• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45 
46 #define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
47 				 BTRFS_HEADER_FLAG_RELOC |\
48 				 BTRFS_SUPER_FLAG_ERROR |\
49 				 BTRFS_SUPER_FLAG_SEEDING |\
50 				 BTRFS_SUPER_FLAG_METADUMP |\
51 				 BTRFS_SUPER_FLAG_METADUMP_V2)
52 
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 				      struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59 					struct extent_io_tree *dirty_pages,
60 					int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62 				       struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65 
66 /*
67  * btrfs_end_io_wq structs are used to do processing in task context when an IO
68  * is complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct btrfs_end_io_wq {
72 	struct bio *bio;
73 	bio_end_io_t *end_io;
74 	void *private;
75 	struct btrfs_fs_info *info;
76 	blk_status_t status;
77 	enum btrfs_wq_endio_type metadata;
78 	struct btrfs_work work;
79 };
80 
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82 
btrfs_end_io_wq_init(void)83 int __init btrfs_end_io_wq_init(void)
84 {
85 	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86 					sizeof(struct btrfs_end_io_wq),
87 					0,
88 					SLAB_MEM_SPREAD,
89 					NULL);
90 	if (!btrfs_end_io_wq_cache)
91 		return -ENOMEM;
92 	return 0;
93 }
94 
btrfs_end_io_wq_exit(void)95 void __cold btrfs_end_io_wq_exit(void)
96 {
97 	kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99 
btrfs_free_csum_hash(struct btrfs_fs_info * fs_info)100 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101 {
102 	if (fs_info->csum_shash)
103 		crypto_free_shash(fs_info->csum_shash);
104 }
105 
106 /*
107  * async submit bios are used to offload expensive checksumming
108  * onto the worker threads.  They checksum file and metadata bios
109  * just before they are sent down the IO stack.
110  */
111 struct async_submit_bio {
112 	void *private_data;
113 	struct bio *bio;
114 	extent_submit_bio_start_t *submit_bio_start;
115 	int mirror_num;
116 	/*
117 	 * bio_offset is optional, can be used if the pages in the bio
118 	 * can't tell us where in the file the bio should go
119 	 */
120 	u64 bio_offset;
121 	struct btrfs_work work;
122 	blk_status_t status;
123 };
124 
125 /*
126  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
127  * eb, the lockdep key is determined by the btrfs_root it belongs to and
128  * the level the eb occupies in the tree.
129  *
130  * Different roots are used for different purposes and may nest inside each
131  * other and they require separate keysets.  As lockdep keys should be
132  * static, assign keysets according to the purpose of the root as indicated
133  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
134  * roots have separate keysets.
135  *
136  * Lock-nesting across peer nodes is always done with the immediate parent
137  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
138  * subclass to avoid triggering lockdep warning in such cases.
139  *
140  * The key is set by the readpage_end_io_hook after the buffer has passed
141  * csum validation but before the pages are unlocked.  It is also set by
142  * btrfs_init_new_buffer on freshly allocated blocks.
143  *
144  * We also add a check to make sure the highest level of the tree is the
145  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
146  * needs update as well.
147  */
148 #ifdef CONFIG_DEBUG_LOCK_ALLOC
149 # if BTRFS_MAX_LEVEL != 8
150 #  error
151 # endif
152 
153 static struct btrfs_lockdep_keyset {
154 	u64			id;		/* root objectid */
155 	const char		*name_stem;	/* lock name stem */
156 	char			names[BTRFS_MAX_LEVEL + 1][20];
157 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
158 } btrfs_lockdep_keysets[] = {
159 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
160 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
161 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
162 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
163 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
164 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
165 	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
166 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
167 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
168 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
169 	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
170 	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
171 	{ .id = 0,				.name_stem = "tree"	},
172 };
173 
btrfs_init_lockdep(void)174 void __init btrfs_init_lockdep(void)
175 {
176 	int i, j;
177 
178 	/* initialize lockdep class names */
179 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
180 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
181 
182 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
183 			snprintf(ks->names[j], sizeof(ks->names[j]),
184 				 "btrfs-%s-%02d", ks->name_stem, j);
185 	}
186 }
187 
btrfs_set_buffer_lockdep_class(u64 objectid,struct extent_buffer * eb,int level)188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189 				    int level)
190 {
191 	struct btrfs_lockdep_keyset *ks;
192 
193 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
194 
195 	/* find the matching keyset, id 0 is the default entry */
196 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197 		if (ks->id == objectid)
198 			break;
199 
200 	lockdep_set_class_and_name(&eb->lock,
201 				   &ks->keys[level], ks->names[level]);
202 }
203 
204 #endif
205 
206 /*
207  * Compute the csum of a btree block and store the result to provided buffer.
208  */
csum_tree_block(struct extent_buffer * buf,u8 * result)209 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
210 {
211 	struct btrfs_fs_info *fs_info = buf->fs_info;
212 	const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
213 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
214 	char *kaddr;
215 	int i;
216 
217 	shash->tfm = fs_info->csum_shash;
218 	crypto_shash_init(shash);
219 	kaddr = page_address(buf->pages[0]);
220 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
221 			    PAGE_SIZE - BTRFS_CSUM_SIZE);
222 
223 	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
224 		kaddr = page_address(buf->pages[i]);
225 		crypto_shash_update(shash, kaddr, PAGE_SIZE);
226 	}
227 	memset(result, 0, BTRFS_CSUM_SIZE);
228 	crypto_shash_final(shash, result);
229 }
230 
231 /*
232  * we can't consider a given block up to date unless the transid of the
233  * block matches the transid in the parent node's pointer.  This is how we
234  * detect blocks that either didn't get written at all or got written
235  * in the wrong place.
236  */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)237 static int verify_parent_transid(struct extent_io_tree *io_tree,
238 				 struct extent_buffer *eb, u64 parent_transid,
239 				 int atomic)
240 {
241 	struct extent_state *cached_state = NULL;
242 	int ret;
243 	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
244 
245 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246 		return 0;
247 
248 	if (atomic)
249 		return -EAGAIN;
250 
251 	if (need_lock) {
252 		btrfs_tree_read_lock(eb);
253 		btrfs_set_lock_blocking_read(eb);
254 	}
255 
256 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
257 			 &cached_state);
258 	if (extent_buffer_uptodate(eb) &&
259 	    btrfs_header_generation(eb) == parent_transid) {
260 		ret = 0;
261 		goto out;
262 	}
263 	btrfs_err_rl(eb->fs_info,
264 		"parent transid verify failed on %llu wanted %llu found %llu",
265 			eb->start,
266 			parent_transid, btrfs_header_generation(eb));
267 	ret = 1;
268 
269 	/*
270 	 * Things reading via commit roots that don't have normal protection,
271 	 * like send, can have a really old block in cache that may point at a
272 	 * block that has been freed and re-allocated.  So don't clear uptodate
273 	 * if we find an eb that is under IO (dirty/writeback) because we could
274 	 * end up reading in the stale data and then writing it back out and
275 	 * making everybody very sad.
276 	 */
277 	if (!extent_buffer_under_io(eb))
278 		clear_extent_buffer_uptodate(eb);
279 out:
280 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
281 			     &cached_state);
282 	if (need_lock)
283 		btrfs_tree_read_unlock_blocking(eb);
284 	return ret;
285 }
286 
btrfs_supported_super_csum(u16 csum_type)287 static bool btrfs_supported_super_csum(u16 csum_type)
288 {
289 	switch (csum_type) {
290 	case BTRFS_CSUM_TYPE_CRC32:
291 	case BTRFS_CSUM_TYPE_XXHASH:
292 	case BTRFS_CSUM_TYPE_SHA256:
293 	case BTRFS_CSUM_TYPE_BLAKE2:
294 		return true;
295 	default:
296 		return false;
297 	}
298 }
299 
300 /*
301  * Return 0 if the superblock checksum type matches the checksum value of that
302  * algorithm. Pass the raw disk superblock data.
303  */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,char * raw_disk_sb)304 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
305 				  char *raw_disk_sb)
306 {
307 	struct btrfs_super_block *disk_sb =
308 		(struct btrfs_super_block *)raw_disk_sb;
309 	char result[BTRFS_CSUM_SIZE];
310 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
311 
312 	shash->tfm = fs_info->csum_shash;
313 
314 	/*
315 	 * The super_block structure does not span the whole
316 	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
317 	 * filled with zeros and is included in the checksum.
318 	 */
319 	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
320 			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
321 
322 	if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
323 		return 1;
324 
325 	return 0;
326 }
327 
btrfs_verify_level_key(struct extent_buffer * eb,int level,struct btrfs_key * first_key,u64 parent_transid)328 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
329 			   struct btrfs_key *first_key, u64 parent_transid)
330 {
331 	struct btrfs_fs_info *fs_info = eb->fs_info;
332 	int found_level;
333 	struct btrfs_key found_key;
334 	int ret;
335 
336 	found_level = btrfs_header_level(eb);
337 	if (found_level != level) {
338 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
339 		     KERN_ERR "BTRFS: tree level check failed\n");
340 		btrfs_err(fs_info,
341 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
342 			  eb->start, level, found_level);
343 		return -EIO;
344 	}
345 
346 	if (!first_key)
347 		return 0;
348 
349 	/*
350 	 * For live tree block (new tree blocks in current transaction),
351 	 * we need proper lock context to avoid race, which is impossible here.
352 	 * So we only checks tree blocks which is read from disk, whose
353 	 * generation <= fs_info->last_trans_committed.
354 	 */
355 	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
356 		return 0;
357 
358 	/* We have @first_key, so this @eb must have at least one item */
359 	if (btrfs_header_nritems(eb) == 0) {
360 		btrfs_err(fs_info,
361 		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
362 			  eb->start);
363 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
364 		return -EUCLEAN;
365 	}
366 
367 	if (found_level)
368 		btrfs_node_key_to_cpu(eb, &found_key, 0);
369 	else
370 		btrfs_item_key_to_cpu(eb, &found_key, 0);
371 	ret = btrfs_comp_cpu_keys(first_key, &found_key);
372 
373 	if (ret) {
374 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
375 		     KERN_ERR "BTRFS: tree first key check failed\n");
376 		btrfs_err(fs_info,
377 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
378 			  eb->start, parent_transid, first_key->objectid,
379 			  first_key->type, first_key->offset,
380 			  found_key.objectid, found_key.type,
381 			  found_key.offset);
382 	}
383 	return ret;
384 }
385 
386 /*
387  * helper to read a given tree block, doing retries as required when
388  * the checksums don't match and we have alternate mirrors to try.
389  *
390  * @parent_transid:	expected transid, skip check if 0
391  * @level:		expected level, mandatory check
392  * @first_key:		expected key of first slot, skip check if NULL
393  */
btree_read_extent_buffer_pages(struct extent_buffer * eb,u64 parent_transid,int level,struct btrfs_key * first_key)394 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
395 					  u64 parent_transid, int level,
396 					  struct btrfs_key *first_key)
397 {
398 	struct btrfs_fs_info *fs_info = eb->fs_info;
399 	struct extent_io_tree *io_tree;
400 	int failed = 0;
401 	int ret;
402 	int num_copies = 0;
403 	int mirror_num = 0;
404 	int failed_mirror = 0;
405 
406 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
407 	while (1) {
408 		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
409 		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
410 		if (!ret) {
411 			if (verify_parent_transid(io_tree, eb,
412 						   parent_transid, 0))
413 				ret = -EIO;
414 			else if (btrfs_verify_level_key(eb, level,
415 						first_key, parent_transid))
416 				ret = -EUCLEAN;
417 			else
418 				break;
419 		}
420 
421 		num_copies = btrfs_num_copies(fs_info,
422 					      eb->start, eb->len);
423 		if (num_copies == 1)
424 			break;
425 
426 		if (!failed_mirror) {
427 			failed = 1;
428 			failed_mirror = eb->read_mirror;
429 		}
430 
431 		mirror_num++;
432 		if (mirror_num == failed_mirror)
433 			mirror_num++;
434 
435 		if (mirror_num > num_copies)
436 			break;
437 	}
438 
439 	if (failed && !ret && failed_mirror)
440 		btrfs_repair_eb_io_failure(eb, failed_mirror);
441 
442 	return ret;
443 }
444 
445 /*
446  * checksum a dirty tree block before IO.  This has extra checks to make sure
447  * we only fill in the checksum field in the first page of a multi-page block
448  */
449 
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct page * page)450 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
451 {
452 	u64 start = page_offset(page);
453 	u64 found_start;
454 	u8 result[BTRFS_CSUM_SIZE];
455 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
456 	struct extent_buffer *eb;
457 	int ret;
458 
459 	eb = (struct extent_buffer *)page->private;
460 	if (page != eb->pages[0])
461 		return 0;
462 
463 	found_start = btrfs_header_bytenr(eb);
464 	/*
465 	 * Please do not consolidate these warnings into a single if.
466 	 * It is useful to know what went wrong.
467 	 */
468 	if (WARN_ON(found_start != start))
469 		return -EUCLEAN;
470 	if (WARN_ON(!PageUptodate(page)))
471 		return -EUCLEAN;
472 
473 	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
474 				    offsetof(struct btrfs_header, fsid),
475 				    BTRFS_FSID_SIZE) == 0);
476 
477 	csum_tree_block(eb, result);
478 
479 	if (btrfs_header_level(eb))
480 		ret = btrfs_check_node(eb);
481 	else
482 		ret = btrfs_check_leaf_full(eb);
483 
484 	if (ret < 0) {
485 		btrfs_print_tree(eb, 0);
486 		btrfs_err(fs_info,
487 		"block=%llu write time tree block corruption detected",
488 			  eb->start);
489 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
490 		return ret;
491 	}
492 	write_extent_buffer(eb, result, 0, csum_size);
493 
494 	return 0;
495 }
496 
check_tree_block_fsid(struct extent_buffer * eb)497 static int check_tree_block_fsid(struct extent_buffer *eb)
498 {
499 	struct btrfs_fs_info *fs_info = eb->fs_info;
500 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
501 	u8 fsid[BTRFS_FSID_SIZE];
502 	u8 *metadata_uuid;
503 
504 	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
505 			   BTRFS_FSID_SIZE);
506 	/*
507 	 * Checking the incompat flag is only valid for the current fs. For
508 	 * seed devices it's forbidden to have their uuid changed so reading
509 	 * ->fsid in this case is fine
510 	 */
511 	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
512 		metadata_uuid = fs_devices->metadata_uuid;
513 	else
514 		metadata_uuid = fs_devices->fsid;
515 
516 	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
517 		return 0;
518 
519 	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
520 		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
521 			return 0;
522 
523 	return 1;
524 }
525 
btrfs_validate_metadata_buffer(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)526 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio, u64 phy_offset,
527 				   struct page *page, u64 start, u64 end,
528 				   int mirror)
529 {
530 	u64 found_start;
531 	int found_level;
532 	struct extent_buffer *eb;
533 	struct btrfs_fs_info *fs_info;
534 	u16 csum_size;
535 	int ret = 0;
536 	u8 result[BTRFS_CSUM_SIZE];
537 	int reads_done;
538 
539 	if (!page->private)
540 		goto out;
541 
542 	eb = (struct extent_buffer *)page->private;
543 	fs_info = eb->fs_info;
544 	csum_size = btrfs_super_csum_size(fs_info->super_copy);
545 
546 	/* the pending IO might have been the only thing that kept this buffer
547 	 * in memory.  Make sure we have a ref for all this other checks
548 	 */
549 	atomic_inc(&eb->refs);
550 
551 	reads_done = atomic_dec_and_test(&eb->io_pages);
552 	if (!reads_done)
553 		goto err;
554 
555 	eb->read_mirror = mirror;
556 	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
557 		ret = -EIO;
558 		goto err;
559 	}
560 
561 	found_start = btrfs_header_bytenr(eb);
562 	if (found_start != eb->start) {
563 		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
564 			     eb->start, found_start);
565 		ret = -EIO;
566 		goto err;
567 	}
568 	if (check_tree_block_fsid(eb)) {
569 		btrfs_err_rl(fs_info, "bad fsid on block %llu",
570 			     eb->start);
571 		ret = -EIO;
572 		goto err;
573 	}
574 	found_level = btrfs_header_level(eb);
575 	if (found_level >= BTRFS_MAX_LEVEL) {
576 		btrfs_err(fs_info, "bad tree block level %d on %llu",
577 			  (int)btrfs_header_level(eb), eb->start);
578 		ret = -EIO;
579 		goto err;
580 	}
581 
582 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
583 				       eb, found_level);
584 
585 	csum_tree_block(eb, result);
586 
587 	if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
588 		u8 val[BTRFS_CSUM_SIZE] = { 0 };
589 
590 		read_extent_buffer(eb, &val, 0, csum_size);
591 		btrfs_warn_rl(fs_info,
592 	"%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
593 			      fs_info->sb->s_id, eb->start,
594 			      CSUM_FMT_VALUE(csum_size, val),
595 			      CSUM_FMT_VALUE(csum_size, result),
596 			      btrfs_header_level(eb));
597 		ret = -EUCLEAN;
598 		goto err;
599 	}
600 
601 	/*
602 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
603 	 * that we don't try and read the other copies of this block, just
604 	 * return -EIO.
605 	 */
606 	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
607 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
608 		ret = -EIO;
609 	}
610 
611 	if (found_level > 0 && btrfs_check_node(eb))
612 		ret = -EIO;
613 
614 	if (!ret)
615 		set_extent_buffer_uptodate(eb);
616 	else
617 		btrfs_err(fs_info,
618 			  "block=%llu read time tree block corruption detected",
619 			  eb->start);
620 err:
621 	if (reads_done &&
622 	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
623 		btree_readahead_hook(eb, ret);
624 
625 	if (ret) {
626 		/*
627 		 * our io error hook is going to dec the io pages
628 		 * again, we have to make sure it has something
629 		 * to decrement
630 		 */
631 		atomic_inc(&eb->io_pages);
632 		clear_extent_buffer_uptodate(eb);
633 	}
634 	free_extent_buffer(eb);
635 out:
636 	return ret;
637 }
638 
end_workqueue_bio(struct bio * bio)639 static void end_workqueue_bio(struct bio *bio)
640 {
641 	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
642 	struct btrfs_fs_info *fs_info;
643 	struct btrfs_workqueue *wq;
644 
645 	fs_info = end_io_wq->info;
646 	end_io_wq->status = bio->bi_status;
647 
648 	if (bio_op(bio) == REQ_OP_WRITE) {
649 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
650 			wq = fs_info->endio_meta_write_workers;
651 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
652 			wq = fs_info->endio_freespace_worker;
653 		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
654 			wq = fs_info->endio_raid56_workers;
655 		else
656 			wq = fs_info->endio_write_workers;
657 	} else {
658 		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
659 			wq = fs_info->endio_raid56_workers;
660 		else if (end_io_wq->metadata)
661 			wq = fs_info->endio_meta_workers;
662 		else
663 			wq = fs_info->endio_workers;
664 	}
665 
666 	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
667 	btrfs_queue_work(wq, &end_io_wq->work);
668 }
669 
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,enum btrfs_wq_endio_type metadata)670 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
671 			enum btrfs_wq_endio_type metadata)
672 {
673 	struct btrfs_end_io_wq *end_io_wq;
674 
675 	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
676 	if (!end_io_wq)
677 		return BLK_STS_RESOURCE;
678 
679 	end_io_wq->private = bio->bi_private;
680 	end_io_wq->end_io = bio->bi_end_io;
681 	end_io_wq->info = info;
682 	end_io_wq->status = 0;
683 	end_io_wq->bio = bio;
684 	end_io_wq->metadata = metadata;
685 
686 	bio->bi_private = end_io_wq;
687 	bio->bi_end_io = end_workqueue_bio;
688 	return 0;
689 }
690 
run_one_async_start(struct btrfs_work * work)691 static void run_one_async_start(struct btrfs_work *work)
692 {
693 	struct async_submit_bio *async;
694 	blk_status_t ret;
695 
696 	async = container_of(work, struct  async_submit_bio, work);
697 	ret = async->submit_bio_start(async->private_data, async->bio,
698 				      async->bio_offset);
699 	if (ret)
700 		async->status = ret;
701 }
702 
703 /*
704  * In order to insert checksums into the metadata in large chunks, we wait
705  * until bio submission time.   All the pages in the bio are checksummed and
706  * sums are attached onto the ordered extent record.
