our io error hook is going to dec the io pages
628 * again, we have to make sure it has something
629 * to decrement
630 */
631 atomic_inc(&eb->io_pages);
632 clear_extent_buffer_uptodate(eb);
633 }
634 free_extent_buffer(eb);
635 out:
636 return ret;
637 }
638
end_workqueue_bio(struct bio * bio)639 static void end_workqueue_bio(struct bio *bio)
640 {
641 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
642 struct btrfs_fs_info *fs_info;
643 struct btrfs_workqueue *wq;
644
645 fs_info = end_io_wq->info;
646 end_io_wq->status = bio->bi_status;
647
648 if (bio_op(bio) == REQ_OP_WRITE) {
649 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
650 wq = fs_info->endio_meta_write_workers;
651 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
652 wq = fs_info->endio_freespace_worker;
653 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
654 wq = fs_info->endio_raid56_workers;
655 else
656 wq = fs_info->endio_write_workers;
657 } else {
658 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
659 wq = fs_info->endio_raid56_workers;
660 else if (end_io_wq->metadata)
661 wq = fs_info->endio_meta_workers;
662 else
663 wq = fs_info->endio_workers;
664 }
665
666 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
667 btrfs_queue_work(wq, &end_io_wq->work);
668 }
669
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,enum btrfs_wq_endio_type metadata)670 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
671 enum btrfs_wq_endio_type metadata)
672 {
673 struct btrfs_end_io_wq *end_io_wq;
674
675 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
676 if (!end_io_wq)
677 return BLK_STS_RESOURCE;
678
679 end_io_wq->private = bio->bi_private;
680 end_io_wq->end_io = bio->bi_end_io;
681 end_io_wq->info = info;
682 end_io_wq->status = 0;
683 end_io_wq->bio = bio;
684 end_io_wq->metadata = metadata;
685
686 bio->bi_private = end_io_wq;
687 bio->bi_end_io = end_workqueue_bio;
688 return 0;
689 }
690
run_one_async_start(struct btrfs_work * work)691 static void run_one_async_start(struct btrfs_work *work)
692 {
693 struct async_submit_bio *async;
694 blk_status_t ret;
695
696 async = container_of(work, struct async_submit_bio, work);
697 ret = async->submit_bio_start(async->private_data, async->bio,
698 async->bio_offset);
699 if (ret)
700 async->status = ret;
701 }
702
703 /*
704 * In order to insert checksums into the metadata in large chunks, we wait
705 * until bio submission time. All the pages in the bio are checksummed and
706 * sums are attached onto the ordered extent record.
707 *
708 * At IO completion time the csums attached on the ordered extent record are
709 * inserted into the tree.
710 */
run_one_async_done(struct btrfs_work * work)711 static void run_one_async_done(struct btrfs_work *work)
712 {
713 struct async_submit_bio *async;
714 struct inode *inode;
715 blk_status_t ret;
716
717 async = container_of(work, struct async_submit_bio, work);
718 inode = async->private_data;
719
720 /* If an error occurred we just want to clean up the bio and move on */
721 if (async->status) {
722 async->bio->bi_status = async->status;
723 bio_endio(async->bio);
724 return;
725 }
726
727 /*
728 * All of the bios that pass through here are from async helpers.
729 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
730 * This changes nothing when cgroups aren't in use.
731 */
732 async->bio->bi_opf |= REQ_CGROUP_PUNT;
733 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
734 if (ret) {
735 async->bio->bi_status = ret;
736 bio_endio(async->bio);
737 }
738 }
739
run_one_async_free(struct btrfs_work * work)740 static void run_one_async_free(struct btrfs_work *work)
741 {
742 struct async_submit_bio *async;
743
744 async = container_of(work, struct async_submit_bio, work);
745 kfree(async);
746 }
747
btrfs_wq_submit_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset,void * private_data,extent_submit_bio_start_t * submit_bio_start)748 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
749 int mirror_num, unsigned long bio_flags,
750 u64 bio_offset, void *private_data,
751 extent_submit_bio_start_t *submit_bio_start)
752 {
753 struct async_submit_bio *async;
754
755 async = kmalloc(sizeof(*async), GFP_NOFS);
756 if (!async)
757 return BLK_STS_RESOURCE;
758
759 async->private_data = private_data;
760 async->bio = bio;
761 async->mirror_num = mirror_num;
762 async->submit_bio_start = submit_bio_start;
763
764 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
765 run_one_async_free);
766
767 async->bio_offset = bio_offset;
768
769 async->status = 0;
770
771 if (op_is_sync(bio->bi_opf))
772 btrfs_set_work_high_priority(&async->work);
773
774 btrfs_queue_work(fs_info->workers, &async->work);
775 return 0;
776 }
777
btree_csum_one_bio(struct bio * bio)778 static blk_status_t btree_csum_one_bio(struct bio *bio)
779 {
780 struct bio_vec *bvec;
781 struct btrfs_root *root;
782 int ret = 0;
783 struct bvec_iter_all iter_all;
784
785 ASSERT(!bio_flagged(bio, BIO_CLONED));
786 bio_for_each_segment_all(bvec, bio, iter_all) {
787 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
788 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
789 if (ret)
790 break;
791 }
792
793 return errno_to_blk_status(ret);
794 }
795
btree_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)796 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
797 u64 bio_offset)
798 {
799 /*
800 * when we're called for a write, we're already in the async
801 * submission context. Just jump into btrfs_map_bio
802 */
803 return btree_csum_one_bio(bio);
804 }
805
check_async_write(struct btrfs_fs_info * fs_info,struct btrfs_inode * bi)806 static int check_async_write(struct btrfs_fs_info *fs_info,
807 struct btrfs_inode *bi)
808 {
809 if (atomic_read(&bi->sync_writers))
810 return 0;
811 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
812 return 0;
813 return 1;
814 }
815
btrfs_submit_metadata_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)816 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
817 int mirror_num, unsigned long bio_flags)
818 {
819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
820 int async = check_async_write(fs_info, BTRFS_I(inode));
821 blk_status_t ret;
822
823 if (bio_op(bio) != REQ_OP_WRITE) {
824 /*
825 * called for a read, do the setup so that checksum validation
826 * can happen in the async kernel threads
827 */
828 ret = btrfs_bio_wq_end_io(fs_info, bio,
829 BTRFS_WQ_ENDIO_METADATA);
830 if (ret)
831 goto out_w_error;
832 ret = btrfs_map_bio(fs_info, bio, mirror_num);
833 } else if (!async) {
834 ret = btree_csum_one_bio(bio);
835 if (ret)
836 goto out_w_error;
837 ret = btrfs_map_bio(fs_info, bio, mirror_num);
838 } else {
839 /*
840 * kthread helpers are used to submit writes so that
841 * checksumming can happen in parallel across all CPUs
842 */
843 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
844 0, inode, btree_submit_bio_start);
845 }
846
847 if (ret)
848 goto out_w_error;
849 return 0;
850
851 out_w_error:
852 bio->bi_status = ret;
853 bio_endio(bio);
854 return ret;
855 }
856
857 #ifdef CONFIG_MIGRATION
btree_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)858 static int btree_migratepage(struct address_space *mapping,
859 struct page *newpage, struct page *page,
860 enum migrate_mode mode)
861 {
862 /*
863 * we can't safely write a btree page from here,
864 * we haven't done the locking hook
865 */
866 if (PageDirty(page))
867 return -EAGAIN;
868 /*
869 * Buffers may be managed in a filesystem specific way.
870 * We must have no buffers or drop them.
871 */
872 if (page_has_private(page) &&
873 !try_to_release_page(page, GFP_KERNEL))
874 return -EAGAIN;
875 return migrate_page(mapping, newpage, page, mode);
876 }
877 #endif
878
879
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)880 static int btree_writepages(struct address_space *mapping,
881 struct writeback_control *wbc)
882 {
883 struct btrfs_fs_info *fs_info;
884 int ret;
885
886 if (wbc->sync_mode == WB_SYNC_NONE) {
887
888 if (wbc->for_kupdate)
889 return 0;
890
891 fs_info = BTRFS_I(mapping->host)->root->fs_info;
892 /* this is a bit racy, but that's ok */
893 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
894 BTRFS_DIRTY_METADATA_THRESH,
895 fs_info->dirty_metadata_batch);
896 if (ret < 0)
897 return 0;
898 }
899 return btree_write_cache_pages(mapping, wbc);
900 }
901
btree_releasepage(struct page * page,gfp_t gfp_flags)902 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
903 {
904 if (PageWriteback(page) || PageDirty(page))
905 return 0;
906
907 return try_release_extent_buffer(page);
908 }
909
btree_invalidatepage(struct page * page,unsigned int offset,unsigned int length)910 static void btree_invalidatepage(struct page *page, unsigned int offset,
911 unsigned int length)
912 {
913 struct extent_io_tree *tree;
914 tree = &BTRFS_I(page->mapping->host)->io_tree;
915 extent_invalidatepage(tree, page, offset);
916 btree_releasepage(page, GFP_NOFS);
917 if (PagePrivate(page)) {
918 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
919 "page private not zero on page %llu",
920 (unsigned long long)page_offset(page));
921 detach_page_private(page);
922 }
923 }
924
btree_set_page_dirty(struct page * page)925 static int btree_set_page_dirty(struct page *page)
926 {
927 #ifdef DEBUG
928 struct extent_buffer *eb;
929
930 BUG_ON(!PagePrivate(page));
931 eb = (struct extent_buffer *)page->private;
932 BUG_ON(!eb);
933 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
934 BUG_ON(!atomic_read(&eb->refs));
935 btrfs_assert_tree_locked(eb);
936 #endif
937 return __set_page_dirty_nobuffers(page);
938 }
939
940 static const struct address_space_operations btree_aops = {
941 .writepages = btree_writepages,
942 .releasepage = btree_releasepage,
943 .invalidatepage = btree_invalidatepage,
944 #ifdef CONFIG_MIGRATION
945 .migratepage = btree_migratepage,
946 #endif
947 .set_page_dirty = btree_set_page_dirty,
948 };
949
readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)950 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
951 {
952 struct extent_buffer *buf = NULL;
953 int ret;
954
955 buf = btrfs_find_create_tree_block(fs_info, bytenr);
956 if (IS_ERR(buf))
957 return;
958
959 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
960 if (ret < 0)
961 free_extent_buffer_stale(buf);
962 else
963 free_extent_buffer(buf);
964 }
965
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)966 struct extent_buffer *btrfs_find_create_tree_block(
967 struct btrfs_fs_info *fs_info,
968 u64 bytenr)
969 {
970 if (btrfs_is_testing(fs_info))
971 return alloc_test_extent_buffer(fs_info, bytenr);
972 return alloc_extent_buffer(fs_info, bytenr);
973 }
974
975 /*
976 * Read tree block at logical address @bytenr and do variant basic but critical
977 * verification.
978 *
979 * @parent_transid: expected transid of this tree block, skip check if 0
980 * @level: expected level, mandatory check
981 * @first_key: expected key in slot 0, skip check if NULL
982 */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 parent_transid,int level,struct btrfs_key * first_key)983 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
984 u64 parent_transid, int level,
985 struct btrfs_key *first_key)
986 {
987 struct extent_buffer *buf = NULL;
988 int ret;
989
990 buf = btrfs_find_create_tree_block(fs_info, bytenr);
991 if (IS_ERR(buf))
992 return buf;
993
994 ret = btree_read_extent_buffer_pages(buf, parent_transid,
995 level, first_key);
996 if (ret) {
997 free_extent_buffer_stale(buf);
998 return ERR_PTR(ret);
999 }
1000 return buf;
1001
1002 }
1003
btrfs_clean_tree_block(struct extent_buffer * buf)1004 void btrfs_clean_tree_block(struct extent_buffer *buf)
1005 {
1006 struct btrfs_fs_info *fs_info = buf->fs_info;
1007 if (btrfs_header_generation(buf) ==
1008 fs_info->running_transaction->transid) {
1009 btrfs_assert_tree_locked(buf);
1010
1011 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1012 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1013 -buf->len,
1014 fs_info->dirty_metadata_batch);
1015 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1016 btrfs_set_lock_blocking_write(buf);
1017 clear_extent_buffer_dirty(buf);
1018 }
1019 }
1020 }
1021
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)1022 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1023 u64 objectid)
1024 {
1025 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1026 root->fs_info = fs_info;
1027 root->node = NULL;
1028 root->commit_root = NULL;
1029 root->state = 0;
1030 root->orphan_cleanup_state = 0;
1031
1032 root->last_trans = 0;
1033 root->highest_objectid = 0;
1034 root->nr_delalloc_inodes = 0;
1035 root->nr_ordered_extents = 0;
1036 root->inode_tree = RB_ROOT;
1037 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1038 root->block_rsv = NULL;
1039
1040 INIT_LIST_HEAD(&root->dirty_list);
1041 INIT_LIST_HEAD(&root->root_list);
1042 INIT_LIST_HEAD(&root->delalloc_inodes);
1043 INIT_LIST_HEAD(&root->delalloc_root);
1044 INIT_LIST_HEAD(&root->ordered_extents);
1045 INIT_LIST_HEAD(&root->ordered_root);
1046 INIT_LIST_HEAD(&root->reloc_dirty_list);
1047 INIT_LIST_HEAD(&root->logged_list[0]);
1048 INIT_LIST_HEAD(&root->logged_list[1]);
1049 spin_lock_init(&root->inode_lock);
1050 spin_lock_init(&root->delalloc_lock);
1051 spin_lock_init(&root->ordered_extent_lock);
1052 spin_lock_init(&root->accounting_lock);
1053 spin_lock_init(&root->log_extents_lock[0]);
1054 spin_lock_init(&root->log_extents_lock[1]);
1055 spin_lock_init(&root->qgroup_meta_rsv_lock);
1056 mutex_init(&root->objectid_mutex);
1057 mutex_init(&root->log_mutex);
1058 mutex_init(&root->ordered_extent_mutex);
1059 mutex_init(&root->delalloc_mutex);
1060 init_waitqueue_head(&root->qgroup_flush_wait);
1061 init_waitqueue_head(&root->log_writer_wait);
1062 init_waitqueue_head(&root->log_commit_wait[0]);
1063 init_waitqueue_head(&root->log_commit_wait[1]);
1064 INIT_LIST_HEAD(&root->log_ctxs[0]);
1065 INIT_LIST_HEAD(&root->log_ctxs[1]);
1066 atomic_set(&root->log_commit[0], 0);
1067 atomic_set(&root->log_commit[1], 0);
1068 atomic_set(&root->log_writers, 0);
1069 atomic_set(&root->log_batch, 0);
1070 refcount_set(&root->refs, 1);
1071 atomic_set(&root->snapshot_force_cow, 0);
1072 atomic_set(&root->nr_swapfiles, 0);
1073 root->log_transid = 0;
1074 root->log_transid_committed = -1;
1075 root->last_log_commit = 0;
1076 if (!dummy) {
1077 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1078 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1079 extent_io_tree_init(fs_info, &root->log_csum_range,
1080 IO_TREE_LOG_CSUM_RANGE, NULL);
1081 }
1082
1083 memset(&root->root_key, 0, sizeof(root->root_key));
1084 memset(&root->root_item, 0, sizeof(root->root_item));
1085 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1086 root->root_key.objectid = objectid;
1087 root->anon_dev = 0;
1088
1089 spin_lock_init(&root->root_item_lock);
1090 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1091 #ifdef CONFIG_BTRFS_DEBUG
1092 INIT_LIST_HEAD(&root->leak_list);
1093 spin_lock(&fs_info->fs_roots_radix_lock);
1094 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1095 spin_unlock(&fs_info->fs_roots_radix_lock);
1096 #endif
1097 }
1098
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)1099 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1100 u64 objectid, gfp_t flags)
1101 {
1102 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1103 if (root)
1104 __setup_root(root, fs_info, objectid);
1105 return root;
1106 }
1107
1108 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1109 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)1110 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1111 {
1112 struct btrfs_root *root;
1113
1114 if (!fs_info)
1115 return ERR_PTR(-EINVAL);
1116
1117 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1118 if (!root)
1119 return ERR_PTR(-ENOMEM);
1120
1121 /* We don't use the stripesize in selftest, set it as sectorsize */
1122 root->alloc_bytenr = 0;
1123
1124 return root;
1125 }
1126 #endif
1127
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)1128 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1129 u64 objectid)
1130 {
1131 struct btrfs_fs_info *fs_info = trans->fs_info;
1132 struct extent_buffer *leaf;
1133 struct btrfs_root *tree_root = fs_info->tree_root;
1134 struct btrfs_root *root;
1135 struct btrfs_key key;
1136 unsigned int nofs_flag;
1137 int ret = 0;
1138
1139 /*
1140 * We're holding a transaction handle, so use a NOFS memory allocation
1141 * context to avoid deadlock if reclaim happens.
