1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "export.h"
32 #include "transaction.h"
33 #include "btrfs_inode.h"
34 #include "print-tree.h"
35 #include "volumes.h"
36 #include "locking.h"
37 #include "inode-map.h"
38 #include "backref.h"
39 #include "rcu-string.h"
40 #include "send.h"
41 #include "dev-replace.h"
42 #include "props.h"
43 #include "sysfs.h"
44 #include "qgroup.h"
45 #include "tree-log.h"
46 #include "compression.h"
47 #include "space-info.h"
48 #include "delalloc-space.h"
49 #include "block-group.h"
50
51 #ifdef CONFIG_64BIT
52 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
53 * structures are incorrect, as the timespec structure from userspace
54 * is 4 bytes too small. We define these alternatives here to teach
55 * the kernel about the 32-bit struct packing.
56 */
57 struct btrfs_ioctl_timespec_32 {
58 __u64 sec;
59 __u32 nsec;
60 } __attribute__ ((__packed__));
61
62 struct btrfs_ioctl_received_subvol_args_32 {
63 char uuid[BTRFS_UUID_SIZE]; /* in */
64 __u64 stransid; /* in */
65 __u64 rtransid; /* out */
66 struct btrfs_ioctl_timespec_32 stime; /* in */
67 struct btrfs_ioctl_timespec_32 rtime; /* out */
68 __u64 flags; /* in */
69 __u64 reserved[16]; /* in */
70 } __attribute__ ((__packed__));
71
72 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
73 struct btrfs_ioctl_received_subvol_args_32)
74 #endif
75
76 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
77 struct btrfs_ioctl_send_args_32 {
78 __s64 send_fd; /* in */
79 __u64 clone_sources_count; /* in */
80 compat_uptr_t clone_sources; /* in */
81 __u64 parent_root; /* in */
82 __u64 flags; /* in */
83 __u64 reserved[4]; /* in */
84 } __attribute__ ((__packed__));
85
86 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
87 struct btrfs_ioctl_send_args_32)
88 #endif
89
90 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(struct inode * inode,unsigned int flags)91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
92 unsigned int flags)
93 {
94 if (S_ISDIR(inode->i_mode))
95 return flags;
96 else if (S_ISREG(inode->i_mode))
97 return flags & ~FS_DIRSYNC_FL;
98 else
99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
100 }
101
102 /*
103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
104 * ioctl.
105 */
btrfs_inode_flags_to_fsflags(unsigned int flags)106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
107 {
108 unsigned int iflags = 0;
109
110 if (flags & BTRFS_INODE_SYNC)
111 iflags |= FS_SYNC_FL;
112 if (flags & BTRFS_INODE_IMMUTABLE)
113 iflags |= FS_IMMUTABLE_FL;
114 if (flags & BTRFS_INODE_APPEND)
115 iflags |= FS_APPEND_FL;
116 if (flags & BTRFS_INODE_NODUMP)
117 iflags |= FS_NODUMP_FL;
118 if (flags & BTRFS_INODE_NOATIME)
119 iflags |= FS_NOATIME_FL;
120 if (flags & BTRFS_INODE_DIRSYNC)
121 iflags |= FS_DIRSYNC_FL;
122 if (flags & BTRFS_INODE_NODATACOW)
123 iflags |= FS_NOCOW_FL;
124
125 if (flags & BTRFS_INODE_NOCOMPRESS)
126 iflags |= FS_NOCOMP_FL;
127 else if (flags & BTRFS_INODE_COMPRESS)
128 iflags |= FS_COMPR_FL;
129
130 return iflags;
131 }
132
133 /*
134 * Update inode->i_flags based on the btrfs internal flags.
135 */
btrfs_sync_inode_flags_to_i_flags(struct inode * inode)136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
137 {
138 struct btrfs_inode *binode = BTRFS_I(inode);
139 unsigned int new_fl = 0;
140
141 if (binode->flags & BTRFS_INODE_SYNC)
142 new_fl |= S_SYNC;
143 if (binode->flags & BTRFS_INODE_IMMUTABLE)
144 new_fl |= S_IMMUTABLE;
145 if (binode->flags & BTRFS_INODE_APPEND)
146 new_fl |= S_APPEND;
147 if (binode->flags & BTRFS_INODE_NOATIME)
148 new_fl |= S_NOATIME;
149 if (binode->flags & BTRFS_INODE_DIRSYNC)
150 new_fl |= S_DIRSYNC;
151
152 set_mask_bits(&inode->i_flags,
153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 new_fl);
155 }
156
btrfs_ioctl_getflags(struct file * file,void __user * arg)157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
158 {
159 struct btrfs_inode *binode = BTRFS_I(file_inode(file));
160 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
161
162 if (copy_to_user(arg, &flags, sizeof(flags)))
163 return -EFAULT;
164 return 0;
165 }
166
167 /*
168 * Check if @flags are a supported and valid set of FS_*_FL flags and that
169 * the old and new flags are not conflicting
170 */
check_fsflags(unsigned int old_flags,unsigned int flags)171 static int check_fsflags(unsigned int old_flags, unsigned int flags)
172 {
173 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
174 FS_NOATIME_FL | FS_NODUMP_FL | \
175 FS_SYNC_FL | FS_DIRSYNC_FL | \
176 FS_NOCOMP_FL | FS_COMPR_FL |
177 FS_NOCOW_FL))
178 return -EOPNOTSUPP;
179
180 /* COMPR and NOCOMP on new/old are valid */
181 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
182 return -EINVAL;
183
184 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
185 return -EINVAL;
186
187 /* NOCOW and compression options are mutually exclusive */
188 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
189 return -EINVAL;
190 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
191 return -EINVAL;
192
193 return 0;
194 }
195
btrfs_ioctl_setflags(struct file * file,void __user * arg)196 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
197 {
198 struct inode *inode = file_inode(file);
199 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
200 struct btrfs_inode *binode = BTRFS_I(inode);
201 struct btrfs_root *root = binode->root;
202 struct btrfs_trans_handle *trans;
203 unsigned int fsflags, old_fsflags;
204 int ret;
205 const char *comp = NULL;
206 u32 binode_flags;
207
208 if (!inode_owner_or_capable(inode))
209 return -EPERM;
210
211 if (btrfs_root_readonly(root))
212 return -EROFS;
213
214 if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
215 return -EFAULT;
216
217 ret = mnt_want_write_file(file);
218 if (ret)
219 return ret;
220
221 inode_lock(inode);
222 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
223 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
224
225 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
226 if (ret)
227 goto out_unlock;
228
229 ret = check_fsflags(old_fsflags, fsflags);
230 if (ret)
231 goto out_unlock;
232
233 binode_flags = binode->flags;
234 if (fsflags & FS_SYNC_FL)
235 binode_flags |= BTRFS_INODE_SYNC;
236 else
237 binode_flags &= ~BTRFS_INODE_SYNC;
238 if (fsflags & FS_IMMUTABLE_FL)
239 binode_flags |= BTRFS_INODE_IMMUTABLE;
240 else
241 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
242 if (fsflags & FS_APPEND_FL)
243 binode_flags |= BTRFS_INODE_APPEND;
244 else
245 binode_flags &= ~BTRFS_INODE_APPEND;
246 if (fsflags & FS_NODUMP_FL)
247 binode_flags |= BTRFS_INODE_NODUMP;
248 else
249 binode_flags &= ~BTRFS_INODE_NODUMP;
250 if (fsflags & FS_NOATIME_FL)
251 binode_flags |= BTRFS_INODE_NOATIME;
252 else
253 binode_flags &= ~BTRFS_INODE_NOATIME;
254 if (fsflags & FS_DIRSYNC_FL)
255 binode_flags |= BTRFS_INODE_DIRSYNC;
256 else
257 binode_flags &= ~BTRFS_INODE_DIRSYNC;
258 if (fsflags & FS_NOCOW_FL) {
259 if (S_ISREG(inode->i_mode)) {
260 /*
261 * It's safe to turn csums off here, no extents exist.
262 * Otherwise we want the flag to reflect the real COW
263 * status of the file and will not set it.
264 */
265 if (inode->i_size == 0)
266 binode_flags |= BTRFS_INODE_NODATACOW |
267 BTRFS_INODE_NODATASUM;
268 } else {
269 binode_flags |= BTRFS_INODE_NODATACOW;
270 }
271 } else {
272 /*
273 * Revert back under same assumptions as above
274 */
275 if (S_ISREG(inode->i_mode)) {
276 if (inode->i_size == 0)
277 binode_flags &= ~(BTRFS_INODE_NODATACOW |
278 BTRFS_INODE_NODATASUM);
279 } else {
280 binode_flags &= ~BTRFS_INODE_NODATACOW;
281 }
282 }
283
284 /*
285 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
286 * flag may be changed automatically if compression code won't make
287 * things smaller.
288 */
289 if (fsflags & FS_NOCOMP_FL) {
290 binode_flags &= ~BTRFS_INODE_COMPRESS;
291 binode_flags |= BTRFS_INODE_NOCOMPRESS;
292 } else if (fsflags & FS_COMPR_FL) {
293
294 if (IS_SWAPFILE(inode)) {
295 ret = -ETXTBSY;
296 goto out_unlock;
297 }
298
299 binode_flags |= BTRFS_INODE_COMPRESS;
300 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
301
302 comp = btrfs_compress_type2str(fs_info->compress_type);
303 if (!comp || comp[0] == 0)
304 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
305 } else {
306 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
307 }
308
309 /*
310 * 1 for inode item
311 * 2 for properties
312 */
313 trans = btrfs_start_transaction(root, 3);
314 if (IS_ERR(trans)) {
315 ret = PTR_ERR(trans);
316 goto out_unlock;
317 }
318
319 if (comp) {
320 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
321 strlen(comp), 0);
322 if (ret) {
323 btrfs_abort_transaction(trans, ret);
324 goto out_end_trans;
325 }
326 } else {
327 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
328 0, 0);
329 if (ret && ret != -ENODATA) {
330 btrfs_abort_transaction(trans, ret);
331 goto out_end_trans;
332 }
333 }
334
335 binode->flags = binode_flags;
336 btrfs_sync_inode_flags_to_i_flags(inode);
337 inode_inc_iversion(inode);
338 inode->i_ctime = current_time(inode);
339 ret = btrfs_update_inode(trans, root, inode);
340
341 out_end_trans:
342 btrfs_end_transaction(trans);
343 out_unlock:
344 inode_unlock(inode);
345 mnt_drop_write_file(file);
346 return ret;
347 }
348
349 /*
350 * Translate btrfs internal inode flags to xflags as expected by the
351 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
352 * silently dropped.
353 */
btrfs_inode_flags_to_xflags(unsigned int flags)354 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
355 {
356 unsigned int xflags = 0;
357
358 if (flags & BTRFS_INODE_APPEND)
359 xflags |= FS_XFLAG_APPEND;
360 if (flags & BTRFS_INODE_IMMUTABLE)
361 xflags |= FS_XFLAG_IMMUTABLE;
362 if (flags & BTRFS_INODE_NOATIME)
363 xflags |= FS_XFLAG_NOATIME;
364 if (flags & BTRFS_INODE_NODUMP)
365 xflags |= FS_XFLAG_NODUMP;
366 if (flags & BTRFS_INODE_SYNC)
367 xflags |= FS_XFLAG_SYNC;
368
369 return xflags;
370 }
371
372 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
check_xflags(unsigned int flags)373 static int check_xflags(unsigned int flags)
374 {
375 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
376 FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
377 return -EOPNOTSUPP;
378 return 0;
379 }
380
btrfs_exclop_start(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type)381 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
382 enum btrfs_exclusive_operation type)
383 {
384 return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type);
385 }
386
btrfs_exclop_finish(struct btrfs_fs_info * fs_info)387 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
388 {
389 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
390 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
391 }
392
393 /*
394 * Set the xflags from the internal inode flags. The remaining items of fsxattr
395 * are zeroed.
396 */
btrfs_ioctl_fsgetxattr(struct file * file,void __user * arg)397 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
398 {
399 struct btrfs_inode *binode = BTRFS_I(file_inode(file));
400 struct fsxattr fa;
401
402 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags));
403 if (copy_to_user(arg, &fa, sizeof(fa)))
404 return -EFAULT;
405
406 return 0;
407 }
408
btrfs_ioctl_fssetxattr(struct file * file,void __user * arg)409 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
410 {
411 struct inode *inode = file_inode(file);
412 struct btrfs_inode *binode = BTRFS_I(inode);
413 struct btrfs_root *root = binode->root;
414 struct btrfs_trans_handle *trans;
415 struct fsxattr fa, old_fa;
416 unsigned old_flags;
417 unsigned old_i_flags;
418 int ret = 0;
419
420 if (!inode_owner_or_capable(inode))
421 return -EPERM;
422
423 if (btrfs_root_readonly(root))
424 return -EROFS;
425
426 if (copy_from_user(&fa, arg, sizeof(fa)))
427 return -EFAULT;
428
429 ret = check_xflags(fa.fsx_xflags);
430 if (ret)
431 return ret;
432
433 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
434 return -EOPNOTSUPP;
435
436 ret = mnt_want_write_file(file);
437 if (ret)
438 return ret;
439
440 inode_lock(inode);
441
442 old_flags = binode->flags;
443 old_i_flags = inode->i_flags;
444
445 simple_fill_fsxattr(&old_fa,
446 btrfs_inode_flags_to_xflags(binode->flags));
447 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
448 if (ret)
449 goto out_unlock;
450
451 if (fa.fsx_xflags & FS_XFLAG_SYNC)
452 binode->flags |= BTRFS_INODE_SYNC;
453 else
454 binode->flags &= ~BTRFS_INODE_SYNC;
455 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
456 binode->flags |= BTRFS_INODE_IMMUTABLE;
457 else
458 binode->flags &= ~BTRFS_INODE_IMMUTABLE;
459 if (fa.fsx_xflags & FS_XFLAG_APPEND)
460 binode->flags |= BTRFS_INODE_APPEND;
461 else
462 binode->flags &= ~BTRFS_INODE_APPEND;
463 if (fa.fsx_xflags & FS_XFLAG_NODUMP)
464 binode->flags |= BTRFS_INODE_NODUMP;
465 else
466 binode->flags &= ~BTRFS_INODE_NODUMP;
467 if (fa.fsx_xflags & FS_XFLAG_NOATIME)
468 binode->flags |= BTRFS_INODE_NOATIME;
469 else
470 binode->flags &= ~BTRFS_INODE_NOATIME;
471
472 /* 1 item for the inode */
473 trans = btrfs_start_transaction(root, 1);
474 if (IS_ERR(trans)) {
475 ret = PTR_ERR(trans);
476 goto out_unlock;
477 }
478
479 btrfs_sync_inode_flags_to_i_flags(inode);
480 inode_inc_iversion(inode);
481 inode->i_ctime = current_time(inode);
482 ret = btrfs_update_inode(trans, root, inode);
483
484 btrfs_end_transaction(trans);
485
486 out_unlock:
487 if (ret) {
488 binode->flags = old_flags;
489 inode->i_flags = old_i_flags;
490 }
491
492 inode_unlock(inode);
493 mnt_drop_write_file(file);
494
495 return ret;
496 }
497
btrfs_ioctl_getversion(struct file * file,int __user * arg)498 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
499 {
500 struct inode *inode = file_inode(file);
501
502 return put_user(inode->i_generation, arg);
503 }
504
btrfs_ioctl_fitrim(struct btrfs_fs_info * fs_info,void __user * arg)505 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
506 void __user *arg)
507 {
508 struct btrfs_device *device;
509 struct request_queue *q;
510 struct fstrim_range range;
511 u64 minlen = ULLONG_MAX;
512 u64 num_devices = 0;
513 int ret;
514
515 if (!capable(CAP_SYS_ADMIN))
516 return -EPERM;
517
518 /*
519 * If the fs is mounted with nologreplay, which requires it to be
520 * mounted in RO mode as well, we can not allow discard on free space
521 * inside block groups, because log trees refer to extents that are not
522 * pinned in a block group's free space cache (pinning the extents is
523 * precisely the first phase of replaying a log tree).
524 */
525 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
526 return -EROFS;
527
528 rcu_read_lock();
529 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
530 dev_list) {
531 if (!device->bdev)
532 continue;
533 q = bdev_get_queue(device->bdev);
534 if (blk_queue_discard(q)) {
535 num_devices++;
536 minlen = min_t(u64, q->limits.discard_granularity,
537 minlen);
538 }
539 }
540 rcu_read_unlock();
541
542 if (!num_devices)
543 return -EOPNOTSUPP;
544 if (copy_from_user(&range, arg, sizeof(range)))
545 return -EFAULT;
546
547 /*
548 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
549 * block group is in the logical address space, which can be any
550 * sectorsize aligned bytenr in the range [0, U64_MAX].
551 */
552 if (range.len < fs_info->sb->s_blocksize)
553 return -EINVAL;
554
555 range.minlen = max(range.minlen, minlen);
556 ret = btrfs_trim_fs(fs_info, &range);
557 if (ret < 0)
558 return ret;
559
560 if (copy_to_user(arg, &range, sizeof(range)))
561 return -EFAULT;
562
563 return 0;
564 }
565
btrfs_is_empty_uuid(u8 * uuid)566 int __pure btrfs_is_empty_uuid(u8 *uuid)
567 {
568 int i;
569
570 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
571 if (uuid[i])
572 return 0;
573 }
574 return 1;
575 }
576
create_subvol(struct inode * dir,struct dentry * dentry,const char * name,int namelen,struct btrfs_qgroup_inherit * inherit)577 static noinline int create_subvol(struct inode *dir,
578 struct dentry *dentry,
579 const char *name, int namelen,
580 struct btrfs_qgroup_inherit *inherit)
581 {
582 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
583 struct btrfs_trans_handle *trans;
584 struct btrfs_key key;
585 struct btrfs_root_item *root_item;
586 struct btrfs_inode_item *inode_item;
587 struct extent_buffer *leaf;
588 struct btrfs_root *root = BTRFS_I(dir)->root;
589 struct btrfs_root *new_root;
590 struct btrfs_block_rsv block_rsv;
591 struct timespec64 cur_time = current_time(dir);
592 struct inode *inode;
593 int ret;
594 int err;
595 dev_t anon_dev = 0;
596 u64 objectid;
597 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
598 u64 index = 0;
599
600 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
601 if (!root_item)
602 return -ENOMEM;
603
604 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
605 if (ret)
606 goto fail_free;
607
608 ret = get_anon_bdev(&anon_dev);
609 if (ret < 0)
610 goto fail_free;
611
612 /*
613 * Don't create subvolume whose level is not zero. Or qgroup will be
614 * screwed up since it assumes subvolume qgroup's level to be 0.