707  *
708  * At IO completion time the csums attached on the ordered extent record are
709  * inserted into the tree.
710  */
run_one_async_done(struct btrfs_work * work)711 static void run_one_async_done(struct btrfs_work *work)
712 {
713 	struct async_submit_bio *async;
714 	struct inode *inode;
715 	blk_status_t ret;
716 
717 	async = container_of(work, struct  async_submit_bio, work);
718 	inode = async->private_data;
719 
720 	/* If an error occurred we just want to clean up the bio and move on */
721 	if (async->status) {
722 		async->bio->bi_status = async->status;
723 		bio_endio(async->bio);
724 		return;
725 	}
726 
727 	/*
728 	 * All of the bios that pass through here are from async helpers.
729 	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
730 	 * This changes nothing when cgroups aren't in use.
731 	 */
732 	async->bio->bi_opf |= REQ_CGROUP_PUNT;
733 	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
734 	if (ret) {
735 		async->bio->bi_status = ret;
736 		bio_endio(async->bio);
737 	}
738 }
739 
run_one_async_free(struct btrfs_work * work)740 static void run_one_async_free(struct btrfs_work *work)
741 {
742 	struct async_submit_bio *async;
743 
744 	async = container_of(work, struct  async_submit_bio, work);
745 	kfree(async);
746 }
747 
btrfs_wq_submit_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset,void * private_data,extent_submit_bio_start_t * submit_bio_start)748 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
749 				 int mirror_num, unsigned long bio_flags,
750 				 u64 bio_offset, void *private_data,
751 				 extent_submit_bio_start_t *submit_bio_start)
752 {
753 	struct async_submit_bio *async;
754 
755 	async = kmalloc(sizeof(*async), GFP_NOFS);
756 	if (!async)
757 		return BLK_STS_RESOURCE;
758 
759 	async->private_data = private_data;
760 	async->bio = bio;
761 	async->mirror_num = mirror_num;
762 	async->submit_bio_start = submit_bio_start;
763 
764 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
765 			run_one_async_free);
766 
767 	async->bio_offset = bio_offset;
768 
769 	async->status = 0;
770 
771 	if (op_is_sync(bio->bi_opf))
772 		btrfs_set_work_high_priority(&async->work);
773 
774 	btrfs_queue_work(fs_info->workers, &async->work);
775 	return 0;
776 }
777 
btree_csum_one_bio(struct bio * bio)778 static blk_status_t btree_csum_one_bio(struct bio *bio)
779 {
780 	struct bio_vec *bvec;
781 	struct btrfs_root *root;
782 	int ret = 0;
783 	struct bvec_iter_all iter_all;
784 
785 	ASSERT(!bio_flagged(bio, BIO_CLONED));
786 	bio_for_each_segment_all(bvec, bio, iter_all) {
787 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
788 		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
789 		if (ret)
790 			break;
791 	}
792 
793 	return errno_to_blk_status(ret);
794 }
795 
btree_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)796 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
797 					     u64 bio_offset)
798 {
799 	/*
800 	 * when we're called for a write, we're already in the async
801 	 * submission context.  Just jump into btrfs_map_bio
802 	 */
803 	return btree_csum_one_bio(bio);
804 }
805 
check_async_write(struct btrfs_fs_info * fs_info,struct btrfs_inode * bi)806 static int check_async_write(struct btrfs_fs_info *fs_info,
807 			     struct btrfs_inode *bi)
808 {
809 	if (atomic_read(&bi->sync_writers))
810 		return 0;
811 	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
812 		return 0;
813 	return 1;
814 }
815 
btrfs_submit_metadata_bio(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)816 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
817 				       int mirror_num, unsigned long bio_flags)
818 {
819 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
820 	int async = check_async_write(fs_info, BTRFS_I(inode));
821 	blk_status_t ret;
822 
823 	if (bio_op(bio) != REQ_OP_WRITE) {
824 		/*
825 		 * called for a read, do the setup so that checksum validation
826 		 * can happen in the async kernel threads
827 		 */
828 		ret = btrfs_bio_wq_end_io(fs_info, bio,
829 					  BTRFS_WQ_ENDIO_METADATA);
830 		if (ret)
831 			goto out_w_error;
832 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
833 	} else if (!async) {
834 		ret = btree_csum_one_bio(bio);
835 		if (ret)
836 			goto out_w_error;
837 		ret = btrfs_map_bio(fs_info, bio, mirror_num);
838 	} else {
839 		/*
840 		 * kthread helpers are used to submit writes so that
841 		 * checksumming can happen in parallel across all CPUs
842 		 */
843 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
844 					  0, inode, btree_submit_bio_start);
845 	}
846 
847 	if (ret)
848 		goto out_w_error;
849 	return 0;
850 
851 out_w_error:
852 	bio->bi_status = ret;
853 	bio_endio(bio);
854 	return ret;
855 }
856 
857 #ifdef CONFIG_MIGRATION
btree_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)858 static int btree_migratepage(struct address_space *mapping,
859 			struct page *newpage, struct page *page,
860 			enum migrate_mode mode)
861 {
862 	/*
863 	 * we can't safely write a btree page from here,
864 	 * we haven't done the locking hook
865 	 */
866 	if (PageDirty(page))
867 		return -EAGAIN;
868 	/*
869 	 * Buffers may be managed in a filesystem specific way.
870 	 * We must have no buffers or drop them.
871 	 */
872 	if (page_has_private(page) &&
873 	    !try_to_release_page(page, GFP_KERNEL))
874 		return -EAGAIN;
875 	return migrate_page(mapping, newpage, page, mode);
876 }
877 #endif
878 
879 
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)880 static int btree_writepages(struct address_space *mapping,
881 			    struct writeback_control *wbc)
882 {
883 	struct btrfs_fs_info *fs_info;
884 	int ret;
885 
886 	if (wbc->sync_mode == WB_SYNC_NONE) {
887 
888 		if (wbc->for_kupdate)
889 			return 0;
890 
891 		fs_info = BTRFS_I(mapping->host)->root->fs_info;
892 		/* this is a bit racy, but that's ok */
893 		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
894 					     BTRFS_DIRTY_METADATA_THRESH,
895 					     fs_info->dirty_metadata_batch);
896 		if (ret < 0)
897 			return 0;
898 	}
899 	return btree_write_cache_pages(mapping, wbc);
900 }
901 
btree_releasepage(struct page * page,gfp_t gfp_flags)902 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
903 {
904 	if (PageWriteback(page) || PageDirty(page))
905 		return 0;
906 
907 	return try_release_extent_buffer(page);
908 }
909 
btree_invalidatepage(struct page * page,unsigned int offset,unsigned int length)910 static void btree_invalidatepage(struct page *page, unsigned int offset,
911 				 unsigned int length)
912 {
913 	struct extent_io_tree *tree;
914 	tree = &BTRFS_I(page->mapping->host)->io_tree;
915 	extent_invalidatepage(tree, page, offset);
916 	btree_releasepage(page, GFP_NOFS);
917 	if (PagePrivate(page)) {
918 		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
919 			   "page private not zero on page %llu",
920 			   (unsigned long long)page_offset(page));
921 		detach_page_private(page);
922 	}
923 }
924 
btree_set_page_dirty(struct page * page)925 static int btree_set_page_dirty(struct page *page)
926 {
927 #ifdef DEBUG
928 	struct extent_buffer *eb;
929 
930 	BUG_ON(!PagePrivate(page));
931 	eb = (struct extent_buffer *)page->private;
932 	BUG_ON(!eb);
933 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
934 	BUG_ON(!atomic_read(&eb->refs));
935 	btrfs_assert_tree_locked(eb);
936 #endif
937 	return __set_page_dirty_nobuffers(page);
938 }
939 
940 static const struct address_space_operations btree_aops = {
941 	.writepages	= btree_writepages,
942 	.releasepage	= btree_releasepage,
943 	.invalidatepage = btree_invalidatepage,
944 #ifdef CONFIG_MIGRATION
945 	.migratepage	= btree_migratepage,
946 #endif
947 	.set_page_dirty = btree_set_page_dirty,
948 };
949 
readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)950 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
951 {
952 	struct extent_buffer *buf = NULL;
953 	int ret;
954 
955 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
956 	if (IS_ERR(buf))
957 		return;
958 
959 	ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
960 	if (ret < 0)
961 		free_extent_buffer_stale(buf);
962 	else
963 		free_extent_buffer(buf);
964 }
965 
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)966 struct extent_buffer *btrfs_find_create_tree_block(
967 						struct btrfs_fs_info *fs_info,
968 						u64 bytenr)
969 {
970 	if (btrfs_is_testing(fs_info))
971 		return alloc_test_extent_buffer(fs_info, bytenr);
972 	return alloc_extent_buffer(fs_info, bytenr);
973 }
974 
975 /*
976  * Read tree block at logical address @bytenr and do variant basic but critical
977  * verification.
978  *
979  * @parent_transid:	expected transid of this tree block, skip check if 0
980  * @level:		expected level, mandatory check
981  * @first_key:		expected key in slot 0, skip check if NULL
982  */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 parent_transid,int level,struct btrfs_key * first_key)983 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
984 				      u64 parent_transid, int level,
985 				      struct btrfs_key *first_key)
986 {
987 	struct extent_buffer *buf = NULL;
988 	int ret;
989 
990 	buf = btrfs_find_create_tree_block(fs_info, bytenr);
991 	if (IS_ERR(buf))
992 		return buf;
993 
994 	ret = btree_read_extent_buffer_pages(buf, parent_transid,
995 					     level, first_key);
996 	if (ret) {
997 		free_extent_buffer_stale(buf);
998 		return ERR_PTR(ret);
999 	}
1000 	return buf;
1001 
1002 }
1003 
btrfs_clean_tree_block(struct extent_buffer * buf)1004 void btrfs_clean_tree_block(struct extent_buffer *buf)
1005 {
1006 	struct btrfs_fs_info *fs_info = buf->fs_info;
1007 	if (btrfs_header_generation(buf) ==
1008 	    fs_info->running_transaction->transid) {
1009 		btrfs_assert_tree_locked(buf);
1010 
1011 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1012 			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1013 						 -buf->len,
1014 						 fs_info->dirty_metadata_batch);
1015 			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1016 			btrfs_set_lock_blocking_write(buf);
1017 			clear_extent_buffer_dirty(buf);
1018 		}
1019 	}
1020 }
1021 
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)1022 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1023 			 u64 objectid)
1024 {
1025 	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1026 	root->fs_info = fs_info;
1027 	root->node = NULL;
1028 	root->commit_root = NULL;
1029 	root->state = 0;
1030 	root->orphan_cleanup_state = 0;
1031 
1032 	root->last_trans = 0;
1033 	root->highest_objectid = 0;
1034 	root->nr_delalloc_inodes = 0;
1035 	root->nr_ordered_extents = 0;
1036 	root->inode_tree = RB_ROOT;
1037 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1038 	root->block_rsv = NULL;
1039 
1040 	INIT_LIST_HEAD(&root->dirty_list);
1041 	INIT_LIST_HEAD(&root->root_list);
1042 	INIT_LIST_HEAD(&root->delalloc_inodes);
1043 	INIT_LIST_HEAD(&root->delalloc_root);
1044 	INIT_LIST_HEAD(&root->ordered_extents);
1045 	INIT_LIST_HEAD(&root->ordered_root);
1046 	INIT_LIST_HEAD(&root->reloc_dirty_list);
1047 	INIT_LIST_HEAD(&root->logged_list[0]);
1048 	INIT_LIST_HEAD(&root->logged_list[1]);
1049 	spin_lock_init(&root->inode_lock);
1050 	spin_lock_init(&root->delalloc_lock);
1051 	spin_lock_init(&root->ordered_extent_lock);
1052 	spin_lock_init(&root->accounting_lock);
1053 	spin_lock_init(&root->log_extents_lock[0]);
1054 	spin_lock_init(&root->log_extents_lock[1]);
1055 	spin_lock_init(&root->qgroup_meta_rsv_lock);
1056 	mutex_init(&root->objectid_mutex);
1057 	mutex_init(&root->log_mutex);
1058 	mutex_init(&root->ordered_extent_mutex);
1059 	mutex_init(&root->delalloc_mutex);
1060 	init_waitqueue_head(&root->qgroup_flush_wait);
1061 	init_waitqueue_head(&root->log_writer_wait);
1062 	init_waitqueue_head(&root->log_commit_wait[0]);
1063 	init_waitqueue_head(&root->log_commit_wait[1]);
1064 	INIT_LIST_HEAD(&root->log_ctxs[0]);
1065 	INIT_LIST_HEAD(&root->log_ctxs[1]);
1066 	atomic_set(&root->log_commit[0], 0);
1067 	atomic_set(&root->log_commit[1], 0);
1068 	atomic_set(&root->log_writers, 0);
1069 	atomic_set(&root->log_batch, 0);
1070 	refcount_set(&root->refs, 1);
1071 	atomic_set(&root->snapshot_force_cow, 0);
1072 	atomic_set(&root->nr_swapfiles, 0);
1073 	root->log_transid = 0;
1074 	root->log_transid_committed = -1;
1075 	root->last_log_commit = 0;
1076 	if (!dummy) {
1077 		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1078 				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1079 		extent_io_tree_init(fs_info, &root->log_csum_range,
1080 				    IO_TREE_LOG_CSUM_RANGE, NULL);
1081 	}
1082 
1083 	memset(&root->root_key, 0, sizeof(root->root_key));
1084 	memset(&root->root_item, 0, sizeof(root->root_item));
1085 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1086 	root->root_key.objectid = objectid;
1087 	root->anon_dev = 0;
1088 
1089 	spin_lock_init(&root->root_item_lock);
1090 	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1091 #ifdef CONFIG_BTRFS_DEBUG
1092 	INIT_LIST_HEAD(&root->leak_list);
1093 	spin_lock(&fs_info->fs_roots_radix_lock);
1094 	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1095 	spin_unlock(&fs_info->fs_roots_radix_lock);
1096 #endif
1097 }
1098 
btrfs_alloc_root(struct btrfs_fs_info * fs_info,u64 objectid,gfp_t flags)1099 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1100 					   u64 objectid, gfp_t flags)
1101 {
1102 	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1103 	if (root)
1104 		__setup_root(root, fs_info, objectid);
1105 	return root;
1106 }
1107 
1108 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1109 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)1110 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1111 {
1112 	struct btrfs_root *root;
1113 
1114 	if (!fs_info)
1115 		return ERR_PTR(-EINVAL);
1116 
1117 	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1118 	if (!root)
1119 		return ERR_PTR(-ENOMEM);
1120 
1121 	/* We don't use the stripesize in selftest, set it as sectorsize */
1122 	root->alloc_bytenr = 0;
1123 
1124 	return root;
1125 }
1126 #endif
1127 
btrfs_create_tree(struct btrfs_trans_handle * trans,u64 objectid)1128 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1129 				     u64 objectid)
1130 {
1131 	struct btrfs_fs_info *fs_info = trans->fs_info;
1132 	struct extent_buffer *leaf;
1133 	struct btrfs_root *tree_root = fs_info->tree_root;
1134 	struct btrfs_root *root;
1135 	struct btrfs_key key;
1136 	unsigned int nofs_flag;
1137 	int ret = 0;
1138 
1139 	/*
1140 	 * We're holding a transaction handle, so use a NOFS memory allocation
1141 	 * context to avoid deadlock if reclaim happens.
1142 	 */
1143 	nofs_flag = memalloc_nofs_save();
1144 	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1145 	memalloc_nofs_restore(nofs_flag);
1146 	if (!root)
1147 		return ERR_PTR(-ENOMEM);
1148 
1149 	root->root_key.objectid = objectid;
1150 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1151 	root->root_key.offset = 0;
1152 
1153 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1154 				      BTRFS_NESTING_NORMAL);
1155 	if (IS_ERR(leaf)) {
1156 		ret = PTR_ERR(leaf);
1157 		leaf = NULL;
1158 		goto fail;
1159 	}
1160 
1161 	root->node = leaf;
1162 	btrfs_mark_buffer_dirty(leaf);
1163 
1164 	root->commit_root = btrfs_root_node(root);
1165 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1166 
1167 	root->root_item.flags = 0;
1168 	root->root_item.byte_limit = 0;
1169 	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1170 	btrfs_set_root_generation(&root->root_item, trans->transid);
1171 	btrfs_set_root_level(&root->root_item, 0);
1172 	btrfs_set_root_refs(&root->root_item, 1);
1173 	btrfs_set_root_used(&root->root_item, leaf->len);
1174 	btrfs_set_root_last_snapshot(&root->root_item, 0);
1175 	btrfs_set_root_dirid(&root->root_item, 0);
1176 	if (is_fstree(objectid))
1177 		generate_random_guid(root->root_item.uuid);
1178 	else
1179 		export_guid(root->root_item.uuid, &guid_null);
1180 	root->root_item.drop_level = 0;
1181 
1182 	key.objectid = objectid;
1183 	key.type = BTRFS_ROOT_ITEM_KEY;
1184 	key.offset = 0;
1185 	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1186 	if (ret)
1187 		goto fail;
1188 
1189 	btrfs_tree_unlock(leaf);
1190 
1191 	return root;
1192 
1193 fail:
1194 	if (leaf)
1195 		btrfs_tree_unlock(leaf);
1196 	btrfs_put_root(root);
1197 
1198 	return ERR_PTR(ret);
1199 }
1200 
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1201 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1202 					 struct btrfs_fs_info *fs_info)
1203 {
1204 	struct btrfs_root *root;
1205 	struct extent_buffer *leaf;
1206 
1207 	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1208 	if (!root)
1209 		return ERR_PTR(-ENOMEM);
1210 
1211 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1212 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1213 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1214 
1215 	/*
1216 	 * DON'T set SHAREABLE bit for log trees.
1217 	 *
1218 	 * Log trees are not exposed to user space thus can't be snapshotted,
1219 	 * and they go away before a real commit is actually done.
1220 	 *
1221 	 * They do store pointers to file data extents, and those reference
1222 	 * counts still get updated (along with back refs to the log tree).