1142 */
1143 nofs_flag = memalloc_nofs_save();
1144 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1145 memalloc_nofs_restore(nofs_flag);
1146 if (!root)
1147 return ERR_PTR(-ENOMEM);
1148
1149 root->root_key.objectid = objectid;
1150 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1151 root->root_key.offset = 0;
1152
1153 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1154 BTRFS_NESTING_NORMAL);
1155 if (IS_ERR(leaf)) {
1156 ret = PTR_ERR(leaf);
1157 leaf = NULL;
1158 goto fail;
1159 }
1160
1161 root->node = leaf;
1162 btrfs_mark_buffer_dirty(leaf);
1163
1164 root->commit_root = btrfs_root_node(root);
1165 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1166
1167 root->root_item.flags = 0;
1168 root->root_item.byte_limit = 0;
1169 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1170 btrfs_set_root_generation(&root->root_item, trans->transid);
1171 btrfs_set_root_level(&root->root_item, 0);
1172 btrfs_set_root_refs(&root->root_item, 1);
1173 btrfs_set_root_used(&root->root_item, leaf->len);
1174 btrfs_set_root_last_snapshot(&root->root_item, 0);
1175 btrfs_set_root_dirid(&root->root_item, 0);
1176 if (is_fstree(objectid))
1177 generate_random_guid(root->root_item.uuid);
1178 else
1179 export_guid(root->root_item.uuid, &guid_null);
1180 root->root_item.drop_level = 0;
1181
1182 key.objectid = objectid;
1183 key.type = BTRFS_ROOT_ITEM_KEY;
1184 key.offset = 0;
1185 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1186 if (ret)
1187 goto fail;
1188
1189 btrfs_tree_unlock(leaf);
1190
1191 return root;
1192
1193 fail:
1194 if (leaf)
1195 btrfs_tree_unlock(leaf);
1196 btrfs_put_root(root);
1197
1198 return ERR_PTR(ret);
1199 }
1200
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1201 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1202 struct btrfs_fs_info *fs_info)
1203 {
1204 struct btrfs_root *root;
1205 struct extent_buffer *leaf;
1206
1207 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1208 if (!root)
1209 return ERR_PTR(-ENOMEM);
1210
1211 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1212 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1213 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1214
1215 /*
1216 * DON'T set SHAREABLE bit for log trees.
1217 *
1218 * Log trees are not exposed to user space thus can't be snapshotted,
1219 * and they go away before a real commit is actually done.
1220 *
1221 * They do store pointers to file data extents, and those reference
1222 * counts still get updated (along with back refs to the log tree).
1223 */
1224
1225 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1226 NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1227 if (IS_ERR(leaf)) {
1228 btrfs_put_root(root);
1229 return ERR_CAST(leaf);
1230 }
1231
1232 root->node = leaf;
1233
1234 btrfs_mark_buffer_dirty(root->node);
1235 btrfs_tree_unlock(root->node);
1236 return root;
1237 }
1238
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1239 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1240 struct btrfs_fs_info *fs_info)
1241 {
1242 struct btrfs_root *log_root;
1243
1244 log_root = alloc_log_tree(trans, fs_info);
1245 if (IS_ERR(log_root))
1246 return PTR_ERR(log_root);
1247 WARN_ON(fs_info->log_root_tree);
1248 fs_info->log_root_tree = log_root;
1249 return 0;
1250 }
1251
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1252 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1253 struct btrfs_root *root)
1254 {
1255 struct btrfs_fs_info *fs_info = root->fs_info;
1256 struct btrfs_root *log_root;
1257 struct btrfs_inode_item *inode_item;
1258
1259 log_root = alloc_log_tree(trans, fs_info);
1260 if (IS_ERR(log_root))
1261 return PTR_ERR(log_root);
1262
1263 log_root->last_trans = trans->transid;
1264 log_root->root_key.offset = root->root_key.objectid;
1265
1266 inode_item = &log_root->root_item.inode;
1267 btrfs_set_stack_inode_generation(inode_item, 1);
1268 btrfs_set_stack_inode_size(inode_item, 3);
1269 btrfs_set_stack_inode_nlink(inode_item, 1);
1270 btrfs_set_stack_inode_nbytes(inode_item,
1271 fs_info->nodesize);
1272 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1273
1274 btrfs_set_root_node(&log_root->root_item, log_root->node);
1275
1276 WARN_ON(root->log_root);
1277 root->log_root = log_root;
1278 root->log_transid = 0;
1279 root->log_transid_committed = -1;
1280 root->last_log_commit = 0;
1281 return 0;
1282 }
1283
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,struct btrfs_key * key)1284 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1285 struct btrfs_path *path,
1286 struct btrfs_key *key)
1287 {
1288 struct btrfs_root *root;
1289 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1290 u64 generation;
1291 int ret;
1292 int level;
1293
1294 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1295 if (!root)
1296 return ERR_PTR(-ENOMEM);
1297
1298 ret = btrfs_find_root(tree_root, key, path,
1299 &root->root_item, &root->root_key);
1300 if (ret) {
1301 if (ret > 0)
1302 ret = -ENOENT;
1303 goto fail;
1304 }
1305
1306 generation = btrfs_root_generation(&root->root_item);
1307 level = btrfs_root_level(&root->root_item);
1308 root->node = read_tree_block(fs_info,
1309 btrfs_root_bytenr(&root->root_item),
1310 generation, level, NULL);
1311 if (IS_ERR(root->node)) {
1312 ret = PTR_ERR(root->node);
1313 root->node = NULL;
1314 goto fail;
1315 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1316 ret = -EIO;
1317 goto fail;
1318 }
1319 root->commit_root = btrfs_root_node(root);
1320 return root;
1321 fail:
1322 btrfs_put_root(root);
1323 return ERR_PTR(ret);
1324 }
1325
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1326 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1327 struct btrfs_key *key)
1328 {
1329 struct btrfs_root *root;
1330 struct btrfs_path *path;
1331
1332 path = btrfs_alloc_path();
1333 if (!path)
1334 return ERR_PTR(-ENOMEM);
1335 root = read_tree_root_path(tree_root, path, key);
1336 btrfs_free_path(path);
1337
1338 return root;
1339 }
1340
1341 /*
1342 * Initialize subvolume root in-memory structure
1343 *
1344 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1345 */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1346 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1347 {
1348 int ret;
1349 unsigned int nofs_flag;
1350
1351 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1352 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1353 GFP_NOFS);
1354 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1355 ret = -ENOMEM;
1356 goto fail;
1357 }
1358
1359 /*
1360 * We might be called under a transaction (e.g. indirect backref
1361 * resolution) which could deadlock if it triggers memory reclaim
1362 */
1363 nofs_flag = memalloc_nofs_save();
1364 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1365 memalloc_nofs_restore(nofs_flag);
1366 if (ret)
1367 goto fail;
1368
1369 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1370 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1371 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1372 btrfs_check_and_init_root_item(&root->root_item);
1373 }
1374
1375 btrfs_init_free_ino_ctl(root);
1376 spin_lock_init(&root->ino_cache_lock);
1377 init_waitqueue_head(&root->ino_cache_wait);
1378
1379 /*
1380 * Don't assign anonymous block device to roots that are not exposed to
1381 * userspace, the id pool is limited to 1M
1382 */
1383 if (is_fstree(root->root_key.objectid) &&
1384 btrfs_root_refs(&root->root_item) > 0) {
1385 if (!anon_dev) {
1386 ret = get_anon_bdev(&root->anon_dev);
1387 if (ret)
1388 goto fail;
1389 } else {
1390 root->anon_dev = anon_dev;
1391 }
1392 }
1393
1394 mutex_lock(&root->objectid_mutex);
1395 ret = btrfs_find_highest_objectid(root,
1396 &root->highest_objectid);
1397 if (ret) {
1398 mutex_unlock(&root->objectid_mutex);
1399 goto fail;
1400 }
1401
1402 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1403
1404 mutex_unlock(&root->objectid_mutex);
1405
1406 return 0;
1407 fail:
1408 /* The caller is responsible to call btrfs_free_fs_root */
1409 return ret;
1410 }
1411
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1412 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1413 u64 root_id)
1414 {
1415 struct btrfs_root *root;
1416
1417 spin_lock(&fs_info->fs_roots_radix_lock);
1418 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1419 (unsigned long)root_id);
1420 if (root)
1421 root = btrfs_grab_root(root);
1422 spin_unlock(&fs_info->fs_roots_radix_lock);
1423 return root;
1424 }
1425
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1426 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1427 u64 objectid)
1428 {
1429 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1430 return btrfs_grab_root(fs_info->tree_root);
1431 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1432 return btrfs_grab_root(fs_info->extent_root);
1433 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1434 return btrfs_grab_root(fs_info->chunk_root);
1435 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1436 return btrfs_grab_root(fs_info->dev_root);
1437 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1438 return btrfs_grab_root(fs_info->csum_root);
1439 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1440 return btrfs_grab_root(fs_info->quota_root) ?
1441 fs_info->quota_root : ERR_PTR(-ENOENT);
1442 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1443 return btrfs_grab_root(fs_info->uuid_root) ?
1444 fs_info->uuid_root : ERR_PTR(-ENOENT);
1445 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1446 return btrfs_grab_root(fs_info->free_space_root) ?
1447 fs_info->free_space_root : ERR_PTR(-ENOENT);
1448 return NULL;
1449 }
1450
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1451 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1452 struct btrfs_root *root)
1453 {
1454 int ret;
1455
1456 ret = radix_tree_preload(GFP_NOFS);
1457 if (ret)
1458 return ret;
1459
1460 spin_lock(&fs_info->fs_roots_radix_lock);
1461 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1462 (unsigned long)root->root_key.objectid,
1463 root);
1464 if (ret == 0) {
1465 btrfs_grab_root(root);
1466 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1467 }
1468 spin_unlock(&fs_info->fs_roots_radix_lock);
1469 radix_tree_preload_end();
1470
1471 return ret;
1472 }
1473
btrfs_check_leaked_roots(struct btrfs_fs_info * fs_info)1474 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1475 {
1476 #ifdef CONFIG_BTRFS_DEBUG
1477 struct btrfs_root *root;
1478
1479 while (!list_empty(&fs_info->allocated_roots)) {
1480 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1481
1482 root = list_first_entry(&fs_info->allocated_roots,
1483 struct btrfs_root, leak_list);
1484 btrfs_err(fs_info, "leaked root %s refcount %d",
1485 btrfs_root_name(&root->root_key, buf),
1486 refcount_read(&root->refs));
1487 while (refcount_read(&root->refs) > 1)
1488 btrfs_put_root(root);
1489 btrfs_put_root(root);
1490 }
1491 #endif
1492 }
1493
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1494 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1495 {
1496 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1497 percpu_counter_destroy(&fs_info->delalloc_bytes);
1498 percpu_counter_destroy(&fs_info->dio_bytes);
1499 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1500 btrfs_free_csum_hash(fs_info);
1501 btrfs_free_stripe_hash_table(fs_info);
1502 btrfs_free_ref_cache(fs_info);
1503 kfree(fs_info->balance_ctl);
1504 kfree(fs_info->delayed_root);
1505 btrfs_put_root(fs_info->extent_root);
1506 btrfs_put_root(fs_info->tree_root);
1507 btrfs_put_root(fs_info->chunk_root);
1508 btrfs_put_root(fs_info->dev_root);
1509 btrfs_put_root(fs_info->csum_root);
1510 btrfs_put_root(fs_info->quota_root);
1511 btrfs_put_root(fs_info->uuid_root);
1512 btrfs_put_root(fs_info->free_space_root);
1513 btrfs_put_root(fs_info->fs_root);
1514 btrfs_put_root(fs_info->data_reloc_root);
1515 btrfs_check_leaked_roots(fs_info);
1516 btrfs_extent_buffer_leak_debug_check(fs_info);
1517 kfree(fs_info->super_copy);
1518 kfree(fs_info->super_for_commit);
1519 kvfree(fs_info);
1520 }
1521
1522
1523 /*
1524 * Get an in-memory reference of a root structure.
1525 *
1526 * For essential trees like root/extent tree, we grab it from fs_info directly.
1527 * For subvolume trees, we check the cached filesystem roots first. If not
1528 * found, then read it from disk and add it to cached fs roots.
1529 *
1530 * Caller should release the root by calling btrfs_put_root() after the usage.
1531 *
1532 * NOTE: Reloc and log trees can't be read by this function as they share the
1533 * same root objectid.
1534 *
1535 * @objectid: root id
1536 * @anon_dev: preallocated anonymous block device number for new roots,
1537 * pass 0 for new allocation.
1538 * @check_ref: whether to check root item references, If true, return -ENOENT
1539 * for orphan roots
1540 */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev,bool check_ref)1541 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1542 u64 objectid, dev_t anon_dev,
1543 bool check_ref)
1544 {
1545 struct btrfs_root *root;
1546 struct btrfs_path *path;
1547 struct btrfs_key key;
1548 int ret;
1549
1550 root = btrfs_get_global_root(fs_info, objectid);
1551 if (root)
1552 return root;
1553 again:
1554 root = btrfs_lookup_fs_root(fs_info, objectid);
1555 if (root) {
1556 /*
1557 * Some other caller may have read out the newly inserted
1558 * subvolume already (for things like backref walk etc). Not
1559 * that common but still possible. In that case, we just need
1560 * to free the anon_dev.
1561 */
1562 if (unlikely(anon_dev)) {
1563 free_anon_bdev(anon_dev);
1564 anon_dev = 0;
1565 }
1566
1567 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1568 btrfs_put_root(root);
1569 return ERR_PTR(-ENOENT);
1570 }
1571 return root;
1572 }
1573
1574 key.objectid = objectid;
1575 key.type = BTRFS_ROOT_ITEM_KEY;
1576 key.offset = (u64)-1;
1577 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1578 if (IS_ERR(root))
1579 return root;
1580
1581 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1582 ret = -ENOENT;
1583 goto fail;
1584 }
1585
1586 ret = btrfs_init_fs_root(root, anon_dev);
1587 if (ret)
1588 goto fail;
1589
1590 path = btrfs_alloc_path();
1591 if (!path) {
1592 ret = -ENOMEM;
1593 goto fail;
1594 }
1595 key.objectid = BTRFS_ORPHAN_OBJECTID;
1596 key.type = BTRFS_ORPHAN_ITEM_KEY;
1597 key.offset = objectid;
1598
1599 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1600 btrfs_free_path(path);
1601 if (ret < 0)
1602 goto fail;
1603 if (ret == 0)
1604 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1605
1606 ret = btrfs_insert_fs_root(fs_info, root);
1607 if (ret) {
1608 if (ret == -EEXIST) {
1609 btrfs_put_root(root);
1610 goto again;
1611 }
1612 goto fail;
1613 }
1614 return root;
1615 fail:
1616 /*
1617 * If our caller provided us an anonymous device, then it's his
1618 * responsability to free it in case we fail. So we have to set our
1619 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1620 * and once again by our caller.
1621 */
1622 if (anon_dev)
1623 root->anon_dev = 0;
1624 btrfs_put_root(root);
1625 return ERR_PTR(ret);
1626 }
1627
1628 /*
1629 * Get in-memory reference of a root structure
1630 *
1631 * @objectid: tree objectid
1632 * @check_ref: if set, verify that the tree exists and the item has at least
1633 * one reference
1634 */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1635 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1636 u64 objectid, bool check_ref)
1637 {
1638 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1639 }
1640
1641 /*
1642 * Get in-memory reference of a root structure, created as new, optionally pass
1643 * the anonymous block device id
1644 *
1645 * @objectid: tree objectid
1646 * @anon_dev: if zero, allocate a new anonymous block device or use the
1647 * parameter value
1648 */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev)1649 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1650 u64 objectid, dev_t anon_dev)
1651 {
1652 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1653 }
1654
1655 /*
1656 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1657 * @fs_info: the fs_info
1658 * @objectid: the objectid we need to lookup
1659 *
1660 * This is exclusively used for backref walking, and exists specifically because
1661 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1662 * creation time, which means we may have to read the tree_root in order to look
1663 * up a fs root that is not in memory. If the root is not in memory we will
1664 * read the tree root commit root and look up the fs root from there. This is a
1665 * temporary root, it will not be inserted into the radix tree as it doesn't
1666 * have the most uptodate information, it'll simply be discarded once the
1667 * backref code is finished using the root.