615 */
616 if (btrfs_qgroup_level(objectid)) {
617 ret = -ENOSPC;
618 goto fail_free;
619 }
620
621 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
622 /*
623 * The same as the snapshot creation, please see the comment
624 * of create_snapshot().
625 */
626 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
627 if (ret)
628 goto fail_free;
629
630 trans = btrfs_start_transaction(root, 0);
631 if (IS_ERR(trans)) {
632 ret = PTR_ERR(trans);
633 btrfs_subvolume_release_metadata(root, &block_rsv);
634 goto fail_free;
635 }
636 trans->block_rsv = &block_rsv;
637 trans->bytes_reserved = block_rsv.size;
638
639 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
640 if (ret)
641 goto fail;
642
643 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
644 BTRFS_NESTING_NORMAL);
645 if (IS_ERR(leaf)) {
646 ret = PTR_ERR(leaf);
647 goto fail;
648 }
649
650 btrfs_mark_buffer_dirty(leaf);
651
652 inode_item = &root_item->inode;
653 btrfs_set_stack_inode_generation(inode_item, 1);
654 btrfs_set_stack_inode_size(inode_item, 3);
655 btrfs_set_stack_inode_nlink(inode_item, 1);
656 btrfs_set_stack_inode_nbytes(inode_item,
657 fs_info->nodesize);
658 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
659
660 btrfs_set_root_flags(root_item, 0);
661 btrfs_set_root_limit(root_item, 0);
662 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
663
664 btrfs_set_root_bytenr(root_item, leaf->start);
665 btrfs_set_root_generation(root_item, trans->transid);
666 btrfs_set_root_level(root_item, 0);
667 btrfs_set_root_refs(root_item, 1);
668 btrfs_set_root_used(root_item, leaf->len);
669 btrfs_set_root_last_snapshot(root_item, 0);
670
671 btrfs_set_root_generation_v2(root_item,
672 btrfs_root_generation(root_item));
673 generate_random_guid(root_item->uuid);
674 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
675 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
676 root_item->ctime = root_item->otime;
677 btrfs_set_root_ctransid(root_item, trans->transid);
678 btrfs_set_root_otransid(root_item, trans->transid);
679
680 btrfs_tree_unlock(leaf);
681
682 btrfs_set_root_dirid(root_item, new_dirid);
683
684 key.objectid = objectid;
685 key.offset = 0;
686 key.type = BTRFS_ROOT_ITEM_KEY;
687 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
688 root_item);
689 if (ret) {
690 /*
691 * Since we don't abort the transaction in this case, free the
692 * tree block so that we don't leak space and leave the
693 * filesystem in an inconsistent state (an extent item in the
694 * extent tree without backreferences). Also no need to have
695 * the tree block locked since it is not in any tree at this
696 * point, so no other task can find it and use it.
697 */
698 btrfs_free_tree_block(trans, root, leaf, 0, 1);
699 free_extent_buffer(leaf);
700 goto fail;
701 }
702
703 free_extent_buffer(leaf);
704 leaf = NULL;
705
706 key.offset = (u64)-1;
707 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
708 if (IS_ERR(new_root)) {
709 free_anon_bdev(anon_dev);
710 ret = PTR_ERR(new_root);
711 btrfs_abort_transaction(trans, ret);
712 goto fail;
713 }
714 /* Freeing will be done in btrfs_put_root() of new_root */
715 anon_dev = 0;
716
717 btrfs_record_root_in_trans(trans, new_root);
718
719 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
720 btrfs_put_root(new_root);
721 if (ret) {
722 /* We potentially lose an unused inode item here */
723 btrfs_abort_transaction(trans, ret);
724 goto fail;
725 }
726
727 mutex_lock(&new_root->objectid_mutex);
728 new_root->highest_objectid = new_dirid;
729 mutex_unlock(&new_root->objectid_mutex);
730
731 /*
732 * insert the directory item
733 */
734 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
735 if (ret) {
736 btrfs_abort_transaction(trans, ret);
737 goto fail;
738 }
739
740 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
741 BTRFS_FT_DIR, index);
742 if (ret) {
743 btrfs_abort_transaction(trans, ret);
744 goto fail;
745 }
746
747 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
748 ret = btrfs_update_inode(trans, root, dir);
749 if (ret) {
750 btrfs_abort_transaction(trans, ret);
751 goto fail;
752 }
753
754 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
755 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
756 if (ret) {
757 btrfs_abort_transaction(trans, ret);
758 goto fail;
759 }
760
761 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
762 BTRFS_UUID_KEY_SUBVOL, objectid);
763 if (ret)
764 btrfs_abort_transaction(trans, ret);
765
766 fail:
767 kfree(root_item);
768 trans->block_rsv = NULL;
769 trans->bytes_reserved = 0;
770 btrfs_subvolume_release_metadata(root, &block_rsv);
771
772 err = btrfs_commit_transaction(trans);
773 if (err && !ret)
774 ret = err;
775
776 if (!ret) {
777 inode = btrfs_lookup_dentry(dir, dentry);
778 if (IS_ERR(inode))
779 return PTR_ERR(inode);
780 d_instantiate(dentry, inode);
781 }
782 return ret;
783
784 fail_free:
785 if (anon_dev)
786 free_anon_bdev(anon_dev);
787 kfree(root_item);
788 return ret;
789 }
790
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,bool readonly,struct btrfs_qgroup_inherit * inherit)791 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
792 struct dentry *dentry, bool readonly,
793 struct btrfs_qgroup_inherit *inherit)
794 {
795 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
796 struct inode *inode;
797 struct btrfs_pending_snapshot *pending_snapshot;
798 struct btrfs_trans_handle *trans;
799 int ret;
800
801 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
802 return -EINVAL;
803
804 if (atomic_read(&root->nr_swapfiles)) {
805 btrfs_warn(fs_info,
806 "cannot snapshot subvolume with active swapfile");
807 return -ETXTBSY;
808 }
809
810 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
811 if (!pending_snapshot)
812 return -ENOMEM;
813
814 ret = get_anon_bdev(&pending_snapshot->anon_dev);
815 if (ret < 0)
816 goto free_pending;
817 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
818 GFP_KERNEL);
819 pending_snapshot->path = btrfs_alloc_path();
820 if (!pending_snapshot->root_item || !pending_snapshot->path) {
821 ret = -ENOMEM;
822 goto free_pending;
823 }
824
825 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
826 BTRFS_BLOCK_RSV_TEMP);
827 /*
828 * 1 - parent dir inode
829 * 2 - dir entries
830 * 1 - root item
831 * 2 - root ref/backref
832 * 1 - root of snapshot
833 * 1 - UUID item
834 */
835 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
836 &pending_snapshot->block_rsv, 8,
837 false);
838 if (ret)
839 goto free_pending;
840
841 pending_snapshot->dentry = dentry;
842 pending_snapshot->root = root;
843 pending_snapshot->readonly = readonly;
844 pending_snapshot->dir = dir;
845 pending_snapshot->inherit = inherit;
846
847 trans = btrfs_start_transaction(root, 0);
848 if (IS_ERR(trans)) {
849 ret = PTR_ERR(trans);
850 goto fail;
851 }
852
853 spin_lock(&fs_info->trans_lock);
854 list_add(&pending_snapshot->list,
855 &trans->transaction->pending_snapshots);
856 spin_unlock(&fs_info->trans_lock);
857
858 ret = btrfs_commit_transaction(trans);
859 if (ret)
860 goto fail;
861
862 ret = pending_snapshot->error;
863 if (ret)
864 goto fail;
865
866 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
867 if (ret)
868 goto fail;
869
870 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
871 if (IS_ERR(inode)) {
872 ret = PTR_ERR(inode);
873 goto fail;
874 }
875
876 d_instantiate(dentry, inode);
877 ret = 0;
878 pending_snapshot->anon_dev = 0;
879 fail:
880 /* Prevent double freeing of anon_dev */
881 if (ret && pending_snapshot->snap)
882 pending_snapshot->snap->anon_dev = 0;
883 btrfs_put_root(pending_snapshot->snap);
884 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
885 free_pending:
886 if (pending_snapshot->anon_dev)
887 free_anon_bdev(pending_snapshot->anon_dev);
888 kfree(pending_snapshot->root_item);
889 btrfs_free_path(pending_snapshot->path);
890 kfree(pending_snapshot);
891
892 return ret;
893 }
894
895 /* copy of may_delete in fs/namei.c()
896 * Check whether we can remove a link victim from directory dir, check
897 * whether the type of victim is right.
898 * 1. We can't do it if dir is read-only (done in permission())
899 * 2. We should have write and exec permissions on dir
900 * 3. We can't remove anything from append-only dir
901 * 4. We can't do anything with immutable dir (done in permission())
902 * 5. If the sticky bit on dir is set we should either
903 * a. be owner of dir, or
904 * b. be owner of victim, or
905 * c. have CAP_FOWNER capability
906 * 6. If the victim is append-only or immutable we can't do anything with
907 * links pointing to it.
908 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
909 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
910 * 9. We can't remove a root or mountpoint.
911 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
912 * nfs_async_unlink().
913 */
914
btrfs_may_delete(struct inode * dir,struct dentry * victim,int isdir)915 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
916 {
917 int error;
918
919 if (d_really_is_negative(victim))
920 return -ENOENT;
921
922 BUG_ON(d_inode(victim->d_parent) != dir);
923 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
924
925 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
926 if (error)
927 return error;
928 if (IS_APPEND(dir))
929 return -EPERM;
930 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
931 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
932 return -EPERM;
933 if (isdir) {
934 if (!d_is_dir(victim))
935 return -ENOTDIR;
936 if (IS_ROOT(victim))
937 return -EBUSY;
938 } else if (d_is_dir(victim))
939 return -EISDIR;
940 if (IS_DEADDIR(dir))
941 return -ENOENT;
942 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
943 return -EBUSY;
944 return 0;
945 }
946
947 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct inode * dir,struct dentry * child)948 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
949 {
950 if (d_really_is_positive(child))
951 return -EEXIST;
952 if (IS_DEADDIR(dir))
953 return -ENOENT;
954 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
955 }
956
957 /*
958 * Create a new subvolume below @parent. This is largely modeled after
959 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
960 * inside this filesystem so it's quite a bit simpler.
961 */
btrfs_mksubvol(const struct path * parent,const char * name,int namelen,struct btrfs_root * snap_src,bool readonly,struct btrfs_qgroup_inherit * inherit)962 static noinline int btrfs_mksubvol(const struct path *parent,
963 const char *name, int namelen,
964 struct btrfs_root *snap_src,
965 bool readonly,
966 struct btrfs_qgroup_inherit *inherit)
967 {
968 struct inode *dir = d_inode(parent->dentry);
969 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
970 struct dentry *dentry;
971 int error;
972
973 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
974 if (error == -EINTR)
975 return error;
976
977 dentry = lookup_one_len(name, parent->dentry, namelen);
978 error = PTR_ERR(dentry);
979 if (IS_ERR(dentry))
980 goto out_unlock;
981
982 error = btrfs_may_create(dir, dentry);
983 if (error)
984 goto out_dput;
985
986 /*
987 * even if this name doesn't exist, we may get hash collisions.
988 * check for them now when we can safely fail
989 */
990 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
991 dir->i_ino, name,
992 namelen);
993 if (error)
994 goto out_dput;
995
996 down_read(&fs_info->subvol_sem);
997
998 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
999 goto out_up_read;
1000
1001 if (snap_src)
1002 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1003 else
1004 error = create_subvol(dir, dentry, name, namelen, inherit);
1005
1006 if (!error)
1007 fsnotify_mkdir(dir, dentry);
1008 out_up_read:
1009 up_read(&fs_info->subvol_sem);
1010 out_dput:
1011 dput(dentry);
1012 out_unlock:
1013 inode_unlock(dir);
1014 return error;
1015 }
1016
btrfs_mksnapshot(const struct path * parent,const char * name,int namelen,struct btrfs_root * root,bool readonly,struct btrfs_qgroup_inherit * inherit)1017 static noinline int btrfs_mksnapshot(const struct path *parent,
1018 const char *name, int namelen,
1019 struct btrfs_root *root,
1020 bool readonly,
1021 struct btrfs_qgroup_inherit *inherit)
1022 {
1023 int ret;
1024 bool snapshot_force_cow = false;
1025
1026 /*
1027 * Force new buffered writes to reserve space even when NOCOW is
1028 * possible. This is to avoid later writeback (running dealloc) to
1029 * fallback to COW mode and unexpectedly fail with ENOSPC.
1030 */
1031 btrfs_drew_read_lock(&root->snapshot_lock);
1032
1033 ret = btrfs_start_delalloc_snapshot(root);
1034 if (ret)
1035 goto out;
1036
1037 /*
1038 * All previous writes have started writeback in NOCOW mode, so now
1039 * we force future writes to fallback to COW mode during snapshot
1040 * creation.
1041 */
1042 atomic_inc(&root->snapshot_force_cow);
1043 snapshot_force_cow = true;
1044
1045 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1046
1047 ret = btrfs_mksubvol(parent, name, namelen,
1048 root, readonly, inherit);
1049 out:
1050 if (snapshot_force_cow)
1051 atomic_dec(&root->snapshot_force_cow);
1052 btrfs_drew_read_unlock(&root->snapshot_lock);
1053 return ret;
1054 }
1055
1056 /*
1057 * When we're defragging a range, we don't want to kick it off again
1058 * if it is really just waiting for delalloc to send it down.
1059 * If we find a nice big extent or delalloc range for the bytes in the
1060 * file you want to defrag, we return 0 to let you know to skip this
1061 * part of the file
1062 */
check_defrag_in_cache(struct inode * inode,u64 offset,u32 thresh)1063 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1064 {
1065 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1066 struct extent_map *em = NULL;
1067 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1068 u64 end;
1069
1070 read_lock(&em_tree->lock);
1071 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1072 read_unlock(&em_tree->lock);
1073
1074 if (em) {
1075 end = extent_map_end(em);
1076 free_extent_map(em);
1077 if (end - offset > thresh)
1078 return 0;
1079 }
1080 /* if we already have a nice delalloc here, just stop */
1081 thresh /= 2;
1082 end = count_range_bits(io_tree, &offset, offset + thresh,
1083 thresh, EXTENT_DELALLOC, 1);
1084 if (end >= thresh)
1085 return 0;
1086 return 1;
1087 }
1088
1089 /*
1090 * helper function to walk through a file and find extents
1091 * newer than a specific transid, and smaller than thresh.
1092 *
1093 * This is used by the defragging code to find new and small
1094 * extents
1095 */
find_new_extents(struct btrfs_root * root,struct inode * inode,u64 newer_than,u64 * off,u32 thresh)1096 static int find_new_extents(struct btrfs_root *root,
1097 struct inode *inode, u64 newer_than,
1098 u64 *off, u32 thresh)
1099 {
1100 struct btrfs_path *path;
1101 struct btrfs_key min_key;
1102 struct extent_buffer *leaf;
1103 struct btrfs_file_extent_item *extent;
1104 int type;
1105 int ret;
1106 u64 ino = btrfs_ino(BTRFS_I(inode));
1107
1108 path = btrfs_alloc_path();
1109 if (!path)
1110 return -ENOMEM;
1111
1112 min_key.objectid = ino;
1113 min_key.type = BTRFS_EXTENT_DATA_KEY;
1114 min_key.offset = *off;
1115
1116 while (1) {
1117 ret = btrfs_search_forward(root, &min_key, path, newer_than);
1118 if (ret != 0)
1119 goto none;
1120 process_slot:
1121 if (min_key.objectid != ino)
1122 goto none;
1123 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1124 goto none;
1125
1126 leaf = path->nodes[0];
1127 extent = btrfs_item_ptr(leaf, path->slots[0],
1128 struct btrfs_file_extent_item);
1129
1130 type = btrfs_file_extent_type(leaf, extent);
1131 if (type == BTRFS_FILE_EXTENT_REG &&
1132 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1133 check_defrag_in_cache(inode, min_key.offset, thresh)) {
1134 *off = min_key.offset;
1135 btrfs_free_path(path);
1136 return 0;
1137 }
1138
1139 path->slots[0]++;
1140 if (path->slots[0] < btrfs_header_nritems(leaf)) {
1141 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1142 goto process_slot;
1143 }
1144
1145 if (min_key.offset == (u64)-1)
1146 goto none;
1147
1148 min_key.offset++;
1149 btrfs_release_path(path);
1150 }
1151 none:
1152 btrfs_free_path(path);
1153 return -ENOENT;
1154 }
1155
defrag_lookup_extent(struct inode * inode,u64 start)1156 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1157 {
1158 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1159 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1160 struct extent_map *em;
1161 u64 len = PAGE_SIZE;
1162
1163 /*
1164 * hopefully we have this extent in the tree already, try without
1165 * the full extent lock
1166 */
1167 read_lock(&em_tree->lock);
1168 em = lookup_extent_mapping(em_tree, start, len);
1169 read_unlock(&em_tree->lock);
1170
1171 if (!em) {
1172 struct extent_state *cached = NULL;
1173 u64 end = start + len - 1;
1174
1175 /* get the big lock and read metadata off disk */
1176 lock_extent_bits(io_tree, start, end, &cached);
1177 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1178 unlock_extent_cached(io_tree, start, end, &cached);
1179
1180 if (IS_ERR(em))
1181 return NULL;
1182 }
1183
1184 return em;
1185 }
1186
defrag_check_next_extent(struct inode * inode,struct extent_map * em)1187 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1188 {
1189 struct extent_map *next;
1190 bool ret = true;
1191
1192 /* this is the last extent */
1193 if (em->start + em->len >= i_size_read(inode))
1194 return false;
1195
1196 next = defrag_lookup_extent(inode, em->start + em->len);
1197 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1198 ret = false;
1199 else if ((em->block_start + em->block_len == next->block_start) &&
1200 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1201 ret = false;
1202
1203 free_extent_map(next);
1204 return ret;
1205 }
1206
should_defrag_range(struct inode * inode,u64 start,u32 thresh,u64 * last_len,u64 * skip,u64 * defrag_end,int compress)1207 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1208 u64 *last_len, u64 *skip, u64 *defrag_end,
1209 int compress)
1210 {
1211 struct extent_map *em;
1212 int ret = 1;
1213 bool next_mergeable = true;
1214 bool prev_mergeable = true;
1215
1216 /*
1217 * make sure that once we start defragging an extent, we keep on
1218 * defragging it
1219 */
1220 if (start < *defrag_end)
1221 return 1;
1222
1223 *skip = 0;
1224
1225 em = defrag_lookup_extent(inode, start);
1226 if (!em)
1227 return 0;
1228
1229 /* this will cover holes, and inline extents */
1230 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1231 ret = 0;
1232 goto out;
1233 }
1234
1235 if (!*defrag_end)
1236 prev_mergeable = false;
1237
1238 next_mergeable = defrag_check_next_extent(inode, em);
1239 /*
1240 * we hit a real extent, if it is big or the next extent is not a
1241 * real extent, don't bother defragging it
1242 */
1243 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1244 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1245 ret = 0;
1246 out:
1247 /*
1248 * last_len ends up being a counter of how many bytes we've defragged.