1223 	 */
1224 
1225 	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1226 			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1227 	if (IS_ERR(leaf)) {
1228 		btrfs_put_root(root);
1229 		return ERR_CAST(leaf);
1230 	}
1231 
1232 	root->node = leaf;
1233 
1234 	btrfs_mark_buffer_dirty(root->node);
1235 	btrfs_tree_unlock(root->node);
1236 	return root;
1237 }
1238 
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1239 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1240 			     struct btrfs_fs_info *fs_info)
1241 {
1242 	struct btrfs_root *log_root;
1243 
1244 	log_root = alloc_log_tree(trans, fs_info);
1245 	if (IS_ERR(log_root))
1246 		return PTR_ERR(log_root);
1247 	WARN_ON(fs_info->log_root_tree);
1248 	fs_info->log_root_tree = log_root;
1249 	return 0;
1250 }
1251 
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1252 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1253 		       struct btrfs_root *root)
1254 {
1255 	struct btrfs_fs_info *fs_info = root->fs_info;
1256 	struct btrfs_root *log_root;
1257 	struct btrfs_inode_item *inode_item;
1258 
1259 	log_root = alloc_log_tree(trans, fs_info);
1260 	if (IS_ERR(log_root))
1261 		return PTR_ERR(log_root);
1262 
1263 	log_root->last_trans = trans->transid;
1264 	log_root->root_key.offset = root->root_key.objectid;
1265 
1266 	inode_item = &log_root->root_item.inode;
1267 	btrfs_set_stack_inode_generation(inode_item, 1);
1268 	btrfs_set_stack_inode_size(inode_item, 3);
1269 	btrfs_set_stack_inode_nlink(inode_item, 1);
1270 	btrfs_set_stack_inode_nbytes(inode_item,
1271 				     fs_info->nodesize);
1272 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1273 
1274 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1275 
1276 	WARN_ON(root->log_root);
1277 	root->log_root = log_root;
1278 	root->log_transid = 0;
1279 	root->log_transid_committed = -1;
1280 	root->last_log_commit = 0;
1281 	return 0;
1282 }
1283 
read_tree_root_path(struct btrfs_root * tree_root,struct btrfs_path * path,struct btrfs_key * key)1284 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1285 					      struct btrfs_path *path,
1286 					      struct btrfs_key *key)
1287 {
1288 	struct btrfs_root *root;
1289 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1290 	u64 generation;
1291 	int ret;
1292 	int level;
1293 
1294 	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1295 	if (!root)
1296 		return ERR_PTR(-ENOMEM);
1297 
1298 	ret = btrfs_find_root(tree_root, key, path,
1299 			      &root->root_item, &root->root_key);
1300 	if (ret) {
1301 		if (ret > 0)
1302 			ret = -ENOENT;
1303 		goto fail;
1304 	}
1305 
1306 	generation = btrfs_root_generation(&root->root_item);
1307 	level = btrfs_root_level(&root->root_item);
1308 	root->node = read_tree_block(fs_info,
1309 				     btrfs_root_bytenr(&root->root_item),
1310 				     generation, level, NULL);
1311 	if (IS_ERR(root->node)) {
1312 		ret = PTR_ERR(root->node);
1313 		root->node = NULL;
1314 		goto fail;
1315 	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1316 		ret = -EIO;
1317 		goto fail;
1318 	}
1319 	root->commit_root = btrfs_root_node(root);
1320 	return root;
1321 fail:
1322 	btrfs_put_root(root);
1323 	return ERR_PTR(ret);
1324 }
1325 
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1326 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1327 					struct btrfs_key *key)
1328 {
1329 	struct btrfs_root *root;
1330 	struct btrfs_path *path;
1331 
1332 	path = btrfs_alloc_path();
1333 	if (!path)
1334 		return ERR_PTR(-ENOMEM);
1335 	root = read_tree_root_path(tree_root, path, key);
1336 	btrfs_free_path(path);
1337 
1338 	return root;
1339 }
1340 
1341 /*
1342  * Initialize subvolume root in-memory structure
1343  *
1344  * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1345  */
btrfs_init_fs_root(struct btrfs_root * root,dev_t anon_dev)1346 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1347 {
1348 	int ret;
1349 	unsigned int nofs_flag;
1350 
1351 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1352 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1353 					GFP_NOFS);
1354 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1355 		ret = -ENOMEM;
1356 		goto fail;
1357 	}
1358 
1359 	/*
1360 	 * We might be called under a transaction (e.g. indirect backref
1361 	 * resolution) which could deadlock if it triggers memory reclaim
1362 	 */
1363 	nofs_flag = memalloc_nofs_save();
1364 	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1365 	memalloc_nofs_restore(nofs_flag);
1366 	if (ret)
1367 		goto fail;
1368 
1369 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1370 	    root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1371 		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1372 		btrfs_check_and_init_root_item(&root->root_item);
1373 	}
1374 
1375 	btrfs_init_free_ino_ctl(root);
1376 	spin_lock_init(&root->ino_cache_lock);
1377 	init_waitqueue_head(&root->ino_cache_wait);
1378 
1379 	/*
1380 	 * Don't assign anonymous block device to roots that are not exposed to
1381 	 * userspace, the id pool is limited to 1M
1382 	 */
1383 	if (is_fstree(root->root_key.objectid) &&
1384 	    btrfs_root_refs(&root->root_item) > 0) {
1385 		if (!anon_dev) {
1386 			ret = get_anon_bdev(&root->anon_dev);
1387 			if (ret)
1388 				goto fail;
1389 		} else {
1390 			root->anon_dev = anon_dev;
1391 		}
1392 	}
1393 
1394 	mutex_lock(&root->objectid_mutex);
1395 	ret = btrfs_find_highest_objectid(root,
1396 					&root->highest_objectid);
1397 	if (ret) {
1398 		mutex_unlock(&root->objectid_mutex);
1399 		goto fail;
1400 	}
1401 
1402 	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1403 
1404 	mutex_unlock(&root->objectid_mutex);
1405 
1406 	return 0;
1407 fail:
1408 	/* The caller is responsible to call btrfs_free_fs_root */
1409 	return ret;
1410 }
1411 
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1412 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1413 					       u64 root_id)
1414 {
1415 	struct btrfs_root *root;
1416 
1417 	spin_lock(&fs_info->fs_roots_radix_lock);
1418 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1419 				 (unsigned long)root_id);
1420 	if (root)
1421 		root = btrfs_grab_root(root);
1422 	spin_unlock(&fs_info->fs_roots_radix_lock);
1423 	return root;
1424 }
1425 
btrfs_get_global_root(struct btrfs_fs_info * fs_info,u64 objectid)1426 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1427 						u64 objectid)
1428 {
1429 	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1430 		return btrfs_grab_root(fs_info->tree_root);
1431 	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1432 		return btrfs_grab_root(fs_info->extent_root);
1433 	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1434 		return btrfs_grab_root(fs_info->chunk_root);
1435 	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1436 		return btrfs_grab_root(fs_info->dev_root);
1437 	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1438 		return btrfs_grab_root(fs_info->csum_root);
1439 	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1440 		return btrfs_grab_root(fs_info->quota_root) ?
1441 			fs_info->quota_root : ERR_PTR(-ENOENT);
1442 	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1443 		return btrfs_grab_root(fs_info->uuid_root) ?
1444 			fs_info->uuid_root : ERR_PTR(-ENOENT);
1445 	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1446 		return btrfs_grab_root(fs_info->free_space_root) ?
1447 			fs_info->free_space_root : ERR_PTR(-ENOENT);
1448 	return NULL;
1449 }
1450 
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1451 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1452 			 struct btrfs_root *root)
1453 {
1454 	int ret;
1455 
1456 	ret = radix_tree_preload(GFP_NOFS);
1457 	if (ret)
1458 		return ret;
1459 
1460 	spin_lock(&fs_info->fs_roots_radix_lock);
1461 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1462 				(unsigned long)root->root_key.objectid,
1463 				root);
1464 	if (ret == 0) {
1465 		btrfs_grab_root(root);
1466 		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1467 	}
1468 	spin_unlock(&fs_info->fs_roots_radix_lock);
1469 	radix_tree_preload_end();
1470 
1471 	return ret;
1472 }
1473 
btrfs_check_leaked_roots(struct btrfs_fs_info * fs_info)1474 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1475 {
1476 #ifdef CONFIG_BTRFS_DEBUG
1477 	struct btrfs_root *root;
1478 
1479 	while (!list_empty(&fs_info->allocated_roots)) {
1480 		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1481 
1482 		root = list_first_entry(&fs_info->allocated_roots,
1483 					struct btrfs_root, leak_list);
1484 		btrfs_err(fs_info, "leaked root %s refcount %d",
1485 			  btrfs_root_name(&root->root_key, buf),
1486 			  refcount_read(&root->refs));
1487 		while (refcount_read(&root->refs) > 1)
1488 			btrfs_put_root(root);
1489 		btrfs_put_root(root);
1490 	}
1491 #endif
1492 }
1493 
btrfs_free_fs_info(struct btrfs_fs_info * fs_info)1494 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1495 {
1496 	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1497 	percpu_counter_destroy(&fs_info->delalloc_bytes);
1498 	percpu_counter_destroy(&fs_info->dio_bytes);
1499 	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1500 	btrfs_free_csum_hash(fs_info);
1501 	btrfs_free_stripe_hash_table(fs_info);
1502 	btrfs_free_ref_cache(fs_info);
1503 	kfree(fs_info->balance_ctl);
1504 	kfree(fs_info->delayed_root);
1505 	btrfs_put_root(fs_info->extent_root);
1506 	btrfs_put_root(fs_info->tree_root);
1507 	btrfs_put_root(fs_info->chunk_root);
1508 	btrfs_put_root(fs_info->dev_root);
1509 	btrfs_put_root(fs_info->csum_root);
1510 	btrfs_put_root(fs_info->quota_root);
1511 	btrfs_put_root(fs_info->uuid_root);
1512 	btrfs_put_root(fs_info->free_space_root);
1513 	btrfs_put_root(fs_info->fs_root);
1514 	btrfs_put_root(fs_info->data_reloc_root);
1515 	btrfs_check_leaked_roots(fs_info);
1516 	btrfs_extent_buffer_leak_debug_check(fs_info);
1517 	kfree(fs_info->super_copy);
1518 	kfree(fs_info->super_for_commit);
1519 	kvfree(fs_info);
1520 }
1521 
1522 
1523 /*
1524  * Get an in-memory reference of a root structure.
1525  *
1526  * For essential trees like root/extent tree, we grab it from fs_info directly.
1527  * For subvolume trees, we check the cached filesystem roots first. If not
1528  * found, then read it from disk and add it to cached fs roots.
1529  *
1530  * Caller should release the root by calling btrfs_put_root() after the usage.
1531  *
1532  * NOTE: Reloc and log trees can't be read by this function as they share the
1533  *	 same root objectid.
1534  *
1535  * @objectid:	root id
1536  * @anon_dev:	preallocated anonymous block device number for new roots,
1537  * 		pass 0 for new allocation.
1538  * @check_ref:	whether to check root item references, If true, return -ENOENT
1539  *		for orphan roots
1540  */
btrfs_get_root_ref(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev,bool check_ref)1541 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1542 					     u64 objectid, dev_t anon_dev,
1543 					     bool check_ref)
1544 {
1545 	struct btrfs_root *root;
1546 	struct btrfs_path *path;
1547 	struct btrfs_key key;
1548 	int ret;
1549 
1550 	root = btrfs_get_global_root(fs_info, objectid);
1551 	if (root)
1552 		return root;
1553 again:
1554 	root = btrfs_lookup_fs_root(fs_info, objectid);
1555 	if (root) {
1556 		/*
1557 		 * Some other caller may have read out the newly inserted
1558 		 * subvolume already (for things like backref walk etc).  Not
1559 		 * that common but still possible.  In that case, we just need
1560 		 * to free the anon_dev.
1561 		 */
1562 		if (unlikely(anon_dev)) {
1563 			free_anon_bdev(anon_dev);
1564 			anon_dev = 0;
1565 		}
1566 
1567 		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1568 			btrfs_put_root(root);
1569 			return ERR_PTR(-ENOENT);
1570 		}
1571 		return root;
1572 	}
1573 
1574 	key.objectid = objectid;
1575 	key.type = BTRFS_ROOT_ITEM_KEY;
1576 	key.offset = (u64)-1;
1577 	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1578 	if (IS_ERR(root))
1579 		return root;
1580 
1581 	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1582 		ret = -ENOENT;
1583 		goto fail;
1584 	}
1585 
1586 	ret = btrfs_init_fs_root(root, anon_dev);
1587 	if (ret)
1588 		goto fail;
1589 
1590 	path = btrfs_alloc_path();
1591 	if (!path) {
1592 		ret = -ENOMEM;
1593 		goto fail;
1594 	}
1595 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1596 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1597 	key.offset = objectid;
1598 
1599 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1600 	btrfs_free_path(path);
1601 	if (ret < 0)
1602 		goto fail;
1603 	if (ret == 0)
1604 		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1605 
1606 	ret = btrfs_insert_fs_root(fs_info, root);
1607 	if (ret) {
1608 		if (ret == -EEXIST) {
1609 			btrfs_put_root(root);
1610 			goto again;
1611 		}
1612 		goto fail;
1613 	}
1614 	return root;
1615 fail:
1616 	/*
1617 	 * If our caller provided us an anonymous device, then it's his
1618 	 * responsability to free it in case we fail. So we have to set our
1619 	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1620 	 * and once again by our caller.
1621 	 */
1622 	if (anon_dev)
1623 		root->anon_dev = 0;
1624 	btrfs_put_root(root);
1625 	return ERR_PTR(ret);
1626 }
1627 
1628 /*
1629  * Get in-memory reference of a root structure
1630  *
1631  * @objectid:	tree objectid
1632  * @check_ref:	if set, verify that the tree exists and the item has at least
1633  *		one reference
1634  */
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,bool check_ref)1635 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1636 				     u64 objectid, bool check_ref)
1637 {
1638 	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1639 }
1640 
1641 /*
1642  * Get in-memory reference of a root structure, created as new, optionally pass
1643  * the anonymous block device id
1644  *
1645  * @objectid:	tree objectid
1646  * @anon_dev:	if zero, allocate a new anonymous block device or use the
1647  *		parameter value
1648  */
btrfs_get_new_fs_root(struct btrfs_fs_info * fs_info,u64 objectid,dev_t anon_dev)1649 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1650 					 u64 objectid, dev_t anon_dev)
1651 {
1652 	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1653 }
1654 
1655 /*
1656  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1657  * @fs_info:	the fs_info
1658  * @objectid:	the objectid we need to lookup
1659  *
1660  * This is exclusively used for backref walking, and exists specifically because
1661  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1662  * creation time, which means we may have to read the tree_root in order to look
1663  * up a fs root that is not in memory.  If the root is not in memory we will
1664  * read the tree root commit root and look up the fs root from there.  This is a
1665  * temporary root, it will not be inserted into the radix tree as it doesn't
1666  * have the most uptodate information, it'll simply be discarded once the
1667  * backref code is finished using the root.
1668  */
btrfs_get_fs_root_commit_root(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 objectid)1669 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1670 						 struct btrfs_path *path,
1671 						 u64 objectid)
1672 {
1673 	struct btrfs_root *root;
1674 	struct btrfs_key key;
1675 
1676 	ASSERT(path->search_commit_root && path->skip_locking);
1677 
1678 	/*
1679 	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1680 	 * since this is called via the backref walking code we won't be looking
1681 	 * up a root that doesn't exist, unless there's corruption.  So if root
1682 	 * != NULL just return it.
1683 	 */
1684 	root = btrfs_get_global_root(fs_info, objectid);
1685 	if (root)
1686 		return root;
1687 
1688 	root = btrfs_lookup_fs_root(fs_info, objectid);
1689 	if (root)
1690 		return root;
1691 
1692 	key.objectid = objectid;
1693 	key.type = BTRFS_ROOT_ITEM_KEY;
1694 	key.offset = (u64)-1;
1695 	root = read_tree_root_path(fs_info->tree_root, path, &key);
1696 	btrfs_release_path(path);
1697 
1698 	return root;
1699 }
1700 
1701 /*
1702  * called by the kthread helper functions to finally call the bio end_io
1703  * functions.  This is where read checksum verification actually happens
1704  */
end_workqueue_fn(struct btrfs_work * work)1705 static void end_workqueue_fn(struct btrfs_work *work)
1706 {
1707 	struct bio *bio;
1708 	struct btrfs_end_io_wq *end_io_wq;
1709 
1710 	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1711 	bio = end_io_wq->bio;
1712 
1713 	bio->bi_status = end_io_wq->status;
1714 	bio->bi_private = end_io_wq->private;
1715 	bio->bi_end_io = end_io_wq->end_io;
1716 	bio_endio(bio);
1717 	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1718 }
1719 
cleaner_kthread(void * arg)1720 static int cleaner_kthread(void *arg)
1721 {
1722 	struct btrfs_root *root = arg;
1723 	struct btrfs_fs_info *fs_info = root->fs_info;
1724 	int again;
1725 
1726 	while (1) {
1727 		again = 0;
1728 
1729 		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1730 
1731 		/* Make the cleaner go to sleep early. */
1732 		if (btrfs_need_cleaner_sleep(fs_info))
1733 			goto sleep;
1734 
1735 		/*
1736 		 * Do not do anything if we might cause open_ctree() to block
1737 		 * before we have finished mounting the filesystem.
1738 		 */
1739 		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1740 			goto sleep;
1741 
1742 		if (!mutex_trylock(&fs_info->cleaner_mutex))
1743 			goto sleep;
1744 
1745 		/*
1746 		 * Avoid the problem that we change the status of the fs
1747 		 * during the above check and trylock.
1748 		 */
1749 		if (btrfs_need_cleaner_sleep(fs_info)) {
1750 			mutex_unlock(&fs_info->cleaner_mutex);
1751 			goto sleep;
1752 		}
1753 
1754 		btrfs_run_delayed_iputs(fs_info);
1755 
1756 		again = btrfs_clean_one_deleted_snapshot(root);
1757 		mutex_unlock(&fs_info->cleaner_mutex);
1758 
1759 		/*
1760 		 * The defragger has dealt with the R/O remount and umount,
1761 		 * needn't do anything special here.
1762 		 */
1763 		btrfs_run_defrag_inodes(fs_info);
1764 
1765 		/*
1766 		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1767 		 * with relocation (btrfs_relocate_chunk) and relocation
1768 		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1769 		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1770 		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1771 		 * unused block groups.
1772 		 */
1773 		btrfs_delete_unused_bgs(fs_info);
1774 sleep:
1775 		clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1776 		if (kthread_should_park())
1777 			kthread_parkme();
1778 		if (kthread_should_stop())
1779 			return 0;
1780 		if (!again) {
1781 			set_current_state(TASK_INTERRUPTIBLE);
1782 			schedule();
1783 			__set_current_state(TASK_RUNNING);
1784 		}
1785 	}
1786 }
1787 
transaction_kthread(void * arg)1788 static int transaction_kthread(void *arg)
1789 {
1790 	struct btrfs_root *root = arg;
1791 	struct btrfs_fs_info *fs_info = root->fs_info;
1792 	struct btrfs_trans_handle *trans;
1793 	struct btrfs_transaction *cur;
1794 	u64 transid;
1795 	time64_t now;
1796 	unsigned long delay;
1797 	bool cannot_commit;
1798 
1799 	do {
1800 		cannot_commit = false;
1801 		delay = HZ * fs_info->commit_interval;
1802 		mutex_lock(&fs_info->transaction_kthread_mutex);
1803 
1804 		spin_lock(&fs_info->trans_lock);
1805 		cur = fs_info->running_transaction;
1806 		if (!cur) {
1807 			spin_unlock(&fs_info->trans_lock);
1808 			goto sleep;
1809 		}
1810 
1811 		now = ktime_get_seconds();
1812 		if (cur->state < TRANS_STATE_COMMIT_START &&
1813 		    (now < cur->start_time ||
1814 		     now - cur->start_time < fs_info->commit_interval)) {
1815 			spin_unlock(&fs_info->trans_lock);
1816 			delay = HZ * 5;
1817 			goto sleep;
1818 		}
1819 		transid = cur->transid;
1820 		spin_unlock(&fs_info->trans_lock);
1821 
1822 		/* If the file system is aborted, this will always fail. */
1823 		trans = btrfs_attach_transaction(root);
1824 		if (IS_ERR(trans)) {
1825 			if (PTR_ERR(trans) != -ENOENT)
1826 				cannot_commit = true;
1827 			goto sleep;
1828 		}
1829 		if (transid == trans->transid) {
1830 			btrfs_commit_transaction(trans);
1831 		} else {
1832 			btrfs_end_transaction(trans);
1833 		}
1834 sleep:
1835 		wake_up_process(fs_info->cleaner_kthread);
1836 		mutex_unlock(&fs_info->transaction_kthread_mutex);
1837 
1838 		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1839 				      &fs_info->fs_state)))
1840 			btrfs_cleanup_transaction(fs_info);
1841 		if (!kthread_should_stop() &&
1842 				(!btrfs_transaction_blocked(fs_info) ||
1843 				 cannot_commit))
1844 			schedule_timeout_interruptible(delay);
1845 	} while (!kthread_should_stop());
1846 	return 0;
1847 }
1848 
1849 /*
1850  * This will find the highest generation in the array of root backups.  The
1851  * index of the highest array is returned, or -EINVAL if we can't find
1852  * anything.
1853  *
1854  * We check to make sure the array is valid by comparing the
1855  * generation of the latest  root in the array with the generation
1856  * in the super block.  If they don't match we pitch it.