1668 */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1669 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1670 struct btrfs_path *path,
1671 u64 objectid)
1672 {
1673 struct btrfs_root *root;
1674 struct btrfs_key key;
1675
1676 ASSERT(path->search_commit_root && path->skip_locking);
1677
1678 /*
1679 * This can return -ENOENT if we ask for a root that doesn't exist, but
1680 * since this is called via the backref walking code we won't be looking
1681 * up a root that doesn't exist, unless there's corruption. So if root
1682 * != NULL just return it.
1683 */
1684 root = btrfs_get_global_root(fs_info, objectid);
1685 if (root)
1686 return root;
1687
1688 root = btrfs_lookup_fs_root(fs_info, objectid);
1689 if (root)
1690 return root;
1691
1692 key.objectid = objectid;
1693 key.type = BTRFS_ROOT_ITEM_KEY;
1694 key.offset = (u64)-1;
1695 root = read_tree_root_path(fs_info->tree_root, path, &key);
1696 btrfs_release_path(path);
1697
1698 return root;
1699 }
1700
1701 /*
1702 * called by the kthread helper functions to finally call the bio end_io
1703 * functions. This is where read checksum verification actually happens
1704 */
end_workqueue_fn(struct btrfs_work * work)1705 static void end_workqueue_fn(struct btrfs_work *work)
1706 {
1707 struct bio *bio;
1708 struct btrfs_end_io_wq *end_io_wq;
1709
1710 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1711 bio = end_io_wq->bio;
1712
1713 bio->bi_status = end_io_wq->status;
1714 bio->bi_private = end_io_wq->private;
1715 bio->bi_end_io = end_io_wq->end_io;
1716 bio_endio(bio);
1717 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1718 }
1719
cleaner_kthread(void * arg)1720 static int cleaner_kthread(void *arg)
1721 {
1722 struct btrfs_root *root = arg;
1723 struct btrfs_fs_info *fs_info = root->fs_info;
1724 int again;
1725
1726 while (1) {
1727 again = 0;
1728
1729 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1730
1731 /* Make the cleaner go to sleep early. */
1732 if (btrfs_need_cleaner_sleep(fs_info))
1733 goto sleep;
1734
1735 /*
1736 * Do not do anything if we might cause open_ctree() to block
1737 * before we have finished mounting the filesystem.
1738 */
1739 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1740 goto sleep;
1741
1742 if (!mutex_trylock(&fs_info->cleaner_mutex))
1743 goto sleep;
1744
1745 /*
1746 * Avoid the problem that we change the status of the fs
1747 * during the above check and trylock.
1748 */
1749 if (btrfs_need_cleaner_sleep(fs_info)) {
1750 mutex_unlock(&fs_info->cleaner_mutex);
1751 goto sleep;
1752 }
1753
1754 btrfs_run_delayed_iputs(fs_info);
1755
1756 again = btrfs_clean_one_deleted_snapshot(root);
1757 mutex_unlock(&fs_info->cleaner_mutex);
1758
1759 /*
1760 * The defragger has dealt with the R/O remount and umount,
1761 * needn't do anything special here.
1762 */
1763 btrfs_run_defrag_inodes(fs_info);
1764
1765 /*
1766 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1767 * with relocation (btrfs_relocate_chunk) and relocation
1768 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1769 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1770 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1771 * unused block groups.
1772 */
1773 btrfs_delete_unused_bgs(fs_info);
1774 sleep:
1775 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1776 if (kthread_should_park())
1777 kthread_parkme();
1778 if (kthread_should_stop())
1779 return 0;
1780 if (!again) {
1781 set_current_state(TASK_INTERRUPTIBLE);
1782 schedule();
1783 __set_current_state(TASK_RUNNING);
1784 }
1785 }
1786 }
1787
transaction_kthread(void * arg)1788 static int transaction_kthread(void *arg)
1789 {
1790 struct btrfs_root *root = arg;
1791 struct btrfs_fs_info *fs_info = root->fs_info;
1792 struct btrfs_trans_handle *trans;
1793 struct btrfs_transaction *cur;
1794 u64 transid;
1795 time64_t now;
1796 unsigned long delay;
1797 bool cannot_commit;
1798
1799 do {
1800 cannot_commit = false;
1801 delay = HZ * fs_info->commit_interval;
1802 mutex_lock(&fs_info->transaction_kthread_mutex);
1803
1804 spin_lock(&fs_info->trans_lock);
1805 cur = fs_info->running_transaction;
1806 if (!cur) {
1807 spin_unlock(&fs_info->trans_lock);
1808 goto sleep;
1809 }
1810
1811 now = ktime_get_seconds();
1812 if (cur->state < TRANS_STATE_COMMIT_START &&
1813 (now < cur->start_time ||
1814 now - cur->start_time < fs_info->commit_interval)) {
1815 spin_unlock(&fs_info->trans_lock);
1816 delay = HZ * 5;
1817 goto sleep;
1818 }
1819 transid = cur->transid;
1820 spin_unlock(&fs_info->trans_lock);
1821
1822 /* If the file system is aborted, this will always fail. */
1823 trans = btrfs_attach_transaction(root);
1824 if (IS_ERR(trans)) {
1825 if (PTR_ERR(trans) != -ENOENT)
1826 cannot_commit = true;
1827 goto sleep;
1828 }
1829 if (transid == trans->transid) {
1830 btrfs_commit_transaction(trans);
1831 } else {
1832 btrfs_end_transaction(trans);
1833 }
1834 sleep:
1835 wake_up_process(fs_info->cleaner_kthread);
1836 mutex_unlock(&fs_info->transaction_kthread_mutex);
1837
1838 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1839 &fs_info->fs_state)))
1840 btrfs_cleanup_transaction(fs_info);
1841 if (!kthread_should_stop() &&
1842 (!btrfs_transaction_blocked(fs_info) ||
1843 cannot_commit))
1844 schedule_timeout_interruptible(delay);
1845 } while (!kthread_should_stop());
1846 return 0;
1847 }
1848
1849 /*
1850 * This will find the highest generation in the array of root backups. The
1851 * index of the highest array is returned, or -EINVAL if we can't find
1852 * anything.
1853 *
1854 * We check to make sure the array is valid by comparing the
1855 * generation of the latest root in the array with the generation
1856 * in the super block. If they don't match we pitch it.
1857 */
find_newest_super_backup(struct btrfs_fs_info * info)1858 static int find_newest_super_backup(struct btrfs_fs_info *info)
1859 {
1860 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1861 u64 cur;
1862 struct btrfs_root_backup *root_backup;
1863 int i;
1864
1865 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1866 root_backup = info->super_copy->super_roots + i;
1867 cur = btrfs_backup_tree_root_gen(root_backup);
1868 if (cur == newest_gen)
1869 return i;
1870 }
1871
1872 return -EINVAL;
1873 }
1874
1875 /*
1876 * copy all the root pointers into the super backup array.
1877 * this will bump the backup pointer by one when it is
1878 * done
1879 */
backup_super_roots(struct btrfs_fs_info * info)1880 static void backup_super_roots(struct btrfs_fs_info *info)
1881 {
1882 const int next_backup = info->backup_root_index;
1883 struct btrfs_root_backup *root_backup;
1884
1885 root_backup = info->super_for_commit->super_roots + next_backup;
1886
1887 /*
1888 * make sure all of our padding and empty slots get zero filled
1889 * regardless of which ones we use today
1890 */
1891 memset(root_backup, 0, sizeof(*root_backup));
1892
1893 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1894
1895 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1896 btrfs_set_backup_tree_root_gen(root_backup,
1897 btrfs_header_generation(info->tree_root->node));
1898
1899 btrfs_set_backup_tree_root_level(root_backup,
1900 btrfs_header_level(info->tree_root->node));
1901
1902 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1903 btrfs_set_backup_chunk_root_gen(root_backup,
1904 btrfs_header_generation(info->chunk_root->node));
1905 btrfs_set_backup_chunk_root_level(root_backup,
1906 btrfs_header_level(info->chunk_root->node));
1907
1908 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1909 btrfs_set_backup_extent_root_gen(root_backup,
1910 btrfs_header_generation(info->extent_root->node));
1911 btrfs_set_backup_extent_root_level(root_backup,
1912 btrfs_header_level(info->extent_root->node));
1913
1914 /*
1915 * we might commit during log recovery, which happens before we set
1916 * the fs_root. Make sure it is valid before we fill it in.
1917 */
1918 if (info->fs_root && info->fs_root->node) {
1919 btrfs_set_backup_fs_root(root_backup,
1920 info->fs_root->node->start);
1921 btrfs_set_backup_fs_root_gen(root_backup,
1922 btrfs_header_generation(info->fs_root->node));
1923 btrfs_set_backup_fs_root_level(root_backup,
1924 btrfs_header_level(info->fs_root->node));
1925 }
1926
1927 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1928 btrfs_set_backup_dev_root_gen(root_backup,
1929 btrfs_header_generation(info->dev_root->node));
1930 btrfs_set_backup_dev_root_level(root_backup,
1931 btrfs_header_level(info->dev_root->node));
1932
1933 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1934 btrfs_set_backup_csum_root_gen(root_backup,
1935 btrfs_header_generation(info->csum_root->node));
1936 btrfs_set_backup_csum_root_level(root_backup,
1937 btrfs_header_level(info->csum_root->node));
1938
1939 btrfs_set_backup_total_bytes(root_backup,
1940 btrfs_super_total_bytes(info->super_copy));
1941 btrfs_set_backup_bytes_used(root_backup,
1942 btrfs_super_bytes_used(info->super_copy));
1943 btrfs_set_backup_num_devices(root_backup,
1944 btrfs_super_num_devices(info->super_copy));
1945
1946 /*
1947 * if we don't copy this out to the super_copy, it won't get remembered
1948 * for the next commit
1949 */
1950 memcpy(&info->super_copy->super_roots,
1951 &info->super_for_commit->super_roots,
1952 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1953 }
1954
1955 /*
1956 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1957 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1958 *
1959 * fs_info - filesystem whose backup roots need to be read
1960 * priority - priority of backup root required
1961 *
1962 * Returns backup root index on success and -EINVAL otherwise.
1963 */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)1964 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1965 {
1966 int backup_index = find_newest_super_backup(fs_info);
1967 struct btrfs_super_block *super = fs_info->super_copy;
1968 struct btrfs_root_backup *root_backup;
1969
1970 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1971 if (priority == 0)
1972 return backup_index;
1973
1974 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1975 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1976 } else {
1977 return -EINVAL;
1978 }
1979
1980 root_backup = super->super_roots + backup_index;
1981
1982 btrfs_set_super_generation(super,
1983 btrfs_backup_tree_root_gen(root_backup));
1984 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1985 btrfs_set_super_root_level(super,
1986 btrfs_backup_tree_root_level(root_backup));
1987 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1988
1989 /*
1990 * Fixme: the total bytes and num_devices need to match or we should
1991 * need a fsck
1992 */
1993 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1994 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1995
1996 return backup_index;
1997 }
1998
1999 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)2000 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2001 {
2002 btrfs_destroy_workqueue(fs_info->fixup_workers);
2003 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2004 btrfs_destroy_workqueue(fs_info->workers);
2005 btrfs_destroy_workqueue(fs_info->endio_workers);
2006 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2007 btrfs_destroy_workqueue(fs_info->rmw_workers);
2008 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2009 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2010 btrfs_destroy_workqueue(fs_info->delayed_workers);
2011 btrfs_destroy_workqueue(fs_info->caching_workers);
2012 btrfs_destroy_workqueue(fs_info->readahead_workers);
2013 btrfs_destroy_workqueue(fs_info->flush_workers);
2014 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2015 if (fs_info->discard_ctl.discard_workers)
2016 destroy_workqueue(fs_info->discard_ctl.discard_workers);
2017 /*
2018 * Now that all other work queues are destroyed, we can safely destroy
2019 * the queues used for metadata I/O, since tasks from those other work
2020 * queues can do metadata I/O operations.
2021 */
2022 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2023 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2024 }
2025
free_root_extent_buffers(struct btrfs_root * root)2026 static void free_root_extent_buffers(struct btrfs_root *root)
2027 {
2028 if (root) {
2029 free_extent_buffer(root->node);
2030 free_extent_buffer(root->commit_root);
2031 root->node = NULL;
2032 root->commit_root = NULL;
2033 }
2034 }
2035
2036 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)2037 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2038 {
2039 free_root_extent_buffers(info->tree_root);
2040
2041 free_root_extent_buffers(info->dev_root);
2042 free_root_extent_buffers(info->extent_root);
2043 free_root_extent_buffers(info->csum_root);
2044 free_root_extent_buffers(info->quota_root);
2045 free_root_extent_buffers(info->uuid_root);
2046 free_root_extent_buffers(info->fs_root);
2047 free_root_extent_buffers(info->data_reloc_root);
2048 if (free_chunk_root)
2049 free_root_extent_buffers(info->chunk_root);
2050 free_root_extent_buffers(info->free_space_root);
2051 }
2052
btrfs_put_root(struct btrfs_root * root)2053 void btrfs_put_root(struct btrfs_root *root)
2054 {
2055 if (!root)
2056 return;
2057
2058 if (refcount_dec_and_test(&root->refs)) {
2059 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2060 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2061 if (root->anon_dev)
2062 free_anon_bdev(root->anon_dev);
2063 btrfs_drew_lock_destroy(&root->snapshot_lock);
2064 free_root_extent_buffers(root);
2065 kfree(root->free_ino_ctl);
2066 kfree(root->free_ino_pinned);
2067 #ifdef CONFIG_BTRFS_DEBUG
2068 spin_lock(&root->fs_info->fs_roots_radix_lock);
2069 list_del_init(&root->leak_list);
2070 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2071 #endif
2072 kfree(root);
2073 }
2074 }
2075
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2076 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2077 {
2078 int ret;
2079 struct btrfs_root *gang[8];
2080 int i;
2081
2082 while (!list_empty(&fs_info->dead_roots)) {
2083 gang[0] = list_entry(fs_info->dead_roots.next,
2084 struct btrfs_root, root_list);
2085 list_del(&gang[0]->root_list);
2086
2087 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2088 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2089 btrfs_put_root(gang[0]);
2090 }
2091
2092 while (1) {
2093 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2094 (void **)gang, 0,
2095 ARRAY_SIZE(gang));
2096 if (!ret)
2097 break;
2098 for (i = 0; i < ret; i++)
2099 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2100 }
2101 }
2102
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2103 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2104 {
2105 mutex_init(&fs_info->scrub_lock);
2106 atomic_set(&fs_info->scrubs_running, 0);
2107 atomic_set(&fs_info->scrub_pause_req, 0);
2108 atomic_set(&fs_info->scrubs_paused, 0);
2109 atomic_set(&fs_info->scrub_cancel_req, 0);
2110 init_waitqueue_head(&fs_info->scrub_pause_wait);
2111 refcount_set(&fs_info->scrub_workers_refcnt, 0);
2112 }
2113
btrfs_init_balance(struct btrfs_fs_info * fs_info)2114 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2115 {
2116 spin_lock_init(&fs_info->balance_lock);
2117 mutex_init(&fs_info->balance_mutex);
2118 atomic_set(&fs_info->balance_pause_req, 0);
2119 atomic_set(&fs_info->balance_cancel_req, 0);
2120 fs_info->balance_ctl = NULL;
2121 init_waitqueue_head(&fs_info->balance_wait_q);
2122 }
2123
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info)2124 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2125 {
2126 struct inode *inode = fs_info->btree_inode;
2127
2128 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2129 set_nlink(inode, 1);
2130 /*
2131 * we set the i_size on the btree inode to the max possible int.