1249 * every time we choose not to defrag an extent, we reset *last_len
1250 * so that the next tiny extent will force a defrag.
1251 *
1252 * The end result of this is that tiny extents before a single big
1253 * extent will force at least part of that big extent to be defragged.
1254 */
1255 if (ret) {
1256 *defrag_end = extent_map_end(em);
1257 } else {
1258 *last_len = 0;
1259 *skip = extent_map_end(em);
1260 *defrag_end = 0;
1261 }
1262
1263 free_extent_map(em);
1264 return ret;
1265 }
1266
1267 /*
1268 * it doesn't do much good to defrag one or two pages
1269 * at a time. This pulls in a nice chunk of pages
1270 * to COW and defrag.
1271 *
1272 * It also makes sure the delalloc code has enough
1273 * dirty data to avoid making new small extents as part
1274 * of the defrag
1275 *
1276 * It's a good idea to start RA on this range
1277 * before calling this.
1278 */
cluster_pages_for_defrag(struct inode * inode,struct page ** pages,unsigned long start_index,unsigned long num_pages)1279 static int cluster_pages_for_defrag(struct inode *inode,
1280 struct page **pages,
1281 unsigned long start_index,
1282 unsigned long num_pages)
1283 {
1284 unsigned long file_end;
1285 u64 isize = i_size_read(inode);
1286 u64 page_start;
1287 u64 page_end;
1288 u64 page_cnt;
1289 u64 start = (u64)start_index << PAGE_SHIFT;
1290 u64 search_start;
1291 int ret;
1292 int i;
1293 int i_done;
1294 struct btrfs_ordered_extent *ordered;
1295 struct extent_state *cached_state = NULL;
1296 struct extent_io_tree *tree;
1297 struct extent_changeset *data_reserved = NULL;
1298 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1299
1300 file_end = (isize - 1) >> PAGE_SHIFT;
1301 if (!isize || start_index > file_end)
1302 return 0;
1303
1304 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1305
1306 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1307 start, page_cnt << PAGE_SHIFT);
1308 if (ret)
1309 return ret;
1310 i_done = 0;
1311 tree = &BTRFS_I(inode)->io_tree;
1312
1313 /* step one, lock all the pages */
1314 for (i = 0; i < page_cnt; i++) {
1315 struct page *page;
1316 again:
1317 page = find_or_create_page(inode->i_mapping,
1318 start_index + i, mask);
1319 if (!page)
1320 break;
1321
1322 page_start = page_offset(page);
1323 page_end = page_start + PAGE_SIZE - 1;
1324 while (1) {
1325 lock_extent_bits(tree, page_start, page_end,
1326 &cached_state);
1327 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1328 page_start);
1329 unlock_extent_cached(tree, page_start, page_end,
1330 &cached_state);
1331 if (!ordered)
1332 break;
1333
1334 unlock_page(page);
1335 btrfs_start_ordered_extent(ordered, 1);
1336 btrfs_put_ordered_extent(ordered);
1337 lock_page(page);
1338 /*
1339 * we unlocked the page above, so we need check if
1340 * it was released or not.
1341 */
1342 if (page->mapping != inode->i_mapping) {
1343 unlock_page(page);
1344 put_page(page);
1345 goto again;
1346 }
1347 }
1348
1349 if (!PageUptodate(page)) {
1350 btrfs_readpage(NULL, page);
1351 lock_page(page);
1352 if (!PageUptodate(page)) {
1353 unlock_page(page);
1354 put_page(page);
1355 ret = -EIO;
1356 break;
1357 }
1358 }
1359
1360 if (page->mapping != inode->i_mapping) {
1361 unlock_page(page);
1362 put_page(page);
1363 goto again;
1364 }
1365
1366 pages[i] = page;
1367 i_done++;
1368 }
1369 if (!i_done || ret)
1370 goto out;
1371
1372 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1373 goto out;
1374
1375 /*
1376 * so now we have a nice long stream of locked
1377 * and up to date pages, lets wait on them
1378 */
1379 for (i = 0; i < i_done; i++)
1380 wait_on_page_writeback(pages[i]);
1381
1382 page_start = page_offset(pages[0]);
1383 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1384
1385 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1386 page_start, page_end - 1, &cached_state);
1387
1388 /*
1389 * When defragmenting we skip ranges that have holes or inline extents,
1390 * (check should_defrag_range()), to avoid unnecessary IO and wasting
1391 * space. At btrfs_defrag_file(), we check if a range should be defragged
1392 * before locking the inode and then, if it should, we trigger a sync
1393 * page cache readahead - we lock the inode only after that to avoid
1394 * blocking for too long other tasks that possibly want to operate on
1395 * other file ranges. But before we were able to get the inode lock,
1396 * some other task may have punched a hole in the range, or we may have
1397 * now an inline extent, in which case we should not defrag. So check
1398 * for that here, where we have the inode and the range locked, and bail
1399 * out if that happened.
1400 */
1401 search_start = page_start;
1402 while (search_start < page_end) {
1403 struct extent_map *em;
1404
1405 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start,
1406 page_end - search_start);
1407 if (IS_ERR(em)) {
1408 ret = PTR_ERR(em);
1409 goto out_unlock_range;
1410 }
1411 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1412 free_extent_map(em);
1413 /* Ok, 0 means we did not defrag anything */
1414 ret = 0;
1415 goto out_unlock_range;
1416 }
1417 search_start = extent_map_end(em);
1418 free_extent_map(em);
1419 }
1420
1421 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1422 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1423 EXTENT_DEFRAG, 0, 0, &cached_state);
1424
1425 if (i_done != page_cnt) {
1426 spin_lock(&BTRFS_I(inode)->lock);
1427 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1428 spin_unlock(&BTRFS_I(inode)->lock);
1429 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1430 start, (page_cnt - i_done) << PAGE_SHIFT, true);
1431 }
1432
1433
1434 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1435 &cached_state);
1436
1437 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1438 page_start, page_end - 1, &cached_state);
1439
1440 for (i = 0; i < i_done; i++) {
1441 clear_page_dirty_for_io(pages[i]);
1442 ClearPageChecked(pages[i]);
1443 set_page_extent_mapped(pages[i]);
1444 set_page_dirty(pages[i]);
1445 unlock_page(pages[i]);
1446 put_page(pages[i]);
1447 }
1448 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1449 extent_changeset_free(data_reserved);
1450 return i_done;
1451
1452 out_unlock_range:
1453 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1454 page_start, page_end - 1, &cached_state);
1455 out:
1456 for (i = 0; i < i_done; i++) {
1457 unlock_page(pages[i]);
1458 put_page(pages[i]);
1459 }
1460 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1461 start, page_cnt << PAGE_SHIFT, true);
1462 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1463 extent_changeset_free(data_reserved);
1464 return ret;
1465
1466 }
1467
btrfs_defrag_file(struct inode * inode,struct file * file,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1468 int btrfs_defrag_file(struct inode *inode, struct file *file,
1469 struct btrfs_ioctl_defrag_range_args *range,
1470 u64 newer_than, unsigned long max_to_defrag)
1471 {
1472 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1473 struct btrfs_root *root = BTRFS_I(inode)->root;
1474 struct file_ra_state *ra = NULL;
1475 unsigned long last_index;
1476 u64 isize = i_size_read(inode);
1477 u64 last_len = 0;
1478 u64 skip = 0;
1479 u64 defrag_end = 0;
1480 u64 newer_off = range->start;
1481 unsigned long i;
1482 unsigned long ra_index = 0;
1483 int ret;
1484 int defrag_count = 0;
1485 int compress_type = BTRFS_COMPRESS_ZLIB;
1486 u32 extent_thresh = range->extent_thresh;
1487 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1488 unsigned long cluster = max_cluster;
1489 u64 new_align = ~((u64)SZ_128K - 1);
1490 struct page **pages = NULL;
1491 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1492
1493 if (isize == 0)
1494 return 0;
1495
1496 if (range->start >= isize)
1497 return -EINVAL;
1498
1499 if (do_compress) {
1500 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1501 return -EINVAL;
1502 if (range->compress_type)
1503 compress_type = range->compress_type;
1504 }
1505
1506 if (extent_thresh == 0)
1507 extent_thresh = SZ_256K;
1508
1509 /*
1510 * If we were not given a file, allocate a readahead context. As
1511 * readahead is just an optimization, defrag will work without it so
1512 * we don't error out.
1513 */
1514 if (!file) {
1515 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1516 if (ra)
1517 file_ra_state_init(ra, inode->i_mapping);
1518 } else {
1519 ra = &file->f_ra;
1520 }
1521
1522 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1523 if (!pages) {
1524 ret = -ENOMEM;
1525 goto out_ra;
1526 }
1527
1528 /* find the last page to defrag */
1529 if (range->start + range->len > range->start) {
1530 last_index = min_t(u64, isize - 1,
1531 range->start + range->len - 1) >> PAGE_SHIFT;
1532 } else {
1533 last_index = (isize - 1) >> PAGE_SHIFT;
1534 }
1535
1536 if (newer_than) {
1537 ret = find_new_extents(root, inode, newer_than,
1538 &newer_off, SZ_64K);
1539 if (!ret) {
1540 range->start = newer_off;
1541 /*
1542 * we always align our defrag to help keep
1543 * the extents in the file evenly spaced
1544 */
1545 i = (newer_off & new_align) >> PAGE_SHIFT;
1546 } else
1547 goto out_ra;
1548 } else {
1549 i = range->start >> PAGE_SHIFT;
1550 }
1551 if (!max_to_defrag)
1552 max_to_defrag = last_index - i + 1;
1553
1554 /*
1555 * make writeback starts from i, so the defrag range can be
1556 * written sequentially.
1557 */
1558 if (i < inode->i_mapping->writeback_index)
1559 inode->i_mapping->writeback_index = i;
1560
1561 while (i <= last_index && defrag_count < max_to_defrag &&
1562 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1563 /*
1564 * make sure we stop running if someone unmounts
1565 * the FS
1566 */
1567 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1568 break;
1569
1570 if (btrfs_defrag_cancelled(fs_info)) {
1571 btrfs_debug(fs_info, "defrag_file cancelled");
1572 ret = -EAGAIN;
1573 break;
1574 }
1575
1576 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1577 extent_thresh, &last_len, &skip,
1578 &defrag_end, do_compress)){
1579 unsigned long next;
1580 /*
1581 * the should_defrag function tells us how much to skip
1582 * bump our counter by the suggested amount
1583 */
1584 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1585 i = max(i + 1, next);
1586 continue;
1587 }
1588
1589 if (!newer_than) {
1590 cluster = (PAGE_ALIGN(defrag_end) >>
1591 PAGE_SHIFT) - i;
1592 cluster = min(cluster, max_cluster);
1593 } else {
1594 cluster = max_cluster;
1595 }
1596
1597 if (i + cluster > ra_index) {
1598 ra_index = max(i, ra_index);
1599 if (ra)
1600 page_cache_sync_readahead(inode->i_mapping, ra,
1601 file, ra_index, cluster);
1602 ra_index += cluster;
1603 }
1604
1605 inode_lock(inode);
1606 if (IS_SWAPFILE(inode)) {
1607 ret = -ETXTBSY;
1608 } else {
1609 if (do_compress)
1610 BTRFS_I(inode)->defrag_compress = compress_type;
1611 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1612 }
1613 if (ret < 0) {
1614 inode_unlock(inode);
1615 goto out_ra;
1616 }
1617
1618 defrag_count += ret;
1619 balance_dirty_pages_ratelimited(inode->i_mapping);
1620 inode_unlock(inode);
1621
1622 if (newer_than) {
1623 if (newer_off == (u64)-1)
1624 break;
1625
1626 if (ret > 0)
1627 i += ret;
1628
1629 newer_off = max(newer_off + 1,
1630 (u64)i << PAGE_SHIFT);
1631
1632 ret = find_new_extents(root, inode, newer_than,
1633 &newer_off, SZ_64K);
1634 if (!ret) {
1635 range->start = newer_off;
1636 i = (newer_off & new_align) >> PAGE_SHIFT;
1637 } else {
1638 break;
1639 }
1640 } else {
1641 if (ret > 0) {
1642 i += ret;
1643 last_len += ret << PAGE_SHIFT;
1644 } else {
1645 i++;
1646 last_len = 0;
1647 }
1648 }
1649 }
1650
1651 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1652 filemap_flush(inode->i_mapping);
1653 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1654 &BTRFS_I(inode)->runtime_flags))
1655 filemap_flush(inode->i_mapping);
1656 }
1657
1658 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1659 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1660 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1661 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1662 }
1663
1664 ret = defrag_count;
1665
1666 out_ra:
1667 if (do_compress) {
1668 inode_lock(inode);
1669 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1670 inode_unlock(inode);
1671 }
1672 if (!file)
1673 kfree(ra);
1674 kfree(pages);
1675 return ret;
1676 }
1677
btrfs_ioctl_resize(struct file * file,void __user * arg)1678 static noinline int btrfs_ioctl_resize(struct file *file,
1679 void __user *arg)
1680 {
1681 struct inode *inode = file_inode(file);
1682 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1683 u64 new_size;
1684 u64 old_size;
1685 u64 devid = 1;
1686 struct btrfs_root *root = BTRFS_I(inode)->root;
1687 struct btrfs_ioctl_vol_args *vol_args;
1688 struct btrfs_trans_handle *trans;
1689 struct btrfs_device *device = NULL;
1690 char *sizestr;
1691 char *retptr;
1692 char *devstr = NULL;
1693 int ret = 0;
1694 int mod = 0;
1695
1696 if (!capable(CAP_SYS_ADMIN))
1697 return -EPERM;
1698
1699 ret = mnt_want_write_file(file);
1700 if (ret)
1701 return ret;
1702
1703 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) {
1704 mnt_drop_write_file(file);
1705 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1706 }
1707
1708 vol_args = memdup_user(arg, sizeof(*vol_args));
1709 if (IS_ERR(vol_args)) {
1710 ret = PTR_ERR(vol_args);
1711 goto out;
1712 }
1713
1714 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1715
1716 sizestr = vol_args->name;
1717 devstr = strchr(sizestr, ':');
1718 if (devstr) {
1719 sizestr = devstr + 1;
1720 *devstr = '\0';
1721 devstr = vol_args->name;
1722 ret = kstrtoull(devstr, 10, &devid);
1723 if (ret)
1724 goto out_free;
1725 if (!devid) {
1726 ret = -EINVAL;
1727 goto out_free;
1728 }
1729 btrfs_info(fs_info, "resizing devid %llu", devid);
1730 }
1731
1732 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
1733 if (!device) {
1734 btrfs_info(fs_info, "resizer unable to find device %llu",
1735 devid);
1736 ret = -ENODEV;
1737 goto out_free;
1738 }
1739
1740 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1741 btrfs_info(fs_info,
1742 "resizer unable to apply on readonly device %llu",
1743 devid);
1744 ret = -EPERM;
1745 goto out_free;
1746 }
1747
1748 if (!strcmp(sizestr, "max"))
1749 new_size = device->bdev->bd_inode->i_size;
1750 else {
1751 if (sizestr[0] == '-') {
1752 mod = -1;
1753 sizestr++;
1754 } else if (sizestr[0] == '+') {
1755 mod = 1;
1756 sizestr++;
1757 }
1758 new_size = memparse(sizestr, &retptr);
1759 if (*retptr != '\0' || new_size == 0) {
1760 ret = -EINVAL;
1761 goto out_free;
1762 }
1763 }
1764
1765 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1766 ret = -EPERM;
1767 goto out_free;
1768 }
1769
1770 old_size = btrfs_device_get_total_bytes(device);
1771
1772 if (mod < 0) {
1773 if (new_size > old_size) {
1774 ret = -EINVAL;
1775 goto out_free;
1776 }
1777 new_size = old_size - new_size;
1778 } else if (mod > 0) {
1779 if (new_size > ULLONG_MAX - old_size) {
1780 ret = -ERANGE;
1781 goto out_free;
1782 }
1783 new_size = old_size + new_size;
1784 }
1785
1786 if (new_size < SZ_256M) {
1787 ret = -EINVAL;
1788 goto out_free;
1789 }
1790 if (new_size > device->bdev->bd_inode->i_size) {
1791 ret = -EFBIG;
1792 goto out_free;
1793 }
1794
1795 new_size = round_down(new_size, fs_info->sectorsize);
1796
1797 if (new_size > old_size) {
1798 trans = btrfs_start_transaction(root, 0);
1799 if (IS_ERR(trans)) {
1800 ret = PTR_ERR(trans);
1801 goto out_free;
1802 }