1857  */
find_newest_super_backup(struct btrfs_fs_info * info)1858 static int find_newest_super_backup(struct btrfs_fs_info *info)
1859 {
1860 	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1861 	u64 cur;
1862 	struct btrfs_root_backup *root_backup;
1863 	int i;
1864 
1865 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1866 		root_backup = info->super_copy->super_roots + i;
1867 		cur = btrfs_backup_tree_root_gen(root_backup);
1868 		if (cur == newest_gen)
1869 			return i;
1870 	}
1871 
1872 	return -EINVAL;
1873 }
1874 
1875 /*
1876  * copy all the root pointers into the super backup array.
1877  * this will bump the backup pointer by one when it is
1878  * done
1879  */
backup_super_roots(struct btrfs_fs_info * info)1880 static void backup_super_roots(struct btrfs_fs_info *info)
1881 {
1882 	const int next_backup = info->backup_root_index;
1883 	struct btrfs_root_backup *root_backup;
1884 
1885 	root_backup = info->super_for_commit->super_roots + next_backup;
1886 
1887 	/*
1888 	 * make sure all of our padding and empty slots get zero filled
1889 	 * regardless of which ones we use today
1890 	 */
1891 	memset(root_backup, 0, sizeof(*root_backup));
1892 
1893 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1894 
1895 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1896 	btrfs_set_backup_tree_root_gen(root_backup,
1897 			       btrfs_header_generation(info->tree_root->node));
1898 
1899 	btrfs_set_backup_tree_root_level(root_backup,
1900 			       btrfs_header_level(info->tree_root->node));
1901 
1902 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1903 	btrfs_set_backup_chunk_root_gen(root_backup,
1904 			       btrfs_header_generation(info->chunk_root->node));
1905 	btrfs_set_backup_chunk_root_level(root_backup,
1906 			       btrfs_header_level(info->chunk_root->node));
1907 
1908 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1909 	btrfs_set_backup_extent_root_gen(root_backup,
1910 			       btrfs_header_generation(info->extent_root->node));
1911 	btrfs_set_backup_extent_root_level(root_backup,
1912 			       btrfs_header_level(info->extent_root->node));
1913 
1914 	/*
1915 	 * we might commit during log recovery, which happens before we set
1916 	 * the fs_root.  Make sure it is valid before we fill it in.
1917 	 */
1918 	if (info->fs_root && info->fs_root->node) {
1919 		btrfs_set_backup_fs_root(root_backup,
1920 					 info->fs_root->node->start);
1921 		btrfs_set_backup_fs_root_gen(root_backup,
1922 			       btrfs_header_generation(info->fs_root->node));
1923 		btrfs_set_backup_fs_root_level(root_backup,
1924 			       btrfs_header_level(info->fs_root->node));
1925 	}
1926 
1927 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1928 	btrfs_set_backup_dev_root_gen(root_backup,
1929 			       btrfs_header_generation(info->dev_root->node));
1930 	btrfs_set_backup_dev_root_level(root_backup,
1931 				       btrfs_header_level(info->dev_root->node));
1932 
1933 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1934 	btrfs_set_backup_csum_root_gen(root_backup,
1935 			       btrfs_header_generation(info->csum_root->node));
1936 	btrfs_set_backup_csum_root_level(root_backup,
1937 			       btrfs_header_level(info->csum_root->node));
1938 
1939 	btrfs_set_backup_total_bytes(root_backup,
1940 			     btrfs_super_total_bytes(info->super_copy));
1941 	btrfs_set_backup_bytes_used(root_backup,
1942 			     btrfs_super_bytes_used(info->super_copy));
1943 	btrfs_set_backup_num_devices(root_backup,
1944 			     btrfs_super_num_devices(info->super_copy));
1945 
1946 	/*
1947 	 * if we don't copy this out to the super_copy, it won't get remembered
1948 	 * for the next commit
1949 	 */
1950 	memcpy(&info->super_copy->super_roots,
1951 	       &info->super_for_commit->super_roots,
1952 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1953 }
1954 
1955 /*
1956  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1957  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1958  *
1959  * fs_info - filesystem whose backup roots need to be read
1960  * priority - priority of backup root required
1961  *
1962  * Returns backup root index on success and -EINVAL otherwise.
1963  */
read_backup_root(struct btrfs_fs_info * fs_info,u8 priority)1964 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1965 {
1966 	int backup_index = find_newest_super_backup(fs_info);
1967 	struct btrfs_super_block *super = fs_info->super_copy;
1968 	struct btrfs_root_backup *root_backup;
1969 
1970 	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1971 		if (priority == 0)
1972 			return backup_index;
1973 
1974 		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1975 		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1976 	} else {
1977 		return -EINVAL;
1978 	}
1979 
1980 	root_backup = super->super_roots + backup_index;
1981 
1982 	btrfs_set_super_generation(super,
1983 				   btrfs_backup_tree_root_gen(root_backup));
1984 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1985 	btrfs_set_super_root_level(super,
1986 				   btrfs_backup_tree_root_level(root_backup));
1987 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1988 
1989 	/*
1990 	 * Fixme: the total bytes and num_devices need to match or we should
1991 	 * need a fsck
1992 	 */
1993 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1994 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1995 
1996 	return backup_index;
1997 }
1998 
1999 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)2000 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2001 {
2002 	btrfs_destroy_workqueue(fs_info->fixup_workers);
2003 	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2004 	btrfs_destroy_workqueue(fs_info->workers);
2005 	btrfs_destroy_workqueue(fs_info->endio_workers);
2006 	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2007 	btrfs_destroy_workqueue(fs_info->rmw_workers);
2008 	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2009 	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2010 	btrfs_destroy_workqueue(fs_info->delayed_workers);
2011 	btrfs_destroy_workqueue(fs_info->caching_workers);
2012 	btrfs_destroy_workqueue(fs_info->readahead_workers);
2013 	btrfs_destroy_workqueue(fs_info->flush_workers);
2014 	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2015 	if (fs_info->discard_ctl.discard_workers)
2016 		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2017 	/*
2018 	 * Now that all other work queues are destroyed, we can safely destroy
2019 	 * the queues used for metadata I/O, since tasks from those other work
2020 	 * queues can do metadata I/O operations.
2021 	 */
2022 	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2023 	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2024 }
2025 
free_root_extent_buffers(struct btrfs_root * root)2026 static void free_root_extent_buffers(struct btrfs_root *root)
2027 {
2028 	if (root) {
2029 		free_extent_buffer(root->node);
2030 		free_extent_buffer(root->commit_root);
2031 		root->node = NULL;
2032 		root->commit_root = NULL;
2033 	}
2034 }
2035 
2036 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)2037 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2038 {
2039 	free_root_extent_buffers(info->tree_root);
2040 
2041 	free_root_extent_buffers(info->dev_root);
2042 	free_root_extent_buffers(info->extent_root);
2043 	free_root_extent_buffers(info->csum_root);
2044 	free_root_extent_buffers(info->quota_root);
2045 	free_root_extent_buffers(info->uuid_root);
2046 	free_root_extent_buffers(info->fs_root);
2047 	free_root_extent_buffers(info->data_reloc_root);
2048 	if (free_chunk_root)
2049 		free_root_extent_buffers(info->chunk_root);
2050 	free_root_extent_buffers(info->free_space_root);
2051 }
2052 
btrfs_put_root(struct btrfs_root * root)2053 void btrfs_put_root(struct btrfs_root *root)
2054 {
2055 	if (!root)
2056 		return;
2057 
2058 	if (refcount_dec_and_test(&root->refs)) {
2059 		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2060 		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2061 		if (root->anon_dev)
2062 			free_anon_bdev(root->anon_dev);
2063 		btrfs_drew_lock_destroy(&root->snapshot_lock);
2064 		free_root_extent_buffers(root);
2065 		kfree(root->free_ino_ctl);
2066 		kfree(root->free_ino_pinned);
2067 #ifdef CONFIG_BTRFS_DEBUG
2068 		spin_lock(&root->fs_info->fs_roots_radix_lock);
2069 		list_del_init(&root->leak_list);
2070 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2071 #endif
2072 		kfree(root);
2073 	}
2074 }
2075 
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2076 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2077 {
2078 	int ret;
2079 	struct btrfs_root *gang[8];
2080 	int i;
2081 
2082 	while (!list_empty(&fs_info->dead_roots)) {
2083 		gang[0] = list_entry(fs_info->dead_roots.next,
2084 				     struct btrfs_root, root_list);
2085 		list_del(&gang[0]->root_list);
2086 
2087 		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2088 			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2089 		btrfs_put_root(gang[0]);
2090 	}
2091 
2092 	while (1) {
2093 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2094 					     (void **)gang, 0,
2095 					     ARRAY_SIZE(gang));
2096 		if (!ret)
2097 			break;
2098 		for (i = 0; i < ret; i++)
2099 			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2100 	}
2101 }
2102 
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2103 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2104 {
2105 	mutex_init(&fs_info->scrub_lock);
2106 	atomic_set(&fs_info->scrubs_running, 0);
2107 	atomic_set(&fs_info->scrub_pause_req, 0);
2108 	atomic_set(&fs_info->scrubs_paused, 0);
2109 	atomic_set(&fs_info->scrub_cancel_req, 0);
2110 	init_waitqueue_head(&fs_info->scrub_pause_wait);
2111 	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2112 }
2113 
btrfs_init_balance(struct btrfs_fs_info * fs_info)2114 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2115 {
2116 	spin_lock_init(&fs_info->balance_lock);
2117 	mutex_init(&fs_info->balance_mutex);
2118 	atomic_set(&fs_info->balance_pause_req, 0);
2119 	atomic_set(&fs_info->balance_cancel_req, 0);
2120 	fs_info->balance_ctl = NULL;
2121 	init_waitqueue_head(&fs_info->balance_wait_q);
2122 }
2123 
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info)2124 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2125 {
2126 	struct inode *inode = fs_info->btree_inode;
2127 
2128 	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2129 	set_nlink(inode, 1);
2130 	/*
2131 	 * we set the i_size on the btree inode to the max possible int.
2132 	 * the real end of the address space is determined by all of
2133 	 * the devices in the system
2134 	 */
2135 	inode->i_size = OFFSET_MAX;
2136 	inode->i_mapping->a_ops = &btree_aops;
2137 
2138 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2139 	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2140 			    IO_TREE_BTREE_INODE_IO, inode);
2141 	BTRFS_I(inode)->io_tree.track_uptodate = false;
2142 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2143 
2144 	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2145 	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2146 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2147 	btrfs_insert_inode_hash(inode);
2148 }
2149 
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2150 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2151 {
2152 	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2153 	init_rwsem(&fs_info->dev_replace.rwsem);
2154 	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2155 }
2156 
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2157 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2158 {
2159 	spin_lock_init(&fs_info->qgroup_lock);
2160 	mutex_init(&fs_info->qgroup_ioctl_lock);
2161 	fs_info->qgroup_tree = RB_ROOT;
2162 	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2163 	fs_info->qgroup_seq = 1;
2164 	fs_info->qgroup_ulist = NULL;
2165 	fs_info->qgroup_rescan_running = false;
2166 	mutex_init(&fs_info->qgroup_rescan_lock);
2167 }
2168 
btrfs_init_workqueues(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2169 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2170 		struct btrfs_fs_devices *fs_devices)
2171 {
2172 	u32 max_active = fs_info->thread_pool_size;
2173 	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2174 
2175 	fs_info->workers =
2176 		btrfs_alloc_workqueue(fs_info, "worker",
2177 				      flags | WQ_HIGHPRI, max_active, 16);
2178 
2179 	fs_info->delalloc_workers =
2180 		btrfs_alloc_workqueue(fs_info, "delalloc",
2181 				      flags, max_active, 2);
2182 
2183 	fs_info->flush_workers =
2184 		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2185 				      flags, max_active, 0);
2186 
2187 	fs_info->caching_workers =
2188 		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2189 
2190 	fs_info->fixup_workers =
2191 		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2192 
2193 	/*
2194 	 * endios are largely parallel and should have a very
2195 	 * low idle thresh
2196 	 */
2197 	fs_info->endio_workers =
2198 		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2199 	fs_info->endio_meta_workers =
2200 		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2201 				      max_active, 4);
2202 	fs_info->endio_meta_write_workers =
2203 		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2204 				      max_active, 2);
2205 	fs_info->endio_raid56_workers =
2206 		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2207 				      max_active, 4);
2208 	fs_info->rmw_workers =
2209 		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2210 	fs_info->endio_write_workers =
2211 		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2212 				      max_active, 2);
2213 	fs_info->endio_freespace_worker =
2214 		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2215 				      max_active, 0);
2216 	fs_info->delayed_workers =
2217 		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2218 				      max_active, 0);
2219 	fs_info->readahead_workers =
2220 		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2221 				      max_active, 2);
2222 	fs_info->qgroup_rescan_workers =
2223 		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2224 	fs_info->discard_ctl.discard_workers =
2225 		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2226 
2227 	if (!(fs_info->workers && fs_info->delalloc_workers &&
2228 	      fs_info->flush_workers &&
2229 	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2230 	      fs_info->endio_meta_write_workers &&
2231 	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2232 	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2233 	      fs_info->caching_workers && fs_info->readahead_workers &&
2234 	      fs_info->fixup_workers && fs_info->delayed_workers &&
2235 	      fs_info->qgroup_rescan_workers &&
2236 	      fs_info->discard_ctl.discard_workers)) {
2237 		return -ENOMEM;
2238 	}
2239 
2240 	return 0;
2241 }
2242 
btrfs_init_csum_hash(struct btrfs_fs_info * fs_info,u16 csum_type)2243 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2244 {
2245 	struct crypto_shash *csum_shash;
2246 	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2247 
2248 	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2249 
2250 	if (IS_ERR(csum_shash)) {
2251 		btrfs_err(fs_info, "error allocating %s hash for checksum",
2252 			  csum_driver);
2253 		return PTR_ERR(csum_shash);
2254 	}
2255 
2256 	fs_info->csum_shash = csum_shash;
2257 
2258 	/*
2259 	 * Check if the checksum implementation is a fast accelerated one.
2260 	 * As-is this is a bit of a hack and should be replaced once the csum
2261 	 * implementations provide that information themselves.
2262 	 */
2263 	switch (csum_type) {
2264 	case BTRFS_CSUM_TYPE_CRC32:
2265 		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2266 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2267 		break;
2268 	default:
2269 		break;
2270 	}
2271 
2272 	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2273 			btrfs_super_csum_name(csum_type),
2274 			crypto_shash_driver_name(csum_shash));
2275 	return 0;
2276 }
2277 
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2278 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2279 			    struct btrfs_fs_devices *fs_devices)
2280 {
2281 	int ret;
2282 	struct btrfs_root *log_tree_root;
2283 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2284 	u64 bytenr = btrfs_super_log_root(disk_super);
2285 	int level = btrfs_super_log_root_level(disk_super);
2286 
2287 	if (fs_devices->rw_devices == 0) {
2288 		btrfs_warn(fs_info, "log replay required on RO media");
2289 		return -EIO;
2290 	}
2291 
2292 	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2293 					 GFP_KERNEL);
2294 	if (!log_tree_root)
2295 		return -ENOMEM;
2296 
2297 	log_tree_root->node = read_tree_block(fs_info, bytenr,
2298 					      fs_info->generation + 1,
2299 					      level, NULL);
2300 	if (IS_ERR(log_tree_root->node)) {
2301 		btrfs_warn(fs_info, "failed to read log tree");
2302 		ret = PTR_ERR(log_tree_root->node);
2303 		log_tree_root->node = NULL;
2304 		btrfs_put_root(log_tree_root);
2305 		return ret;
2306 	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2307 		btrfs_err(fs_info, "failed to read log tree");
2308 		btrfs_put_root(log_tree_root);
2309 		return -EIO;
2310 	}
2311 	/* returns with log_tree_root freed on success */
2312 	ret = btrfs_recover_log_trees(log_tree_root);
2313 	if (ret) {
2314 		btrfs_handle_fs_error(fs_info, ret,
2315 				      "Failed to recover log tree");
2316 		btrfs_put_root(log_tree_root);
2317 		return ret;
2318 	}
2319 
2320 	if (sb_rdonly(fs_info->sb)) {
2321 		ret = btrfs_commit_super(fs_info);
2322 		if (ret)
2323 			return ret;
2324 	}
2325 
2326 	return 0;
2327 }
2328 
btrfs_read_roots(struct btrfs_fs_info * fs_info)2329 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2330 {
2331 	struct btrfs_root *tree_root = fs_info->tree_root;
2332 	struct btrfs_root *root;
2333 	struct btrfs_key location;
2334 	int ret;
2335 
2336 	BUG_ON(!fs_info->tree_root);
2337 
2338 	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2339 	location.type = BTRFS_ROOT_ITEM_KEY;
2340 	location.offset = 0;
2341 
2342 	root = btrfs_read_tree_root(tree_root, &location);
2343 	if (IS_ERR(root)) {
2344 		ret = PTR_ERR(root);
2345 		goto out;
2346 	}
2347 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2348 	fs_info->extent_root = root;
2349 
2350 	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2351 	root = btrfs_read_tree_root(tree_root, &location);
2352 	if (IS_ERR(root)) {
2353 		ret = PTR_ERR(root);
2354 		goto out;
2355 	}
2356 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2357 	fs_info->dev_root = root;
2358 	btrfs_init_devices_late(fs_info);
2359 
2360 	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2361 	root = btrfs_read_tree_root(tree_root, &location);
2362 	if (IS_ERR(root)) {
2363 		ret = PTR_ERR(root);
2364 		goto out;
2365 	}
2366 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2367 	fs_info->csum_root = root;
2368 
2369 	/*
2370 	 * This tree can share blocks with some other fs tree during relocation
2371 	 * and we need a proper setup by btrfs_get_fs_root
2372 	 */
2373 	root = btrfs_get_fs_root(tree_root->fs_info,
2374 				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2375 	if (IS_ERR(root)) {
2376 		ret = PTR_ERR(root);
2377 		goto out;
2378 	}
2379 	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2380 	fs_info->data_reloc_root = root;
2381 
2382 	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2383 	root = btrfs_read_tree_root(tree_root, &location);
2384 	if (!IS_ERR(root)) {
2385 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2386 		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2387 		fs_info->quota_root = root;
2388 	}
2389 
2390 	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2391 	root = btrfs_read_tree_root(tree_root, &location);
2392 	if (IS_ERR(root)) {
2393 		ret = PTR_ERR(root);
2394 		if (ret != -ENOENT)
2395 			goto out;
2396 	} else {
2397 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2398 		fs_info->uuid_root = root;
2399 	}
2400 
2401 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2402 		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2403 		root = btrfs_read_tree_root(tree_root, &location);
2404 		if (IS_ERR(root)) {
2405 			ret = PTR_ERR(root);
2406 			goto out;
2407 		}
2408 		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2409 		fs_info->free_space_root = root;
2410 	}
2411 
2412 	return 0;
2413 out:
2414 	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2415 		   location.objectid, ret);
2416 	return ret;
2417 }
2418 
2419 /*
2420  * Real super block validation
2421  * NOTE: super csum type and incompat features will not be checked here.
2422  *
2423  * @sb:		super block to check
2424  * @mirror_num:	the super block number to check its bytenr:
2425  * 		0	the primary (1st) sb
2426  * 		1, 2	2nd and 3rd backup copy
2427  * 	       -1	skip bytenr check
2428  */
validate_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb,int mirror_num)2429 static int validate_super(struct btrfs_fs_info *fs_info,
2430 			    struct btrfs_super_block *sb, int mirror_num)
2431 {
2432 	u64 nodesize = btrfs_super_nodesize(sb);
2433 	u64 sectorsize = btrfs_super_sectorsize(sb);
2434 	int ret = 0;
2435 
2436 	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2437 		btrfs_err(fs_info, "no valid FS found");
2438 		ret = -EINVAL;
2439 	}
2440 	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2441 		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2442 				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2443 		ret = -EINVAL;
2444 	}
2445 	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2446 		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2447 				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2448 		ret = -EINVAL;
2449 	}
2450 	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2451 		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2452 				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2453 		ret = -EINVAL;
2454 	}
2455 	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2456 		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2457 				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2458 		ret = -EINVAL;
2459 	}
2460 
2461 	/*
2462 	 * Check sectorsize and nodesize first, other check will need it.