2132 * the real end of the address space is determined by all of
2133 * the devices in the system
2134 */
2135 inode->i_size = OFFSET_MAX;
2136 inode->i_mapping->a_ops = &btree_aops;
2137
2138 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2139 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2140 IO_TREE_BTREE_INODE_IO, inode);
2141 BTRFS_I(inode)->io_tree.track_uptodate = false;
2142 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2143
2144 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2145 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2146 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2147 btrfs_insert_inode_hash(inode);
2148 }
2149
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2150 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2151 {
2152 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2153 init_rwsem(&fs_info->dev_replace.rwsem);
2154 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2155 }
2156
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2157 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2158 {
2159 spin_lock_init(&fs_info->qgroup_lock);
2160 mutex_init(&fs_info->qgroup_ioctl_lock);
2161 fs_info->qgroup_tree = RB_ROOT;
2162 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2163 fs_info->qgroup_seq = 1;
2164 fs_info->qgroup_ulist = NULL;
2165 fs_info->qgroup_rescan_running = false;
2166 mutex_init(&fs_info->qgroup_rescan_lock);
2167 }
2168
btrfs_init_workqueues(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2169 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2170 struct btrfs_fs_devices *fs_devices)
2171 {
2172 u32 max_active = fs_info->thread_pool_size;
2173 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2174
2175 fs_info->workers =
2176 btrfs_alloc_workqueue(fs_info, "worker",
2177 flags | WQ_HIGHPRI, max_active, 16);
2178
2179 fs_info->delalloc_workers =
2180 btrfs_alloc_workqueue(fs_info, "delalloc",
2181 flags, max_active, 2);
2182
2183 fs_info->flush_workers =
2184 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2185 flags, max_active, 0);
2186
2187 fs_info->caching_workers =
2188 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2189
2190 fs_info->fixup_workers =
2191 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2192
2193 /*
2194 * endios are largely parallel and should have a very
2195 * low idle thresh
2196 */
2197 fs_info->endio_workers =
2198 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2199 fs_info->endio_meta_workers =
2200 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2201 max_active, 4);
2202 fs_info->endio_meta_write_workers =
2203 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2204 max_active, 2);
2205 fs_info->endio_raid56_workers =
2206 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2207 max_active, 4);
2208 fs_info->rmw_workers =
2209 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2210 fs_info->endio_write_workers =
2211 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2212 max_active, 2);
2213 fs_info->endio_freespace_worker =
2214 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2215 max_active, 0);
2216 fs_info->delayed_workers =
2217 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2218 max_active, 0);
2219 fs_info->readahead_workers =
2220 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2221 max_active, 2);
2222 fs_info->qgroup_rescan_workers =
2223 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2224 fs_info->discard_ctl.discard_workers =
2225 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2226
2227 if (!(fs_info->workers && fs_info->delalloc_workers &&
2228 fs_info->flush_workers &&
2229 fs_info->endio_workers && fs_info->endio_meta_workers &&
2230 fs_info->endio_meta_write_workers &&
2231 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2232 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2233 fs_info->caching_workers && fs_info->readahead_workers &&
2234 fs_info->fixup_workers && fs_info->delayed_workers &&
2235 fs_info->qgroup_rescan_workers &&
2236 fs_info->discard_ctl.discard_workers)) {
2237 return -ENOMEM;
2238 }
2239
2240 return 0;
2241 }
2242
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2243 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2244 {
2245 struct crypto_shash *csum_shash;
2246 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2247
2248 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2249
2250 if (IS_ERR(csum_shash)) {
2251 btrfs_err(fs_info, "error allocating %s hash for checksum",
2252 csum_driver);
2253 return PTR_ERR(csum_shash);
2254 }
2255
2256 fs_info->csum_shash = csum_shash;
2257
2258 /*
2259 * Check if the checksum implementation is a fast accelerated one.
2260 * As-is this is a bit of a hack and should be replaced once the csum
2261 * implementations provide that information themselves.
2262 */
2263 switch (csum_type) {
2264 case BTRFS_CSUM_TYPE_CRC32:
2265 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2266 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2267 break;
2268 default:
2269 break;
2270 }
2271
2272 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2273 btrfs_super_csum_name(csum_type),
2274 crypto_shash_driver_name(csum_shash));
2275 return 0;
2276 }
2277
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2278 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2279 struct btrfs_fs_devices *fs_devices)
2280 {
2281 int ret;
2282 struct btrfs_root *log_tree_root;
2283 struct btrfs_super_block *disk_super = fs_info->super_copy;
2284 u64 bytenr = btrfs_super_log_root(disk_super);
2285 int level = btrfs_super_log_root_level(disk_super);
2286
2287 if (fs_devices->rw_devices == 0) {
2288 btrfs_warn(fs_info, "log replay required on RO media");
2289 return -EIO;
2290 }
2291
2292 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2293 GFP_KERNEL);
2294 if (!log_tree_root)
2295 return -ENOMEM;
2296
2297 log_tree_root->node = read_tree_block(fs_info, bytenr,
2298 fs_info->generation + 1,
2299 level, NULL);
2300 if (IS_ERR(log_tree_root->node)) {
2301 btrfs_warn(fs_info, "failed to read log tree");
2302 ret = PTR_ERR(log_tree_root->node);
2303 log_tree_root->node = NULL;
2304 btrfs_put_root(log_tree_root);
2305 return ret;
2306 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2307 btrfs_err(fs_info, "failed to read log tree");
2308 btrfs_put_root(log_tree_root);
2309 return -EIO;
2310 }
2311 /* returns with log_tree_root freed on success */
2312 ret = btrfs_recover_log_trees(log_tree_root);
2313 if (ret) {
2314 btrfs_handle_fs_error(fs_info, ret,
2315 "Failed to recover log tree");
2316 btrfs_put_root(log_tree_root);
2317 return ret;
2318 }
2319
2320 if (sb_rdonly(fs_info->sb)) {
2321 ret = btrfs_commit_super(fs_info);
2322 if (ret)
2323 return ret;
2324 }
2325
2326 return 0;
2327 }
2328
btrfs_read_roots(struct btrfs_fs_info * fs_info)2329 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2330 {
2331 struct btrfs_root *tree_root = fs_info->tree_root;
2332 struct btrfs_root *root;
2333 struct btrfs_key location;
2334 int ret;
2335
2336 BUG_ON(!fs_info->tree_root);
2337
2338 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2339 location.type = BTRFS_ROOT_ITEM_KEY;
2340 location.offset = 0;
2341
2342 root = btrfs_read_tree_root(tree_root, &location);
2343 if (IS_ERR(root)) {
2344 ret = PTR_ERR(root);
2345 goto out;
2346 }
2347 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2348 fs_info->extent_root = root;
2349
2350 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2351 root = btrfs_read_tree_root(tree_root, &location);
2352 if (IS_ERR(root)) {
2353 ret = PTR_ERR(root);
2354 goto out;
2355 }
2356 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2357 fs_info->dev_root = root;
2358 btrfs_init_devices_late(fs_info);
2359
2360 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2361 root = btrfs_read_tree_root(tree_root, &location);
2362 if (IS_ERR(root)) {
2363 ret = PTR_ERR(root);
2364 goto out;
2365 }
2366 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2367 fs_info->csum_root = root;
2368
2369 /*
2370 * This tree can share blocks with some other fs tree during relocation
2371 * and we need a proper setup by btrfs_get_fs_root
2372 */
2373 root = btrfs_get_fs_root(tree_root->fs_info,
2374 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2375 if (IS_ERR(root)) {
2376 ret = PTR_ERR(root);
2377 goto out;
2378 }
2379 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2380 fs_info->data_reloc_root = root;
2381
2382 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2383 root = btrfs_read_tree_root(tree_root, &location);
2384 if (!IS_ERR(root)) {
2385 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2386 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2387 fs_info->quota_root = root;
2388 }
2389
2390 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2391 root = btrfs_read_tree_root(tree_root, &location);
2392 if (IS_ERR(root)) {
2393 ret = PTR_ERR(root);
2394 if (ret != -ENOENT)
2395 goto out;
2396 } else {
2397 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2398 fs_info->uuid_root = root;
2399 }
2400
2401 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2402 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2403 root = btrfs_read_tree_root(tree_root, &location);
2404 if (IS_ERR(root)) {
2405 ret = PTR_ERR(root);
2406 goto out;
2407 }
2408 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2409 fs_info->free_space_root = root;
2410 }
2411
2412 return 0;
2413 out:
2414 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2415 location.objectid, ret);
2416 return ret;
2417 }
2418
2419 /*
2420 * Real super block validation
2421 * NOTE: super csum type and incompat features will not be checked here.
2422 *
2423 * @sb: super block to check
2424 * @mirror_num: the super block number to check its bytenr:
2425 * 0 the primary (1st) sb
2426 * 1, 2 2nd and 3rd backup copy
2427 * -1 skip bytenr check
2428 */
validate_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb,int mirror_num)2429 static int validate_super(struct btrfs_fs_info *fs_info,
2430 struct btrfs_super_block *sb, int mirror_num)
2431 {
2432 u64 nodesize = btrfs_super_nodesize(sb);
2433 u64 sectorsize = btrfs_super_sectorsize(sb);
2434 int ret = 0;
2435
2436 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2437 btrfs_err(fs_info, "no valid FS found");
2438 ret = -EINVAL;
2439 }
2440 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2441 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2442 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2443 ret = -EINVAL;
2444 }
2445 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2446 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2447 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2448 ret = -EINVAL;
2449 }
2450 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2451 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2452 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2453 ret = -EINVAL;
2454 }
2455 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2456 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2457 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2458 ret = -EINVAL;
2459 }
2460
2461 /*
2462 * Check sectorsize and nodesize first, other check will need it.
2463 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2464 */
2465 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2466 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2467 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2468 ret = -EINVAL;
2469 }
2470 /* Only PAGE SIZE is supported yet */
2471 if (sectorsize != PAGE_SIZE) {
2472 btrfs_err(fs_info,
2473 "sectorsize %llu not supported yet, only support %lu",
2474 sectorsize, PAGE_SIZE);
2475 ret = -EINVAL;
2476 }
2477 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2478 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2479 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2480 ret = -EINVAL;
2481 }
2482 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2483 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2484 le32_to_cpu(sb->__unused_leafsize), nodesize);
2485 ret = -EINVAL;
2486 }
2487
2488 /* Root alignment check */
2489 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2490 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2491 btrfs_super_root(sb));
2492 ret = -EINVAL;
2493 }
2494 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2495 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2496 btrfs_super_chunk_root(sb));
2497 ret = -EINVAL;
2498 }
2499 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2500 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2501 btrfs_super_log_root(sb));
2502 ret = -EINVAL;
2503 }
2504
2505 if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2506 BTRFS_FSID_SIZE)) {
2507 btrfs_err(fs_info,
2508 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2509 fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2510 ret = -EINVAL;
2511 }
2512
2513 if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2514 memcmp(fs_info->fs_devices->metadata_uuid,
2515 fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2516 btrfs_err(fs_info,
2517 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2518 fs_info->super_copy->metadata_uuid,
2519 fs_info->fs_devices->metadata_uuid);
2520 ret = -EINVAL;
2521 }
2522
2523 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2524 BTRFS_FSID_SIZE) != 0) {
2525 btrfs_err(fs_info,
2526 "dev_item UUID does not match metadata fsid: %pU != %pU",
2527 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2528 ret = -EINVAL;
2529 }
2530
2531 /*
2532 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2533 * done later
2534 */
2535 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2536 btrfs_err(fs_info, "bytes_used is too small %llu",
2537 btrfs_super_bytes_used(sb));
2538 ret = -EINVAL;
2539 }
2540 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2541 btrfs_err(fs_info, "invalid stripesize %u",
2542 btrfs_super_stripesize(sb));
2543 ret = -EINVAL;
2544 }
2545 if (btrfs_super_num_devices(sb) > (1UL << 31))
2546 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2547 btrfs_super_num_devices(sb));
2548 if (btrfs_super_num_devices(sb) == 0) {
2549 btrfs_err(fs_info, "number of devices is 0");
2550 ret = -EINVAL;
2551 }
2552
2553 if (mirror_num >= 0 &&
2554 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2555 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2556 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2557 ret = -EINVAL;
2558 }
2559
2560 /*
2561 * Obvious sys_chunk_array corruptions, it must hold at least one key
2562 * and one chunk
2563 */
2564 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2565 btrfs_err(fs_info, "system chunk array too big %u > %u",
2566 btrfs_super_sys_array_size(sb),
2567 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2568 ret = -EINVAL;
2569 }
2570 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2571 + sizeof(struct btrfs_chunk)) {
2572 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2573 btrfs_super_sys_array_size(sb),
2574 sizeof(struct btrfs_disk_key)
2575 + sizeof(struct btrfs_chunk));
2576 ret = -EINVAL;
2577 }
2578
2579 /*
2580 * The generation is a global counter, we'll trust it more than the others
2581 * but it's still possible that it's the one that's wrong.
2582 */
2583 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2584 btrfs_warn(fs_info,
2585 "suspicious: generation < chunk_root_generation: %llu < %llu",
2586 btrfs_super_generation(sb),
2587 btrfs_super_chunk_root_generation(sb));
2588 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2589 && btrfs_super_cache_generation(sb) != (u64)-1)
2590 btrfs_warn(fs_info,
2591 "suspicious: generation < cache_generation: %llu < %llu",
2592 btrfs_super_generation(sb),
2593 btrfs_super_cache_generation(sb));
2594
2595 return ret;
2596 }
2597
2598 /*
2599 * Validation of super block at mount time.
2600 * Some checks already done early at mount time, like csum type and incompat
2601 * flags will be skipped.
2602 */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2603 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2604 {
2605 return validate_super(fs_info, fs_info->super_copy, 0);
2606 }
2607
2608 /*
2609 * Validation of super block at write time.
2610 * Some checks like bytenr check will be skipped as their values will be
2611 * overwritten soon.
2612 * Extra checks like csum type and incompat flags will be done here.