1803 ret = btrfs_grow_device(trans, device, new_size);
1804 btrfs_commit_transaction(trans);
1805 } else if (new_size < old_size) {
1806 ret = btrfs_shrink_device(device, new_size);
1807 } /* equal, nothing need to do */
1808
1809 if (ret == 0 && new_size != old_size)
1810 btrfs_info_in_rcu(fs_info,
1811 "resize device %s (devid %llu) from %llu to %llu",
1812 rcu_str_deref(device->name), device->devid,
1813 old_size, new_size);
1814 out_free:
1815 kfree(vol_args);
1816 out:
1817 btrfs_exclop_finish(fs_info);
1818 mnt_drop_write_file(file);
1819 return ret;
1820 }
1821
__btrfs_ioctl_snap_create(struct file * file,const char * name,unsigned long fd,int subvol,bool readonly,struct btrfs_qgroup_inherit * inherit)1822 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1823 const char *name, unsigned long fd, int subvol,
1824 bool readonly,
1825 struct btrfs_qgroup_inherit *inherit)
1826 {
1827 int namelen;
1828 int ret = 0;
1829
1830 if (!S_ISDIR(file_inode(file)->i_mode))
1831 return -ENOTDIR;
1832
1833 ret = mnt_want_write_file(file);
1834 if (ret)
1835 goto out;
1836
1837 namelen = strlen(name);
1838 if (strchr(name, '/')) {
1839 ret = -EINVAL;
1840 goto out_drop_write;
1841 }
1842
1843 if (name[0] == '.' &&
1844 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1845 ret = -EEXIST;
1846 goto out_drop_write;
1847 }
1848
1849 if (subvol) {
1850 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1851 NULL, readonly, inherit);
1852 } else {
1853 struct fd src = fdget(fd);
1854 struct inode *src_inode;
1855 if (!src.file) {
1856 ret = -EINVAL;
1857 goto out_drop_write;
1858 }
1859
1860 src_inode = file_inode(src.file);
1861 if (src_inode->i_sb != file_inode(file)->i_sb) {
1862 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1863 "Snapshot src from another FS");
1864 ret = -EXDEV;
1865 } else if (!inode_owner_or_capable(src_inode)) {
1866 /*
1867 * Subvolume creation is not restricted, but snapshots
1868 * are limited to own subvolumes only
1869 */
1870 ret = -EPERM;
1871 } else {
1872 ret = btrfs_mksnapshot(&file->f_path, name, namelen,
1873 BTRFS_I(src_inode)->root,
1874 readonly, inherit);
1875 }
1876 fdput(src);
1877 }
1878 out_drop_write:
1879 mnt_drop_write_file(file);
1880 out:
1881 return ret;
1882 }
1883
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1884 static noinline int btrfs_ioctl_snap_create(struct file *file,
1885 void __user *arg, int subvol)
1886 {
1887 struct btrfs_ioctl_vol_args *vol_args;
1888 int ret;
1889
1890 if (!S_ISDIR(file_inode(file)->i_mode))
1891 return -ENOTDIR;
1892
1893 vol_args = memdup_user(arg, sizeof(*vol_args));
1894 if (IS_ERR(vol_args))
1895 return PTR_ERR(vol_args);
1896 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1897
1898 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1899 subvol, false, NULL);
1900
1901 kfree(vol_args);
1902 return ret;
1903 }
1904
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1905 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1906 void __user *arg, int subvol)
1907 {
1908 struct btrfs_ioctl_vol_args_v2 *vol_args;
1909 int ret;
1910 bool readonly = false;
1911 struct btrfs_qgroup_inherit *inherit = NULL;
1912
1913 if (!S_ISDIR(file_inode(file)->i_mode))
1914 return -ENOTDIR;
1915
1916 vol_args = memdup_user(arg, sizeof(*vol_args));
1917 if (IS_ERR(vol_args))
1918 return PTR_ERR(vol_args);
1919 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1920
1921 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1922 ret = -EOPNOTSUPP;
1923 goto free_args;
1924 }
1925
1926 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1927 readonly = true;
1928 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1929 u64 nums;
1930
1931 if (vol_args->size < sizeof(*inherit) ||
1932 vol_args->size > PAGE_SIZE) {
1933 ret = -EINVAL;
1934 goto free_args;
1935 }
1936 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1937 if (IS_ERR(inherit)) {
1938 ret = PTR_ERR(inherit);
1939 goto free_args;
1940 }
1941
1942 if (inherit->num_qgroups > PAGE_SIZE ||
1943 inherit->num_ref_copies > PAGE_SIZE ||
1944 inherit->num_excl_copies > PAGE_SIZE) {
1945 ret = -EINVAL;
1946 goto free_inherit;
1947 }
1948
1949 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1950 2 * inherit->num_excl_copies;
1951 if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1952 ret = -EINVAL;
1953 goto free_inherit;
1954 }
1955 }
1956
1957 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1958 subvol, readonly, inherit);
1959 if (ret)
1960 goto free_inherit;
1961 free_inherit:
1962 kfree(inherit);
1963 free_args:
1964 kfree(vol_args);
1965 return ret;
1966 }
1967
btrfs_ioctl_subvol_getflags(struct file * file,void __user * arg)1968 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1969 void __user *arg)
1970 {
1971 struct inode *inode = file_inode(file);
1972 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1973 struct btrfs_root *root = BTRFS_I(inode)->root;
1974 int ret = 0;
1975 u64 flags = 0;
1976
1977 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1978 return -EINVAL;
1979
1980 down_read(&fs_info->subvol_sem);
1981 if (btrfs_root_readonly(root))
1982 flags |= BTRFS_SUBVOL_RDONLY;
1983 up_read(&fs_info->subvol_sem);
1984
1985 if (copy_to_user(arg, &flags, sizeof(flags)))
1986 ret = -EFAULT;
1987
1988 return ret;
1989 }
1990
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1991 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1992 void __user *arg)
1993 {
1994 struct inode *inode = file_inode(file);
1995 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1996 struct btrfs_root *root = BTRFS_I(inode)->root;
1997 struct btrfs_trans_handle *trans;
1998 u64 root_flags;
1999 u64 flags;
2000 int ret = 0;
2001
2002 if (!inode_owner_or_capable(inode))
2003 return -EPERM;
2004
2005 ret = mnt_want_write_file(file);
2006 if (ret)
2007 goto out;
2008
2009 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2010 ret = -EINVAL;
2011 goto out_drop_write;
2012 }
2013
2014 if (copy_from_user(&flags, arg, sizeof(flags))) {
2015 ret = -EFAULT;
2016 goto out_drop_write;
2017 }
2018
2019 if (flags & ~BTRFS_SUBVOL_RDONLY) {
2020 ret = -EOPNOTSUPP;
2021 goto out_drop_write;
2022 }
2023
2024 down_write(&fs_info->subvol_sem);
2025
2026 /* nothing to do */
2027 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2028 goto out_drop_sem;
2029
2030 root_flags = btrfs_root_flags(&root->root_item);
2031 if (flags & BTRFS_SUBVOL_RDONLY) {
2032 btrfs_set_root_flags(&root->root_item,
2033 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2034 } else {
2035 /*
2036 * Block RO -> RW transition if this subvolume is involved in
2037 * send
2038 */
2039 spin_lock(&root->root_item_lock);
2040 if (root->send_in_progress == 0) {
2041 btrfs_set_root_flags(&root->root_item,
2042 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2043 spin_unlock(&root->root_item_lock);
2044 } else {
2045 spin_unlock(&root->root_item_lock);
2046 btrfs_warn(fs_info,
2047 "Attempt to set subvolume %llu read-write during send",
2048 root->root_key.objectid);
2049 ret = -EPERM;
2050 goto out_drop_sem;
2051 }
2052 }
2053
2054 trans = btrfs_start_transaction(root, 1);
2055 if (IS_ERR(trans)) {
2056 ret = PTR_ERR(trans);
2057 goto out_reset;
2058 }
2059
2060 ret = btrfs_update_root(trans, fs_info->tree_root,
2061 &root->root_key, &root->root_item);
2062 if (ret < 0) {
2063 btrfs_end_transaction(trans);
2064 goto out_reset;
2065 }
2066
2067 ret = btrfs_commit_transaction(trans);
2068
2069 out_reset:
2070 if (ret)
2071 btrfs_set_root_flags(&root->root_item, root_flags);
2072 out_drop_sem:
2073 up_write(&fs_info->subvol_sem);
2074 out_drop_write:
2075 mnt_drop_write_file(file);
2076 out:
2077 return ret;
2078 }
2079
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)2080 static noinline int key_in_sk(struct btrfs_key *key,
2081 struct btrfs_ioctl_search_key *sk)
2082 {
2083 struct btrfs_key test;
2084 int ret;
2085
2086 test.objectid = sk->min_objectid;
2087 test.type = sk->min_type;
2088 test.offset = sk->min_offset;
2089
2090 ret = btrfs_comp_cpu_keys(key, &test);
2091 if (ret < 0)
2092 return 0;
2093
2094 test.objectid = sk->max_objectid;
2095 test.type = sk->max_type;
2096 test.offset = sk->max_offset;
2097
2098 ret = btrfs_comp_cpu_keys(key, &test);
2099 if (ret > 0)
2100 return 0;
2101 return 1;
2102 }
2103
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)2104 static noinline int copy_to_sk(struct btrfs_path *path,
2105 struct btrfs_key *key,
2106 struct btrfs_ioctl_search_key *sk,
2107 size_t *buf_size,
2108 char __user *ubuf,
2109 unsigned long *sk_offset,
2110 int *num_found)
2111 {
2112 u64 found_transid;
2113 struct extent_buffer *leaf;
2114 struct btrfs_ioctl_search_header sh;
2115 struct btrfs_key test;
2116 unsigned long item_off;
2117 unsigned long item_len;
2118 int nritems;
2119 int i;
2120 int slot;
2121 int ret = 0;
2122
2123 leaf = path->nodes[0];
2124 slot = path->slots[0];
2125 nritems = btrfs_header_nritems(leaf);
2126
2127 if (btrfs_header_generation(leaf) > sk->max_transid) {
2128 i = nritems;
2129 goto advance_key;
2130 }
2131 found_transid = btrfs_header_generation(leaf);
2132
2133 for (i = slot; i < nritems; i++) {
2134 item_off = btrfs_item_ptr_offset(leaf, i);
2135 item_len = btrfs_item_size_nr(leaf, i);
2136
2137 btrfs_item_key_to_cpu(leaf, key, i);
2138 if (!key_in_sk(key, sk))
2139 continue;
2140
2141 if (sizeof(sh) + item_len > *buf_size) {
2142 if (*num_found) {
2143 ret = 1;
2144 goto out;
2145 }
2146
2147 /*
2148 * return one empty item back for v1, which does not
2149 * handle -EOVERFLOW
2150 */
2151
2152 *buf_size = sizeof(sh) + item_len;
2153 item_len = 0;
2154 ret = -EOVERFLOW;
2155 }
2156
2157 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2158 ret = 1;
2159 goto out;
2160 }
2161
2162 sh.objectid = key->objectid;
2163 sh.offset = key->offset;
2164 sh.type = key->type;
2165 sh.len = item_len;
2166 sh.transid = found_transid;
2167
2168 /*
2169 * Copy search result header. If we fault then loop again so we
2170 * can fault in the pages and -EFAULT there if there's a
2171 * problem. Otherwise we'll fault and then copy the buffer in
2172 * properly this next time through
2173 */
2174 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2175 ret = 0;
2176 goto out;
2177 }
2178
2179 *sk_offset += sizeof(sh);
2180
2181 if (item_len) {
2182 char __user *up = ubuf + *sk_offset;
2183 /*
2184 * Copy the item, same behavior as above, but reset the
2185 * * sk_offset so we copy the full thing again.
2186 */
2187 if (read_extent_buffer_to_user_nofault(leaf, up,
2188 item_off, item_len)) {
2189 ret = 0;
2190 *sk_offset -= sizeof(sh);
2191 goto out;
2192 }
2193
2194 *sk_offset += item_len;
2195 }
2196 (*num_found)++;
2197
2198 if (ret) /* -EOVERFLOW from above */
2199 goto out;
2200
2201 if (*num_found >= sk->nr_items) {
2202 ret = 1;
2203 goto out;
2204 }
2205 }
2206 advance_key:
2207 ret = 0;
2208 test.objectid = sk->max_objectid;
2209 test.type = sk->max_type;
2210 test.offset = sk->max_offset;
2211 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2212 ret = 1;
2213 else if (key->offset < (u64)-1)
2214 key->offset++;
2215 else if (key->type < (u8)-1) {
2216 key->offset = 0;
2217 key->type++;
2218 } else if (key->objectid < (u64)-1) {
2219 key->offset = 0;
2220 key->type = 0;
2221 key->objectid++;
2222 } else
2223 ret = 1;
2224 out:
2225 /*
2226 * 0: all items from this leaf copied, continue with next
2227 * 1: * more items can be copied, but unused buffer is too small
2228 * * all items were found
2229 * Either way, it will stops the loop which iterates to the next
2230 * leaf
2231 * -EOVERFLOW: item was to large for buffer
2232 * -EFAULT: could not copy extent buffer back to userspace
2233 */
2234 return ret;
2235 }
2236
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf)2237 static noinline int search_ioctl(struct inode *inode,
2238 struct btrfs_ioctl_search_key *sk,
2239 size_t *buf_size,
2240 char __user *ubuf)
2241 {
2242 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2243 struct btrfs_root *root;
2244 struct btrfs_key key;
2245 struct btrfs_path *path;
2246 int ret;
2247 int num_found = 0;
2248 unsigned long sk_offset = 0;
2249
2250 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2251 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2252 return -EOVERFLOW;
2253 }
2254
2255 path = btrfs_alloc_path();
2256 if (!path)
2257 return -ENOMEM;
2258
2259 if (sk->tree_id == 0) {
2260 /* search the root of the inode that was passed */
2261 root = btrfs_grab_root(BTRFS_I(inode)->root);
2262 } else {
2263 root = btrfs_get_fs_root(info, sk->tree_id, true);
2264 if (IS_ERR(root)) {
2265 btrfs_free_path(path);
2266 return PTR_ERR(root);
2267 }
2268 }
2269
2270 key.objectid = sk->min_objectid;
2271 key.type = sk->min_type;
2272 key.offset = sk->min_offset;
2273
2274 while (1) {
2275 ret = fault_in_pages_writeable(ubuf + sk_offset,
2276 *buf_size - sk_offset);
2277 if (ret)
2278 break;
2279
2280 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2281 if (ret != 0) {
2282 if (ret > 0)
2283 ret = 0;
2284 goto err;
2285 }
2286 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2287 &sk_offset, &num_found);
2288 btrfs_release_path(path);
2289 if (ret)
2290 break;
2291
2292 }
2293 if (ret > 0)
2294 ret = 0;
2295 err:
2296 sk->nr_items = num_found;
2297 btrfs_put_root(root);
2298 btrfs_free_path(path);
2299 return ret;
2300 }
2301
btrfs_ioctl_tree_search(struct file * file,void __user * argp)2302 static noinline int btrfs_ioctl_tree_search(struct file *file,
2303 void __user *argp)
2304 {
2305 struct btrfs_ioctl_search_args __user *uargs;
2306 struct btrfs_ioctl_search_key sk;
2307 struct inode *inode;
2308 int ret;
2309 size_t buf_size;
2310
2311 if (!capable(CAP_SYS_ADMIN))
2312 return -EPERM;
2313
2314 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2315
2316 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2317 return -EFAULT;
2318
2319 buf_size = sizeof(uargs->buf);
2320
2321 inode = file_inode(file);
2322 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2323
2324 /*
2325 * In the origin implementation an overflow is handled by returning a
2326 * search header with a len of zero, so reset ret.
2327 */
2328 if (ret == -EOVERFLOW)
2329 ret = 0;
2330
2331 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2332 ret = -EFAULT;
2333 return ret;
2334 }
2335
btrfs_ioctl_tree_search_v2(struct file * file,void __user * argp)2336 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2337 void __user *argp)
2338 {
2339 struct btrfs_ioctl_search_args_v2 __user *uarg;
2340 struct btrfs_ioctl_search_args_v2 args;
2341 struct inode *inode;
2342 int ret;
2343 size_t buf_size;
2344 const size_t buf_limit = SZ_16M;
2345
2346 if (!capable(CAP_SYS_ADMIN))
2347 return -EPERM;
2348
2349 /* copy search header and buffer size */
2350 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2351 if (copy_from_user(&args, uarg, sizeof(args)))
2352 return -EFAULT;
2353
2354 buf_size = args.buf_size;
2355
2356 /* limit result size to 16MB */
2357 if (buf_size > buf_limit)
2358 buf_size = buf_limit;
2359
2360 inode = file_inode(file);
2361 ret = search_ioctl(inode, &args.key, &buf_size,
2362 (char __user *)(&uarg->buf[0]));
2363 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2364 ret = -EFAULT;
2365 else if (ret == -EOVERFLOW &&
2366 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2367 ret = -EFAULT;
2368
2369 return ret;
2370 }
2371
2372 /*
2373 * Search INODE_REFs to identify path name of 'dirid' directory
2374 * in a 'tree_id' tree. and sets path name to 'name'.