2463 	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2464 	 */
2465 	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2466 	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2467 		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2468 		ret = -EINVAL;
2469 	}
2470 	/* Only PAGE SIZE is supported yet */
2471 	if (sectorsize != PAGE_SIZE) {
2472 		btrfs_err(fs_info,
2473 			"sectorsize %llu not supported yet, only support %lu",
2474 			sectorsize, PAGE_SIZE);
2475 		ret = -EINVAL;
2476 	}
2477 	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2478 	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2479 		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2480 		ret = -EINVAL;
2481 	}
2482 	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2483 		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2484 			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2485 		ret = -EINVAL;
2486 	}
2487 
2488 	/* Root alignment check */
2489 	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2490 		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2491 			   btrfs_super_root(sb));
2492 		ret = -EINVAL;
2493 	}
2494 	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2495 		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2496 			   btrfs_super_chunk_root(sb));
2497 		ret = -EINVAL;
2498 	}
2499 	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2500 		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2501 			   btrfs_super_log_root(sb));
2502 		ret = -EINVAL;
2503 	}
2504 
2505 	if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2506 		   BTRFS_FSID_SIZE)) {
2507 		btrfs_err(fs_info,
2508 		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2509 			fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2510 		ret = -EINVAL;
2511 	}
2512 
2513 	if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2514 	    memcmp(fs_info->fs_devices->metadata_uuid,
2515 		   fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2516 		btrfs_err(fs_info,
2517 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2518 			fs_info->super_copy->metadata_uuid,
2519 			fs_info->fs_devices->metadata_uuid);
2520 		ret = -EINVAL;
2521 	}
2522 
2523 	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2524 		   BTRFS_FSID_SIZE) != 0) {
2525 		btrfs_err(fs_info,
2526 			"dev_item UUID does not match metadata fsid: %pU != %pU",
2527 			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2528 		ret = -EINVAL;
2529 	}
2530 
2531 	/*
2532 	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2533 	 * done later
2534 	 */
2535 	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2536 		btrfs_err(fs_info, "bytes_used is too small %llu",
2537 			  btrfs_super_bytes_used(sb));
2538 		ret = -EINVAL;
2539 	}
2540 	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2541 		btrfs_err(fs_info, "invalid stripesize %u",
2542 			  btrfs_super_stripesize(sb));
2543 		ret = -EINVAL;
2544 	}
2545 	if (btrfs_super_num_devices(sb) > (1UL << 31))
2546 		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2547 			   btrfs_super_num_devices(sb));
2548 	if (btrfs_super_num_devices(sb) == 0) {
2549 		btrfs_err(fs_info, "number of devices is 0");
2550 		ret = -EINVAL;
2551 	}
2552 
2553 	if (mirror_num >= 0 &&
2554 	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2555 		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2556 			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2557 		ret = -EINVAL;
2558 	}
2559 
2560 	/*
2561 	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2562 	 * and one chunk
2563 	 */
2564 	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2565 		btrfs_err(fs_info, "system chunk array too big %u > %u",
2566 			  btrfs_super_sys_array_size(sb),
2567 			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2568 		ret = -EINVAL;
2569 	}
2570 	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2571 			+ sizeof(struct btrfs_chunk)) {
2572 		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2573 			  btrfs_super_sys_array_size(sb),
2574 			  sizeof(struct btrfs_disk_key)
2575 			  + sizeof(struct btrfs_chunk));
2576 		ret = -EINVAL;
2577 	}
2578 
2579 	/*
2580 	 * The generation is a global counter, we'll trust it more than the others
2581 	 * but it's still possible that it's the one that's wrong.
2582 	 */
2583 	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2584 		btrfs_warn(fs_info,
2585 			"suspicious: generation < chunk_root_generation: %llu < %llu",
2586 			btrfs_super_generation(sb),
2587 			btrfs_super_chunk_root_generation(sb));
2588 	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2589 	    && btrfs_super_cache_generation(sb) != (u64)-1)
2590 		btrfs_warn(fs_info,
2591 			"suspicious: generation < cache_generation: %llu < %llu",
2592 			btrfs_super_generation(sb),
2593 			btrfs_super_cache_generation(sb));
2594 
2595 	return ret;
2596 }
2597 
2598 /*
2599  * Validation of super block at mount time.
2600  * Some checks already done early at mount time, like csum type and incompat
2601  * flags will be skipped.
2602  */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2603 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2604 {
2605 	return validate_super(fs_info, fs_info->super_copy, 0);
2606 }
2607 
2608 /*
2609  * Validation of super block at write time.
2610  * Some checks like bytenr check will be skipped as their values will be
2611  * overwritten soon.
2612  * Extra checks like csum type and incompat flags will be done here.
2613  */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2614 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2615 				      struct btrfs_super_block *sb)
2616 {
2617 	int ret;
2618 
2619 	ret = validate_super(fs_info, sb, -1);
2620 	if (ret < 0)
2621 		goto out;
2622 	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2623 		ret = -EUCLEAN;
2624 		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2625 			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2626 		goto out;
2627 	}
2628 	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2629 		ret = -EUCLEAN;
2630 		btrfs_err(fs_info,
2631 		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2632 			  btrfs_super_incompat_flags(sb),
2633 			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2634 		goto out;
2635 	}
2636 out:
2637 	if (ret < 0)
2638 		btrfs_err(fs_info,
2639 		"super block corruption detected before writing it to disk");
2640 	return ret;
2641 }
2642 
init_tree_roots(struct btrfs_fs_info * fs_info)2643 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2644 {
2645 	int backup_index = find_newest_super_backup(fs_info);
2646 	struct btrfs_super_block *sb = fs_info->super_copy;
2647 	struct btrfs_root *tree_root = fs_info->tree_root;
2648 	bool handle_error = false;
2649 	int ret = 0;
2650 	int i;
2651 
2652 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2653 		u64 generation;
2654 		int level;
2655 
2656 		if (handle_error) {
2657 			if (!IS_ERR(tree_root->node))
2658 				free_extent_buffer(tree_root->node);
2659 			tree_root->node = NULL;
2660 
2661 			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2662 				break;
2663 
2664 			free_root_pointers(fs_info, 0);
2665 
2666 			/*
2667 			 * Don't use the log in recovery mode, it won't be
2668 			 * valid
2669 			 */
2670 			btrfs_set_super_log_root(sb, 0);
2671 
2672 			/* We can't trust the free space cache either */
2673 			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2674 
2675 			ret = read_backup_root(fs_info, i);
2676 			backup_index = ret;
2677 			if (ret < 0)
2678 				return ret;
2679 		}
2680 		generation = btrfs_super_generation(sb);
2681 		level = btrfs_super_root_level(sb);
2682 		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2683 						  generation, level, NULL);
2684 		if (IS_ERR(tree_root->node)) {
2685 			handle_error = true;
2686 			ret = PTR_ERR(tree_root->node);
2687 			tree_root->node = NULL;
2688 			btrfs_warn(fs_info, "couldn't read tree root");
2689 			continue;
2690 
2691 		} else if (!extent_buffer_uptodate(tree_root->node)) {
2692 			handle_error = true;
2693 			ret = -EIO;
2694 			btrfs_warn(fs_info, "error while reading tree root");
2695 			continue;
2696 		}
2697 
2698 		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2699 		tree_root->commit_root = btrfs_root_node(tree_root);
2700 		btrfs_set_root_refs(&tree_root->root_item, 1);
2701 
2702 		/*
2703 		 * No need to hold btrfs_root::objectid_mutex since the fs
2704 		 * hasn't been fully initialised and we are the only user
2705 		 */
2706 		ret = btrfs_find_highest_objectid(tree_root,
2707 						&tree_root->highest_objectid);
2708 		if (ret < 0) {
2709 			handle_error = true;
2710 			continue;
2711 		}
2712 
2713 		ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2714 
2715 		ret = btrfs_read_roots(fs_info);
2716 		if (ret < 0) {
2717 			handle_error = true;
2718 			continue;
2719 		}
2720 
2721 		/* All successful */
2722 		fs_info->generation = generation;
2723 		fs_info->last_trans_committed = generation;
2724 
2725 		/* Always begin writing backup roots after the one being used */
2726 		if (backup_index < 0) {
2727 			fs_info->backup_root_index = 0;
2728 		} else {
2729 			fs_info->backup_root_index = backup_index + 1;
2730 			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2731 		}
2732 		break;
2733 	}
2734 
2735 	return ret;
2736 }
2737 
btrfs_init_fs_info(struct btrfs_fs_info * fs_info)2738 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2739 {
2740 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2741 	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2742 	INIT_LIST_HEAD(&fs_info->trans_list);
2743 	INIT_LIST_HEAD(&fs_info->dead_roots);
2744 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2745 	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2746 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2747 	spin_lock_init(&fs_info->delalloc_root_lock);
2748 	spin_lock_init(&fs_info->trans_lock);
2749 	spin_lock_init(&fs_info->fs_roots_radix_lock);
2750 	spin_lock_init(&fs_info->delayed_iput_lock);
2751 	spin_lock_init(&fs_info->defrag_inodes_lock);
2752 	spin_lock_init(&fs_info->super_lock);
2753 	spin_lock_init(&fs_info->buffer_lock);
2754 	spin_lock_init(&fs_info->unused_bgs_lock);
2755 	rwlock_init(&fs_info->tree_mod_log_lock);
2756 	mutex_init(&fs_info->unused_bg_unpin_mutex);
2757 	mutex_init(&fs_info->delete_unused_bgs_mutex);
2758 	mutex_init(&fs_info->reloc_mutex);
2759 	mutex_init(&fs_info->delalloc_root_mutex);
2760 	seqlock_init(&fs_info->profiles_lock);
2761 
2762 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2763 	INIT_LIST_HEAD(&fs_info->space_info);
2764 	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2765 	INIT_LIST_HEAD(&fs_info->unused_bgs);
2766 #ifdef CONFIG_BTRFS_DEBUG
2767 	INIT_LIST_HEAD(&fs_info->allocated_roots);
2768 	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2769 	spin_lock_init(&fs_info->eb_leak_lock);
2770 #endif
2771 	extent_map_tree_init(&fs_info->mapping_tree);
2772 	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2773 			     BTRFS_BLOCK_RSV_GLOBAL);
2774 	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2775 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2776 	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2777 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2778 			     BTRFS_BLOCK_RSV_DELOPS);
2779 	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2780 			     BTRFS_BLOCK_RSV_DELREFS);
2781 
2782 	atomic_set(&fs_info->async_delalloc_pages, 0);
2783 	atomic_set(&fs_info->defrag_running, 0);
2784 	atomic_set(&fs_info->reada_works_cnt, 0);
2785 	atomic_set(&fs_info->nr_delayed_iputs, 0);
2786 	atomic64_set(&fs_info->tree_mod_seq, 0);
2787 	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2788 	fs_info->metadata_ratio = 0;
2789 	fs_info->defrag_inodes = RB_ROOT;
2790 	atomic64_set(&fs_info->free_chunk_space, 0);
2791 	fs_info->tree_mod_log = RB_ROOT;
2792 	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2793 	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2794 	/* readahead state */
2795 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2796 	spin_lock_init(&fs_info->reada_lock);
2797 	btrfs_init_ref_verify(fs_info);
2798 
2799 	fs_info->thread_pool_size = min_t(unsigned long,
2800 					  num_online_cpus() + 2, 8);
2801 
2802 	INIT_LIST_HEAD(&fs_info->ordered_roots);
2803 	spin_lock_init(&fs_info->ordered_root_lock);
2804 
2805 	btrfs_init_scrub(fs_info);
2806 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2807 	fs_info->check_integrity_print_mask = 0;
2808 #endif
2809 	btrfs_init_balance(fs_info);
2810 	btrfs_init_async_reclaim_work(fs_info);
2811 
2812 	spin_lock_init(&fs_info->block_group_cache_lock);
2813 	fs_info->block_group_cache_tree = RB_ROOT;
2814 	fs_info->first_logical_byte = (u64)-1;
2815 
2816 	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2817 			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2818 	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2819 
2820 	mutex_init(&fs_info->ordered_operations_mutex);
2821 	mutex_init(&fs_info->tree_log_mutex);
2822 	mutex_init(&fs_info->chunk_mutex);
2823 	mutex_init(&fs_info->transaction_kthread_mutex);
2824 	mutex_init(&fs_info->cleaner_mutex);
2825 	mutex_init(&fs_info->ro_block_group_mutex);
2826 	init_rwsem(&fs_info->commit_root_sem);
2827 	init_rwsem(&fs_info->cleanup_work_sem);
2828 	init_rwsem(&fs_info->subvol_sem);
2829 	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2830 
2831 	btrfs_init_dev_replace_locks(fs_info);
2832 	btrfs_init_qgroup(fs_info);
2833 	btrfs_discard_init(fs_info);
2834 
2835 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2836 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2837 
2838 	init_waitqueue_head(&fs_info->transaction_throttle);
2839 	init_waitqueue_head(&fs_info->transaction_wait);
2840 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2841 	init_waitqueue_head(&fs_info->async_submit_wait);
2842 	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2843 
2844 	/* Usable values until the real ones are cached from the superblock */
2845 	fs_info->nodesize = 4096;
2846 	fs_info->sectorsize = 4096;
2847 	fs_info->stripesize = 4096;
2848 
2849 	spin_lock_init(&fs_info->swapfile_pins_lock);
2850 	fs_info->swapfile_pins = RB_ROOT;
2851 
2852 	fs_info->send_in_progress = 0;
2853 }
2854 
init_mount_fs_info(struct btrfs_fs_info * fs_info,struct super_block * sb)2855 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2856 {
2857 	int ret;
2858 
2859 	fs_info->sb = sb;
2860 	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2861 	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2862 
2863 	ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2864 	if (ret)
2865 		return ret;
2866 
2867 	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2868 	if (ret)
2869 		return ret;
2870 
2871 	fs_info->dirty_metadata_batch = PAGE_SIZE *
2872 					(1 + ilog2(nr_cpu_ids));
2873 
2874 	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2875 	if (ret)
2876 		return ret;
2877 
2878 	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2879 			GFP_KERNEL);
2880 	if (ret)
2881 		return ret;
2882 
2883 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2884 					GFP_KERNEL);
2885 	if (!fs_info->delayed_root)
2886 		return -ENOMEM;
2887 	btrfs_init_delayed_root(fs_info->delayed_root);
2888 
2889 	return btrfs_alloc_stripe_hash_table(fs_info);
2890 }
2891 
btrfs_uuid_rescan_kthread(void * data)2892 static int btrfs_uuid_rescan_kthread(void *data)
2893 {
2894 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2895 	int ret;
2896 
2897 	/*
2898 	 * 1st step is to iterate through the existing UUID tree and
2899 	 * to delete all entries that contain outdated data.
2900 	 * 2nd step is to add all missing entries to the UUID tree.
2901 	 */
2902 	ret = btrfs_uuid_tree_iterate(fs_info);
2903 	if (ret < 0) {
2904 		if (ret != -EINTR)
2905 			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2906 				   ret);
2907 		up(&fs_info->uuid_tree_rescan_sem);
2908 		return ret;
2909 	}
2910 	return btrfs_uuid_scan_kthread(data);
2911 }
2912 
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)2913 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2914 {
2915 	struct task_struct *task;
2916 
2917 	down(&fs_info->uuid_tree_rescan_sem);
2918 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2919 	if (IS_ERR(task)) {
2920 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2921 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2922 		up(&fs_info->uuid_tree_rescan_sem);
2923 		return PTR_ERR(task);
2924 	}
2925 
2926 	return 0;
2927 }
2928 
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)2929 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2930 		      char *options)
2931 {
2932 	u32 sectorsize;
2933 	u32 nodesize;
2934 	u32 stripesize;
2935 	u64 generation;
2936 	u64 features;
2937 	u16 csum_type;
2938 	struct btrfs_super_block *disk_super;
2939 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2940 	struct btrfs_root *tree_root;
2941 	struct btrfs_root *chunk_root;
2942 	int ret;
2943 	int err = -EINVAL;
2944 	int clear_free_space_tree = 0;
2945 	int level;
2946 
2947 	ret = init_mount_fs_info(fs_info, sb);
2948 	if (ret) {
2949 		err = ret;
2950 		goto fail;
2951 	}
2952 
2953 	/* These need to be init'ed before we start creating inodes and such. */
2954 	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2955 				     GFP_KERNEL);
2956 	fs_info->tree_root = tree_root;
2957 	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2958 				      GFP_KERNEL);
2959 	fs_info->chunk_root = chunk_root;
2960 	if (!tree_root || !chunk_root) {
2961 		err = -ENOMEM;
2962 		goto fail;
2963 	}
2964 
2965 	fs_info->btree_inode = new_inode(sb);
2966 	if (!fs_info->btree_inode) {
2967 		err = -ENOMEM;
2968 		goto fail;
2969 	}
2970 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2971 	btrfs_init_btree_inode(fs_info);
2972 
2973 	invalidate_bdev(fs_devices->latest_bdev);
2974 
2975 	/*
2976 	 * Read super block and check the signature bytes only
2977 	 */
2978 	disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2979 	if (IS_ERR(disk_super)) {
2980 		err = PTR_ERR(disk_super);
2981 		goto fail_alloc;
2982 	}
2983 
2984 	/*
2985 	 * Verify the type first, if that or the checksum value are
2986 	 * corrupted, we'll find out
2987 	 */
2988 	csum_type = btrfs_super_csum_type(disk_super);
2989 	if (!btrfs_supported_super_csum(csum_type)) {
2990 		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2991 			  csum_type);
2992 		err = -EINVAL;
2993 		btrfs_release_disk_super(disk_super);
2994 		goto fail_alloc;
2995 	}
2996 
2997 	ret = btrfs_init_csum_hash(fs_info, csum_type);
2998 	if (ret) {
2999 		err = ret;
3000 		btrfs_release_disk_super(disk_super);
3001 		goto fail_alloc;
3002 	}
3003 
3004 	/*
3005 	 * We want to check superblock checksum, the type is stored inside.
3006 	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3007 	 */
3008 	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3009 		btrfs_err(fs_info, "superblock checksum mismatch");
3010 		err = -EINVAL;
3011 		btrfs_release_disk_super(disk_super);
3012 		goto fail_alloc;
3013 	}
3014 
3015 	/*
3016 	 * super_copy is zeroed at allocation time and we never touch the
3017 	 * following bytes up to INFO_SIZE, the checksum is calculated from
3018 	 * the whole block of INFO_SIZE
3019 	 */
3020 	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3021 	btrfs_release_disk_super(disk_super);
3022 
3023 	disk_super = fs_info->super_copy;
3024 
3025 
3026 	features = btrfs_super_flags(disk_super);
3027 	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3028 		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3029 		btrfs_set_super_flags(disk_super, features);
3030 		btrfs_info(fs_info,
3031 			"found metadata UUID change in progress flag, clearing");
3032 	}
3033 
3034 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3035 	       sizeof(*fs_info->super_for_commit));
3036 
3037 	ret = btrfs_validate_mount_super(fs_info);
3038 	if (ret) {
3039 		btrfs_err(fs_info, "superblock contains fatal errors");
3040 		err = -EINVAL;
3041 		goto fail_alloc;
3042 	}
3043 
3044 	if (!btrfs_super_root(disk_super))
3045 		goto fail_alloc;
3046 
3047 	/* check FS state, whether FS is broken. */
3048 	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3049 		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3050 
3051 	/*
3052 	 * In the long term, we'll store the compression type in the super
3053 	 * block, and it'll be used for per file compression control.