2613 */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2614 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2615 struct btrfs_super_block *sb)
2616 {
2617 int ret;
2618
2619 ret = validate_super(fs_info, sb, -1);
2620 if (ret < 0)
2621 goto out;
2622 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2623 ret = -EUCLEAN;
2624 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2625 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2626 goto out;
2627 }
2628 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2629 ret = -EUCLEAN;
2630 btrfs_err(fs_info,
2631 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2632 btrfs_super_incompat_flags(sb),
2633 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2634 goto out;
2635 }
2636 out:
2637 if (ret < 0)
2638 btrfs_err(fs_info,
2639 "super block corruption detected before writing it to disk");
2640 return ret;
2641 }
2642
init_tree_roots(struct btrfs_fs_info * fs_info)2643 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2644 {
2645 int backup_index = find_newest_super_backup(fs_info);
2646 struct btrfs_super_block *sb = fs_info->super_copy;
2647 struct btrfs_root *tree_root = fs_info->tree_root;
2648 bool handle_error = false;
2649 int ret = 0;
2650 int i;
2651
2652 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2653 u64 generation;
2654 int level;
2655
2656 if (handle_error) {
2657 if (!IS_ERR(tree_root->node))
2658 free_extent_buffer(tree_root->node);
2659 tree_root->node = NULL;
2660
2661 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2662 break;
2663
2664 free_root_pointers(fs_info, 0);
2665
2666 /*
2667 * Don't use the log in recovery mode, it won't be
2668 * valid
2669 */
2670 btrfs_set_super_log_root(sb, 0);
2671
2672 /* We can't trust the free space cache either */
2673 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2674
2675 ret = read_backup_root(fs_info, i);
2676 backup_index = ret;
2677 if (ret < 0)
2678 return ret;
2679 }
2680 generation = btrfs_super_generation(sb);
2681 level = btrfs_super_root_level(sb);
2682 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2683 generation, level, NULL);
2684 if (IS_ERR(tree_root->node)) {
2685 handle_error = true;
2686 ret = PTR_ERR(tree_root->node);
2687 tree_root->node = NULL;
2688 btrfs_warn(fs_info, "couldn't read tree root");
2689 continue;
2690
2691 } else if (!extent_buffer_uptodate(tree_root->node)) {
2692 handle_error = true;
2693 ret = -EIO;
2694 btrfs_warn(fs_info, "error while reading tree root");
2695 continue;
2696 }
2697
2698 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2699 tree_root->commit_root = btrfs_root_node(tree_root);
2700 btrfs_set_root_refs(&tree_root->root_item, 1);
2701
2702 /*
2703 * No need to hold btrfs_root::objectid_mutex since the fs
2704 * hasn't been fully initialised and we are the only user
2705 */
2706 ret = btrfs_find_highest_objectid(tree_root,
2707 &tree_root->highest_objectid);
2708 if (ret < 0) {
2709 handle_error = true;
2710 continue;
2711 }
2712
2713 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2714
2715 ret = btrfs_read_roots(fs_info);
2716 if (ret < 0) {
2717 handle_error = true;
2718 continue;
2719 }
2720
2721 /* All successful */
2722 fs_info->generation = generation;
2723 fs_info->last_trans_committed = generation;
2724
2725 /* Always begin writing backup roots after the one being used */
2726 if (backup_index < 0) {
2727 fs_info->backup_root_index = 0;
2728 } else {
2729 fs_info->backup_root_index = backup_index + 1;
2730 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2731 }
2732 break;
2733 }
2734
2735 return ret;
2736 }
2737
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)2738 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2739 {
2740 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2741 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2742 INIT_LIST_HEAD(&fs_info->trans_list);
2743 INIT_LIST_HEAD(&fs_info->dead_roots);
2744 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2745 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2746 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2747 spin_lock_init(&fs_info->delalloc_root_lock);
2748 spin_lock_init(&fs_info->trans_lock);
2749 spin_lock_init(&fs_info->fs_roots_radix_lock);
2750 spin_lock_init(&fs_info->delayed_iput_lock);
2751 spin_lock_init(&fs_info->defrag_inodes_lock);
2752 spin_lock_init(&fs_info->super_lock);
2753 spin_lock_init(&fs_info->buffer_lock);
2754 spin_lock_init(&fs_info->unused_bgs_lock);
2755 rwlock_init(&fs_info->tree_mod_log_lock);
2756 mutex_init(&fs_info->unused_bg_unpin_mutex);
2757 mutex_init(&fs_info->delete_unused_bgs_mutex);
2758 mutex_init(&fs_info->reloc_mutex);
2759 mutex_init(&fs_info->delalloc_root_mutex);
2760 seqlock_init(&fs_info->profiles_lock);
2761
2762 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2763 INIT_LIST_HEAD(&fs_info->space_info);
2764 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2765 INIT_LIST_HEAD(&fs_info->unused_bgs);
2766 #ifdef CONFIG_BTRFS_DEBUG
2767 INIT_LIST_HEAD(&fs_info->allocated_roots);
2768 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2769 spin_lock_init(&fs_info->eb_leak_lock);
2770 #endif
2771 extent_map_tree_init(&fs_info->mapping_tree);
2772 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2773 BTRFS_BLOCK_RSV_GLOBAL);
2774 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2775 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2776 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2777 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2778 BTRFS_BLOCK_RSV_DELOPS);
2779 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2780 BTRFS_BLOCK_RSV_DELREFS);
2781
2782 atomic_set(&fs_info->async_delalloc_pages, 0);
2783 atomic_set(&fs_info->defrag_running, 0);
2784 atomic_set(&fs_info->reada_works_cnt, 0);
2785 atomic_set(&fs_info->nr_delayed_iputs, 0);
2786 atomic64_set(&fs_info->tree_mod_seq, 0);
2787 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2788 fs_info->metadata_ratio = 0;
2789 fs_info->defrag_inodes = RB_ROOT;
2790 atomic64_set(&fs_info->free_chunk_space, 0);
2791 fs_info->tree_mod_log = RB_ROOT;
2792 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2793 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2794 /* readahead state */
2795 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2796 spin_lock_init(&fs_info->reada_lock);
2797 btrfs_init_ref_verify(fs_info);
2798
2799 fs_info->thread_pool_size = min_t(unsigned long,
2800 num_online_cpus() + 2, 8);
2801
2802 INIT_LIST_HEAD(&fs_info->ordered_roots);
2803 spin_lock_init(&fs_info->ordered_root_lock);
2804
2805 btrfs_init_scrub(fs_info);
2806 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2807 fs_info->check_integrity_print_mask = 0;
2808 #endif
2809 btrfs_init_balance(fs_info);
2810 btrfs_init_async_reclaim_work(fs_info);
2811
2812 spin_lock_init(&fs_info->block_group_cache_lock);
2813 fs_info->block_group_cache_tree = RB_ROOT;
2814 fs_info->first_logical_byte = (u64)-1;
2815
2816 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2817 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2818 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2819
2820 mutex_init(&fs_info->ordered_operations_mutex);
2821 mutex_init(&fs_info->tree_log_mutex);
2822 mutex_init(&fs_info->chunk_mutex);
2823 mutex_init(&fs_info->transaction_kthread_mutex);
2824 mutex_init(&fs_info->cleaner_mutex);
2825 mutex_init(&fs_info->ro_block_group_mutex);
2826 init_rwsem(&fs_info->commit_root_sem);
2827 init_rwsem(&fs_info->cleanup_work_sem);
2828 init_rwsem(&fs_info->subvol_sem);
2829 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2830
2831 btrfs_init_dev_replace_locks(fs_info);
2832 btrfs_init_qgroup(fs_info);
2833 btrfs_discard_init(fs_info);
2834
2835 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2836 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2837
2838 init_waitqueue_head(&fs_info->transaction_throttle);
2839 init_waitqueue_head(&fs_info->transaction_wait);
2840 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2841 init_waitqueue_head(&fs_info->async_submit_wait);
2842 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2843
2844 /* Usable values until the real ones are cached from the superblock */
2845 fs_info->nodesize = 4096;
2846 fs_info->sectorsize = 4096;
2847 fs_info->stripesize = 4096;
2848
2849 spin_lock_init(&fs_info->swapfile_pins_lock);
2850 fs_info->swapfile_pins = RB_ROOT;
2851
2852 fs_info->send_in_progress = 0;
2853 }
2854
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)2855 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2856 {
2857 int ret;
2858
2859 fs_info->sb = sb;
2860 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2861 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2862
2863 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2864 if (ret)
2865 return ret;
2866
2867 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2868 if (ret)
2869 return ret;
2870
2871 fs_info->dirty_metadata_batch = PAGE_SIZE *
2872 (1 + ilog2(nr_cpu_ids));
2873
2874 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2875 if (ret)
2876 return ret;
2877
2878 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2879 GFP_KERNEL);
2880 if (ret)
2881 return ret;
2882
2883 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2884 GFP_KERNEL);
2885 if (!fs_info->delayed_root)
2886 return -ENOMEM;
2887 btrfs_init_delayed_root(fs_info->delayed_root);
2888
2889 return btrfs_alloc_stripe_hash_table(fs_info);
2890 }
2891
btrfs_uuid_rescan_kthread(void * data)2892 static int btrfs_uuid_rescan_kthread(void *data)
2893 {
2894 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2895 int ret;
2896
2897 /*
2898 * 1st step is to iterate through the existing UUID tree and
2899 * to delete all entries that contain outdated data.
2900 * 2nd step is to add all missing entries to the UUID tree.
2901 */
2902 ret = btrfs_uuid_tree_iterate(fs_info);
2903 if (ret < 0) {
2904 if (ret != -EINTR)
2905 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2906 ret);
2907 up(&fs_info->uuid_tree_rescan_sem);
2908 return ret;
2909 }
2910 return btrfs_uuid_scan_kthread(data);
2911 }
2912
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)2913 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2914 {
2915 struct task_struct *task;
2916
2917 down(&fs_info->uuid_tree_rescan_sem);
2918 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2919 if (IS_ERR(task)) {
2920 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2921 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2922 up(&fs_info->uuid_tree_rescan_sem);
2923 return PTR_ERR(task);
2924 }
2925
2926 return 0;
2927 }
2928
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)2929 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2930 char *options)
2931 {
2932 u32 sectorsize;
2933 u32 nodesize;
2934 u32 stripesize;
2935 u64 generation;
2936 u64 features;
2937 u16 csum_type;
2938 struct btrfs_super_block *disk_super;
2939 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2940 struct btrfs_root *tree_root;
2941 struct btrfs_root *chunk_root;
2942 int ret;
2943 int err = -EINVAL;
2944 int clear_free_space_tree = 0;
2945 int level;
2946
2947 ret = init_mount_fs_info(fs_info, sb);
2948 if (ret) {
2949 err = ret;
2950 goto fail;
2951 }
2952
2953 /* These need to be init'ed before we start creating inodes and such. */
2954 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2955 GFP_KERNEL);
2956 fs_info->tree_root = tree_root;
2957 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2958 GFP_KERNEL);
2959 fs_info->chunk_root = chunk_root;
2960 if (!tree_root || !chunk_root) {
2961 err = -ENOMEM;
2962 goto fail;
2963 }
2964
2965 fs_info->btree_inode = new_inode(sb);
2966 if (!fs_info->btree_inode) {
2967 err = -ENOMEM;
2968 goto fail;
2969 }
2970 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2971 btrfs_init_btree_inode(fs_info);
2972
2973 invalidate_bdev(fs_devices->latest_bdev);
2974
2975 /*
2976 * Read super block and check the signature bytes only
2977 */
2978 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2979 if (IS_ERR(disk_super)) {
2980 err = PTR_ERR(disk_super);
2981 goto fail_alloc;
2982 }
2983
2984 /*
2985 * Verify the type first, if that or the checksum value are
2986 * corrupted, we'll find out
2987 */
2988 csum_type = btrfs_super_csum_type(disk_super);
2989 if (!btrfs_supported_super_csum(csum_type)) {
2990 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2991 csum_type);
2992 err = -EINVAL;
2993 btrfs_release_disk_super(disk_super);
2994 goto fail_alloc;
2995 }
2996
2997 ret = btrfs_init_csum_hash(fs_info, csum_type);
2998 if (ret) {
2999 err = ret;
3000 btrfs_release_disk_super(disk_super);
3001 goto fail_alloc;
3002 }
3003
3004 /*
3005 * We want to check superblock checksum, the type is stored inside.
3006 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3007 */
3008 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3009 btrfs_err(fs_info, "superblock checksum mismatch");
3010 err = -EINVAL;
3011 btrfs_release_disk_super(disk_super);
3012 goto fail_alloc;
3013 }
3014
3015 /*
3016 * super_copy is zeroed at allocation time and we never touch the
3017 * following bytes up to INFO_SIZE, the checksum is calculated from
3018 * the whole block of INFO_SIZE
3019 */
3020 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3021 btrfs_release_disk_super(disk_super);
3022
3023 disk_super = fs_info->super_copy;
3024
3025
3026 features = btrfs_super_flags(disk_super);
3027 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3028 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3029 btrfs_set_super_flags(disk_super, features);
3030 btrfs_info(fs_info,
3031 "found metadata UUID change in progress flag, clearing");
3032 }
3033
3034 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3035 sizeof(*fs_info->super_for_commit));
3036
3037 ret = btrfs_validate_mount_super(fs_info);
3038 if (ret) {
3039 btrfs_err(fs_info, "superblock contains fatal errors");
3040 err = -EINVAL;
3041 goto fail_alloc;
3042 }
3043
3044 if (!btrfs_super_root(disk_super))
3045 goto fail_alloc;
3046
3047 /* check FS state, whether FS is broken. */
3048 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3049 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3050
3051 /*
3052 * In the long term, we'll store the compression type in the super
3053 * block, and it'll be used for per file compression control.
3054 */
3055 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3056
3057 /*
3058 * Flag our filesystem as having big metadata blocks if they are bigger
3059 * than the page size
3060 */
3061 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3062 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3063 btrfs_info(fs_info,
3064 "flagging fs with big metadata feature");
3065 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3066 }
3067
3068 /* Set up fs_info before parsing mount options */
3069 nodesize = btrfs_super_nodesize(disk_super);
3070 sectorsize = btrfs_super_sectorsize(disk_super);
3071 stripesize = sectorsize;
3072 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3073 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3074
3075 /* Cache block sizes */
3076 fs_info->nodesize = nodesize;
3077 fs_info->sectorsize = sectorsize;
3078 fs_info->stripesize = stripesize;
3079
3080 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3081 if (ret) {
3082 err = ret;
3083 goto fail_alloc;
3084 }
3085
3086 features = btrfs_super_incompat_flags(disk_super) &
3087 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3088 if (features) {
3089 btrfs_err(fs_info,
3090 "cannot mount because of unsupported optional features (0x%llx)",
3091 features);
3092 err = -EINVAL;
3093 goto fail_alloc;
3094 }
3095
3096 features = btrfs_super_incompat_flags(disk_super);
3097 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3098 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3099 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3100 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3101 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3102
3103 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3104 btrfs_info(fs_info, "has skinny extents");
3105
3106 /*
3107 * mixed block groups end up with duplicate but slightly offset
3108 * extent buffers for the same range. It leads to corruptions
3109 */
3110 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3111 (sectorsize != nodesize)) {
3112 btrfs_err(fs_info,
3113 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3114 nodesize, sectorsize);
3115 goto fail_alloc;
3116 }
3117
3118 /*
3119 * Needn't use the lock because there is no other task which will
3120 * update the flag.
3121 */
3122 btrfs_set_super_incompat_flags(disk_super, features);
3123
3124 features = btrfs_super_compat_ro_flags(disk_super) &
3125 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3126 if (!sb_rdonly(sb) && features) {
3127 btrfs_err(fs_info,
3128 "cannot mount read-write because of unsupported optional features (0x%llx)",
3129 features);
3130 err = -EINVAL;
3131 goto fail_alloc;
3132 }
3133 /*
3134 * We have unsupported RO compat features, although RO mounted, we
3135 * should not cause any metadata write, including log replay.
3136 * Or we could screw up whatever the new feature requires.
3137 */
3138 if (unlikely(features && btrfs_super_log_root(disk_super) &&
3139 !btrfs_test_opt(fs_info, NOLOGREPLAY))) {
3140 btrfs_err(fs_info,
3141 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3142 features);
3143 err = -EINVAL;
3144 goto fail_alloc;
3145 }
3146
3147
3148 ret = btrfs_init_workqueues(fs_info, fs_devices);
3149 if (ret) {
3150 err = ret;
3151 goto fail_sb_buffer;
3152 }
3153
3154 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3155 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3156
3157 sb->s_blocksize = sectorsize;
3158 sb->s_blocksize_bits = blksize_bits(sectorsize);
3159 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3160
3161 mutex_lock(&fs_info->chunk_mutex);
3162 ret = btrfs_read_sys_array(fs_info);
3163 mutex_unlock(&fs_info->chunk_mutex);
3164 if (ret) {
3165 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3166 goto fail_sb_buffer;
3167 }
3168
3169 generation = btrfs_super_chunk_root_generation(disk_super);
3170 level = btrfs_super_chunk_root_level(disk_super);
3171
3172 chunk_root->node = read_tree_block(fs_info,
3173 btrfs_super_chunk_root(disk_super),
3174 generation, level, NULL);
3175 if (IS_ERR(chunk_root->node) ||
3176 !extent_buffer_uptodate(chunk_root->node)) {
3177 btrfs_err(fs_info, "failed to read chunk root");
3178 if (!IS_ERR(chunk_root->node))
3179 free_extent_buffer(chunk_root->node);
3180 chunk_root->node = NULL;
3181 goto fail_tree_roots;
3182 }
3183 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3184 chunk_root->commit_root = btrfs_root_node(chunk_root);
3185
3186 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3187 offsetof(struct btrfs_header, chunk_tree_uuid),
3188 BTRFS_UUID_SIZE);
3189
3190 ret = btrfs_read_chunk_tree(fs_info);
3191 if (ret) {
3192 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3193 goto fail_tree_roots;
3194 }
3195
3196 /*
3197 * Keep the devid that is marked to be the target device for the
3198 * device replace procedure
3199 */
3200 btrfs_free_extra_devids(fs_devices, 0);
3201
3202 if (!fs_devices->latest_bdev) {
3203 btrfs_err(fs_info, "failed to read devices");
3204 goto fail_tree_roots;
3205 }
3206
3207 ret = init_tree_roots(fs_info);
3208 if (ret)
3209 goto fail_tree_roots;
3210
3211 /*
3212 * If we have a uuid root and we're not being told to rescan we need to
3213 * check the generation here so we can set the
3214 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3215 * transaction during a balance or the log replay without updating the
3216 * uuid generation, and then if we crash we would rescan the uuid tree,
3217 * even though it was perfectly fine.