2375 */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)2376 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2377 u64 tree_id, u64 dirid, char *name)
2378 {
2379 struct btrfs_root *root;
2380 struct btrfs_key key;
2381 char *ptr;
2382 int ret = -1;
2383 int slot;
2384 int len;
2385 int total_len = 0;
2386 struct btrfs_inode_ref *iref;
2387 struct extent_buffer *l;
2388 struct btrfs_path *path;
2389
2390 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2391 name[0]='\0';
2392 return 0;
2393 }
2394
2395 path = btrfs_alloc_path();
2396 if (!path)
2397 return -ENOMEM;
2398
2399 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2400
2401 root = btrfs_get_fs_root(info, tree_id, true);
2402 if (IS_ERR(root)) {
2403 ret = PTR_ERR(root);
2404 root = NULL;
2405 goto out;
2406 }
2407
2408 key.objectid = dirid;
2409 key.type = BTRFS_INODE_REF_KEY;
2410 key.offset = (u64)-1;
2411
2412 while (1) {
2413 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2414 if (ret < 0)
2415 goto out;
2416 else if (ret > 0) {
2417 ret = btrfs_previous_item(root, path, dirid,
2418 BTRFS_INODE_REF_KEY);
2419 if (ret < 0)
2420 goto out;
2421 else if (ret > 0) {
2422 ret = -ENOENT;
2423 goto out;
2424 }
2425 }
2426
2427 l = path->nodes[0];
2428 slot = path->slots[0];
2429 btrfs_item_key_to_cpu(l, &key, slot);
2430
2431 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2432 len = btrfs_inode_ref_name_len(l, iref);
2433 ptr -= len + 1;
2434 total_len += len + 1;
2435 if (ptr < name) {
2436 ret = -ENAMETOOLONG;
2437 goto out;
2438 }
2439
2440 *(ptr + len) = '/';
2441 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2442
2443 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2444 break;
2445
2446 btrfs_release_path(path);
2447 key.objectid = key.offset;
2448 key.offset = (u64)-1;
2449 dirid = key.objectid;
2450 }
2451 memmove(name, ptr, total_len);
2452 name[total_len] = '\0';
2453 ret = 0;
2454 out:
2455 btrfs_put_root(root);
2456 btrfs_free_path(path);
2457 return ret;
2458 }
2459
btrfs_search_path_in_tree_user(struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)2460 static int btrfs_search_path_in_tree_user(struct inode *inode,
2461 struct btrfs_ioctl_ino_lookup_user_args *args)
2462 {
2463 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2464 struct super_block *sb = inode->i_sb;
2465 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2466 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2467 u64 dirid = args->dirid;
2468 unsigned long item_off;
2469 unsigned long item_len;
2470 struct btrfs_inode_ref *iref;
2471 struct btrfs_root_ref *rref;
2472 struct btrfs_root *root = NULL;
2473 struct btrfs_path *path;
2474 struct btrfs_key key, key2;
2475 struct extent_buffer *leaf;
2476 struct inode *temp_inode;
2477 char *ptr;
2478 int slot;
2479 int len;
2480 int total_len = 0;
2481 int ret;
2482
2483 path = btrfs_alloc_path();
2484 if (!path)
2485 return -ENOMEM;
2486
2487 /*
2488 * If the bottom subvolume does not exist directly under upper_limit,
2489 * construct the path in from the bottom up.
2490 */
2491 if (dirid != upper_limit.objectid) {
2492 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2493
2494 root = btrfs_get_fs_root(fs_info, treeid, true);
2495 if (IS_ERR(root)) {
2496 ret = PTR_ERR(root);
2497 goto out;
2498 }
2499
2500 key.objectid = dirid;
2501 key.type = BTRFS_INODE_REF_KEY;
2502 key.offset = (u64)-1;
2503 while (1) {
2504 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2505 if (ret < 0) {
2506 goto out_put;
2507 } else if (ret > 0) {
2508 ret = btrfs_previous_item(root, path, dirid,
2509 BTRFS_INODE_REF_KEY);
2510 if (ret < 0) {
2511 goto out_put;
2512 } else if (ret > 0) {
2513 ret = -ENOENT;
2514 goto out_put;
2515 }
2516 }
2517
2518 leaf = path->nodes[0];
2519 slot = path->slots[0];
2520 btrfs_item_key_to_cpu(leaf, &key, slot);
2521
2522 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2523 len = btrfs_inode_ref_name_len(leaf, iref);
2524 ptr -= len + 1;
2525 total_len += len + 1;
2526 if (ptr < args->path) {
2527 ret = -ENAMETOOLONG;
2528 goto out_put;
2529 }
2530
2531 *(ptr + len) = '/';
2532 read_extent_buffer(leaf, ptr,
2533 (unsigned long)(iref + 1), len);
2534
2535 /* Check the read+exec permission of this directory */
2536 ret = btrfs_previous_item(root, path, dirid,
2537 BTRFS_INODE_ITEM_KEY);
2538 if (ret < 0) {
2539 goto out_put;
2540 } else if (ret > 0) {
2541 ret = -ENOENT;
2542 goto out_put;
2543 }
2544
2545 leaf = path->nodes[0];
2546 slot = path->slots[0];
2547 btrfs_item_key_to_cpu(leaf, &key2, slot);
2548 if (key2.objectid != dirid) {
2549 ret = -ENOENT;
2550 goto out_put;
2551 }
2552
2553 temp_inode = btrfs_iget(sb, key2.objectid, root);
2554 if (IS_ERR(temp_inode)) {
2555 ret = PTR_ERR(temp_inode);
2556 goto out_put;
2557 }
2558 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2559 iput(temp_inode);
2560 if (ret) {
2561 ret = -EACCES;
2562 goto out_put;
2563 }
2564
2565 if (key.offset == upper_limit.objectid)
2566 break;
2567 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2568 ret = -EACCES;
2569 goto out_put;
2570 }
2571
2572 btrfs_release_path(path);
2573 key.objectid = key.offset;
2574 key.offset = (u64)-1;
2575 dirid = key.objectid;
2576 }
2577
2578 memmove(args->path, ptr, total_len);
2579 args->path[total_len] = '\0';
2580 btrfs_put_root(root);
2581 root = NULL;
2582 btrfs_release_path(path);
2583 }
2584
2585 /* Get the bottom subvolume's name from ROOT_REF */
2586 key.objectid = treeid;
2587 key.type = BTRFS_ROOT_REF_KEY;
2588 key.offset = args->treeid;
2589 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2590 if (ret < 0) {
2591 goto out;
2592 } else if (ret > 0) {
2593 ret = -ENOENT;
2594 goto out;
2595 }
2596
2597 leaf = path->nodes[0];
2598 slot = path->slots[0];
2599 btrfs_item_key_to_cpu(leaf, &key, slot);
2600
2601 item_off = btrfs_item_ptr_offset(leaf, slot);
2602 item_len = btrfs_item_size_nr(leaf, slot);
2603 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2604 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2605 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2606 ret = -EINVAL;
2607 goto out;
2608 }
2609
2610 /* Copy subvolume's name */
2611 item_off += sizeof(struct btrfs_root_ref);
2612 item_len -= sizeof(struct btrfs_root_ref);
2613 read_extent_buffer(leaf, args->name, item_off, item_len);
2614 args->name[item_len] = 0;
2615
2616 out_put:
2617 btrfs_put_root(root);
2618 out:
2619 btrfs_free_path(path);
2620 return ret;
2621 }
2622
btrfs_ioctl_ino_lookup(struct file * file,void __user * argp)2623 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2624 void __user *argp)
2625 {
2626 struct btrfs_ioctl_ino_lookup_args *args;
2627 struct inode *inode;
2628 int ret = 0;
2629
2630 args = memdup_user(argp, sizeof(*args));
2631 if (IS_ERR(args))
2632 return PTR_ERR(args);
2633
2634 inode = file_inode(file);
2635
2636 /*
2637 * Unprivileged query to obtain the containing subvolume root id. The
2638 * path is reset so it's consistent with btrfs_search_path_in_tree.
2639 */
2640 if (args->treeid == 0)
2641 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2642
2643 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2644 args->name[0] = 0;
2645 goto out;
2646 }
2647
2648 if (!capable(CAP_SYS_ADMIN)) {
2649 ret = -EPERM;
2650 goto out;
2651 }
2652
2653 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2654 args->treeid, args->objectid,
2655 args->name);
2656
2657 out:
2658 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2659 ret = -EFAULT;
2660
2661 kfree(args);
2662 return ret;
2663 }
2664
2665 /*
2666 * Version of ino_lookup ioctl (unprivileged)
2667 *
2668 * The main differences from ino_lookup ioctl are:
2669 *
2670 * 1. Read + Exec permission will be checked using inode_permission() during
2671 * path construction. -EACCES will be returned in case of failure.
2672 * 2. Path construction will be stopped at the inode number which corresponds
2673 * to the fd with which this ioctl is called. If constructed path does not
2674 * exist under fd's inode, -EACCES will be returned.
2675 * 3. The name of bottom subvolume is also searched and filled.
2676 */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2677 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2678 {
2679 struct btrfs_ioctl_ino_lookup_user_args *args;
2680 struct inode *inode;
2681 int ret;
2682
2683 args = memdup_user(argp, sizeof(*args));
2684 if (IS_ERR(args))
2685 return PTR_ERR(args);
2686
2687 inode = file_inode(file);
2688
2689 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2690 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2691 /*
2692 * The subvolume does not exist under fd with which this is
2693 * called
2694 */
2695 kfree(args);
2696 return -EACCES;
2697 }
2698
2699 ret = btrfs_search_path_in_tree_user(inode, args);
2700
2701 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2702 ret = -EFAULT;
2703
2704 kfree(args);
2705 return ret;
2706 }
2707
2708 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct file * file,void __user * argp)2709 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2710 {
2711 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2712 struct btrfs_fs_info *fs_info;
2713 struct btrfs_root *root;
2714 struct btrfs_path *path;
2715 struct btrfs_key key;
2716 struct btrfs_root_item *root_item;
2717 struct btrfs_root_ref *rref;
2718 struct extent_buffer *leaf;
2719 unsigned long item_off;
2720 unsigned long item_len;
2721 struct inode *inode;
2722 int slot;
2723 int ret = 0;
2724
2725 path = btrfs_alloc_path();
2726 if (!path)
2727 return -ENOMEM;
2728
2729 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2730 if (!subvol_info) {
2731 btrfs_free_path(path);
2732 return -ENOMEM;
2733 }
2734
2735 inode = file_inode(file);
2736 fs_info = BTRFS_I(inode)->root->fs_info;
2737
2738 /* Get root_item of inode's subvolume */
2739 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2740 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2741 if (IS_ERR(root)) {
2742 ret = PTR_ERR(root);
2743 goto out_free;
2744 }
2745 root_item = &root->root_item;
2746
2747 subvol_info->treeid = key.objectid;
2748
2749 subvol_info->generation = btrfs_root_generation(root_item);
2750 subvol_info->flags = btrfs_root_flags(root_item);
2751
2752 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2753 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2754 BTRFS_UUID_SIZE);
2755 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2756 BTRFS_UUID_SIZE);
2757
2758 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2759 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2760 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2761
2762 subvol_info->otransid = btrfs_root_otransid(root_item);
2763 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2764 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2765
2766 subvol_info->stransid = btrfs_root_stransid(root_item);
2767 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2768 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2769
2770 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2771 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2772 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2773
2774 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2775 /* Search root tree for ROOT_BACKREF of this subvolume */
2776 key.type = BTRFS_ROOT_BACKREF_KEY;
2777 key.offset = 0;
2778 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2779 if (ret < 0) {
2780 goto out;
2781 } else if (path->slots[0] >=
2782 btrfs_header_nritems(path->nodes[0])) {
2783 ret = btrfs_next_leaf(fs_info->tree_root, path);
2784 if (ret < 0) {
2785 goto out;
2786 } else if (ret > 0) {
2787 ret = -EUCLEAN;
2788 goto out;
2789 }
2790 }
2791
2792 leaf = path->nodes[0];
2793 slot = path->slots[0];
2794 btrfs_item_key_to_cpu(leaf, &key, slot);
2795 if (key.objectid == subvol_info->treeid &&
2796 key.type == BTRFS_ROOT_BACKREF_KEY) {
2797 subvol_info->parent_id = key.offset;
2798
2799 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2800 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2801
2802 item_off = btrfs_item_ptr_offset(leaf, slot)
2803 + sizeof(struct btrfs_root_ref);
2804 item_len = btrfs_item_size_nr(leaf, slot)
2805 - sizeof(struct btrfs_root_ref);
2806 read_extent_buffer(leaf, subvol_info->name,
2807 item_off, item_len);
2808 } else {
2809 ret = -ENOENT;
2810 goto out;
2811 }
2812 }
2813
2814 btrfs_free_path(path);
2815 path = NULL;
2816 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2817 ret = -EFAULT;
2818
2819 out:
2820 btrfs_put_root(root);
2821 out_free:
2822 btrfs_free_path(path);
2823 kfree(subvol_info);
2824 return ret;
2825 }
2826
2827 /*
2828 * Return ROOT_REF information of the subvolume containing this inode
2829 * except the subvolume name.
2830 */
btrfs_ioctl_get_subvol_rootref(struct file * file,void __user * argp)2831 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2832 {
2833 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2834 struct btrfs_root_ref *rref;
2835 struct btrfs_root *root;
2836 struct btrfs_path *path;
2837 struct btrfs_key key;
2838 struct extent_buffer *leaf;
2839 struct inode *inode;
2840 u64 objectid;
2841 int slot;
2842 int ret;
2843 u8 found;
2844
2845 path = btrfs_alloc_path();
2846 if (!path)
2847 return -ENOMEM;
2848
2849 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2850 if (IS_ERR(rootrefs)) {
2851 btrfs_free_path(path);
2852 return PTR_ERR(rootrefs);
2853 }
2854
2855 inode = file_inode(file);
2856 root = BTRFS_I(inode)->root->fs_info->tree_root;
2857 objectid = BTRFS_I(inode)->root->root_key.objectid;
2858
2859 key.objectid = objectid;
2860 key.type = BTRFS_ROOT_REF_KEY;
2861 key.offset = rootrefs->min_treeid;
2862 found = 0;
2863
2864 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2865 if (ret < 0) {
2866 goto out;
2867 } else if (path->slots[0] >=
2868 btrfs_header_nritems(path->nodes[0])) {
2869 ret = btrfs_next_leaf(root, path);
2870 if (ret < 0) {
2871 goto out;
2872 } else if (ret > 0) {
2873 ret = -EUCLEAN;
2874 goto out;
2875 }
2876 }
2877 while (1) {
2878 leaf = path->nodes[0];
2879 slot = path->slots[0];
2880
2881 btrfs_item_key_to_cpu(leaf, &key, slot);
2882 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2883 ret = 0;
2884 goto out;
2885 }
2886
2887 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2888 ret = -EOVERFLOW;
2889 goto out;
2890 }
2891
2892 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2893 rootrefs->rootref[found].treeid = key.offset;
2894 rootrefs->rootref[found].dirid =
2895 btrfs_root_ref_dirid(leaf, rref);
2896 found++;
2897
2898 ret = btrfs_next_item(root, path);
2899 if (ret < 0) {
2900 goto out;
2901 } else if (ret > 0) {
2902 ret = -EUCLEAN;
2903 goto out;
2904 }
2905 }
2906
2907 out:
2908 btrfs_free_path(path);
2909
2910 if (!ret || ret == -EOVERFLOW) {
2911 rootrefs->num_items = found;
2912 /* update min_treeid for next search */
2913 if (found)
2914 rootrefs->min_treeid =
2915 rootrefs->rootref[found - 1].treeid + 1;
2916 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2917 ret = -EFAULT;
2918 }
2919
2920 kfree(rootrefs);
2921
2922 return ret;
2923 }
2924
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg,bool destroy_v2)2925 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2926 void __user *arg,
2927 bool destroy_v2)
2928 {
2929 struct dentry *parent = file->f_path.dentry;
2930 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2931 struct dentry *dentry;
2932 struct inode *dir = d_inode(parent);
2933 struct inode *inode;
2934 struct btrfs_root *root = BTRFS_I(dir)->root;
2935 struct btrfs_root *dest = NULL;
2936 struct btrfs_ioctl_vol_args *vol_args = NULL;
2937 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2938 char *subvol_name, *subvol_name_ptr = NULL;
2939 int subvol_namelen;
2940 int err = 0;
2941 bool destroy_parent = false;
2942
2943 if (destroy_v2) {
2944 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2945 if (IS_ERR(vol_args2))
2946 return PTR_ERR(vol_args2);
2947
2948 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2949 err = -EOPNOTSUPP;
2950 goto out;
2951 }
2952
2953 /*
2954 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2955 * name, same as v1 currently does.
2956 */
2957 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2958 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2959 subvol_name = vol_args2->name;
2960
2961 err = mnt_want_write_file(file);
2962 if (err)
2963 goto out;
2964 } else {
2965 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2966 err = -EINVAL;
2967 goto out;
2968 }
2969
2970 err = mnt_want_write_file(file);
2971 if (err)
2972 goto out;
2973
2974 dentry = btrfs_get_dentry(fs_info->sb,
2975 BTRFS_FIRST_FREE_OBJECTID,
2976 vol_args2->subvolid, 0, 0);
2977 if (IS_ERR(dentry)) {
2978 err = PTR_ERR(dentry);
2979 goto out_drop_write;
2980 }
2981
2982 /*
2983 * Change the default parent since the subvolume being
2984 * deleted can be outside of the current mount point.
2985 */
2986 parent = btrfs_get_parent(dentry);
2987
2988 /*
2989 * At this point dentry->d_name can point to '/' if the
2990 * subvolume we want to destroy is outsite of the
2991 * current mount point, so we need to release the
2992 * current dentry and execute the lookup to return a new
2993 * one with ->d_name pointing to the
2994 * <mount point>/subvol_name.
2995 */
2996 dput(dentry);
2997 if (IS_ERR(parent)) {
2998 err = PTR_ERR(parent);
2999 goto out_drop_write;
3000 }
3001 dir = d_inode(parent);
3002
3003 /*
3004 * If v2 was used with SPEC_BY_ID, a new parent was
3005 * allocated since the subvolume can be outside of the
3006 * current mount point. Later on we need to release this
3007 * new parent dentry.
3008 */
3009 destroy_parent = true;
3010
3011 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
3012 fs_info, vol_args2->subvolid);
3013 if (IS_ERR(subvol_name_ptr)) {
3014 err = PTR_ERR(subvol_name_ptr);
3015 goto free_parent;
3016 }
3017 /* subvol_name_ptr is already NULL termined */
3018 subvol_name = (char *)kbasename(subvol_name_ptr);
3019 }
3020 } else {
3021 vol_args = memdup_user(arg, sizeof(*vol_args));
3022 if (IS_ERR(vol_args))
3023 return PTR_ERR(vol_args);
3024
3025 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3026 subvol_name = vol_args->name;
3027
3028 err = mnt_want_write_file(file);
3029 if (err)
3030 goto out;
3031 }
3032
3033 subvol_namelen = strlen(subvol_name);
3034
3035 if (strchr(subvol_name, '/') ||
3036 strncmp(subvol_name, "..", subvol_namelen) == 0) {
3037 err = -EINVAL;
3038 goto free_subvol_name;
3039 }
3040
3041 if (!S_ISDIR(dir->i_mode)) {
3042 err = -ENOTDIR;
3043 goto free_subvol_name;
3044 }
3045
3046 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3047 if (err == -EINTR)
3048 goto free_subvol_name;
3049 dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
3050 if (IS_ERR(dentry)) {
3051 err = PTR_ERR(dentry);
3052 goto out_unlock_dir;
3053 }
3054
3055 if (d_really_is_negative(dentry)) {
3056 err = -ENOENT;
3057 goto out_dput;
3058 }
3059
3060 inode = d_inode(dentry);
3061 dest = BTRFS_I(inode)->root;
3062 if (!capable(CAP_SYS_ADMIN)) {
3063 /*
3064 * Regular user. Only allow this with a special mount
3065 * option, when the user has write+exec access to the
3066 * subvol root, and when rmdir(2) would have been
3067 * allowed.