3054 	 */
3055 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3056 
3057 	/*
3058 	 * Flag our filesystem as having big metadata blocks if they are bigger
3059 	 * than the page size
3060 	 */
3061 	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3062 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3063 			btrfs_info(fs_info,
3064 				"flagging fs with big metadata feature");
3065 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3066 	}
3067 
3068 	/* Set up fs_info before parsing mount options */
3069 	nodesize = btrfs_super_nodesize(disk_super);
3070 	sectorsize = btrfs_super_sectorsize(disk_super);
3071 	stripesize = sectorsize;
3072 	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3073 	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3074 
3075 	/* Cache block sizes */
3076 	fs_info->nodesize = nodesize;
3077 	fs_info->sectorsize = sectorsize;
3078 	fs_info->stripesize = stripesize;
3079 
3080 	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3081 	if (ret) {
3082 		err = ret;
3083 		goto fail_alloc;
3084 	}
3085 
3086 	features = btrfs_super_incompat_flags(disk_super) &
3087 		~BTRFS_FEATURE_INCOMPAT_SUPP;
3088 	if (features) {
3089 		btrfs_err(fs_info,
3090 		    "cannot mount because of unsupported optional features (0x%llx)",
3091 		    features);
3092 		err = -EINVAL;
3093 		goto fail_alloc;
3094 	}
3095 
3096 	features = btrfs_super_incompat_flags(disk_super);
3097 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3098 	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3099 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3100 	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3101 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3102 
3103 	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3104 		btrfs_info(fs_info, "has skinny extents");
3105 
3106 	/*
3107 	 * mixed block groups end up with duplicate but slightly offset
3108 	 * extent buffers for the same range.  It leads to corruptions
3109 	 */
3110 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3111 	    (sectorsize != nodesize)) {
3112 		btrfs_err(fs_info,
3113 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3114 			nodesize, sectorsize);
3115 		goto fail_alloc;
3116 	}
3117 
3118 	/*
3119 	 * Needn't use the lock because there is no other task which will
3120 	 * update the flag.
3121 	 */
3122 	btrfs_set_super_incompat_flags(disk_super, features);
3123 
3124 	features = btrfs_super_compat_ro_flags(disk_super) &
3125 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3126 	if (!sb_rdonly(sb) && features) {
3127 		btrfs_err(fs_info,
3128 	"cannot mount read-write because of unsupported optional features (0x%llx)",
3129 		       features);
3130 		err = -EINVAL;
3131 		goto fail_alloc;
3132 	}
3133 	/*
3134 	 * We have unsupported RO compat features, although RO mounted, we
3135 	 * should not cause any metadata write, including log replay.
3136 	 * Or we could screw up whatever the new feature requires.
3137 	 */
3138 	if (unlikely(features && btrfs_super_log_root(disk_super) &&
3139 		     !btrfs_test_opt(fs_info, NOLOGREPLAY))) {
3140 		btrfs_err(fs_info,
3141 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3142 			  features);
3143 		err = -EINVAL;
3144 		goto fail_alloc;
3145 	}
3146 
3147 
3148 	ret = btrfs_init_workqueues(fs_info, fs_devices);
3149 	if (ret) {
3150 		err = ret;
3151 		goto fail_sb_buffer;
3152 	}
3153 
3154 	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3155 	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3156 
3157 	sb->s_blocksize = sectorsize;
3158 	sb->s_blocksize_bits = blksize_bits(sectorsize);
3159 	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3160 
3161 	mutex_lock(&fs_info->chunk_mutex);
3162 	ret = btrfs_read_sys_array(fs_info);
3163 	mutex_unlock(&fs_info->chunk_mutex);
3164 	if (ret) {
3165 		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3166 		goto fail_sb_buffer;
3167 	}
3168 
3169 	generation = btrfs_super_chunk_root_generation(disk_super);
3170 	level = btrfs_super_chunk_root_level(disk_super);
3171 
3172 	chunk_root->node = read_tree_block(fs_info,
3173 					   btrfs_super_chunk_root(disk_super),
3174 					   generation, level, NULL);
3175 	if (IS_ERR(chunk_root->node) ||
3176 	    !extent_buffer_uptodate(chunk_root->node)) {
3177 		btrfs_err(fs_info, "failed to read chunk root");
3178 		if (!IS_ERR(chunk_root->node))
3179 			free_extent_buffer(chunk_root->node);
3180 		chunk_root->node = NULL;
3181 		goto fail_tree_roots;
3182 	}
3183 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3184 	chunk_root->commit_root = btrfs_root_node(chunk_root);
3185 
3186 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3187 			   offsetof(struct btrfs_header, chunk_tree_uuid),
3188 			   BTRFS_UUID_SIZE);
3189 
3190 	ret = btrfs_read_chunk_tree(fs_info);
3191 	if (ret) {
3192 		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3193 		goto fail_tree_roots;
3194 	}
3195 
3196 	/*
3197 	 * Keep the devid that is marked to be the target device for the
3198 	 * device replace procedure
3199 	 */
3200 	btrfs_free_extra_devids(fs_devices, 0);
3201 
3202 	if (!fs_devices->latest_bdev) {
3203 		btrfs_err(fs_info, "failed to read devices");
3204 		goto fail_tree_roots;
3205 	}
3206 
3207 	ret = init_tree_roots(fs_info);
3208 	if (ret)
3209 		goto fail_tree_roots;
3210 
3211 	/*
3212 	 * If we have a uuid root and we're not being told to rescan we need to
3213 	 * check the generation here so we can set the
3214 	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3215 	 * transaction during a balance or the log replay without updating the
3216 	 * uuid generation, and then if we crash we would rescan the uuid tree,
3217 	 * even though it was perfectly fine.
3218 	 */
3219 	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3220 	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3221 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3222 
3223 	ret = btrfs_verify_dev_extents(fs_info);
3224 	if (ret) {
3225 		btrfs_err(fs_info,
3226 			  "failed to verify dev extents against chunks: %d",
3227 			  ret);
3228 		goto fail_block_groups;
3229 	}
3230 	ret = btrfs_recover_balance(fs_info);
3231 	if (ret) {
3232 		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3233 		goto fail_block_groups;
3234 	}
3235 
3236 	ret = btrfs_init_dev_stats(fs_info);
3237 	if (ret) {
3238 		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3239 		goto fail_block_groups;
3240 	}
3241 
3242 	ret = btrfs_init_dev_replace(fs_info);
3243 	if (ret) {
3244 		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3245 		goto fail_block_groups;
3246 	}
3247 
3248 	btrfs_free_extra_devids(fs_devices, 1);
3249 
3250 	ret = btrfs_sysfs_add_fsid(fs_devices);
3251 	if (ret) {
3252 		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3253 				ret);
3254 		goto fail_block_groups;
3255 	}
3256 
3257 	ret = btrfs_sysfs_add_mounted(fs_info);
3258 	if (ret) {
3259 		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3260 		goto fail_fsdev_sysfs;
3261 	}
3262 
3263 	ret = btrfs_init_space_info(fs_info);
3264 	if (ret) {
3265 		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3266 		goto fail_sysfs;
3267 	}
3268 
3269 	ret = btrfs_read_block_groups(fs_info);
3270 	if (ret) {
3271 		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3272 		goto fail_sysfs;
3273 	}
3274 
3275 	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3276 	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3277 		btrfs_warn(fs_info,
3278 		"writable mount is not allowed due to too many missing devices");
3279 		goto fail_sysfs;
3280 	}
3281 
3282 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3283 					       "btrfs-cleaner");
3284 	if (IS_ERR(fs_info->cleaner_kthread))
3285 		goto fail_sysfs;
3286 
3287 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3288 						   tree_root,
3289 						   "btrfs-transaction");
3290 	if (IS_ERR(fs_info->transaction_kthread))
3291 		goto fail_cleaner;
3292 
3293 	if (!btrfs_test_opt(fs_info, NOSSD) &&
3294 	    !fs_info->fs_devices->rotating) {
3295 		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3296 	}
3297 
3298 	/*
3299 	 * Mount does not set all options immediately, we can do it now and do
3300 	 * not have to wait for transaction commit
3301 	 */
3302 	btrfs_apply_pending_changes(fs_info);
3303 
3304 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3305 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3306 		ret = btrfsic_mount(fs_info, fs_devices,
3307 				    btrfs_test_opt(fs_info,
3308 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3309 				    1 : 0,
3310 				    fs_info->check_integrity_print_mask);
3311 		if (ret)
3312 			btrfs_warn(fs_info,
3313 				"failed to initialize integrity check module: %d",
3314 				ret);
3315 	}
3316 #endif
3317 	ret = btrfs_read_qgroup_config(fs_info);
3318 	if (ret)
3319 		goto fail_trans_kthread;
3320 
3321 	if (btrfs_build_ref_tree(fs_info))
3322 		btrfs_err(fs_info, "couldn't build ref tree");
3323 
3324 	/* do not make disk changes in broken FS or nologreplay is given */
3325 	if (btrfs_super_log_root(disk_super) != 0 &&
3326 	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3327 		btrfs_info(fs_info, "start tree-log replay");
3328 		ret = btrfs_replay_log(fs_info, fs_devices);
3329 		if (ret) {
3330 			err = ret;
3331 			goto fail_qgroup;
3332 		}
3333 	}
3334 
3335 	ret = btrfs_find_orphan_roots(fs_info);
3336 	if (ret)
3337 		goto fail_qgroup;
3338 
3339 	if (!sb_rdonly(sb)) {
3340 		ret = btrfs_cleanup_fs_roots(fs_info);
3341 		if (ret)
3342 			goto fail_qgroup;
3343 
3344 		mutex_lock(&fs_info->cleaner_mutex);
3345 		ret = btrfs_recover_relocation(tree_root);
3346 		mutex_unlock(&fs_info->cleaner_mutex);
3347 		if (ret < 0) {
3348 			btrfs_warn(fs_info, "failed to recover relocation: %d",
3349 					ret);
3350 			err = -EINVAL;
3351 			goto fail_qgroup;
3352 		}
3353 	}
3354 
3355 	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3356 	if (IS_ERR(fs_info->fs_root)) {
3357 		err = PTR_ERR(fs_info->fs_root);
3358 		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3359 		fs_info->fs_root = NULL;
3360 		goto fail_qgroup;
3361 	}
3362 
3363 	if (sb_rdonly(sb))
3364 		return 0;
3365 
3366 	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3367 	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3368 		clear_free_space_tree = 1;
3369 	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3370 		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3371 		btrfs_warn(fs_info, "free space tree is invalid");
3372 		clear_free_space_tree = 1;
3373 	}
3374 
3375 	if (clear_free_space_tree) {
3376 		btrfs_info(fs_info, "clearing free space tree");
3377 		ret = btrfs_clear_free_space_tree(fs_info);
3378 		if (ret) {
3379 			btrfs_warn(fs_info,
3380 				   "failed to clear free space tree: %d", ret);
3381 			close_ctree(fs_info);
3382 			return ret;
3383 		}
3384 	}
3385 
3386 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3387 	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3388 		btrfs_info(fs_info, "creating free space tree");
3389 		ret = btrfs_create_free_space_tree(fs_info);
3390 		if (ret) {
3391 			btrfs_warn(fs_info,
3392 				"failed to create free space tree: %d", ret);
3393 			close_ctree(fs_info);
3394 			return ret;
3395 		}
3396 	}
3397 
3398 	down_read(&fs_info->cleanup_work_sem);
3399 	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3400 	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3401 		up_read(&fs_info->cleanup_work_sem);
3402 		close_ctree(fs_info);
3403 		return ret;
3404 	}
3405 	up_read(&fs_info->cleanup_work_sem);
3406 
3407 	ret = btrfs_resume_balance_async(fs_info);
3408 	if (ret) {
3409 		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3410 		close_ctree(fs_info);
3411 		return ret;
3412 	}
3413 
3414 	ret = btrfs_resume_dev_replace_async(fs_info);
3415 	if (ret) {
3416 		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3417 		close_ctree(fs_info);
3418 		return ret;
3419 	}
3420 
3421 	btrfs_qgroup_rescan_resume(fs_info);
3422 	btrfs_discard_resume(fs_info);
3423 
3424 	if (!fs_info->uuid_root) {
3425 		btrfs_info(fs_info, "creating UUID tree");
3426 		ret = btrfs_create_uuid_tree(fs_info);
3427 		if (ret) {
3428 			btrfs_warn(fs_info,
3429 				"failed to create the UUID tree: %d", ret);
3430 			close_ctree(fs_info);
3431 			return ret;
3432 		}
3433 	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3434 		   fs_info->generation !=
3435 				btrfs_super_uuid_tree_generation(disk_super)) {
3436 		btrfs_info(fs_info, "checking UUID tree");
3437 		ret = btrfs_check_uuid_tree(fs_info);
3438 		if (ret) {
3439 			btrfs_warn(fs_info,
3440 				"failed to check the UUID tree: %d", ret);
3441 			close_ctree(fs_info);
3442 			return ret;
3443 		}
3444 	}
3445 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3446 
3447 	/*
3448 	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3449 	 * no need to keep the flag
3450 	 */
3451 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3452 
3453 	return 0;
3454 
3455 fail_qgroup:
3456 	btrfs_free_qgroup_config(fs_info);
3457 fail_trans_kthread:
3458 	kthread_stop(fs_info->transaction_kthread);
3459 	btrfs_cleanup_transaction(fs_info);
3460 	btrfs_free_fs_roots(fs_info);
3461 fail_cleaner:
3462 	kthread_stop(fs_info->cleaner_kthread);
3463 
3464 	/*
3465 	 * make sure we're done with the btree inode before we stop our
3466 	 * kthreads
3467 	 */
3468 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3469 
3470 fail_sysfs:
3471 	btrfs_sysfs_remove_mounted(fs_info);
3472 
3473 fail_fsdev_sysfs:
3474 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3475 
3476 fail_block_groups:
3477 	btrfs_put_block_group_cache(fs_info);
3478 
3479 fail_tree_roots:
3480 	if (fs_info->data_reloc_root)
3481 		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3482 	free_root_pointers(fs_info, true);
3483 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3484 
3485 fail_sb_buffer:
3486 	btrfs_stop_all_workers(fs_info);
3487 	btrfs_free_block_groups(fs_info);
3488 fail_alloc:
3489 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3490 
3491 	iput(fs_info->btree_inode);
3492 fail:
3493 	btrfs_close_devices(fs_info->fs_devices);
3494 	return err;
3495 }
3496 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3497 
btrfs_end_super_write(struct bio * bio)3498 static void btrfs_end_super_write(struct bio *bio)
3499 {
3500 	struct btrfs_device *device = bio->bi_private;
3501 	struct bio_vec *bvec;
3502 	struct bvec_iter_all iter_all;
3503 	struct page *page;
3504 
3505 	bio_for_each_segment_all(bvec, bio, iter_all) {
3506 		page = bvec->bv_page;
3507 
3508 		if (bio->bi_status) {
3509 			btrfs_warn_rl_in_rcu(device->fs_info,
3510 				"lost page write due to IO error on %s (%d)",
3511 				rcu_str_deref(device->name),
3512 				blk_status_to_errno(bio->bi_status));
3513 			ClearPageUptodate(page);
3514 			SetPageError(page);
3515 			btrfs_dev_stat_inc_and_print(device,
3516 						     BTRFS_DEV_STAT_WRITE_ERRS);
3517 		} else {
3518 			SetPageUptodate(page);
3519 		}
3520 
3521 		put_page(page);
3522 		unlock_page(page);
3523 	}
3524 
3525 	bio_put(bio);
3526 }
3527 
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num)3528 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3529 						   int copy_num)
3530 {
3531 	struct btrfs_super_block *super;
3532 	struct page *page;
3533 	u64 bytenr;
3534 	struct address_space *mapping = bdev->bd_inode->i_mapping;
3535 
3536 	bytenr = btrfs_sb_offset(copy_num);
3537 	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3538 		return ERR_PTR(-EINVAL);
3539 
3540 	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3541 	if (IS_ERR(page))
3542 		return ERR_CAST(page);
3543 
3544 	super = page_address(page);
3545 	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3546 		btrfs_release_disk_super(super);
3547 		return ERR_PTR(-ENODATA);
3548 	}
3549 
3550 	if (btrfs_super_bytenr(super) != bytenr) {
3551 		btrfs_release_disk_super(super);
3552 		return ERR_PTR(-EINVAL);
3553 	}
3554 
3555 	return super;
3556 }
3557 
3558 
btrfs_read_dev_super(struct block_device * bdev)3559 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3560 {
3561 	struct btrfs_super_block *super, *latest = NULL;
3562 	int i;
3563 	u64 transid = 0;
3564 
3565 	/* we would like to check all the supers, but that would make
3566 	 * a btrfs mount succeed after a mkfs from a different FS.
3567 	 * So, we need to add a special mount option to scan for
3568 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3569 	 */
3570 	for (i = 0; i < 1; i++) {
3571 		super = btrfs_read_dev_one_super(bdev, i);
3572 		if (IS_ERR(super))
3573 			continue;
3574 
3575 		if (!latest || btrfs_super_generation(super) > transid) {
3576 			if (latest)
3577 				btrfs_release_disk_super(super);
3578 
3579 			latest = super;
3580 			transid = btrfs_super_generation(super);
3581 		}
3582 	}
3583 
3584 	return super;
3585 }
3586 
3587 /*
3588  * Write superblock @sb to the @device. Do not wait for completion, all the
3589  * pages we use for writing are locked.
3590  *
3591  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3592  * the expected device size at commit time. Note that max_mirrors must be
3593  * same for write and wait phases.
3594  *
3595  * Return number of errors when page is not found or submission fails.
3596  */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3597 static int write_dev_supers(struct btrfs_device *device,
3598 			    struct btrfs_super_block *sb, int max_mirrors)
3599 {
3600 	struct btrfs_fs_info *fs_info = device->fs_info;
3601 	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3602 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3603 	int i;
3604 	int errors = 0;
3605 	u64 bytenr;
3606 
3607 	if (max_mirrors == 0)
3608 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3609 
3610 	shash->tfm = fs_info->csum_shash;
3611 
3612 	for (i = 0; i < max_mirrors; i++) {
3613 		struct page *page;
3614 		struct bio *bio;
3615 		struct btrfs_super_block *disk_super;
3616 
3617 		bytenr = btrfs_sb_offset(i);
3618 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3619 		    device->commit_total_bytes)
3620 			break;
3621 
3622 		btrfs_set_super_bytenr(sb, bytenr);
3623 
3624 		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3625 				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3626 				    sb->csum);
3627 
3628 		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3629 					   GFP_NOFS);
3630 		if (!page) {
3631 			btrfs_err(device->fs_info,
3632 			    "couldn't get super block page for bytenr %llu",
3633 			    bytenr);
3634 			errors++;
3635 			continue;
3636 		}
3637 
3638 		/* Bump the refcount for wait_dev_supers() */
3639 		get_page(page);
3640 
3641 		disk_super = page_address(page);
3642 		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3643 
3644 		/*
3645 		 * Directly use bios here instead of relying on the page cache
3646 		 * to do I/O, so we don't lose the ability to do integrity
3647 		 * checking.
3648 		 */
3649 		bio = bio_alloc(GFP_NOFS, 1);
3650 		bio_set_dev(bio, device->bdev);
3651 		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3652 		bio->bi_private = device;
3653 		bio->bi_end_io = btrfs_end_super_write;
3654 		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3655 			       offset_in_page(bytenr));
3656 
3657 		/*
3658 		 * We FUA only the first super block.  The others we allow to
3659 		 * go down lazy and there's a short window where the on-disk
3660 		 * copies might still contain the older version.
3661 		 */
3662 		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3663 		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3664 			bio->bi_opf |= REQ_FUA;
3665 
3666 		btrfsic_submit_bio(bio);
3667 	}
3668 	return errors < i ? 0 : -1;
3669 }
3670 
3671 /*
3672  * Wait for write completion of superblocks done by write_dev_supers,
3673  * @max_mirrors same for write and wait phases.
3674  *
3675  * Return number of errors when page is not found or not marked up to
3676  * date.