3218 */
3219 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3220 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3221 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3222
3223 ret = btrfs_verify_dev_extents(fs_info);
3224 if (ret) {
3225 btrfs_err(fs_info,
3226 "failed to verify dev extents against chunks: %d",
3227 ret);
3228 goto fail_block_groups;
3229 }
3230 ret = btrfs_recover_balance(fs_info);
3231 if (ret) {
3232 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3233 goto fail_block_groups;
3234 }
3235
3236 ret = btrfs_init_dev_stats(fs_info);
3237 if (ret) {
3238 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3239 goto fail_block_groups;
3240 }
3241
3242 ret = btrfs_init_dev_replace(fs_info);
3243 if (ret) {
3244 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3245 goto fail_block_groups;
3246 }
3247
3248 btrfs_free_extra_devids(fs_devices, 1);
3249
3250 ret = btrfs_sysfs_add_fsid(fs_devices);
3251 if (ret) {
3252 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3253 ret);
3254 goto fail_block_groups;
3255 }
3256
3257 ret = btrfs_sysfs_add_mounted(fs_info);
3258 if (ret) {
3259 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3260 goto fail_fsdev_sysfs;
3261 }
3262
3263 ret = btrfs_init_space_info(fs_info);
3264 if (ret) {
3265 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3266 goto fail_sysfs;
3267 }
3268
3269 ret = btrfs_read_block_groups(fs_info);
3270 if (ret) {
3271 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3272 goto fail_sysfs;
3273 }
3274
3275 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3276 !btrfs_check_rw_degradable(fs_info, NULL)) {
3277 btrfs_warn(fs_info,
3278 "writable mount is not allowed due to too many missing devices");
3279 goto fail_sysfs;
3280 }
3281
3282 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3283 "btrfs-cleaner");
3284 if (IS_ERR(fs_info->cleaner_kthread))
3285 goto fail_sysfs;
3286
3287 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3288 tree_root,
3289 "btrfs-transaction");
3290 if (IS_ERR(fs_info->transaction_kthread))
3291 goto fail_cleaner;
3292
3293 if (!btrfs_test_opt(fs_info, NOSSD) &&
3294 !fs_info->fs_devices->rotating) {
3295 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3296 }
3297
3298 /*
3299 * Mount does not set all options immediately, we can do it now and do
3300 * not have to wait for transaction commit
3301 */
3302 btrfs_apply_pending_changes(fs_info);
3303
3304 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3305 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3306 ret = btrfsic_mount(fs_info, fs_devices,
3307 btrfs_test_opt(fs_info,
3308 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3309 1 : 0,
3310 fs_info->check_integrity_print_mask);
3311 if (ret)
3312 btrfs_warn(fs_info,
3313 "failed to initialize integrity check module: %d",
3314 ret);
3315 }
3316 #endif
3317 ret = btrfs_read_qgroup_config(fs_info);
3318 if (ret)
3319 goto fail_trans_kthread;
3320
3321 if (btrfs_build_ref_tree(fs_info))
3322 btrfs_err(fs_info, "couldn't build ref tree");
3323
3324 /* do not make disk changes in broken FS or nologreplay is given */
3325 if (btrfs_super_log_root(disk_super) != 0 &&
3326 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3327 btrfs_info(fs_info, "start tree-log replay");
3328 ret = btrfs_replay_log(fs_info, fs_devices);
3329 if (ret) {
3330 err = ret;
3331 goto fail_qgroup;
3332 }
3333 }
3334
3335 ret = btrfs_find_orphan_roots(fs_info);
3336 if (ret)
3337 goto fail_qgroup;
3338
3339 if (!sb_rdonly(sb)) {
3340 ret = btrfs_cleanup_fs_roots(fs_info);
3341 if (ret)
3342 goto fail_qgroup;
3343
3344 mutex_lock(&fs_info->cleaner_mutex);
3345 ret = btrfs_recover_relocation(tree_root);
3346 mutex_unlock(&fs_info->cleaner_mutex);
3347 if (ret < 0) {
3348 btrfs_warn(fs_info, "failed to recover relocation: %d",
3349 ret);
3350 err = -EINVAL;
3351 goto fail_qgroup;
3352 }
3353 }
3354
3355 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3356 if (IS_ERR(fs_info->fs_root)) {
3357 err = PTR_ERR(fs_info->fs_root);
3358 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3359 fs_info->fs_root = NULL;
3360 goto fail_qgroup;
3361 }
3362
3363 if (sb_rdonly(sb))
3364 return 0;
3365
3366 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3367 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3368 clear_free_space_tree = 1;
3369 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3370 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3371 btrfs_warn(fs_info, "free space tree is invalid");
3372 clear_free_space_tree = 1;
3373 }
3374
3375 if (clear_free_space_tree) {
3376 btrfs_info(fs_info, "clearing free space tree");
3377 ret = btrfs_clear_free_space_tree(fs_info);
3378 if (ret) {
3379 btrfs_warn(fs_info,
3380 "failed to clear free space tree: %d", ret);
3381 close_ctree(fs_info);
3382 return ret;
3383 }
3384 }
3385
3386 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3387 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3388 btrfs_info(fs_info, "creating free space tree");
3389 ret = btrfs_create_free_space_tree(fs_info);
3390 if (ret) {
3391 btrfs_warn(fs_info,
3392 "failed to create free space tree: %d", ret);
3393 close_ctree(fs_info);
3394 return ret;
3395 }
3396 }
3397
3398 down_read(&fs_info->cleanup_work_sem);
3399 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3400 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3401 up_read(&fs_info->cleanup_work_sem);
3402 close_ctree(fs_info);
3403 return ret;
3404 }
3405 up_read(&fs_info->cleanup_work_sem);
3406
3407 ret = btrfs_resume_balance_async(fs_info);
3408 if (ret) {
3409 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3410 close_ctree(fs_info);
3411 return ret;
3412 }
3413
3414 ret = btrfs_resume_dev_replace_async(fs_info);
3415 if (ret) {
3416 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3417 close_ctree(fs_info);
3418 return ret;
3419 }
3420
3421 btrfs_qgroup_rescan_resume(fs_info);
3422 btrfs_discard_resume(fs_info);
3423
3424 if (!fs_info->uuid_root) {
3425 btrfs_info(fs_info, "creating UUID tree");
3426 ret = btrfs_create_uuid_tree(fs_info);
3427 if (ret) {
3428 btrfs_warn(fs_info,
3429 "failed to create the UUID tree: %d", ret);
3430 close_ctree(fs_info);
3431 return ret;
3432 }
3433 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3434 fs_info->generation !=
3435 btrfs_super_uuid_tree_generation(disk_super)) {
3436 btrfs_info(fs_info, "checking UUID tree");
3437 ret = btrfs_check_uuid_tree(fs_info);
3438 if (ret) {
3439 btrfs_warn(fs_info,
3440 "failed to check the UUID tree: %d", ret);
3441 close_ctree(fs_info);
3442 return ret;
3443 }
3444 }
3445 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3446
3447 /*
3448 * backuproot only affect mount behavior, and if open_ctree succeeded,
3449 * no need to keep the flag
3450 */
3451 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3452
3453 return 0;
3454
3455 fail_qgroup:
3456 btrfs_free_qgroup_config(fs_info);
3457 fail_trans_kthread:
3458 kthread_stop(fs_info->transaction_kthread);
3459 btrfs_cleanup_transaction(fs_info);
3460 btrfs_free_fs_roots(fs_info);
3461 fail_cleaner:
3462 kthread_stop(fs_info->cleaner_kthread);
3463
3464 /*
3465 * make sure we're done with the btree inode before we stop our
3466 * kthreads
3467 */
3468 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3469
3470 fail_sysfs:
3471 btrfs_sysfs_remove_mounted(fs_info);
3472
3473 fail_fsdev_sysfs:
3474 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3475
3476 fail_block_groups:
3477 btrfs_put_block_group_cache(fs_info);
3478
3479 fail_tree_roots:
3480 if (fs_info->data_reloc_root)
3481 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3482 free_root_pointers(fs_info, true);
3483 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3484
3485 fail_sb_buffer:
3486 btrfs_stop_all_workers(fs_info);
3487 btrfs_free_block_groups(fs_info);
3488 fail_alloc:
3489 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3490
3491 iput(fs_info->btree_inode);
3492 fail:
3493 btrfs_close_devices(fs_info->fs_devices);
3494 return err;
3495 }
3496 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3497
btrfs_end_super_write(struct bio * bio)3498 static void btrfs_end_super_write(struct bio *bio)
3499 {
3500 struct btrfs_device *device = bio->bi_private;
3501 struct bio_vec *bvec;
3502 struct bvec_iter_all iter_all;
3503 struct page *page;
3504
3505 bio_for_each_segment_all(bvec, bio, iter_all) {
3506 page = bvec->bv_page;
3507
3508 if (bio->bi_status) {
3509 btrfs_warn_rl_in_rcu(device->fs_info,
3510 "lost page write due to IO error on %s (%d)",
3511 rcu_str_deref(device->name),
3512 blk_status_to_errno(bio->bi_status));
3513 ClearPageUptodate(page);
3514 SetPageError(page);
3515 btrfs_dev_stat_inc_and_print(device,
3516 BTRFS_DEV_STAT_WRITE_ERRS);
3517 } else {
3518 SetPageUptodate(page);
3519 }
3520
3521 put_page(page);
3522 unlock_page(page);
3523 }
3524
3525 bio_put(bio);
3526 }
3527
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num)3528 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3529 int copy_num)
3530 {
3531 struct btrfs_super_block *super;
3532 struct page *page;
3533 u64 bytenr;
3534 struct address_space *mapping = bdev->bd_inode->i_mapping;
3535
3536 bytenr = btrfs_sb_offset(copy_num);
3537 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3538 return ERR_PTR(-EINVAL);
3539
3540 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3541 if (IS_ERR(page))
3542 return ERR_CAST(page);
3543
3544 super = page_address(page);
3545 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3546 btrfs_release_disk_super(super);
3547 return ERR_PTR(-ENODATA);
3548 }
3549
3550 if (btrfs_super_bytenr(super) != bytenr) {
3551 btrfs_release_disk_super(super);
3552 return ERR_PTR(-EINVAL);
3553 }
3554
3555 return super;
3556 }
3557
3558
btrfs_read_dev_super(struct block_device * bdev)3559 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3560 {
3561 struct btrfs_super_block *super, *latest = NULL;
3562 int i;
3563 u64 transid = 0;
3564
3565 /* we would like to check all the supers, but that would make
3566 * a btrfs mount succeed after a mkfs from a different FS.
3567 * So, we need to add a special mount option to scan for
3568 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3569 */
3570 for (i = 0; i < 1; i++) {
3571 super = btrfs_read_dev_one_super(bdev, i);
3572 if (IS_ERR(super))
3573 continue;
3574
3575 if (!latest || btrfs_super_generation(super) > transid) {
3576 if (latest)
3577 btrfs_release_disk_super(super);
3578
3579 latest = super;
3580 transid = btrfs_super_generation(super);
3581 }
3582 }
3583
3584 return super;
3585 }
3586
3587 /*
3588 * Write superblock @sb to the @device. Do not wait for completion, all the
3589 * pages we use for writing are locked.
3590 *
3591 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3592 * the expected device size at commit time. Note that max_mirrors must be
3593 * same for write and wait phases.
3594 *
3595 * Return number of errors when page is not found or submission fails.
3596 */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3597 static int write_dev_supers(struct btrfs_device *device,
3598 struct btrfs_super_block *sb, int max_mirrors)
3599 {
3600 struct btrfs_fs_info *fs_info = device->fs_info;
3601 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3602 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3603 int i;
3604 int errors = 0;
3605 u64 bytenr;
3606
3607 if (max_mirrors == 0)
3608 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3609
3610 shash->tfm = fs_info->csum_shash;
3611
3612 for (i = 0; i < max_mirrors; i++) {
3613 struct page *page;
3614 struct bio *bio;
3615 struct btrfs_super_block *disk_super;
3616
3617 bytenr = btrfs_sb_offset(i);
3618 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3619 device->commit_total_bytes)
3620 break;
3621
3622 btrfs_set_super_bytenr(sb, bytenr);
3623
3624 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3625 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3626 sb->csum);
3627
3628 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3629 GFP_NOFS);
3630 if (!page) {
3631 btrfs_err(device->fs_info,
3632 "couldn't get super block page for bytenr %llu",
3633 bytenr);
3634 errors++;
3635 continue;
3636 }
3637
3638 /* Bump the refcount for wait_dev_supers() */
3639 get_page(page);
3640
3641 disk_super = page_address(page);
3642 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3643
3644 /*
3645 * Directly use bios here instead of relying on the page cache
3646 * to do I/O, so we don't lose the ability to do integrity
3647 * checking.
3648 */
3649 bio = bio_alloc(GFP_NOFS, 1);
3650 bio_set_dev(bio, device->bdev);
3651 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3652 bio->bi_private = device;
3653 bio->bi_end_io = btrfs_end_super_write;
3654 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3655 offset_in_page(bytenr));
3656
3657 /*
3658 * We FUA only the first super block. The others we allow to
3659 * go down lazy and there's a short window where the on-disk
3660 * copies might still contain the older version.
3661 */
3662 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3663 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3664 bio->bi_opf |= REQ_FUA;
3665
3666 btrfsic_submit_bio(bio);
3667 }
3668 return errors < i ? 0 : -1;
3669 }
3670
3671 /*
3672 * Wait for write completion of superblocks done by write_dev_supers,
3673 * @max_mirrors same for write and wait phases.
3674 *
3675 * Return number of errors when page is not found or not marked up to
3676 * date.
3677 */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3678 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3679 {
3680 int i;
3681 int errors = 0;
3682 bool primary_failed = false;
3683 u64 bytenr;
3684
3685 if (max_mirrors == 0)
3686 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3687
3688 for (i = 0; i < max_mirrors; i++) {
3689 struct page *page;
3690
3691 bytenr = btrfs_sb_offset(i);
3692 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3693 device->commit_total_bytes)
3694 break;
3695
3696 page = find_get_page(device->bdev->bd_inode->i_mapping,
3697 bytenr >> PAGE_SHIFT);
3698 if (!page) {
3699 errors++;
3700 if (i == 0)
3701 primary_failed = true;
3702 continue;
3703 }
3704 /* Page is submitted locked and unlocked once the IO completes */
3705 wait_on_page_locked(page);
3706 if (PageError(page)) {
3707 errors++;
3708 if (i == 0)
3709 primary_failed = true;
3710 }
3711
3712 /* Drop our reference */
3713 put_page(page);
3714
3715 /* Drop the reference from the writing run */
3716 put_page(page);
3717 }
3718
3719 /* log error, force error return */
3720 if (primary_failed) {
3721 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3722 device->devid);
3723 return -1;
3724 }
3725
3726 return errors < i ? 0 : -1;
3727 }
3728
3729 /*
3730 * endio for the write_dev_flush, this will wake anyone waiting
3731 * for the barrier when it is done
3732 */
btrfs_end_empty_barrier(struct bio * bio)3733 static void btrfs_end_empty_barrier(struct bio *bio)
3734 {
3735 complete(bio->bi_private);
3736 }
3737
3738 /*
3739 * Submit a flush request to the device if it supports it. Error handling is
3740 * done in the waiting counterpart.
3741 */
write_dev_flush(struct btrfs_device * device)3742 static void write_dev_flush(struct btrfs_device *device)
3743 {
3744 struct bio *bio = device->flush_bio;
3745
3746 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3747 /*
3748 * When a disk has write caching disabled, we skip submission of a bio
3749 * with flush and sync requests before writing the superblock, since
3750 * it's not needed. However when the integrity checker is enabled, this
3751 * results in reports that there are metadata blocks referred by a
3752 * superblock that were not properly flushed. So don't skip the bio
3753 * submission only when the integrity checker is enabled for the sake
3754 * of simplicity, since this is a debug tool and not meant for use in
3755 * non-debug builds.
3756 */
3757 struct request_queue *q = bdev_get_queue(device->bdev);
3758 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3759 return;
3760 #endif
3761
3762 bio_reset(bio);
3763 bio->bi_end_io = btrfs_end_empty_barrier;
3764 bio_set_dev(bio, device->bdev);
3765 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3766 init_completion(&device->flush_wait);
3767 bio->bi_private = &device->flush_wait;
3768
3769 btrfsic_submit_bio(bio);
3770 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3771 }
3772
3773 /*
3774 * If the flush bio has been submitted by write_dev_flush, wait for it.
3775 */
wait_dev_flush(struct btrfs_device * device)3776 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3777 {
3778 struct bio *bio = device->flush_bio;
3779
3780 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3781 return BLK_STS_OK;
3782
3783 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3784 wait_for_completion_io(&device->flush_wait);
3785
3786 return bio->bi_status;
3787 }
3788
check_barrier_error(struct btrfs_fs_info * fs_info)3789 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3790 {
3791 if (!btrfs_check_rw_degradable(fs_info, NULL))
3792 return -EIO;
3793 return 0;
3794 }
3795
3796 /*
3797 * send an empty flush down to each device in parallel,
3798 * then wait for them
3799 */
barrier_all_devices(struct btrfs_fs_info * info)3800 static int barrier_all_devices(struct btrfs_fs_info *info)
3801 {
3802 struct list_head *head;
3803 struct btrfs_device *dev;
3804 int errors_wait = 0;
3805 blk_status_t ret;
3806
3807 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3808 /* send down all the barriers */
3809 head = &info->fs_devices->devices;
3810 list_for_each_entry(dev, head, dev_list) {
3811 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3812 continue;
3813 if (!dev->bdev)
3814 continue;
3815 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3816 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3817 continue;
3818
3819 write_dev_flush(dev);
3820 dev->last_flush_error = BLK_STS_OK;
3821 }
3822
3823 /* wait for all the barriers */
3824 list_for_each_entry(dev, head, dev_list) {
3825 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3826 continue;
3827 if (!dev->bdev) {
3828 errors_wait++;
3829 continue;
3830 }
3831 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3832 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3833 continue;
3834
3835 ret = wait_dev_flush(dev);
3836 if (ret) {
3837 dev->last_flush_error = ret;
3838 btrfs_dev_stat_inc_and_print(dev,
3839 BTRFS_DEV_STAT_FLUSH_ERRS);
3840 errors_wait++;
3841 }
3842 }
3843
3844 if (errors_wait) {
3845 /*
3846 * At some point we need the status of all disks
3847 * to arrive at the volume status. So error checking
3848 * is being pushed to a separate loop.