3068 *
3069 * Note that this is _not_ check that the subvol is
3070 * empty or doesn't contain data that we wouldn't
3071 * otherwise be able to delete.
3072 *
3073 * Users who want to delete empty subvols should try
3074 * rmdir(2).
3075 */
3076 err = -EPERM;
3077 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3078 goto out_dput;
3079
3080 /*
3081 * Do not allow deletion if the parent dir is the same
3082 * as the dir to be deleted. That means the ioctl
3083 * must be called on the dentry referencing the root
3084 * of the subvol, not a random directory contained
3085 * within it.
3086 */
3087 err = -EINVAL;
3088 if (root == dest)
3089 goto out_dput;
3090
3091 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
3092 if (err)
3093 goto out_dput;
3094 }
3095
3096 /* check if subvolume may be deleted by a user */
3097 err = btrfs_may_delete(dir, dentry, 1);
3098 if (err)
3099 goto out_dput;
3100
3101 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3102 err = -EINVAL;
3103 goto out_dput;
3104 }
3105
3106 inode_lock(inode);
3107 err = btrfs_delete_subvolume(dir, dentry);
3108 inode_unlock(inode);
3109 if (!err)
3110 d_delete_notify(dir, dentry);
3111
3112 out_dput:
3113 dput(dentry);
3114 out_unlock_dir:
3115 inode_unlock(dir);
3116 free_subvol_name:
3117 kfree(subvol_name_ptr);
3118 free_parent:
3119 if (destroy_parent)
3120 dput(parent);
3121 out_drop_write:
3122 mnt_drop_write_file(file);
3123 out:
3124 kfree(vol_args2);
3125 kfree(vol_args);
3126 return err;
3127 }
3128
btrfs_ioctl_defrag(struct file * file,void __user * argp)3129 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3130 {
3131 struct inode *inode = file_inode(file);
3132 struct btrfs_root *root = BTRFS_I(inode)->root;
3133 struct btrfs_ioctl_defrag_range_args *range;
3134 int ret;
3135
3136 ret = mnt_want_write_file(file);
3137 if (ret)
3138 return ret;
3139
3140 if (btrfs_root_readonly(root)) {
3141 ret = -EROFS;
3142 goto out;
3143 }
3144
3145 switch (inode->i_mode & S_IFMT) {
3146 case S_IFDIR:
3147 if (!capable(CAP_SYS_ADMIN)) {
3148 ret = -EPERM;
3149 goto out;
3150 }
3151 ret = btrfs_defrag_root(root);
3152 break;
3153 case S_IFREG:
3154 /*
3155 * Note that this does not check the file descriptor for write
3156 * access. This prevents defragmenting executables that are
3157 * running and allows defrag on files open in read-only mode.
3158 */
3159 if (!capable(CAP_SYS_ADMIN) &&
3160 inode_permission(inode, MAY_WRITE)) {
3161 ret = -EPERM;
3162 goto out;
3163 }
3164
3165 range = kzalloc(sizeof(*range), GFP_KERNEL);
3166 if (!range) {
3167 ret = -ENOMEM;
3168 goto out;
3169 }
3170
3171 if (argp) {
3172 if (copy_from_user(range, argp,
3173 sizeof(*range))) {
3174 ret = -EFAULT;
3175 kfree(range);
3176 goto out;
3177 }
3178 /* compression requires us to start the IO */
3179 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3180 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3181 range->extent_thresh = (u32)-1;
3182 }
3183 } else {
3184 /* the rest are all set to zero by kzalloc */
3185 range->len = (u64)-1;
3186 }
3187 ret = btrfs_defrag_file(file_inode(file), file,
3188 range, BTRFS_OLDEST_GENERATION, 0);
3189 if (ret > 0)
3190 ret = 0;
3191 kfree(range);
3192 break;
3193 default:
3194 ret = -EINVAL;
3195 }
3196 out:
3197 mnt_drop_write_file(file);
3198 return ret;
3199 }
3200
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)3201 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3202 {
3203 struct btrfs_ioctl_vol_args *vol_args;
3204 int ret;
3205
3206 if (!capable(CAP_SYS_ADMIN))
3207 return -EPERM;
3208
3209 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3210 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3211
3212 vol_args = memdup_user(arg, sizeof(*vol_args));
3213 if (IS_ERR(vol_args)) {
3214 ret = PTR_ERR(vol_args);
3215 goto out;
3216 }
3217
3218 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3219 ret = btrfs_init_new_device(fs_info, vol_args->name);
3220
3221 if (!ret)
3222 btrfs_info(fs_info, "disk added %s", vol_args->name);
3223
3224 kfree(vol_args);
3225 out:
3226 btrfs_exclop_finish(fs_info);
3227 return ret;
3228 }
3229
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)3230 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3231 {
3232 struct inode *inode = file_inode(file);
3233 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3234 struct btrfs_ioctl_vol_args_v2 *vol_args;
3235 int ret;
3236
3237 if (!capable(CAP_SYS_ADMIN))
3238 return -EPERM;
3239
3240 ret = mnt_want_write_file(file);
3241 if (ret)
3242 return ret;
3243
3244 vol_args = memdup_user(arg, sizeof(*vol_args));
3245 if (IS_ERR(vol_args)) {
3246 ret = PTR_ERR(vol_args);
3247 goto err_drop;
3248 }
3249
3250 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3251 ret = -EOPNOTSUPP;
3252 goto out;
3253 }
3254
3255 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3256 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3257 goto out;
3258 }
3259
3260 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3261 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3262 } else {
3263 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3264 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3265 }
3266 btrfs_exclop_finish(fs_info);
3267
3268 if (!ret) {
3269 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3270 btrfs_info(fs_info, "device deleted: id %llu",
3271 vol_args->devid);
3272 else
3273 btrfs_info(fs_info, "device deleted: %s",
3274 vol_args->name);
3275 }
3276 out:
3277 kfree(vol_args);
3278 err_drop:
3279 mnt_drop_write_file(file);
3280 return ret;
3281 }
3282
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)3283 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3284 {
3285 struct inode *inode = file_inode(file);
3286 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3287 struct btrfs_ioctl_vol_args *vol_args;
3288 int ret;
3289
3290 if (!capable(CAP_SYS_ADMIN))
3291 return -EPERM;
3292
3293 ret = mnt_want_write_file(file);
3294 if (ret)
3295 return ret;
3296
3297 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3298 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3299 goto out_drop_write;
3300 }
3301
3302 vol_args = memdup_user(arg, sizeof(*vol_args));
3303 if (IS_ERR(vol_args)) {
3304 ret = PTR_ERR(vol_args);
3305 goto out;
3306 }
3307
3308 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3309 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3310
3311 if (!ret)
3312 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3313 kfree(vol_args);
3314 out:
3315 btrfs_exclop_finish(fs_info);
3316 out_drop_write:
3317 mnt_drop_write_file(file);
3318
3319 return ret;
3320 }
3321
btrfs_ioctl_fs_info(struct btrfs_fs_info * fs_info,void __user * arg)3322 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3323 void __user *arg)
3324 {
3325 struct btrfs_ioctl_fs_info_args *fi_args;
3326 struct btrfs_device *device;
3327 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3328 u64 flags_in;
3329 int ret = 0;
3330
3331 fi_args = memdup_user(arg, sizeof(*fi_args));
3332 if (IS_ERR(fi_args))
3333 return PTR_ERR(fi_args);
3334
3335 flags_in = fi_args->flags;
3336 memset(fi_args, 0, sizeof(*fi_args));
3337
3338 rcu_read_lock();
3339 fi_args->num_devices = fs_devices->num_devices;
3340
3341 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3342 if (device->devid > fi_args->max_id)
3343 fi_args->max_id = device->devid;
3344 }
3345 rcu_read_unlock();
3346
3347 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3348 fi_args->nodesize = fs_info->nodesize;
3349 fi_args->sectorsize = fs_info->sectorsize;
3350 fi_args->clone_alignment = fs_info->sectorsize;
3351
3352 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3353 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3354 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3355 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3356 }
3357
3358 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3359 fi_args->generation = fs_info->generation;
3360 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3361 }
3362
3363 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3364 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3365 sizeof(fi_args->metadata_uuid));
3366 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3367 }
3368
3369 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3370 ret = -EFAULT;
3371
3372 kfree(fi_args);
3373 return ret;
3374 }
3375
btrfs_ioctl_dev_info(struct btrfs_fs_info * fs_info,void __user * arg)3376 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3377 void __user *arg)
3378 {
3379 struct btrfs_ioctl_dev_info_args *di_args;
3380 struct btrfs_device *dev;
3381 int ret = 0;
3382 char *s_uuid = NULL;
3383
3384 di_args = memdup_user(arg, sizeof(*di_args));
3385 if (IS_ERR(di_args))
3386 return PTR_ERR(di_args);
3387
3388 if (!btrfs_is_empty_uuid(di_args->uuid))
3389 s_uuid = di_args->uuid;
3390
3391 rcu_read_lock();
3392 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3393 NULL, true);
3394
3395 if (!dev) {
3396 ret = -ENODEV;
3397 goto out;
3398 }
3399
3400 di_args->devid = dev->devid;
3401 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3402 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3403 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3404 if (dev->name)
3405 strscpy(di_args->path, rcu_str_deref(dev->name), sizeof(di_args->path));
3406 else
3407 di_args->path[0] = '\0';
3408
3409 out:
3410 rcu_read_unlock();
3411 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3412 ret = -EFAULT;
3413
3414 kfree(di_args);
3415 return ret;
3416 }
3417
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)3418 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3419 {
3420 struct inode *inode = file_inode(file);
3421 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3422 struct btrfs_root *root = BTRFS_I(inode)->root;
3423 struct btrfs_root *new_root;
3424 struct btrfs_dir_item *di;
3425 struct btrfs_trans_handle *trans;
3426 struct btrfs_path *path = NULL;
3427 struct btrfs_disk_key disk_key;
3428 u64 objectid = 0;
3429 u64 dir_id;
3430 int ret;
3431
3432 if (!capable(CAP_SYS_ADMIN))
3433 return -EPERM;
3434
3435 ret = mnt_want_write_file(file);
3436 if (ret)
3437 return ret;
3438
3439 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3440 ret = -EFAULT;
3441 goto out;
3442 }
3443
3444 if (!objectid)
3445 objectid = BTRFS_FS_TREE_OBJECTID;
3446
3447 new_root = btrfs_get_fs_root(fs_info, objectid, true);
3448 if (IS_ERR(new_root)) {
3449 ret = PTR_ERR(new_root);
3450 goto out;
3451 }
3452 if (!is_fstree(new_root->root_key.objectid)) {
3453 ret = -ENOENT;
3454 goto out_free;
3455 }
3456
3457 path = btrfs_alloc_path();
3458 if (!path) {
3459 ret = -ENOMEM;
3460 goto out_free;
3461 }
3462 path->leave_spinning = 1;
3463
3464 trans = btrfs_start_transaction(root, 1);
3465 if (IS_ERR(trans)) {
3466 ret = PTR_ERR(trans);
3467 goto out_free;
3468 }
3469
3470 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3471 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3472 dir_id, "default", 7, 1);
3473 if (IS_ERR_OR_NULL(di)) {
3474 btrfs_release_path(path);
3475 btrfs_end_transaction(trans);
3476 btrfs_err(fs_info,
3477 "Umm, you don't have the default diritem, this isn't going to work");
3478 ret = -ENOENT;
3479 goto out_free;
3480 }
3481
3482 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3483 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3484 btrfs_mark_buffer_dirty(path->nodes[0]);
3485 btrfs_release_path(path);
3486
3487 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3488 btrfs_end_transaction(trans);
3489 out_free:
3490 btrfs_put_root(new_root);
3491 btrfs_free_path(path);
3492 out:
3493 mnt_drop_write_file(file);
3494 return ret;
3495 }
3496
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)3497 static void get_block_group_info(struct list_head *groups_list,
3498 struct btrfs_ioctl_space_info *space)
3499 {
3500 struct btrfs_block_group *block_group;
3501
3502 space->total_bytes = 0;
3503 space->used_bytes = 0;
3504 space->flags = 0;
3505 list_for_each_entry(block_group, groups_list, list) {
3506 space->flags = block_group->flags;
3507 space->total_bytes += block_group->length;
3508 space->used_bytes += block_group->used;
3509 }
3510 }
3511
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)3512 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3513 void __user *arg)
3514 {
3515 struct btrfs_ioctl_space_args space_args;
3516 struct btrfs_ioctl_space_info space;
3517 struct btrfs_ioctl_space_info *dest;
3518 struct btrfs_ioctl_space_info *dest_orig;
3519 struct btrfs_ioctl_space_info __user *user_dest;
3520 struct btrfs_space_info *info;
3521 static const u64 types[] = {
3522 BTRFS_BLOCK_GROUP_DATA,
3523 BTRFS_BLOCK_GROUP_SYSTEM,
3524 BTRFS_BLOCK_GROUP_METADATA,
3525 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3526 };
3527 int num_types = 4;
3528 int alloc_size;
3529 int ret = 0;
3530 u64 slot_count = 0;
3531 int i, c;
3532
3533 if (copy_from_user(&space_args,
3534 (struct btrfs_ioctl_space_args __user *)arg,
3535 sizeof(space_args)))
3536 return -EFAULT;
3537
3538 for (i = 0; i < num_types; i++) {
3539 struct btrfs_space_info *tmp;
3540
3541 info = NULL;
3542 list_for_each_entry(tmp, &fs_info->space_info, list) {
3543 if (tmp->flags == types[i]) {
3544 info = tmp;
3545 break;
3546 }
3547 }
3548
3549 if (!info)
3550 continue;
3551
3552 down_read(&info->groups_sem);
3553 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3554 if (!list_empty(&info->block_groups[c]))
3555 slot_count++;
3556 }
3557 up_read(&info->groups_sem);
3558 }
3559
3560 /*
3561 * Global block reserve, exported as a space_info
3562 */
3563 slot_count++;
3564
3565 /* space_slots == 0 means they are asking for a count */
3566 if (space_args.space_slots == 0) {
3567 space_args.total_spaces = slot_count;
3568 goto out;
3569 }
3570
3571 slot_count = min_t(u64, space_args.space_slots, slot_count);
3572
3573 alloc_size = sizeof(*dest) * slot_count;
3574
3575 /* we generally have at most 6 or so space infos, one for each raid
3576 * level. So, a whole page should be more than enough for everyone
3577 */
3578 if (alloc_size > PAGE_SIZE)
3579 return -ENOMEM;
3580
3581 space_args.total_spaces = 0;
3582 dest = kmalloc(alloc_size, GFP_KERNEL);
3583 if (!dest)
3584 return -ENOMEM;
3585 dest_orig = dest;
3586
3587 /* now we have a buffer to copy into */
3588 for (i = 0; i < num_types; i++) {
3589 struct btrfs_space_info *tmp;
3590
3591 if (!slot_count)
3592 break;
3593
3594 info = NULL;
3595 list_for_each_entry(tmp, &fs_info->space_info, list) {
3596 if (tmp->flags == types[i]) {
3597 info = tmp;
3598 break;
3599 }
3600 }
3601
3602 if (!info)
3603 continue;
3604 down_read(&info->groups_sem);
3605 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3606 if (!list_empty(&info->block_groups[c])) {
3607 get_block_group_info(&info->block_groups[c],
3608 &space);
3609 memcpy(dest, &space, sizeof(space));
3610 dest++;
3611 space_args.total_spaces++;
3612 slot_count--;
3613 }
3614 if (!slot_count)
3615 break;
3616 }
3617 up_read(&info->groups_sem);
3618 }
3619
3620 /*
3621 * Add global block reserve
3622 */
3623 if (slot_count) {
3624 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3625
3626 spin_lock(&block_rsv->lock);
3627 space.total_bytes = block_rsv->size;
3628 space.used_bytes = block_rsv->size - block_rsv->reserved;
3629 spin_unlock(&block_rsv->lock);
3630 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3631 memcpy(dest, &space, sizeof(space));
3632 space_args.total_spaces++;
3633 }
3634
3635 user_dest = (struct btrfs_ioctl_space_info __user *)
3636 (arg + sizeof(struct btrfs_ioctl_space_args));
3637
3638 if (copy_to_user(user_dest, dest_orig, alloc_size))
3639 ret = -EFAULT;
3640
3641 kfree(dest_orig);
3642 out:
3643 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3644 ret = -EFAULT;
3645
3646 return ret;
3647 }
3648
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)3649 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3650 void __user *argp)
3651 {
3652 struct btrfs_trans_handle *trans;
3653 u64 transid;
3654 int ret;
3655
3656 trans = btrfs_attach_transaction_barrier(root);
3657 if (IS_ERR(trans)) {
3658 if (PTR_ERR(trans) != -ENOENT)
3659 return PTR_ERR(trans);
3660
3661 /* No running transaction, don't bother */
3662 transid = root->fs_info->last_trans_committed;
3663 goto out;
3664 }
3665 transid = trans->transid;
3666 ret = btrfs_commit_transaction_async(trans, 0);
3667 if (ret) {
3668 btrfs_end_transaction(trans);
3669 return ret;
3670 }
3671 out:
3672 if (argp)
3673 if (copy_to_user(argp, &transid, sizeof(transid)))
3674 return -EFAULT;
3675 return 0;
3676 }
3677
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)3678 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3679 void __user *argp)
3680 {
3681 u64 transid;
3682
3683 if (argp) {
3684 if (copy_from_user(&transid, argp, sizeof(transid)))
3685 return -EFAULT;
3686 } else {
3687 transid = 0; /* current trans */
3688 }
3689 return btrfs_wait_for_commit(fs_info, transid);
3690 }
3691
btrfs_ioctl_scrub(struct file * file,void __user * arg)3692 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3693 {
3694 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3695 struct btrfs_ioctl_scrub_args *sa;
3696 int ret;
3697
3698 if (!capable(CAP_SYS_ADMIN))
3699 return -EPERM;
3700
3701 sa = memdup_user(arg, sizeof(*sa));
3702 if (IS_ERR(sa))
3703 return PTR_ERR(sa);
3704
3705 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3706 ret = -EOPNOTSUPP;
3707 goto out;
3708 }
3709
3710 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3711 ret = mnt_want_write_file(file);
3712 if (ret)
3713 goto out;
3714 }
3715
3716 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3717 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3718 0);
3719
3720 /*
3721 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3722 * error. This is important as it allows user space to know how much
3723 * progress scrub has done. For example, if scrub is canceled we get
3724 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3725 * space. Later user space can inspect the progress from the structure
3726 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3727 * previously (btrfs-progs does this).