3677  */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3678 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3679 {
3680 	int i;
3681 	int errors = 0;
3682 	bool primary_failed = false;
3683 	u64 bytenr;
3684 
3685 	if (max_mirrors == 0)
3686 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3687 
3688 	for (i = 0; i < max_mirrors; i++) {
3689 		struct page *page;
3690 
3691 		bytenr = btrfs_sb_offset(i);
3692 		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3693 		    device->commit_total_bytes)
3694 			break;
3695 
3696 		page = find_get_page(device->bdev->bd_inode->i_mapping,
3697 				     bytenr >> PAGE_SHIFT);
3698 		if (!page) {
3699 			errors++;
3700 			if (i == 0)
3701 				primary_failed = true;
3702 			continue;
3703 		}
3704 		/* Page is submitted locked and unlocked once the IO completes */
3705 		wait_on_page_locked(page);
3706 		if (PageError(page)) {
3707 			errors++;
3708 			if (i == 0)
3709 				primary_failed = true;
3710 		}
3711 
3712 		/* Drop our reference */
3713 		put_page(page);
3714 
3715 		/* Drop the reference from the writing run */
3716 		put_page(page);
3717 	}
3718 
3719 	/* log error, force error return */
3720 	if (primary_failed) {
3721 		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3722 			  device->devid);
3723 		return -1;
3724 	}
3725 
3726 	return errors < i ? 0 : -1;
3727 }
3728 
3729 /*
3730  * endio for the write_dev_flush, this will wake anyone waiting
3731  * for the barrier when it is done
3732  */
btrfs_end_empty_barrier(struct bio * bio)3733 static void btrfs_end_empty_barrier(struct bio *bio)
3734 {
3735 	complete(bio->bi_private);
3736 }
3737 
3738 /*
3739  * Submit a flush request to the device if it supports it. Error handling is
3740  * done in the waiting counterpart.
3741  */
write_dev_flush(struct btrfs_device * device)3742 static void write_dev_flush(struct btrfs_device *device)
3743 {
3744 	struct bio *bio = device->flush_bio;
3745 
3746 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3747 	/*
3748 	 * When a disk has write caching disabled, we skip submission of a bio
3749 	 * with flush and sync requests before writing the superblock, since
3750 	 * it's not needed. However when the integrity checker is enabled, this
3751 	 * results in reports that there are metadata blocks referred by a
3752 	 * superblock that were not properly flushed. So don't skip the bio
3753 	 * submission only when the integrity checker is enabled for the sake
3754 	 * of simplicity, since this is a debug tool and not meant for use in
3755 	 * non-debug builds.
3756 	 */
3757 	struct request_queue *q = bdev_get_queue(device->bdev);
3758 	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3759 		return;
3760 #endif
3761 
3762 	bio_reset(bio);
3763 	bio->bi_end_io = btrfs_end_empty_barrier;
3764 	bio_set_dev(bio, device->bdev);
3765 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3766 	init_completion(&device->flush_wait);
3767 	bio->bi_private = &device->flush_wait;
3768 
3769 	btrfsic_submit_bio(bio);
3770 	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3771 }
3772 
3773 /*
3774  * If the flush bio has been submitted by write_dev_flush, wait for it.
3775  */
wait_dev_flush(struct btrfs_device * device)3776 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3777 {
3778 	struct bio *bio = device->flush_bio;
3779 
3780 	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3781 		return BLK_STS_OK;
3782 
3783 	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3784 	wait_for_completion_io(&device->flush_wait);
3785 
3786 	return bio->bi_status;
3787 }
3788 
check_barrier_error(struct btrfs_fs_info * fs_info)3789 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3790 {
3791 	if (!btrfs_check_rw_degradable(fs_info, NULL))
3792 		return -EIO;
3793 	return 0;
3794 }
3795 
3796 /*
3797  * send an empty flush down to each device in parallel,
3798  * then wait for them
3799  */
barrier_all_devices(struct btrfs_fs_info * info)3800 static int barrier_all_devices(struct btrfs_fs_info *info)
3801 {
3802 	struct list_head *head;
3803 	struct btrfs_device *dev;
3804 	int errors_wait = 0;
3805 	blk_status_t ret;
3806 
3807 	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3808 	/* send down all the barriers */
3809 	head = &info->fs_devices->devices;
3810 	list_for_each_entry(dev, head, dev_list) {
3811 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3812 			continue;
3813 		if (!dev->bdev)
3814 			continue;
3815 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3816 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3817 			continue;
3818 
3819 		write_dev_flush(dev);
3820 		dev->last_flush_error = BLK_STS_OK;
3821 	}
3822 
3823 	/* wait for all the barriers */
3824 	list_for_each_entry(dev, head, dev_list) {
3825 		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3826 			continue;
3827 		if (!dev->bdev) {
3828 			errors_wait++;
3829 			continue;
3830 		}
3831 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3832 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3833 			continue;
3834 
3835 		ret = wait_dev_flush(dev);
3836 		if (ret) {
3837 			dev->last_flush_error = ret;
3838 			btrfs_dev_stat_inc_and_print(dev,
3839 					BTRFS_DEV_STAT_FLUSH_ERRS);
3840 			errors_wait++;
3841 		}
3842 	}
3843 
3844 	if (errors_wait) {
3845 		/*
3846 		 * At some point we need the status of all disks
3847 		 * to arrive at the volume status. So error checking
3848 		 * is being pushed to a separate loop.
3849 		 */
3850 		return check_barrier_error(info);
3851 	}
3852 	return 0;
3853 }
3854 
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)3855 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3856 {
3857 	int raid_type;
3858 	int min_tolerated = INT_MAX;
3859 
3860 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3861 	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3862 		min_tolerated = min_t(int, min_tolerated,
3863 				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3864 				    tolerated_failures);
3865 
3866 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3867 		if (raid_type == BTRFS_RAID_SINGLE)
3868 			continue;
3869 		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3870 			continue;
3871 		min_tolerated = min_t(int, min_tolerated,
3872 				    btrfs_raid_array[raid_type].
3873 				    tolerated_failures);
3874 	}
3875 
3876 	if (min_tolerated == INT_MAX) {
3877 		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3878 		min_tolerated = 0;
3879 	}
3880 
3881 	return min_tolerated;
3882 }
3883 
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)3884 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3885 {
3886 	struct list_head *head;
3887 	struct btrfs_device *dev;
3888 	struct btrfs_super_block *sb;
3889 	struct btrfs_dev_item *dev_item;
3890 	int ret;
3891 	int do_barriers;
3892 	int max_errors;
3893 	int total_errors = 0;
3894 	u64 flags;
3895 
3896 	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3897 
3898 	/*
3899 	 * max_mirrors == 0 indicates we're from commit_transaction,
3900 	 * not from fsync where the tree roots in fs_info have not
3901 	 * been consistent on disk.
3902 	 */
3903 	if (max_mirrors == 0)
3904 		backup_super_roots(fs_info);
3905 
3906 	sb = fs_info->super_for_commit;
3907 	dev_item = &sb->dev_item;
3908 
3909 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3910 	head = &fs_info->fs_devices->devices;
3911 	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3912 
3913 	if (do_barriers) {
3914 		ret = barrier_all_devices(fs_info);
3915 		if (ret) {
3916 			mutex_unlock(
3917 				&fs_info->fs_devices->device_list_mutex);
3918 			btrfs_handle_fs_error(fs_info, ret,
3919 					      "errors while submitting device barriers.");
3920 			return ret;
3921 		}
3922 	}
3923 
3924 	list_for_each_entry(dev, head, dev_list) {
3925 		if (!dev->bdev) {
3926 			total_errors++;
3927 			continue;
3928 		}
3929 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3930 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3931 			continue;
3932 
3933 		btrfs_set_stack_device_generation(dev_item, 0);
3934 		btrfs_set_stack_device_type(dev_item, dev->type);
3935 		btrfs_set_stack_device_id(dev_item, dev->devid);
3936 		btrfs_set_stack_device_total_bytes(dev_item,
3937 						   dev->commit_total_bytes);
3938 		btrfs_set_stack_device_bytes_used(dev_item,
3939 						  dev->commit_bytes_used);
3940 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3941 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3942 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3943 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3944 		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3945 		       BTRFS_FSID_SIZE);
3946 
3947 		flags = btrfs_super_flags(sb);
3948 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3949 
3950 		ret = btrfs_validate_write_super(fs_info, sb);
3951 		if (ret < 0) {
3952 			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3953 			btrfs_handle_fs_error(fs_info, -EUCLEAN,
3954 				"unexpected superblock corruption detected");
3955 			return -EUCLEAN;
3956 		}
3957 
3958 		ret = write_dev_supers(dev, sb, max_mirrors);
3959 		if (ret)
3960 			total_errors++;
3961 	}
3962 	if (total_errors > max_errors) {
3963 		btrfs_err(fs_info, "%d errors while writing supers",
3964 			  total_errors);
3965 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3966 
3967 		/* FUA is masked off if unsupported and can't be the reason */
3968 		btrfs_handle_fs_error(fs_info, -EIO,
3969 				      "%d errors while writing supers",
3970 				      total_errors);
3971 		return -EIO;
3972 	}
3973 
3974 	total_errors = 0;
3975 	list_for_each_entry(dev, head, dev_list) {
3976 		if (!dev->bdev)
3977 			continue;
3978 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3979 		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3980 			continue;
3981 
3982 		ret = wait_dev_supers(dev, max_mirrors);
3983 		if (ret)
3984 			total_errors++;
3985 	}
3986 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3987 	if (total_errors > max_errors) {
3988 		btrfs_handle_fs_error(fs_info, -EIO,
3989 				      "%d errors while writing supers",
3990 				      total_errors);
3991 		return -EIO;
3992 	}
3993 	return 0;
3994 }
3995 
3996 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)3997 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3998 				  struct btrfs_root *root)
3999 {
4000 	bool drop_ref = false;
4001 
4002 	spin_lock(&fs_info->fs_roots_radix_lock);
4003 	radix_tree_delete(&fs_info->fs_roots_radix,
4004 			  (unsigned long)root->root_key.objectid);
4005 	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4006 		drop_ref = true;
4007 	spin_unlock(&fs_info->fs_roots_radix_lock);
4008 
4009 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4010 		ASSERT(root->log_root == NULL);
4011 		if (root->reloc_root) {
4012 			btrfs_put_root(root->reloc_root);
4013 			root->reloc_root = NULL;
4014 		}
4015 	}
4016 
4017 	if (root->free_ino_pinned)
4018 		__btrfs_remove_free_space_cache(root->free_ino_pinned);
4019 	if (root->free_ino_ctl)
4020 		__btrfs_remove_free_space_cache(root->free_ino_ctl);
4021 	if (root->ino_cache_inode) {
4022 		iput(root->ino_cache_inode);
4023 		root->ino_cache_inode = NULL;
4024 	}
4025 	if (drop_ref)
4026 		btrfs_put_root(root);
4027 }
4028 
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)4029 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4030 {
4031 	u64 root_objectid = 0;
4032 	struct btrfs_root *gang[8];
4033 	int i = 0;
4034 	int err = 0;
4035 	unsigned int ret = 0;
4036 
4037 	while (1) {
4038 		spin_lock(&fs_info->fs_roots_radix_lock);
4039 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4040 					     (void **)gang, root_objectid,
4041 					     ARRAY_SIZE(gang));
4042 		if (!ret) {
4043 			spin_unlock(&fs_info->fs_roots_radix_lock);
4044 			break;
4045 		}
4046 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4047 
4048 		for (i = 0; i < ret; i++) {
4049 			/* Avoid to grab roots in dead_roots */
4050 			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4051 				gang[i] = NULL;
4052 				continue;
4053 			}
4054 			/* grab all the search result for later use */
4055 			gang[i] = btrfs_grab_root(gang[i]);
4056 		}
4057 		spin_unlock(&fs_info->fs_roots_radix_lock);
4058 
4059 		for (i = 0; i < ret; i++) {
4060 			if (!gang[i])
4061 				continue;
4062 			root_objectid = gang[i]->root_key.objectid;
4063 			err = btrfs_orphan_cleanup(gang[i]);
4064 			if (err)
4065 				break;
4066 			btrfs_put_root(gang[i]);
4067 		}
4068 		root_objectid++;
4069 	}
4070 
4071 	/* release the uncleaned roots due to error */
4072 	for (; i < ret; i++) {
4073 		if (gang[i])
4074 			btrfs_put_root(gang[i]);
4075 	}
4076 	return err;
4077 }
4078 
btrfs_commit_super(struct btrfs_fs_info * fs_info)4079 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4080 {
4081 	struct btrfs_root *root = fs_info->tree_root;
4082 	struct btrfs_trans_handle *trans;
4083 
4084 	mutex_lock(&fs_info->cleaner_mutex);
4085 	btrfs_run_delayed_iputs(fs_info);
4086 	mutex_unlock(&fs_info->cleaner_mutex);
4087 	wake_up_process(fs_info->cleaner_kthread);
4088 
4089 	/* wait until ongoing cleanup work done */
4090 	down_write(&fs_info->cleanup_work_sem);
4091 	up_write(&fs_info->cleanup_work_sem);
4092 
4093 	trans = btrfs_join_transaction(root);
4094 	if (IS_ERR(trans))
4095 		return PTR_ERR(trans);
4096 	return btrfs_commit_transaction(trans);
4097 }
4098 
close_ctree(struct btrfs_fs_info * fs_info)4099 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4100 {
4101 	int ret;
4102 
4103 	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4104 	/*
4105 	 * We don't want the cleaner to start new transactions, add more delayed
4106 	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4107 	 * because that frees the task_struct, and the transaction kthread might
4108 	 * still try to wake up the cleaner.
4109 	 */
4110 	kthread_park(fs_info->cleaner_kthread);
4111 
4112 	/* wait for the qgroup rescan worker to stop */
4113 	btrfs_qgroup_wait_for_completion(fs_info, false);
4114 
4115 	/* wait for the uuid_scan task to finish */
4116 	down(&fs_info->uuid_tree_rescan_sem);
4117 	/* avoid complains from lockdep et al., set sem back to initial state */
4118 	up(&fs_info->uuid_tree_rescan_sem);
4119 
4120 	/* pause restriper - we want to resume on mount */
4121 	btrfs_pause_balance(fs_info);
4122 
4123 	btrfs_dev_replace_suspend_for_unmount(fs_info);
4124 
4125 	btrfs_scrub_cancel(fs_info);
4126 
4127 	/* wait for any defraggers to finish */
4128 	wait_event(fs_info->transaction_wait,
4129 		   (atomic_read(&fs_info->defrag_running) == 0));
4130 
4131 	/* clear out the rbtree of defraggable inodes */
4132 	btrfs_cleanup_defrag_inodes(fs_info);
4133 
4134 	/*
4135 	 * After we parked the cleaner kthread, ordered extents may have
4136 	 * completed and created new delayed iputs. If one of the async reclaim
4137 	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4138 	 * can hang forever trying to stop it, because if a delayed iput is
4139 	 * added after it ran btrfs_run_delayed_iputs() and before it called
4140 	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4141 	 * no one else to run iputs.
4142 	 *
4143 	 * So wait for all ongoing ordered extents to complete and then run
4144 	 * delayed iputs. This works because once we reach this point no one
4145 	 * can either create new ordered extents nor create delayed iputs
4146 	 * through some other means.
4147 	 *
4148 	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4149 	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4150 	 * but the delayed iput for the respective inode is made only when doing
4151 	 * the final btrfs_put_ordered_extent() (which must happen at
4152 	 * btrfs_finish_ordered_io() when we are unmounting).
4153 	 */
4154 	btrfs_flush_workqueue(fs_info->endio_write_workers);
4155 	/* Ordered extents for free space inodes. */
4156 	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4157 	btrfs_run_delayed_iputs(fs_info);
4158 
4159 	cancel_work_sync(&fs_info->async_reclaim_work);
4160 	cancel_work_sync(&fs_info->async_data_reclaim_work);
4161 
4162 	/* Cancel or finish ongoing discard work */
4163 	btrfs_discard_cleanup(fs_info);
4164 
4165 	if (!sb_rdonly(fs_info->sb)) {
4166 		/*
4167 		 * The cleaner kthread is stopped, so do one final pass over
4168 		 * unused block groups.
4169 		 */
4170 		btrfs_delete_unused_bgs(fs_info);
4171 
4172 		/*
4173 		 * There might be existing delayed inode workers still running
4174 		 * and holding an empty delayed inode item. We must wait for
4175 		 * them to complete first because they can create a transaction.
4176 		 * This happens when someone calls btrfs_balance_delayed_items()
4177 		 * and then a transaction commit runs the same delayed nodes
4178 		 * before any delayed worker has done something with the nodes.
4179 		 * We must wait for any worker here and not at transaction
4180 		 * commit time since that could cause a deadlock.
4181 		 * This is a very rare case.
4182 		 */
4183 		btrfs_flush_workqueue(fs_info->delayed_workers);
4184 
4185 		ret = btrfs_commit_super(fs_info);
4186 		if (ret)
4187 			btrfs_err(fs_info, "commit super ret %d", ret);
4188 	}
4189 
4190 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4191 	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4192 		btrfs_error_commit_super(fs_info);
4193 
4194 	kthread_stop(fs_info->transaction_kthread);
4195 	kthread_stop(fs_info->cleaner_kthread);
4196 
4197 	ASSERT(list_empty(&fs_info->delayed_iputs));
4198 	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4199 
4200 	if (btrfs_check_quota_leak(fs_info)) {
4201 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4202 		btrfs_err(fs_info, "qgroup reserved space leaked");
4203 	}
4204 
4205 	btrfs_free_qgroup_config(fs_info);
4206 	ASSERT(list_empty(&fs_info->delalloc_roots));
4207 
4208 	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4209 		btrfs_info(fs_info, "at unmount delalloc count %lld",
4210 		       percpu_counter_sum(&fs_info->delalloc_bytes));
4211 	}
4212 
4213 	if (percpu_counter_sum(&fs_info->dio_bytes))
4214 		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4215 			   percpu_counter_sum(&fs_info->dio_bytes));
4216 
4217 	btrfs_sysfs_remove_mounted(fs_info);
4218 	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4219 
4220 	btrfs_put_block_group_cache(fs_info);
4221 
4222 	/*
4223 	 * we must make sure there is not any read request to
4224 	 * submit after we stopping all workers.
4225 	 */
4226 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4227 	btrfs_stop_all_workers(fs_info);
4228 
4229 	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4230 	free_root_pointers(fs_info, true);
4231 	btrfs_free_fs_roots(fs_info);
4232 
4233 	/*
4234 	 * We must free the block groups after dropping the fs_roots as we could
4235 	 * have had an IO error and have left over tree log blocks that aren't
4236 	 * cleaned up until the fs roots are freed.  This makes the block group
4237 	 * accounting appear to be wrong because there's pending reserved bytes,
4238 	 * so make sure we do the block group cleanup afterwards.
4239 	 */
4240 	btrfs_free_block_groups(fs_info);
4241 
4242 	iput(fs_info->btree_inode);
4243 
4244 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4245 	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4246 		btrfsic_unmount(fs_info->fs_devices);
4247 #endif
4248 
4249 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4250 	btrfs_close_devices(fs_info->fs_devices);
4251 }
4252 
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)4253 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4254 			  int atomic)
4255 {
4256 	int ret;
4257 	struct inode *btree_inode = buf->pages[0]->mapping->host;
4258 
4259 	ret = extent_buffer_uptodate(buf);
4260 	if (!ret)
4261 		return ret;
4262 
4263 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4264 				    parent_transid, atomic);
4265 	if (ret == -EAGAIN)
4266 		return ret;
4267 	return !ret;
4268 }
4269 
btrfs_mark_buffer_dirty(struct extent_buffer * buf)4270 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4271 {
4272 	struct btrfs_fs_info *fs_info;
4273 	struct btrfs_root *root;
4274 	u64 transid = btrfs_header_generation(buf);
4275 	int was_dirty;
4276 
4277 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4278 	/*
4279 	 * This is a fast path so only do this check if we have sanity tests
4280 	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4281 	 * outside of the sanity tests.
4282 	 */
4283 	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4284 		return;
4285 #endif
4286 	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4287 	fs_info = root->fs_info;
4288 	btrfs_assert_tree_locked(buf);
4289 	if (transid != fs_info->generation)
4290 		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4291 			buf->start, transid, fs_info->generation);
4292 	was_dirty = set_extent_buffer_dirty(buf);
4293 	if (!was_dirty)
4294 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4295 					 buf->len,
4296 					 fs_info->dirty_metadata_batch);
4297 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4298 	/*
4299 	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4300 	 * but item data not updated.