3849 */
3850 return check_barrier_error(info);
3851 }
3852 return 0;
3853 }
3854
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)3855 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3856 {
3857 int raid_type;
3858 int min_tolerated = INT_MAX;
3859
3860 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3861 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3862 min_tolerated = min_t(int, min_tolerated,
3863 btrfs_raid_array[BTRFS_RAID_SINGLE].
3864 tolerated_failures);
3865
3866 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3867 if (raid_type == BTRFS_RAID_SINGLE)
3868 continue;
3869 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3870 continue;
3871 min_tolerated = min_t(int, min_tolerated,
3872 btrfs_raid_array[raid_type].
3873 tolerated_failures);
3874 }
3875
3876 if (min_tolerated == INT_MAX) {
3877 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3878 min_tolerated = 0;
3879 }
3880
3881 return min_tolerated;
3882 }
3883
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)3884 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3885 {
3886 struct list_head *head;
3887 struct btrfs_device *dev;
3888 struct btrfs_super_block *sb;
3889 struct btrfs_dev_item *dev_item;
3890 int ret;
3891 int do_barriers;
3892 int max_errors;
3893 int total_errors = 0;
3894 u64 flags;
3895
3896 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3897
3898 /*
3899 * max_mirrors == 0 indicates we're from commit_transaction,
3900 * not from fsync where the tree roots in fs_info have not
3901 * been consistent on disk.
3902 */
3903 if (max_mirrors == 0)
3904 backup_super_roots(fs_info);
3905
3906 sb = fs_info->super_for_commit;
3907 dev_item = &sb->dev_item;
3908
3909 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3910 head = &fs_info->fs_devices->devices;
3911 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3912
3913 if (do_barriers) {
3914 ret = barrier_all_devices(fs_info);
3915 if (ret) {
3916 mutex_unlock(
3917 &fs_info->fs_devices->device_list_mutex);
3918 btrfs_handle_fs_error(fs_info, ret,
3919 "errors while submitting device barriers.");
3920 return ret;
3921 }
3922 }
3923
3924 list_for_each_entry(dev, head, dev_list) {
3925 if (!dev->bdev) {
3926 total_errors++;
3927 continue;
3928 }
3929 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3930 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3931 continue;
3932
3933 btrfs_set_stack_device_generation(dev_item, 0);
3934 btrfs_set_stack_device_type(dev_item, dev->type);
3935 btrfs_set_stack_device_id(dev_item, dev->devid);
3936 btrfs_set_stack_device_total_bytes(dev_item,
3937 dev->commit_total_bytes);
3938 btrfs_set_stack_device_bytes_used(dev_item,
3939 dev->commit_bytes_used);
3940 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3941 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3942 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3943 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3944 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3945 BTRFS_FSID_SIZE);
3946
3947 flags = btrfs_super_flags(sb);
3948 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3949
3950 ret = btrfs_validate_write_super(fs_info, sb);
3951 if (ret < 0) {
3952 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3953 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3954 "unexpected superblock corruption detected");
3955 return -EUCLEAN;
3956 }
3957
3958 ret = write_dev_supers(dev, sb, max_mirrors);
3959 if (ret)
3960 total_errors++;
3961 }
3962 if (total_errors > max_errors) {
3963 btrfs_err(fs_info, "%d errors while writing supers",
3964 total_errors);
3965 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3966
3967 /* FUA is masked off if unsupported and can't be the reason */
3968 btrfs_handle_fs_error(fs_info, -EIO,
3969 "%d errors while writing supers",
3970 total_errors);
3971 return -EIO;
3972 }
3973
3974 total_errors = 0;
3975 list_for_each_entry(dev, head, dev_list) {
3976 if (!dev->bdev)
3977 continue;
3978 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3979 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3980 continue;
3981
3982 ret = wait_dev_supers(dev, max_mirrors);
3983 if (ret)
3984 total_errors++;
3985 }
3986 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3987 if (total_errors > max_errors) {
3988 btrfs_handle_fs_error(fs_info, -EIO,
3989 "%d errors while writing supers",
3990 total_errors);
3991 return -EIO;
3992 }
3993 return 0;
3994 }
3995
3996 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)3997 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3998 struct btrfs_root *root)
3999 {
4000 bool drop_ref = false;
4001
4002 spin_lock(&fs_info->fs_roots_radix_lock);
4003 radix_tree_delete(&fs_info->fs_roots_radix,
4004 (unsigned long)root->root_key.objectid);
4005 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4006 drop_ref = true;
4007 spin_unlock(&fs_info->fs_roots_radix_lock);
4008
4009 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4010 ASSERT(root->log_root == NULL);
4011 if (root->reloc_root) {
4012 btrfs_put_root(root->reloc_root);
4013 root->reloc_root = NULL;
4014 }
4015 }
4016
4017 if (root->free_ino_pinned)
4018 __btrfs_remove_free_space_cache(root->free_ino_pinned);
4019 if (root->free_ino_ctl)
4020 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4021 if (root->ino_cache_inode) {
4022 iput(root->ino_cache_inode);
4023 root->ino_cache_inode = NULL;
4024 }
4025 if (drop_ref)
4026 btrfs_put_root(root);
4027 }
4028
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)4029 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4030 {
4031 u64 root_objectid = 0;
4032 struct btrfs_root *gang[8];
4033 int i = 0;
4034 int err = 0;
4035 unsigned int ret = 0;
4036
4037 while (1) {
4038 spin_lock(&fs_info->fs_roots_radix_lock);
4039 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4040 (void **)gang, root_objectid,
4041 ARRAY_SIZE(gang));
4042 if (!ret) {
4043 spin_unlock(&fs_info->fs_roots_radix_lock);
4044 break;
4045 }
4046 root_objectid = gang[ret - 1]->root_key.objectid + 1;
4047
4048 for (i = 0; i < ret; i++) {
4049 /* Avoid to grab roots in dead_roots */
4050 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4051 gang[i] = NULL;
4052 continue;
4053 }
4054 /* grab all the search result for later use */
4055 gang[i] = btrfs_grab_root(gang[i]);
4056 }
4057 spin_unlock(&fs_info->fs_roots_radix_lock);
4058
4059 for (i = 0; i < ret; i++) {
4060 if (!gang[i])
4061 continue;
4062 root_objectid = gang[i]->root_key.objectid;
4063 err = btrfs_orphan_cleanup(gang[i]);
4064 if (err)
4065 break;
4066 btrfs_put_root(gang[i]);
4067 }
4068 root_objectid++;
4069 }
4070
4071 /* release the uncleaned roots due to error */
4072 for (; i < ret; i++) {
4073 if (gang[i])
4074 btrfs_put_root(gang[i]);
4075 }
4076 return err;
4077 }
4078
btrfs_commit_super(struct btrfs_fs_info * fs_info)4079 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4080 {
4081 struct btrfs_root *root = fs_info->tree_root;
4082 struct btrfs_trans_handle *trans;
4083
4084 mutex_lock(&fs_info->cleaner_mutex);
4085 btrfs_run_delayed_iputs(fs_info);
4086 mutex_unlock(&fs_info->cleaner_mutex);
4087 wake_up_process(fs_info->cleaner_kthread);
4088
4089 /* wait until ongoing cleanup work done */
4090 down_write(&fs_info->cleanup_work_sem);
4091 up_write(&fs_info->cleanup_work_sem);
4092
4093 trans = btrfs_join_transaction(root);
4094 if (IS_ERR(trans))
4095 return PTR_ERR(trans);
4096 return btrfs_commit_transaction(trans);
4097 }
4098
close_ctree(struct btrfs_fs_info * fs_info)4099 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4100 {
4101 int ret;
4102
4103 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4104 /*
4105 * We don't want the cleaner to start new transactions, add more delayed
4106 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4107 * because that frees the task_struct, and the transaction kthread might
4108 * still try to wake up the cleaner.
4109 */
4110 kthread_park(fs_info->cleaner_kthread);
4111
4112 /* wait for the qgroup rescan worker to stop */
4113 btrfs_qgroup_wait_for_completion(fs_info, false);
4114
4115 /* wait for the uuid_scan task to finish */
4116 down(&fs_info->uuid_tree_rescan_sem);
4117 /* avoid complains from lockdep et al., set sem back to initial state */
4118 up(&fs_info->uuid_tree_rescan_sem);
4119
4120 /* pause restriper - we want to resume on mount */
4121 btrfs_pause_balance(fs_info);
4122
4123 btrfs_dev_replace_suspend_for_unmount(fs_info);
4124
4125 btrfs_scrub_cancel(fs_info);
4126
4127 /* wait for any defraggers to finish */
4128 wait_event(fs_info->transaction_wait,
4129 (atomic_read(&fs_info->defrag_running) == 0));
4130
4131 /* clear out the rbtree of defraggable inodes */
4132 btrfs_cleanup_defrag_inodes(fs_info);
4133
4134 /*
4135 * After we parked the cleaner kthread, ordered extents may have
4136 * completed and created new delayed iputs. If one of the async reclaim
4137 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4138 * can hang forever trying to stop it, because if a delayed iput is
4139 * added after it ran btrfs_run_delayed_iputs() and before it called
4140 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4141 * no one else to run iputs.
4142 *
4143 * So wait for all ongoing ordered extents to complete and then run
4144 * delayed iputs. This works because once we reach this point no one
4145 * can either create new ordered extents nor create delayed iputs
4146 * through some other means.
4147 *
4148 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4149 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4150 * but the delayed iput for the respective inode is made only when doing
4151 * the final btrfs_put_ordered_extent() (which must happen at
4152 * btrfs_finish_ordered_io() when we are unmounting).
4153 */
4154 btrfs_flush_workqueue(fs_info->endio_write_workers);
4155 /* Ordered extents for free space inodes. */
4156 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4157 btrfs_run_delayed_iputs(fs_info);
4158
4159 cancel_work_sync(&fs_info->async_reclaim_work);
4160 cancel_work_sync(&fs_info->async_data_reclaim_work);
4161
4162 /* Cancel or finish ongoing discard work */
4163 btrfs_discard_cleanup(fs_info);
4164
4165 if (!sb_rdonly(fs_info->sb)) {
4166 /*
4167 * The cleaner kthread is stopped, so do one final pass over
4168 * unused block groups.
4169 */
4170 btrfs_delete_unused_bgs(fs_info);
4171
4172 /*
4173 * There might be existing delayed inode workers still running
4174 * and holding an empty delayed inode item. We must wait for
4175 * them to complete first because they can create a transaction.
4176 * This happens when someone calls btrfs_balance_delayed_items()
4177 * and then a transaction commit runs the same delayed nodes
4178 * before any delayed worker has done something with the nodes.
4179 * We must wait for any worker here and not at transaction
4180 * commit time since that could cause a deadlock.
4181 * This is a very rare case.
4182 */
4183 btrfs_flush_workqueue(fs_info->delayed_workers);
4184
4185 ret = btrfs_commit_super(fs_info);
4186 if (ret)
4187 btrfs_err(fs_info, "commit super ret %d", ret);
4188 }
4189
4190 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4191 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4192 btrfs_error_commit_super(fs_info);
4193
4194 kthread_stop(fs_info->transaction_kthread);
4195 kthread_stop(fs_info->cleaner_kthread);
4196
4197 ASSERT(list_empty(&fs_info->delayed_iputs));
4198 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4199
4200 if (btrfs_check_quota_leak(fs_info)) {
4201 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4202 btrfs_err(fs_info, "qgroup reserved space leaked");
4203 }
4204
4205 btrfs_free_qgroup_config(fs_info);
4206 ASSERT(list_empty(&fs_info->delalloc_roots));
4207
4208 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4209 btrfs_info(fs_info, "at unmount delalloc count %lld",
4210 percpu_counter_sum(&fs_info->delalloc_bytes));
4211 }
4212
4213 if (percpu_counter_sum(&fs_info->dio_bytes))
4214 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4215 percpu_counter_sum(&fs_info->dio_bytes));
4216
4217 btrfs_sysfs_remove_mounted(fs_info);
4218 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4219
4220 btrfs_put_block_group_cache(fs_info);
4221
4222 /*
4223 * we must make sure there is not any read request to
4224 * submit after we stopping all workers.
4225 */
4226 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4227 btrfs_stop_all_workers(fs_info);
4228
4229 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4230 free_root_pointers(fs_info, true);
4231 btrfs_free_fs_roots(fs_info);
4232
4233 /*
4234 * We must free the block groups after dropping the fs_roots as we could
4235 * have had an IO error and have left over tree log blocks that aren't
4236 * cleaned up until the fs roots are freed. This makes the block group
4237 * accounting appear to be wrong because there's pending reserved bytes,
4238 * so make sure we do the block group cleanup afterwards.
4239 */
4240 btrfs_free_block_groups(fs_info);
4241
4242 iput(fs_info->btree_inode);
4243
4244 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4245 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4246 btrfsic_unmount(fs_info->fs_devices);
4247 #endif
4248
4249 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4250 btrfs_close_devices(fs_info->fs_devices);
4251 }
4252
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)4253 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4254 int atomic)
4255 {
4256 int ret;
4257 struct inode *btree_inode = buf->pages[0]->mapping->host;
4258
4259 ret = extent_buffer_uptodate(buf);
4260 if (!ret)
4261 return ret;
4262
4263 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4264 parent_transid, atomic);
4265 if (ret == -EAGAIN)
4266 return ret;
4267 return !ret;
4268 }
4269
btrfs_mark_buffer_dirty(struct extent_buffer * buf)4270 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4271 {
4272 struct btrfs_fs_info *fs_info;
4273 struct btrfs_root *root;
4274 u64 transid = btrfs_header_generation(buf);
4275 int was_dirty;
4276
4277 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4278 /*
4279 * This is a fast path so only do this check if we have sanity tests
4280 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4281 * outside of the sanity tests.
4282 */
4283 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4284 return;
4285 #endif
4286 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4287 fs_info = root->fs_info;
4288 btrfs_assert_tree_locked(buf);
4289 if (transid != fs_info->generation)
4290 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4291 buf->start, transid, fs_info->generation);
4292 was_dirty = set_extent_buffer_dirty(buf);
4293 if (!was_dirty)
4294 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4295 buf->len,
4296 fs_info->dirty_metadata_batch);
4297 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4298 /*
4299 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4300 * but item data not updated.
4301 * So here we should only check item pointers, not item data.
4302 */
4303 if (btrfs_header_level(buf) == 0 &&
4304 btrfs_check_leaf_relaxed(buf)) {
4305 btrfs_print_leaf(buf);
4306 ASSERT(0);
4307 }
4308 #endif
4309 }
4310
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4311 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4312 int flush_delayed)
4313 {
4314 /*
4315 * looks as though older kernels can get into trouble with
4316 * this code, they end up stuck in balance_dirty_pages forever
4317 */
4318 int ret;
4319
4320 if (current->flags & PF_MEMALLOC)
4321 return;
4322
4323 if (flush_delayed)
4324 btrfs_balance_delayed_items(fs_info);
4325
4326 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4327 BTRFS_DIRTY_METADATA_THRESH,
4328 fs_info->dirty_metadata_batch);
4329 if (ret > 0) {
4330 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4331 }
4332 }
4333
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4334 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4335 {
4336 __btrfs_btree_balance_dirty(fs_info, 1);
4337 }
4338
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4339 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4340 {
4341 __btrfs_btree_balance_dirty(fs_info, 0);
4342 }
4343
btrfs_read_buffer(struct extent_buffer * buf,u64 parent_transid,int level,struct btrfs_key * first_key)4344 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4345 struct btrfs_key *first_key)
4346 {
4347 return btree_read_extent_buffer_pages(buf, parent_transid,
4348 level, first_key);
4349 }
4350
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4351 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4352 {
4353 /* cleanup FS via transaction */
4354 btrfs_cleanup_transaction(fs_info);
4355
4356 mutex_lock(&fs_info->cleaner_mutex);
4357 btrfs_run_delayed_iputs(fs_info);
4358 mutex_unlock(&fs_info->cleaner_mutex);
4359
4360 down_write(&fs_info->cleanup_work_sem);
4361 up_write(&fs_info->cleanup_work_sem);
4362 }
4363
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4364 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4365 {
4366 struct btrfs_root *gang[8];
4367 u64 root_objectid = 0;
4368 int ret;
4369
4370 spin_lock(&fs_info->fs_roots_radix_lock);
4371 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4372 (void **)gang, root_objectid,
4373 ARRAY_SIZE(gang))) != 0) {
4374 int i;
4375
4376 for (i = 0; i < ret; i++)
4377 gang[i] = btrfs_grab_root(gang[i]);
4378 spin_unlock(&fs_info->fs_roots_radix_lock);
4379
4380 for (i = 0; i < ret; i++) {
4381 if (!gang[i])
4382 continue;
4383 root_objectid = gang[i]->root_key.objectid;
4384 btrfs_free_log(NULL, gang[i]);
4385 btrfs_put_root(gang[i]);
4386 }
4387 root_objectid++;
4388 spin_lock(&fs_info->fs_roots_radix_lock);
4389 }
4390 spin_unlock(&fs_info->fs_roots_radix_lock);
4391 btrfs_free_log_root_tree(NULL, fs_info);
4392 }
4393
btrfs_destroy_ordered_extents(struct btrfs_root * root)4394 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4395 {
4396 struct btrfs_ordered_extent *ordered;
4397
4398 spin_lock(&root->ordered_extent_lock);
4399 /*
4400 * This will just short circuit the ordered completion stuff which will
4401 * make sure the ordered extent gets properly cleaned up.