3728 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3729 * then return -EFAULT to signal the structure was not copied or it may
3730 * be corrupt and unreliable due to a partial copy.
3731 */
3732 if (copy_to_user(arg, sa, sizeof(*sa)))
3733 ret = -EFAULT;
3734
3735 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3736 mnt_drop_write_file(file);
3737 out:
3738 kfree(sa);
3739 return ret;
3740 }
3741
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)3742 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3743 {
3744 if (!capable(CAP_SYS_ADMIN))
3745 return -EPERM;
3746
3747 return btrfs_scrub_cancel(fs_info);
3748 }
3749
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)3750 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3751 void __user *arg)
3752 {
3753 struct btrfs_ioctl_scrub_args *sa;
3754 int ret;
3755
3756 if (!capable(CAP_SYS_ADMIN))
3757 return -EPERM;
3758
3759 sa = memdup_user(arg, sizeof(*sa));
3760 if (IS_ERR(sa))
3761 return PTR_ERR(sa);
3762
3763 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3764
3765 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3766 ret = -EFAULT;
3767
3768 kfree(sa);
3769 return ret;
3770 }
3771
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)3772 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3773 void __user *arg)
3774 {
3775 struct btrfs_ioctl_get_dev_stats *sa;
3776 int ret;
3777
3778 sa = memdup_user(arg, sizeof(*sa));
3779 if (IS_ERR(sa))
3780 return PTR_ERR(sa);
3781
3782 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3783 kfree(sa);
3784 return -EPERM;
3785 }
3786
3787 ret = btrfs_get_dev_stats(fs_info, sa);
3788
3789 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3790 ret = -EFAULT;
3791
3792 kfree(sa);
3793 return ret;
3794 }
3795
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)3796 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3797 void __user *arg)
3798 {
3799 struct btrfs_ioctl_dev_replace_args *p;
3800 int ret;
3801
3802 if (!capable(CAP_SYS_ADMIN))
3803 return -EPERM;
3804
3805 p = memdup_user(arg, sizeof(*p));
3806 if (IS_ERR(p))
3807 return PTR_ERR(p);
3808
3809 switch (p->cmd) {
3810 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3811 if (sb_rdonly(fs_info->sb)) {
3812 ret = -EROFS;
3813 goto out;
3814 }
3815 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3816 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3817 } else {
3818 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3819 btrfs_exclop_finish(fs_info);
3820 }
3821 break;
3822 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3823 btrfs_dev_replace_status(fs_info, p);
3824 ret = 0;
3825 break;
3826 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3827 p->result = btrfs_dev_replace_cancel(fs_info);
3828 ret = 0;
3829 break;
3830 default:
3831 ret = -EINVAL;
3832 break;
3833 }
3834
3835 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3836 ret = -EFAULT;
3837 out:
3838 kfree(p);
3839 return ret;
3840 }
3841
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)3842 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3843 {
3844 int ret = 0;
3845 int i;
3846 u64 rel_ptr;
3847 int size;
3848 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3849 struct inode_fs_paths *ipath = NULL;
3850 struct btrfs_path *path;
3851
3852 if (!capable(CAP_DAC_READ_SEARCH))
3853 return -EPERM;
3854
3855 path = btrfs_alloc_path();
3856 if (!path) {
3857 ret = -ENOMEM;
3858 goto out;
3859 }
3860
3861 ipa = memdup_user(arg, sizeof(*ipa));
3862 if (IS_ERR(ipa)) {
3863 ret = PTR_ERR(ipa);
3864 ipa = NULL;
3865 goto out;
3866 }
3867
3868 size = min_t(u32, ipa->size, 4096);
3869 ipath = init_ipath(size, root, path);
3870 if (IS_ERR(ipath)) {
3871 ret = PTR_ERR(ipath);
3872 ipath = NULL;
3873 goto out;
3874 }
3875
3876 ret = paths_from_inode(ipa->inum, ipath);
3877 if (ret < 0)
3878 goto out;
3879
3880 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3881 rel_ptr = ipath->fspath->val[i] -
3882 (u64)(unsigned long)ipath->fspath->val;
3883 ipath->fspath->val[i] = rel_ptr;
3884 }
3885
3886 btrfs_free_path(path);
3887 path = NULL;
3888 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3889 ipath->fspath, size);
3890 if (ret) {
3891 ret = -EFAULT;
3892 goto out;
3893 }
3894
3895 out:
3896 btrfs_free_path(path);
3897 free_ipath(ipath);
3898 kfree(ipa);
3899
3900 return ret;
3901 }
3902
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)3903 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3904 void __user *arg, int version)
3905 {
3906 int ret = 0;
3907 int size;
3908 struct btrfs_ioctl_logical_ino_args *loi;
3909 struct btrfs_data_container *inodes = NULL;
3910 struct btrfs_path *path = NULL;
3911 bool ignore_offset;
3912
3913 if (!capable(CAP_SYS_ADMIN))
3914 return -EPERM;
3915
3916 loi = memdup_user(arg, sizeof(*loi));
3917 if (IS_ERR(loi))
3918 return PTR_ERR(loi);
3919
3920 if (version == 1) {
3921 ignore_offset = false;
3922 size = min_t(u32, loi->size, SZ_64K);
3923 } else {
3924 /* All reserved bits must be 0 for now */
3925 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3926 ret = -EINVAL;
3927 goto out_loi;
3928 }
3929 /* Only accept flags we have defined so far */
3930 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3931 ret = -EINVAL;
3932 goto out_loi;
3933 }
3934 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3935 size = min_t(u32, loi->size, SZ_16M);
3936 }
3937
3938 inodes = init_data_container(size);
3939 if (IS_ERR(inodes)) {
3940 ret = PTR_ERR(inodes);
3941 goto out_loi;
3942 }
3943
3944 path = btrfs_alloc_path();
3945 if (!path) {
3946 ret = -ENOMEM;
3947 goto out;
3948 }
3949 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3950 inodes, ignore_offset);
3951 btrfs_free_path(path);
3952 if (ret == -EINVAL)
3953 ret = -ENOENT;
3954 if (ret < 0)
3955 goto out;
3956
3957 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3958 size);
3959 if (ret)
3960 ret = -EFAULT;
3961
3962 out:
3963 kvfree(inodes);
3964 out_loi:
3965 kfree(loi);
3966
3967 return ret;
3968 }
3969
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)3970 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3971 struct btrfs_ioctl_balance_args *bargs)
3972 {
3973 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3974
3975 bargs->flags = bctl->flags;
3976
3977 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3978 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3979 if (atomic_read(&fs_info->balance_pause_req))
3980 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3981 if (atomic_read(&fs_info->balance_cancel_req))
3982 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3983
3984 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3985 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3986 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3987
3988 spin_lock(&fs_info->balance_lock);
3989 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3990 spin_unlock(&fs_info->balance_lock);
3991 }
3992
btrfs_ioctl_balance(struct file * file,void __user * arg)3993 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3994 {
3995 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3996 struct btrfs_fs_info *fs_info = root->fs_info;
3997 struct btrfs_ioctl_balance_args *bargs;
3998 struct btrfs_balance_control *bctl;
3999 bool need_unlock; /* for mut. excl. ops lock */
4000 int ret;
4001
4002 if (!capable(CAP_SYS_ADMIN))
4003 return -EPERM;
4004
4005 ret = mnt_want_write_file(file);
4006 if (ret)
4007 return ret;
4008
4009 again:
4010 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4011 mutex_lock(&fs_info->balance_mutex);
4012 need_unlock = true;
4013 goto locked;
4014 }
4015
4016 /*
4017 * mut. excl. ops lock is locked. Three possibilities:
4018 * (1) some other op is running
4019 * (2) balance is running
4020 * (3) balance is paused -- special case (think resume)
4021 */
4022 mutex_lock(&fs_info->balance_mutex);
4023 if (fs_info->balance_ctl) {
4024 /* this is either (2) or (3) */
4025 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4026 mutex_unlock(&fs_info->balance_mutex);
4027 /*
4028 * Lock released to allow other waiters to continue,
4029 * we'll reexamine the status again.
4030 */
4031 mutex_lock(&fs_info->balance_mutex);
4032
4033 if (fs_info->balance_ctl &&
4034 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4035 /* this is (3) */
4036 need_unlock = false;
4037 goto locked;
4038 }
4039
4040 mutex_unlock(&fs_info->balance_mutex);
4041 goto again;
4042 } else {
4043 /* this is (2) */
4044 mutex_unlock(&fs_info->balance_mutex);
4045 ret = -EINPROGRESS;
4046 goto out;
4047 }
4048 } else {
4049 /* this is (1) */
4050 mutex_unlock(&fs_info->balance_mutex);
4051 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4052 goto out;
4053 }
4054
4055 locked:
4056
4057 if (arg) {
4058 bargs = memdup_user(arg, sizeof(*bargs));
4059 if (IS_ERR(bargs)) {
4060 ret = PTR_ERR(bargs);
4061 goto out_unlock;
4062 }
4063
4064 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4065 if (!fs_info->balance_ctl) {
4066 ret = -ENOTCONN;
4067 goto out_bargs;
4068 }
4069
4070 bctl = fs_info->balance_ctl;
4071 spin_lock(&fs_info->balance_lock);
4072 bctl->flags |= BTRFS_BALANCE_RESUME;
4073 spin_unlock(&fs_info->balance_lock);
4074
4075 goto do_balance;
4076 }
4077 } else {
4078 bargs = NULL;
4079 }
4080
4081 if (fs_info->balance_ctl) {
4082 ret = -EINPROGRESS;
4083 goto out_bargs;
4084 }
4085
4086 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4087 if (!bctl) {
4088 ret = -ENOMEM;
4089 goto out_bargs;
4090 }
4091
4092 if (arg) {
4093 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4094 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4095 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4096
4097 bctl->flags = bargs->flags;
4098 } else {
4099 /* balance everything - no filters */
4100 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4101 }
4102
4103 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4104 ret = -EINVAL;
4105 goto out_bctl;
4106 }
4107
4108 do_balance:
4109 /*
4110 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4111 * bctl is freed in reset_balance_state, or, if restriper was paused
4112 * all the way until unmount, in free_fs_info. The flag should be
4113 * cleared after reset_balance_state.
4114 */
4115 need_unlock = false;
4116
4117 ret = btrfs_balance(fs_info, bctl, bargs);
4118 bctl = NULL;
4119
4120 if ((ret == 0 || ret == -ECANCELED) && arg) {
4121 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4122 ret = -EFAULT;
4123 }
4124
4125 out_bctl:
4126 kfree(bctl);
4127 out_bargs:
4128 kfree(bargs);
4129 out_unlock:
4130 mutex_unlock(&fs_info->balance_mutex);
4131 if (need_unlock)
4132 btrfs_exclop_finish(fs_info);
4133 out:
4134 mnt_drop_write_file(file);
4135 return ret;
4136 }
4137
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)4138 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4139 {
4140 if (!capable(CAP_SYS_ADMIN))
4141 return -EPERM;
4142
4143 switch (cmd) {
4144 case BTRFS_BALANCE_CTL_PAUSE:
4145 return btrfs_pause_balance(fs_info);
4146 case BTRFS_BALANCE_CTL_CANCEL:
4147 return btrfs_cancel_balance(fs_info);
4148 }
4149
4150 return -EINVAL;
4151 }
4152
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)4153 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4154 void __user *arg)
4155 {
4156 struct btrfs_ioctl_balance_args *bargs;
4157 int ret = 0;
4158
4159 if (!capable(CAP_SYS_ADMIN))
4160 return -EPERM;
4161
4162 mutex_lock(&fs_info->balance_mutex);
4163 if (!fs_info->balance_ctl) {
4164 ret = -ENOTCONN;
4165 goto out;
4166 }
4167
4168 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4169 if (!bargs) {
4170 ret = -ENOMEM;
4171 goto out;
4172 }
4173
4174 btrfs_update_ioctl_balance_args(fs_info, bargs);
4175
4176 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4177 ret = -EFAULT;
4178
4179 kfree(bargs);
4180 out:
4181 mutex_unlock(&fs_info->balance_mutex);
4182 return ret;
4183 }
4184
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)4185 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4186 {
4187 struct inode *inode = file_inode(file);
4188 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4189 struct btrfs_ioctl_quota_ctl_args *sa;
4190 int ret;
4191
4192 if (!capable(CAP_SYS_ADMIN))
4193 return -EPERM;
4194
4195 ret = mnt_want_write_file(file);
4196 if (ret)
4197 return ret;
4198
4199 sa = memdup_user(arg, sizeof(*sa));
4200 if (IS_ERR(sa)) {
4201 ret = PTR_ERR(sa);
4202 goto drop_write;
4203 }
4204
4205 down_write(&fs_info->subvol_sem);
4206
4207 switch (sa->cmd) {
4208 case BTRFS_QUOTA_CTL_ENABLE:
4209 ret = btrfs_quota_enable(fs_info);
4210 break;
4211 case BTRFS_QUOTA_CTL_DISABLE:
4212 ret = btrfs_quota_disable(fs_info);
4213 break;
4214 default:
4215 ret = -EINVAL;
4216 break;
4217 }
4218
4219 kfree(sa);
4220 up_write(&fs_info->subvol_sem);
4221 drop_write:
4222 mnt_drop_write_file(file);
4223 return ret;
4224 }
4225
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)4226 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4227 {
4228 struct inode *inode = file_inode(file);
4229 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4230 struct btrfs_root *root = BTRFS_I(inode)->root;
4231 struct btrfs_ioctl_qgroup_assign_args *sa;
4232 struct btrfs_trans_handle *trans;
4233 int ret;
4234 int err;
4235
4236 if (!capable(CAP_SYS_ADMIN))
4237 return -EPERM;
4238
4239 ret = mnt_want_write_file(file);
4240 if (ret)
4241 return ret;
4242
4243 sa = memdup_user(arg, sizeof(*sa));
4244 if (IS_ERR(sa)) {
4245 ret = PTR_ERR(sa);
4246 goto drop_write;
4247 }
4248
4249 trans = btrfs_join_transaction(root);
4250 if (IS_ERR(trans)) {
4251 ret = PTR_ERR(trans);
4252 goto out;
4253 }
4254
4255 if (sa->assign) {
4256 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4257 } else {
4258 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4259 }
4260
4261 /* update qgroup status and info */
4262 mutex_lock(&fs_info->qgroup_ioctl_lock);
4263 err = btrfs_run_qgroups(trans);
4264 mutex_unlock(&fs_info->qgroup_ioctl_lock);
4265 if (err < 0)
4266 btrfs_handle_fs_error(fs_info, err,
4267 "failed to update qgroup status and info");
4268 err = btrfs_end_transaction(trans);
4269 if (err && !ret)
4270 ret = err;
4271
4272 out:
4273 kfree(sa);
4274 drop_write:
4275 mnt_drop_write_file(file);
4276 return ret;
4277 }
4278
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)4279 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4280 {
4281 struct inode *inode = file_inode(file);
4282 struct btrfs_root *root = BTRFS_I(inode)->root;
4283 struct btrfs_ioctl_qgroup_create_args *sa;
4284 struct btrfs_trans_handle *trans;
4285 int ret;
4286 int err;
4287
4288 if (!capable(CAP_SYS_ADMIN))
4289 return -EPERM;
4290
4291 ret = mnt_want_write_file(file);
4292 if (ret)
4293 return ret;
4294
4295 sa = memdup_user(arg, sizeof(*sa));
4296 if (IS_ERR(sa)) {
4297 ret = PTR_ERR(sa);
4298 goto drop_write;
4299 }
4300
4301 if (!sa->qgroupid) {
4302 ret = -EINVAL;
4303 goto out;
4304 }
4305
4306 trans = btrfs_join_transaction(root);
4307 if (IS_ERR(trans)) {
4308 ret = PTR_ERR(trans);
4309 goto out;
4310 }
4311
4312 if (sa->create) {
4313 ret = btrfs_create_qgroup(trans, sa->qgroupid);
4314 } else {
4315 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4316 }
4317
4318 err = btrfs_end_transaction(trans);
4319 if (err && !ret)
4320 ret = err;
4321
4322 out:
4323 kfree(sa);
4324 drop_write:
4325 mnt_drop_write_file(file);
4326 return ret;
4327 }
4328
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)4329 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4330 {
4331 struct inode *inode = file_inode(file);
4332 struct btrfs_root *root = BTRFS_I(inode)->root;
4333 struct btrfs_ioctl_qgroup_limit_args *sa;
4334 struct btrfs_trans_handle *trans;
4335 int ret;
4336 int err;
4337 u64 qgroupid;
4338
4339 if (!capable(CAP_SYS_ADMIN))
4340 return -EPERM;
4341
4342 ret = mnt_want_write_file(file);
4343 if (ret)
4344 return ret;
4345
4346 sa = memdup_user(arg, sizeof(*sa));
4347 if (IS_ERR(sa)) {
4348 ret = PTR_ERR(sa);
4349 goto drop_write;
4350 }
4351
4352 trans = btrfs_join_transaction(root);
4353 if (IS_ERR(trans)) {
4354 ret = PTR_ERR(trans);
4355 goto out;
4356 }
4357
4358 qgroupid = sa->qgroupid;
4359 if (!qgroupid) {
4360 /* take the current subvol as qgroup */
4361 qgroupid = root->root_key.objectid;
4362 }
4363
4364 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4365
4366 err = btrfs_end_transaction(trans);
4367 if (err && !ret)
4368 ret = err;
4369
4370 out:
4371 kfree(sa);
4372 drop_write:
4373 mnt_drop_write_file(file);
4374 return ret;
4375 }
4376
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)4377 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4378 {
4379 struct inode *inode = file_inode(file);
4380 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4381 struct btrfs_ioctl_quota_rescan_args *qsa;