4301 	 * So here we should only check item pointers, not item data.
4302 	 */
4303 	if (btrfs_header_level(buf) == 0 &&
4304 	    btrfs_check_leaf_relaxed(buf)) {
4305 		btrfs_print_leaf(buf);
4306 		ASSERT(0);
4307 	}
4308 #endif
4309 }
4310 
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4311 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4312 					int flush_delayed)
4313 {
4314 	/*
4315 	 * looks as though older kernels can get into trouble with
4316 	 * this code, they end up stuck in balance_dirty_pages forever
4317 	 */
4318 	int ret;
4319 
4320 	if (current->flags & PF_MEMALLOC)
4321 		return;
4322 
4323 	if (flush_delayed)
4324 		btrfs_balance_delayed_items(fs_info);
4325 
4326 	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4327 				     BTRFS_DIRTY_METADATA_THRESH,
4328 				     fs_info->dirty_metadata_batch);
4329 	if (ret > 0) {
4330 		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4331 	}
4332 }
4333 
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4334 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4335 {
4336 	__btrfs_btree_balance_dirty(fs_info, 1);
4337 }
4338 
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4339 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4340 {
4341 	__btrfs_btree_balance_dirty(fs_info, 0);
4342 }
4343 
btrfs_read_buffer(struct extent_buffer * buf,u64 parent_transid,int level,struct btrfs_key * first_key)4344 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4345 		      struct btrfs_key *first_key)
4346 {
4347 	return btree_read_extent_buffer_pages(buf, parent_transid,
4348 					      level, first_key);
4349 }
4350 
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4351 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4352 {
4353 	/* cleanup FS via transaction */
4354 	btrfs_cleanup_transaction(fs_info);
4355 
4356 	mutex_lock(&fs_info->cleaner_mutex);
4357 	btrfs_run_delayed_iputs(fs_info);
4358 	mutex_unlock(&fs_info->cleaner_mutex);
4359 
4360 	down_write(&fs_info->cleanup_work_sem);
4361 	up_write(&fs_info->cleanup_work_sem);
4362 }
4363 
btrfs_drop_all_logs(struct btrfs_fs_info * fs_info)4364 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4365 {
4366 	struct btrfs_root *gang[8];
4367 	u64 root_objectid = 0;
4368 	int ret;
4369 
4370 	spin_lock(&fs_info->fs_roots_radix_lock);
4371 	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4372 					     (void **)gang, root_objectid,
4373 					     ARRAY_SIZE(gang))) != 0) {
4374 		int i;
4375 
4376 		for (i = 0; i < ret; i++)
4377 			gang[i] = btrfs_grab_root(gang[i]);
4378 		spin_unlock(&fs_info->fs_roots_radix_lock);
4379 
4380 		for (i = 0; i < ret; i++) {
4381 			if (!gang[i])
4382 				continue;
4383 			root_objectid = gang[i]->root_key.objectid;
4384 			btrfs_free_log(NULL, gang[i]);
4385 			btrfs_put_root(gang[i]);
4386 		}
4387 		root_objectid++;
4388 		spin_lock(&fs_info->fs_roots_radix_lock);
4389 	}
4390 	spin_unlock(&fs_info->fs_roots_radix_lock);
4391 	btrfs_free_log_root_tree(NULL, fs_info);
4392 }
4393 
btrfs_destroy_ordered_extents(struct btrfs_root * root)4394 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4395 {
4396 	struct btrfs_ordered_extent *ordered;
4397 
4398 	spin_lock(&root->ordered_extent_lock);
4399 	/*
4400 	 * This will just short circuit the ordered completion stuff which will
4401 	 * make sure the ordered extent gets properly cleaned up.
4402 	 */
4403 	list_for_each_entry(ordered, &root->ordered_extents,
4404 			    root_extent_list)
4405 		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4406 	spin_unlock(&root->ordered_extent_lock);
4407 }
4408 
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4409 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4410 {
4411 	struct btrfs_root *root;
4412 	struct list_head splice;
4413 
4414 	INIT_LIST_HEAD(&splice);
4415 
4416 	spin_lock(&fs_info->ordered_root_lock);
4417 	list_splice_init(&fs_info->ordered_roots, &splice);
4418 	while (!list_empty(&splice)) {
4419 		root = list_first_entry(&splice, struct btrfs_root,
4420 					ordered_root);
4421 		list_move_tail(&root->ordered_root,
4422 			       &fs_info->ordered_roots);
4423 
4424 		spin_unlock(&fs_info->ordered_root_lock);
4425 		btrfs_destroy_ordered_extents(root);
4426 
4427 		cond_resched();
4428 		spin_lock(&fs_info->ordered_root_lock);
4429 	}
4430 	spin_unlock(&fs_info->ordered_root_lock);
4431 
4432 	/*
4433 	 * We need this here because if we've been flipped read-only we won't
4434 	 * get sync() from the umount, so we need to make sure any ordered
4435 	 * extents that haven't had their dirty pages IO start writeout yet
4436 	 * actually get run and error out properly.
4437 	 */
4438 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4439 }
4440 
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4441 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4442 				      struct btrfs_fs_info *fs_info)
4443 {
4444 	struct rb_node *node;
4445 	struct btrfs_delayed_ref_root *delayed_refs;
4446 	struct btrfs_delayed_ref_node *ref;
4447 	int ret = 0;
4448 
4449 	delayed_refs = &trans->delayed_refs;
4450 
4451 	spin_lock(&delayed_refs->lock);
4452 	if (atomic_read(&delayed_refs->num_entries) == 0) {
4453 		spin_unlock(&delayed_refs->lock);
4454 		btrfs_debug(fs_info, "delayed_refs has NO entry");
4455 		return ret;
4456 	}
4457 
4458 	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4459 		struct btrfs_delayed_ref_head *head;
4460 		struct rb_node *n;
4461 		bool pin_bytes = false;
4462 
4463 		head = rb_entry(node, struct btrfs_delayed_ref_head,
4464 				href_node);
4465 		if (btrfs_delayed_ref_lock(delayed_refs, head))
4466 			continue;
4467 
4468 		spin_lock(&head->lock);
4469 		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4470 			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4471 				       ref_node);
4472 			ref->in_tree = 0;
4473 			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4474 			RB_CLEAR_NODE(&ref->ref_node);
4475 			if (!list_empty(&ref->add_list))
4476 				list_del(&ref->add_list);
4477 			atomic_dec(&delayed_refs->num_entries);
4478 			btrfs_put_delayed_ref(ref);
4479 		}
4480 		if (head->must_insert_reserved)
4481 			pin_bytes = true;
4482 		btrfs_free_delayed_extent_op(head->extent_op);
4483 		btrfs_delete_ref_head(delayed_refs, head);
4484 		spin_unlock(&head->lock);
4485 		spin_unlock(&delayed_refs->lock);
4486 		mutex_unlock(&head->mutex);
4487 
4488 		if (pin_bytes) {
4489 			struct btrfs_block_group *cache;
4490 
4491 			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4492 			BUG_ON(!cache);
4493 
4494 			spin_lock(&cache->space_info->lock);
4495 			spin_lock(&cache->lock);
4496 			cache->pinned += head->num_bytes;
4497 			btrfs_space_info_update_bytes_pinned(fs_info,
4498 				cache->space_info, head->num_bytes);
4499 			cache->reserved -= head->num_bytes;
4500 			cache->space_info->bytes_reserved -= head->num_bytes;
4501 			spin_unlock(&cache->lock);
4502 			spin_unlock(&cache->space_info->lock);
4503 			percpu_counter_add_batch(
4504 				&cache->space_info->total_bytes_pinned,
4505 				head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4506 
4507 			btrfs_put_block_group(cache);
4508 
4509 			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4510 				head->bytenr + head->num_bytes - 1);
4511 		}
4512 		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4513 		btrfs_put_delayed_ref_head(head);
4514 		cond_resched();
4515 		spin_lock(&delayed_refs->lock);
4516 	}
4517 	btrfs_qgroup_destroy_extent_records(trans);
4518 
4519 	spin_unlock(&delayed_refs->lock);
4520 
4521 	return ret;
4522 }
4523 
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4524 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4525 {
4526 	struct btrfs_inode *btrfs_inode;
4527 	struct list_head splice;
4528 
4529 	INIT_LIST_HEAD(&splice);
4530 
4531 	spin_lock(&root->delalloc_lock);
4532 	list_splice_init(&root->delalloc_inodes, &splice);
4533 
4534 	while (!list_empty(&splice)) {
4535 		struct inode *inode = NULL;
4536 		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4537 					       delalloc_inodes);
4538 		__btrfs_del_delalloc_inode(root, btrfs_inode);
4539 		spin_unlock(&root->delalloc_lock);
4540 
4541 		/*
4542 		 * Make sure we get a live inode and that it'll not disappear
4543 		 * meanwhile.
4544 		 */
4545 		inode = igrab(&btrfs_inode->vfs_inode);
4546 		if (inode) {
4547 			unsigned int nofs_flag;
4548 
4549 			nofs_flag = memalloc_nofs_save();
4550 			invalidate_inode_pages2(inode->i_mapping);
4551 			memalloc_nofs_restore(nofs_flag);
4552 			iput(inode);
4553 		}
4554 		spin_lock(&root->delalloc_lock);
4555 	}
4556 	spin_unlock(&root->delalloc_lock);
4557 }
4558 
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4559 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4560 {
4561 	struct btrfs_root *root;
4562 	struct list_head splice;
4563 
4564 	INIT_LIST_HEAD(&splice);
4565 
4566 	spin_lock(&fs_info->delalloc_root_lock);
4567 	list_splice_init(&fs_info->delalloc_roots, &splice);
4568 	while (!list_empty(&splice)) {
4569 		root = list_first_entry(&splice, struct btrfs_root,
4570 					 delalloc_root);
4571 		root = btrfs_grab_root(root);
4572 		BUG_ON(!root);
4573 		spin_unlock(&fs_info->delalloc_root_lock);
4574 
4575 		btrfs_destroy_delalloc_inodes(root);
4576 		btrfs_put_root(root);
4577 
4578 		spin_lock(&fs_info->delalloc_root_lock);
4579 	}
4580 	spin_unlock(&fs_info->delalloc_root_lock);
4581 }
4582 
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4583 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4584 					struct extent_io_tree *dirty_pages,
4585 					int mark)
4586 {
4587 	int ret;
4588 	struct extent_buffer *eb;
4589 	u64 start = 0;
4590 	u64 end;
4591 
4592 	while (1) {
4593 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4594 					    mark, NULL);
4595 		if (ret)
4596 			break;
4597 
4598 		clear_extent_bits(dirty_pages, start, end, mark);
4599 		while (start <= end) {
4600 			eb = find_extent_buffer(fs_info, start);
4601 			start += fs_info->nodesize;
4602 			if (!eb)
4603 				continue;
4604 			wait_on_extent_buffer_writeback(eb);
4605 
4606 			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4607 					       &eb->bflags))
4608 				clear_extent_buffer_dirty(eb);
4609 			free_extent_buffer_stale(eb);
4610 		}
4611 	}
4612 
4613 	return ret;
4614 }
4615 
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * unpin)4616 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4617 				       struct extent_io_tree *unpin)
4618 {
4619 	u64 start;
4620 	u64 end;
4621 	int ret;
4622 
4623 	while (1) {
4624 		struct extent_state *cached_state = NULL;
4625 
4626 		/*
4627 		 * The btrfs_finish_extent_commit() may get the same range as
4628 		 * ours between find_first_extent_bit and clear_extent_dirty.
4629 		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4630 		 * the same extent range.
4631 		 */
4632 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4633 		ret = find_first_extent_bit(unpin, 0, &start, &end,
4634 					    EXTENT_DIRTY, &cached_state);
4635 		if (ret) {
4636 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4637 			break;
4638 		}
4639 
4640 		clear_extent_dirty(unpin, start, end, &cached_state);
4641 		free_extent_state(cached_state);
4642 		btrfs_error_unpin_extent_range(fs_info, start, end);
4643 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4644 		cond_resched();
4645 	}
4646 
4647 	return 0;
4648 }
4649 
btrfs_cleanup_bg_io(struct btrfs_block_group * cache)4650 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4651 {
4652 	struct inode *inode;
4653 
4654 	inode = cache->io_ctl.inode;
4655 	if (inode) {
4656 		unsigned int nofs_flag;
4657 
4658 		nofs_flag = memalloc_nofs_save();
4659 		invalidate_inode_pages2(inode->i_mapping);
4660 		memalloc_nofs_restore(nofs_flag);
4661 
4662 		BTRFS_I(inode)->generation = 0;
4663 		cache->io_ctl.inode = NULL;
4664 		iput(inode);
4665 	}
4666 	ASSERT(cache->io_ctl.pages == NULL);
4667 	btrfs_put_block_group(cache);
4668 }
4669 
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4670 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4671 			     struct btrfs_fs_info *fs_info)
4672 {
4673 	struct btrfs_block_group *cache;
4674 
4675 	spin_lock(&cur_trans->dirty_bgs_lock);
4676 	while (!list_empty(&cur_trans->dirty_bgs)) {
4677 		cache = list_first_entry(&cur_trans->dirty_bgs,
4678 					 struct btrfs_block_group,
4679 					 dirty_list);
4680 
4681 		if (!list_empty(&cache->io_list)) {
4682 			spin_unlock(&cur_trans->dirty_bgs_lock);
4683 			list_del_init(&cache->io_list);
4684 			btrfs_cleanup_bg_io(cache);
4685 			spin_lock(&cur_trans->dirty_bgs_lock);
4686 		}
4687 
4688 		list_del_init(&cache->dirty_list);
4689 		spin_lock(&cache->lock);
4690 		cache->disk_cache_state = BTRFS_DC_ERROR;
4691 		spin_unlock(&cache->lock);
4692 
4693 		spin_unlock(&cur_trans->dirty_bgs_lock);
4694 		btrfs_put_block_group(cache);
4695 		btrfs_delayed_refs_rsv_release(fs_info, 1);
4696 		spin_lock(&cur_trans->dirty_bgs_lock);
4697 	}
4698 	spin_unlock(&cur_trans->dirty_bgs_lock);
4699 
4700 	/*
4701 	 * Refer to the definition of io_bgs member for details why it's safe
4702 	 * to use it without any locking
4703 	 */
4704 	while (!list_empty(&cur_trans->io_bgs)) {
4705 		cache = list_first_entry(&cur_trans->io_bgs,
4706 					 struct btrfs_block_group,
4707 					 io_list);
4708 
4709 		list_del_init(&cache->io_list);
4710 		spin_lock(&cache->lock);
4711 		cache->disk_cache_state = BTRFS_DC_ERROR;
4712 		spin_unlock(&cache->lock);
4713 		btrfs_cleanup_bg_io(cache);
4714 	}
4715 }
4716 
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4717 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4718 				   struct btrfs_fs_info *fs_info)
4719 {
4720 	struct btrfs_device *dev, *tmp;
4721 
4722 	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4723 	ASSERT(list_empty(&cur_trans->dirty_bgs));
4724 	ASSERT(list_empty(&cur_trans->io_bgs));
4725 
4726 	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4727 				 post_commit_list) {
4728 		list_del_init(&dev->post_commit_list);
4729 	}
4730 
4731 	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4732 
4733 	cur_trans->state = TRANS_STATE_COMMIT_START;
4734 	wake_up(&fs_info->transaction_blocked_wait);
4735 
4736 	cur_trans->state = TRANS_STATE_UNBLOCKED;
4737 	wake_up(&fs_info->transaction_wait);
4738 
4739 	btrfs_destroy_delayed_inodes(fs_info);
4740 
4741 	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4742 				     EXTENT_DIRTY);
4743 	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4744 
4745 	cur_trans->state =TRANS_STATE_COMPLETED;
4746 	wake_up(&cur_trans->commit_wait);
4747 }
4748 
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4749 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4750 {
4751 	struct btrfs_transaction *t;
4752 
4753 	mutex_lock(&fs_info->transaction_kthread_mutex);
4754 
4755 	spin_lock(&fs_info->trans_lock);
4756 	while (!list_empty(&fs_info->trans_list)) {
4757 		t = list_first_entry(&fs_info->trans_list,
4758 				     struct btrfs_transaction, list);
4759 		if (t->state >= TRANS_STATE_COMMIT_START) {
4760 			refcount_inc(&t->use_count);
4761 			spin_unlock(&fs_info->trans_lock);
4762 			btrfs_wait_for_commit(fs_info, t->transid);
4763 			btrfs_put_transaction(t);
4764 			spin_lock(&fs_info->trans_lock);
4765 			continue;
4766 		}
4767 		if (t == fs_info->running_transaction) {
4768 			t->state = TRANS_STATE_COMMIT_DOING;
4769 			spin_unlock(&fs_info->trans_lock);
4770 			/*
4771 			 * We wait for 0 num_writers since we don't hold a trans
4772 			 * handle open currently for this transaction.
4773 			 */
4774 			wait_event(t->writer_wait,
4775 				   atomic_read(&t->num_writers) == 0);
4776 		} else {
4777 			spin_unlock(&fs_info->trans_lock);
4778 		}
4779 		btrfs_cleanup_one_transaction(t, fs_info);
4780 
4781 		spin_lock(&fs_info->trans_lock);
4782 		if (t == fs_info->running_transaction)
4783 			fs_info->running_transaction = NULL;
4784 		list_del_init(&t->list);
4785 		spin_unlock(&fs_info->trans_lock);
4786 
4787 		btrfs_put_transaction(t);
4788 		trace_btrfs_transaction_commit(fs_info->tree_root);
4789 		spin_lock(&fs_info->trans_lock);
4790 	}
4791 	spin_unlock(&fs_info->trans_lock);
4792 	btrfs_destroy_all_ordered_extents(fs_info);
4793 	btrfs_destroy_delayed_inodes(fs_info);
4794 	btrfs_assert_delayed_root_empty(fs_info);
4795 	btrfs_destroy_all_delalloc_inodes(fs_info);
4796 	btrfs_drop_all_logs(fs_info);
4797 	mutex_unlock(&fs_info->transaction_kthread_mutex);
4798 
4799 	return 0;
4800 }
4801 
btrfs_find_highest_objectid(struct btrfs_root * root,u64 * objectid)4802 int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
4803 {
4804 	struct btrfs_path *path;
4805 	int ret;
4806 	struct extent_buffer *l;
4807 	struct btrfs_key search_key;
4808 	struct btrfs_key found_key;
4809 	int slot;
4810 
4811 	path = btrfs_alloc_path();
4812 	if (!path)
4813 		return -ENOMEM;
4814 
4815 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4816 	search_key.type = -1;
4817 	search_key.offset = (u64)-1;
4818 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4819 	if (ret < 0)
4820 		goto error;
4821 	BUG_ON(ret == 0); /* Corruption */
4822 	if (path->slots[0] > 0) {
4823 		slot = path->slots[0] - 1;
4824 		l = path->nodes[0];
4825 		btrfs_item_key_to_cpu(l, &found_key, slot);
4826 		*objectid = max_t(u64, found_key.objectid,
4827 				  BTRFS_FIRST_FREE_OBJECTID - 1);
4828 	} else {
4829 		*objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
4830 	}
4831 	ret = 0;
4832 error:
4833 	btrfs_free_path(path);
4834 	return ret;
4835 }
4836 
btrfs_find_free_objectid(struct btrfs_root * root,u64 * objectid)4837 int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
4838 {
4839 	int ret;
4840 	mutex_lock(&root->objectid_mutex);
4841 
4842 	if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4843 		btrfs_warn(root->fs_info,
4844 			   "the objectid of root %llu reaches its highest value",
4845 			   root->root_key.objectid);
4846 		ret = -ENOSPC;
4847 		goto out;
4848 	}
4849 
4850 	*objectid = ++root->highest_objectid;
4851 	ret = 0;
4852 out:
4853 	mutex_unlock(&root->objectid_mutex);
4854 	return ret;
4855 }
4856