4402 */
4403 list_for_each_entry(ordered, &root->ordered_extents,
4404 root_extent_list)
4405 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4406 spin_unlock(&root->ordered_extent_lock);
4407 }
4408
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4409 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4410 {
4411 struct btrfs_root *root;
4412 struct list_head splice;
4413
4414 INIT_LIST_HEAD(&splice);
4415
4416 spin_lock(&fs_info->ordered_root_lock);
4417 list_splice_init(&fs_info->ordered_roots, &splice);
4418 while (!list_empty(&splice)) {
4419 root = list_first_entry(&splice, struct btrfs_root,
4420 ordered_root);
4421 list_move_tail(&root->ordered_root,
4422 &fs_info->ordered_roots);
4423
4424 spin_unlock(&fs_info->ordered_root_lock);
4425 btrfs_destroy_ordered_extents(root);
4426
4427 cond_resched();
4428 spin_lock(&fs_info->ordered_root_lock);
4429 }
4430 spin_unlock(&fs_info->ordered_root_lock);
4431
4432 /*
4433 * We need this here because if we've been flipped read-only we won't
4434 * get sync() from the umount, so we need to make sure any ordered
4435 * extents that haven't had their dirty pages IO start writeout yet
4436 * actually get run and error out properly.
4437 */
4438 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4439 }
4440
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4441 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4442 struct btrfs_fs_info *fs_info)
4443 {
4444 struct rb_node *node;
4445 struct btrfs_delayed_ref_root *delayed_refs;
4446 struct btrfs_delayed_ref_node *ref;
4447 int ret = 0;
4448
4449 delayed_refs = &trans->delayed_refs;
4450
4451 spin_lock(&delayed_refs->lock);
4452 if (atomic_read(&delayed_refs->num_entries) == 0) {
4453 spin_unlock(&delayed_refs->lock);
4454 btrfs_debug(fs_info, "delayed_refs has NO entry");
4455 return ret;
4456 }
4457
4458 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4459 struct btrfs_delayed_ref_head *head;
4460 struct rb_node *n;
4461 bool pin_bytes = false;
4462
4463 head = rb_entry(node, struct btrfs_delayed_ref_head,
4464 href_node);
4465 if (btrfs_delayed_ref_lock(delayed_refs, head))
4466 continue;
4467
4468 spin_lock(&head->lock);
4469 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4470 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4471 ref_node);
4472 ref->in_tree = 0;
4473 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4474 RB_CLEAR_NODE(&ref->ref_node);
4475 if (!list_empty(&ref->add_list))
4476 list_del(&ref->add_list);
4477 atomic_dec(&delayed_refs->num_entries);
4478 btrfs_put_delayed_ref(ref);
4479 }
4480 if (head->must_insert_reserved)
4481 pin_bytes = true;
4482 btrfs_free_delayed_extent_op(head->extent_op);
4483 btrfs_delete_ref_head(delayed_refs, head);
4484 spin_unlock(&head->lock);
4485 spin_unlock(&delayed_refs->lock);
4486 mutex_unlock(&head->mutex);
4487
4488 if (pin_bytes) {
4489 struct btrfs_block_group *cache;
4490
4491 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4492 BUG_ON(!cache);
4493
4494 spin_lock(&cache->space_info->lock);
4495 spin_lock(&cache->lock);
4496 cache->pinned += head->num_bytes;
4497 btrfs_space_info_update_bytes_pinned(fs_info,
4498 cache->space_info, head->num_bytes);
4499 cache->reserved -= head->num_bytes;
4500 cache->space_info->bytes_reserved -= head->num_bytes;
4501 spin_unlock(&cache->lock);
4502 spin_unlock(&cache->space_info->lock);
4503 percpu_counter_add_batch(
4504 &cache->space_info->total_bytes_pinned,
4505 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4506
4507 btrfs_put_block_group(cache);
4508
4509 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4510 head->bytenr + head->num_bytes - 1);
4511 }
4512 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4513 btrfs_put_delayed_ref_head(head);
4514 cond_resched();
4515 spin_lock(&delayed_refs->lock);
4516 }
4517 btrfs_qgroup_destroy_extent_records(trans);
4518
4519 spin_unlock(&delayed_refs->lock);
4520
4521 return ret;
4522 }
4523
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4524 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4525 {
4526 struct btrfs_inode *btrfs_inode;
4527 struct list_head splice;
4528
4529 INIT_LIST_HEAD(&splice);
4530
4531 spin_lock(&root->delalloc_lock);
4532 list_splice_init(&root->delalloc_inodes, &splice);
4533
4534 while (!list_empty(&splice)) {
4535 struct inode *inode = NULL;
4536 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4537 delalloc_inodes);
4538 __btrfs_del_delalloc_inode(root, btrfs_inode);
4539 spin_unlock(&root->delalloc_lock);
4540
4541 /*
4542 * Make sure we get a live inode and that it'll not disappear
4543 * meanwhile.
4544 */
4545 inode = igrab(&btrfs_inode->vfs_inode);
4546 if (inode) {
4547 unsigned int nofs_flag;
4548
4549 nofs_flag = memalloc_nofs_save();
4550 invalidate_inode_pages2(inode->i_mapping);
4551 memalloc_nofs_restore(nofs_flag);
4552 iput(inode);
4553 }
4554 spin_lock(&root->delalloc_lock);
4555 }
4556 spin_unlock(&root->delalloc_lock);
4557 }
4558
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4559 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4560 {
4561 struct btrfs_root *root;
4562 struct list_head splice;
4563
4564 INIT_LIST_HEAD(&splice);
4565
4566 spin_lock(&fs_info->delalloc_root_lock);
4567 list_splice_init(&fs_info->delalloc_roots, &splice);
4568 while (!list_empty(&splice)) {
4569 root = list_first_entry(&splice, struct btrfs_root,
4570 delalloc_root);
4571 root = btrfs_grab_root(root);
4572 BUG_ON(!root);
4573 spin_unlock(&fs_info->delalloc_root_lock);
4574
4575 btrfs_destroy_delalloc_inodes(root);
4576 btrfs_put_root(root);
4577
4578 spin_lock(&fs_info->delalloc_root_lock);
4579 }
4580 spin_unlock(&fs_info->delalloc_root_lock);
4581 }
4582
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4583 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4584 struct extent_io_tree *dirty_pages,
4585 int mark)
4586 {
4587 int ret;
4588 struct extent_buffer *eb;
4589 u64 start = 0;
4590 u64 end;
4591
4592 while (1) {
4593 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4594 mark, NULL);
4595 if (ret)
4596 break;
4597
4598 clear_extent_bits(dirty_pages, start, end, mark);
4599 while (start <= end) {
4600 eb = find_extent_buffer(fs_info, start);
4601 start += fs_info->nodesize;
4602 if (!eb)
4603 continue;
4604 wait_on_extent_buffer_writeback(eb);
4605
4606 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4607 &eb->bflags))
4608 clear_extent_buffer_dirty(eb);
4609 free_extent_buffer_stale(eb);
4610 }
4611 }
4612
4613 return ret;
4614 }
4615
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)4616 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4617 struct extent_io_tree *unpin)
4618 {
4619 u64 start;
4620 u64 end;
4621 int ret;
4622
4623 while (1) {
4624 struct extent_state *cached_state = NULL;
4625
4626 /*
4627 * The btrfs_finish_extent_commit() may get the same range as
4628 * ours between find_first_extent_bit and clear_extent_dirty.
4629 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4630 * the same extent range.
4631 */
4632 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4633 ret = find_first_extent_bit(unpin, 0, &start, &end,
4634 EXTENT_DIRTY, &cached_state);
4635 if (ret) {
4636 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4637 break;
4638 }
4639
4640 clear_extent_dirty(unpin, start, end, &cached_state);
4641 free_extent_state(cached_state);
4642 btrfs_error_unpin_extent_range(fs_info, start, end);
4643 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4644 cond_resched();
4645 }
4646
4647 return 0;
4648 }
4649
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)4650 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4651 {
4652 struct inode *inode;
4653
4654 inode = cache->io_ctl.inode;
4655 if (inode) {
4656 unsigned int nofs_flag;
4657
4658 nofs_flag = memalloc_nofs_save();
4659 invalidate_inode_pages2(inode->i_mapping);
4660 memalloc_nofs_restore(nofs_flag);
4661
4662 BTRFS_I(inode)->generation = 0;
4663 cache->io_ctl.inode = NULL;
4664 iput(inode);
4665 }
4666 ASSERT(cache->io_ctl.pages == NULL);
4667 btrfs_put_block_group(cache);
4668 }
4669
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4670 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4671 struct btrfs_fs_info *fs_info)
4672 {
4673 struct btrfs_block_group *cache;
4674
4675 spin_lock(&cur_trans->dirty_bgs_lock);
4676 while (!list_empty(&cur_trans->dirty_bgs)) {
4677 cache = list_first_entry(&cur_trans->dirty_bgs,
4678 struct btrfs_block_group,
4679 dirty_list);
4680
4681 if (!list_empty(&cache->io_list)) {
4682 spin_unlock(&cur_trans->dirty_bgs_lock);
4683 list_del_init(&cache->io_list);
4684 btrfs_cleanup_bg_io(cache);
4685 spin_lock(&cur_trans->dirty_bgs_lock);
4686 }
4687
4688 list_del_init(&cache->dirty_list);
4689 spin_lock(&cache->lock);
4690 cache->disk_cache_state = BTRFS_DC_ERROR;
4691 spin_unlock(&cache->lock);
4692
4693 spin_unlock(&cur_trans->dirty_bgs_lock);
4694 btrfs_put_block_group(cache);
4695 btrfs_delayed_refs_rsv_release(fs_info, 1);
4696 spin_lock(&cur_trans->dirty_bgs_lock);
4697 }
4698 spin_unlock(&cur_trans->dirty_bgs_lock);
4699
4700 /*
4701 * Refer to the definition of io_bgs member for details why it's safe
4702 * to use it without any locking
4703 */
4704 while (!list_empty(&cur_trans->io_bgs)) {
4705 cache = list_first_entry(&cur_trans->io_bgs,
4706 struct btrfs_block_group,
4707 io_list);
4708
4709 list_del_init(&cache->io_list);
4710 spin_lock(&cache->lock);
4711 cache->disk_cache_state = BTRFS_DC_ERROR;
4712 spin_unlock(&cache->lock);
4713 btrfs_cleanup_bg_io(cache);
4714 }
4715 }
4716
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4717 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4718 struct btrfs_fs_info *fs_info)
4719 {
4720 struct btrfs_device *dev, *tmp;
4721
4722 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4723 ASSERT(list_empty(&cur_trans->dirty_bgs));
4724 ASSERT(list_empty(&cur_trans->io_bgs));
4725
4726 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4727 post_commit_list) {
4728 list_del_init(&dev->post_commit_list);
4729 }
4730
4731 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4732
4733 cur_trans->state = TRANS_STATE_COMMIT_START;
4734 wake_up(&fs_info->transaction_blocked_wait);
4735
4736 cur_trans->state = TRANS_STATE_UNBLOCKED;
4737 wake_up(&fs_info->transaction_wait);
4738
4739 btrfs_destroy_delayed_inodes(fs_info);
4740
4741 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4742 EXTENT_DIRTY);
4743 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4744
4745 cur_trans->state =TRANS_STATE_COMPLETED;
4746 wake_up(&cur_trans->commit_wait);
4747 }
4748
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4749 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4750 {
4751 struct btrfs_transaction *t;
4752
4753 mutex_lock(&fs_info->transaction_kthread_mutex);
4754
4755 spin_lock(&fs_info->trans_lock);
4756 while (!list_empty(&fs_info->trans_list)) {
4757 t = list_first_entry(&fs_info->trans_list,
4758 struct btrfs_transaction, list);
4759 if (t->state >= TRANS_STATE_COMMIT_START) {
4760 refcount_inc(&t->use_count);
4761 spin_unlock(&fs_info->trans_lock);
4762 btrfs_wait_for_commit(fs_info, t->transid);
4763 btrfs_put_transaction(t);
4764 spin_lock(&fs_info->trans_lock);
4765 continue;
4766 }
4767 if (t == fs_info->running_transaction) {
4768 t->state = TRANS_STATE_COMMIT_DOING;
4769 spin_unlock(&fs_info->trans_lock);
4770 /*
4771 * We wait for 0 num_writers since we don't hold a trans
4772 * handle open currently for this transaction.
4773 */
4774 wait_event(t->writer_wait,
4775 atomic_read(&t->num_writers) == 0);
4776 } else {
4777 spin_unlock(&fs_info->trans_lock);
4778 }
4779 btrfs_cleanup_one_transaction(t, fs_info);
4780
4781 spin_lock(&fs_info->trans_lock);
4782 if (t == fs_info->running_transaction)
4783 fs_info->running_transaction = NULL;
4784 list_del_init(&t->list);
4785 spin_unlock(&fs_info->trans_lock);
4786
4787 btrfs_put_transaction(t);
4788 trace_btrfs_transaction_commit(fs_info->tree_root);
4789 spin_lock(&fs_info->trans_lock);
4790 }
4791 spin_unlock(&fs_info->trans_lock);
4792 btrfs_destroy_all_ordered_extents(fs_info);
4793 btrfs_destroy_delayed_inodes(fs_info);
4794 btrfs_assert_delayed_root_empty(fs_info);
4795 btrfs_destroy_all_delalloc_inodes(fs_info);
4796 btrfs_drop_all_logs(fs_info);
4797 mutex_unlock(&fs_info->transaction_kthread_mutex);
4798
4799 return 0;
4800 }
4801
btrfs_find_highest_objectid(struct btrfs_root * root,u64 * objectid)4802 int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
4803 {
4804 struct btrfs_path *path;
4805 int ret;
4806 struct extent_buffer *l;
4807 struct btrfs_key search_key;
4808 struct btrfs_key found_key;
4809 int slot;
4810
4811 path = btrfs_alloc_path();
4812 if (!path)
4813 return -ENOMEM;
4814
4815 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4816 search_key.type = -1;
4817 search_key.offset = (u64)-1;
4818 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4819 if (ret < 0)
4820 goto error;
4821 BUG_ON(ret == 0); /* Corruption */
4822 if (path->slots[0] > 0) {
4823 slot = path->slots[0] - 1;
4824 l = path->nodes[0];
4825 btrfs_item_key_to_cpu(l, &found_key, slot);
4826 *objectid = max_t(u64, found_key.objectid,
4827 BTRFS_FIRST_FREE_OBJECTID - 1);
4828 } else {
4829 *objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
4830 }
4831 ret = 0;
4832 error:
4833 btrfs_free_path(path);
4834 return ret;
4835 }
4836
btrfs_find_free_objectid(struct btrfs_root * root,u64 * objectid)4837 int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
4838 {
4839 int ret;
4840 mutex_lock(&root->objectid_mutex);
4841
4842 if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4843 btrfs_warn(root->fs_info,
4844 "the objectid of root %llu reaches its highest value",
4845 root->root_key.objectid);
4846 ret = -ENOSPC;
4847 goto out;
4848 }
4849
4850 *objectid = ++root->highest_objectid;
4851 ret = 0;
4852 out:
4853 mutex_unlock(&root->objectid_mutex);
4854 return ret;
4855 }
4856