4382 int ret;
4383
4384 if (!capable(CAP_SYS_ADMIN))
4385 return -EPERM;
4386
4387 ret = mnt_want_write_file(file);
4388 if (ret)
4389 return ret;
4390
4391 qsa = memdup_user(arg, sizeof(*qsa));
4392 if (IS_ERR(qsa)) {
4393 ret = PTR_ERR(qsa);
4394 goto drop_write;
4395 }
4396
4397 if (qsa->flags) {
4398 ret = -EINVAL;
4399 goto out;
4400 }
4401
4402 ret = btrfs_qgroup_rescan(fs_info);
4403
4404 out:
4405 kfree(qsa);
4406 drop_write:
4407 mnt_drop_write_file(file);
4408 return ret;
4409 }
4410
btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info * fs_info,void __user * arg)4411 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4412 void __user *arg)
4413 {
4414 struct btrfs_ioctl_quota_rescan_args *qsa;
4415 int ret = 0;
4416
4417 if (!capable(CAP_SYS_ADMIN))
4418 return -EPERM;
4419
4420 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4421 if (!qsa)
4422 return -ENOMEM;
4423
4424 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4425 qsa->flags = 1;
4426 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4427 }
4428
4429 if (copy_to_user(arg, qsa, sizeof(*qsa)))
4430 ret = -EFAULT;
4431
4432 kfree(qsa);
4433 return ret;
4434 }
4435
btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info * fs_info,void __user * arg)4436 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4437 void __user *arg)
4438 {
4439 if (!capable(CAP_SYS_ADMIN))
4440 return -EPERM;
4441
4442 return btrfs_qgroup_wait_for_completion(fs_info, true);
4443 }
4444
_btrfs_ioctl_set_received_subvol(struct file * file,struct btrfs_ioctl_received_subvol_args * sa)4445 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4446 struct btrfs_ioctl_received_subvol_args *sa)
4447 {
4448 struct inode *inode = file_inode(file);
4449 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4450 struct btrfs_root *root = BTRFS_I(inode)->root;
4451 struct btrfs_root_item *root_item = &root->root_item;
4452 struct btrfs_trans_handle *trans;
4453 struct timespec64 ct = current_time(inode);
4454 int ret = 0;
4455 int received_uuid_changed;
4456
4457 if (!inode_owner_or_capable(inode))
4458 return -EPERM;
4459
4460 ret = mnt_want_write_file(file);
4461 if (ret < 0)
4462 return ret;
4463
4464 down_write(&fs_info->subvol_sem);
4465
4466 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4467 ret = -EINVAL;
4468 goto out;
4469 }
4470
4471 if (btrfs_root_readonly(root)) {
4472 ret = -EROFS;
4473 goto out;
4474 }
4475
4476 /*
4477 * 1 - root item
4478 * 2 - uuid items (received uuid + subvol uuid)
4479 */
4480 trans = btrfs_start_transaction(root, 3);
4481 if (IS_ERR(trans)) {
4482 ret = PTR_ERR(trans);
4483 trans = NULL;
4484 goto out;
4485 }
4486
4487 sa->rtransid = trans->transid;
4488 sa->rtime.sec = ct.tv_sec;
4489 sa->rtime.nsec = ct.tv_nsec;
4490
4491 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4492 BTRFS_UUID_SIZE);
4493 if (received_uuid_changed &&
4494 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4495 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4496 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4497 root->root_key.objectid);
4498 if (ret && ret != -ENOENT) {
4499 btrfs_abort_transaction(trans, ret);
4500 btrfs_end_transaction(trans);
4501 goto out;
4502 }
4503 }
4504 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4505 btrfs_set_root_stransid(root_item, sa->stransid);
4506 btrfs_set_root_rtransid(root_item, sa->rtransid);
4507 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4508 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4509 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4510 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4511
4512 ret = btrfs_update_root(trans, fs_info->tree_root,
4513 &root->root_key, &root->root_item);
4514 if (ret < 0) {
4515 btrfs_end_transaction(trans);
4516 goto out;
4517 }
4518 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4519 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4520 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4521 root->root_key.objectid);
4522 if (ret < 0 && ret != -EEXIST) {
4523 btrfs_abort_transaction(trans, ret);
4524 btrfs_end_transaction(trans);
4525 goto out;
4526 }
4527 }
4528 ret = btrfs_commit_transaction(trans);
4529 out:
4530 up_write(&fs_info->subvol_sem);
4531 mnt_drop_write_file(file);
4532 return ret;
4533 }
4534
4535 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)4536 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4537 void __user *arg)
4538 {
4539 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4540 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4541 int ret = 0;
4542
4543 args32 = memdup_user(arg, sizeof(*args32));
4544 if (IS_ERR(args32))
4545 return PTR_ERR(args32);
4546
4547 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4548 if (!args64) {
4549 ret = -ENOMEM;
4550 goto out;
4551 }
4552
4553 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4554 args64->stransid = args32->stransid;
4555 args64->rtransid = args32->rtransid;
4556 args64->stime.sec = args32->stime.sec;
4557 args64->stime.nsec = args32->stime.nsec;
4558 args64->rtime.sec = args32->rtime.sec;
4559 args64->rtime.nsec = args32->rtime.nsec;
4560 args64->flags = args32->flags;
4561
4562 ret = _btrfs_ioctl_set_received_subvol(file, args64);
4563 if (ret)
4564 goto out;
4565
4566 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4567 args32->stransid = args64->stransid;
4568 args32->rtransid = args64->rtransid;
4569 args32->stime.sec = args64->stime.sec;
4570 args32->stime.nsec = args64->stime.nsec;
4571 args32->rtime.sec = args64->rtime.sec;
4572 args32->rtime.nsec = args64->rtime.nsec;
4573 args32->flags = args64->flags;
4574
4575 ret = copy_to_user(arg, args32, sizeof(*args32));
4576 if (ret)
4577 ret = -EFAULT;
4578
4579 out:
4580 kfree(args32);
4581 kfree(args64);
4582 return ret;
4583 }
4584 #endif
4585
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)4586 static long btrfs_ioctl_set_received_subvol(struct file *file,
4587 void __user *arg)
4588 {
4589 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4590 int ret = 0;
4591
4592 sa = memdup_user(arg, sizeof(*sa));
4593 if (IS_ERR(sa))
4594 return PTR_ERR(sa);
4595
4596 ret = _btrfs_ioctl_set_received_subvol(file, sa);
4597
4598 if (ret)
4599 goto out;
4600
4601 ret = copy_to_user(arg, sa, sizeof(*sa));
4602 if (ret)
4603 ret = -EFAULT;
4604
4605 out:
4606 kfree(sa);
4607 return ret;
4608 }
4609
btrfs_ioctl_get_fslabel(struct btrfs_fs_info * fs_info,void __user * arg)4610 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4611 void __user *arg)
4612 {
4613 size_t len;
4614 int ret;
4615 char label[BTRFS_LABEL_SIZE];
4616
4617 spin_lock(&fs_info->super_lock);
4618 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4619 spin_unlock(&fs_info->super_lock);
4620
4621 len = strnlen(label, BTRFS_LABEL_SIZE);
4622
4623 if (len == BTRFS_LABEL_SIZE) {
4624 btrfs_warn(fs_info,
4625 "label is too long, return the first %zu bytes",
4626 --len);
4627 }
4628
4629 ret = copy_to_user(arg, label, len);
4630
4631 return ret ? -EFAULT : 0;
4632 }
4633
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)4634 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4635 {
4636 struct inode *inode = file_inode(file);
4637 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4638 struct btrfs_root *root = BTRFS_I(inode)->root;
4639 struct btrfs_super_block *super_block = fs_info->super_copy;
4640 struct btrfs_trans_handle *trans;
4641 char label[BTRFS_LABEL_SIZE];
4642 int ret;
4643
4644 if (!capable(CAP_SYS_ADMIN))
4645 return -EPERM;
4646
4647 if (copy_from_user(label, arg, sizeof(label)))
4648 return -EFAULT;
4649
4650 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4651 btrfs_err(fs_info,
4652 "unable to set label with more than %d bytes",
4653 BTRFS_LABEL_SIZE - 1);
4654 return -EINVAL;
4655 }
4656
4657 ret = mnt_want_write_file(file);
4658 if (ret)
4659 return ret;
4660
4661 trans = btrfs_start_transaction(root, 0);
4662 if (IS_ERR(trans)) {
4663 ret = PTR_ERR(trans);
4664 goto out_unlock;
4665 }
4666
4667 spin_lock(&fs_info->super_lock);
4668 strcpy(super_block->label, label);
4669 spin_unlock(&fs_info->super_lock);
4670 ret = btrfs_commit_transaction(trans);
4671
4672 out_unlock:
4673 mnt_drop_write_file(file);
4674 return ret;
4675 }
4676
4677 #define INIT_FEATURE_FLAGS(suffix) \
4678 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4679 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4680 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4681
btrfs_ioctl_get_supported_features(void __user * arg)4682 int btrfs_ioctl_get_supported_features(void __user *arg)
4683 {
4684 static const struct btrfs_ioctl_feature_flags features[3] = {
4685 INIT_FEATURE_FLAGS(SUPP),
4686 INIT_FEATURE_FLAGS(SAFE_SET),
4687 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4688 };
4689
4690 if (copy_to_user(arg, &features, sizeof(features)))
4691 return -EFAULT;
4692
4693 return 0;
4694 }
4695
btrfs_ioctl_get_features(struct btrfs_fs_info * fs_info,void __user * arg)4696 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4697 void __user *arg)
4698 {
4699 struct btrfs_super_block *super_block = fs_info->super_copy;
4700 struct btrfs_ioctl_feature_flags features;
4701
4702 features.compat_flags = btrfs_super_compat_flags(super_block);
4703 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4704 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4705
4706 if (copy_to_user(arg, &features, sizeof(features)))
4707 return -EFAULT;
4708
4709 return 0;
4710 }
4711
check_feature_bits(struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)4712 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4713 enum btrfs_feature_set set,
4714 u64 change_mask, u64 flags, u64 supported_flags,
4715 u64 safe_set, u64 safe_clear)
4716 {
4717 const char *type = btrfs_feature_set_name(set);
4718 char *names;
4719 u64 disallowed, unsupported;
4720 u64 set_mask = flags & change_mask;
4721 u64 clear_mask = ~flags & change_mask;
4722
4723 unsupported = set_mask & ~supported_flags;
4724 if (unsupported) {
4725 names = btrfs_printable_features(set, unsupported);
4726 if (names) {
4727 btrfs_warn(fs_info,
4728 "this kernel does not support the %s feature bit%s",
4729 names, strchr(names, ',') ? "s" : "");
4730 kfree(names);
4731 } else
4732 btrfs_warn(fs_info,
4733 "this kernel does not support %s bits 0x%llx",
4734 type, unsupported);
4735 return -EOPNOTSUPP;
4736 }
4737
4738 disallowed = set_mask & ~safe_set;
4739 if (disallowed) {
4740 names = btrfs_printable_features(set, disallowed);
4741 if (names) {
4742 btrfs_warn(fs_info,
4743 "can't set the %s feature bit%s while mounted",
4744 names, strchr(names, ',') ? "s" : "");
4745 kfree(names);
4746 } else
4747 btrfs_warn(fs_info,
4748 "can't set %s bits 0x%llx while mounted",
4749 type, disallowed);
4750 return -EPERM;
4751 }
4752
4753 disallowed = clear_mask & ~safe_clear;
4754 if (disallowed) {
4755 names = btrfs_printable_features(set, disallowed);
4756 if (names) {
4757 btrfs_warn(fs_info,
4758 "can't clear the %s feature bit%s while mounted",
4759 names, strchr(names, ',') ? "s" : "");
4760 kfree(names);
4761 } else
4762 btrfs_warn(fs_info,
4763 "can't clear %s bits 0x%llx while mounted",
4764 type, disallowed);
4765 return -EPERM;
4766 }
4767
4768 return 0;
4769 }
4770
4771 #define check_feature(fs_info, change_mask, flags, mask_base) \
4772 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4773 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4774 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4775 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4776
btrfs_ioctl_set_features(struct file * file,void __user * arg)4777 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4778 {
4779 struct inode *inode = file_inode(file);
4780 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4781 struct btrfs_root *root = BTRFS_I(inode)->root;
4782 struct btrfs_super_block *super_block = fs_info->super_copy;
4783 struct btrfs_ioctl_feature_flags flags[2];
4784 struct btrfs_trans_handle *trans;
4785 u64 newflags;
4786 int ret;
4787
4788 if (!capable(CAP_SYS_ADMIN))
4789 return -EPERM;
4790
4791 if (copy_from_user(flags, arg, sizeof(flags)))
4792 return -EFAULT;
4793
4794 /* Nothing to do */
4795 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4796 !flags[0].incompat_flags)
4797 return 0;
4798
4799 ret = check_feature(fs_info, flags[0].compat_flags,
4800 flags[1].compat_flags, COMPAT);
4801 if (ret)
4802 return ret;
4803
4804 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4805 flags[1].compat_ro_flags, COMPAT_RO);
4806 if (ret)
4807 return ret;
4808
4809 ret = check_feature(fs_info, flags[0].incompat_flags,
4810 flags[1].incompat_flags, INCOMPAT);
4811 if (ret)
4812 return ret;
4813
4814 ret = mnt_want_write_file(file);
4815 if (ret)
4816 return ret;
4817
4818 trans = btrfs_start_transaction(root, 0);
4819 if (IS_ERR(trans)) {
4820 ret = PTR_ERR(trans);
4821 goto out_drop_write;
4822 }
4823
4824 spin_lock(&fs_info->super_lock);
4825 newflags = btrfs_super_compat_flags(super_block);
4826 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4827 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4828 btrfs_set_super_compat_flags(super_block, newflags);
4829
4830 newflags = btrfs_super_compat_ro_flags(super_block);
4831 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4832 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4833 btrfs_set_super_compat_ro_flags(super_block, newflags);
4834
4835 newflags = btrfs_super_incompat_flags(super_block);
4836 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4837 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4838 btrfs_set_super_incompat_flags(super_block, newflags);
4839 spin_unlock(&fs_info->super_lock);
4840
4841 ret = btrfs_commit_transaction(trans);
4842 out_drop_write:
4843 mnt_drop_write_file(file);
4844
4845 return ret;
4846 }
4847
_btrfs_ioctl_send(struct file * file,void __user * argp,bool compat)4848 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4849 {
4850 struct btrfs_ioctl_send_args *arg;
4851 int ret;
4852
4853 if (compat) {
4854 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4855 struct btrfs_ioctl_send_args_32 args32;
4856
4857 ret = copy_from_user(&args32, argp, sizeof(args32));
4858 if (ret)
4859 return -EFAULT;
4860 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4861 if (!arg)
4862 return -ENOMEM;
4863 arg->send_fd = args32.send_fd;
4864 arg->clone_sources_count = args32.clone_sources_count;
4865 arg->clone_sources = compat_ptr(args32.clone_sources);
4866 arg->parent_root = args32.parent_root;
4867 arg->flags = args32.flags;
4868 memcpy(arg->reserved, args32.reserved,
4869 sizeof(args32.reserved));
4870 #else
4871 return -ENOTTY;
4872 #endif
4873 } else {
4874 arg = memdup_user(argp, sizeof(*arg));
4875 if (IS_ERR(arg))
4876 return PTR_ERR(arg);
4877 }
4878 ret = btrfs_ioctl_send(file, arg);
4879 kfree(arg);
4880 return ret;
4881 }
4882
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4883 long btrfs_ioctl(struct file *file, unsigned int
4884 cmd, unsigned long arg)
4885 {
4886 struct inode *inode = file_inode(file);
4887 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4888 struct btrfs_root *root = BTRFS_I(inode)->root;
4889 void __user *argp = (void __user *)arg;
4890
4891 switch (cmd) {
4892 case FS_IOC_GETFLAGS:
4893 return btrfs_ioctl_getflags(file, argp);
4894 case FS_IOC_SETFLAGS:
4895 return btrfs_ioctl_setflags(file, argp);
4896 case FS_IOC_GETVERSION:
4897 return btrfs_ioctl_getversion(file, argp);
4898 case FS_IOC_GETFSLABEL:
4899 return btrfs_ioctl_get_fslabel(fs_info, argp);
4900 case FS_IOC_SETFSLABEL:
4901 return btrfs_ioctl_set_fslabel(file, argp);
4902 case FITRIM:
4903 return btrfs_ioctl_fitrim(fs_info, argp);
4904 case BTRFS_IOC_SNAP_CREATE:
4905 return btrfs_ioctl_snap_create(file, argp, 0);
4906 case BTRFS_IOC_SNAP_CREATE_V2:
4907 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4908 case BTRFS_IOC_SUBVOL_CREATE:
4909 return btrfs_ioctl_snap_create(file, argp, 1);
4910 case BTRFS_IOC_SUBVOL_CREATE_V2:
4911 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4912 case BTRFS_IOC_SNAP_DESTROY:
4913 return btrfs_ioctl_snap_destroy(file, argp, false);
4914 case BTRFS_IOC_SNAP_DESTROY_V2:
4915 return btrfs_ioctl_snap_destroy(file, argp, true);
4916 case BTRFS_IOC_SUBVOL_GETFLAGS:
4917 return btrfs_ioctl_subvol_getflags(file, argp);
4918 case BTRFS_IOC_SUBVOL_SETFLAGS:
4919 return btrfs_ioctl_subvol_setflags(file, argp);
4920 case BTRFS_IOC_DEFAULT_SUBVOL:
4921 return btrfs_ioctl_default_subvol(file, argp);
4922 case BTRFS_IOC_DEFRAG:
4923 return btrfs_ioctl_defrag(file, NULL);
4924 case BTRFS_IOC_DEFRAG_RANGE:
4925 return btrfs_ioctl_defrag(file, argp);
4926 case BTRFS_IOC_RESIZE:
4927 return btrfs_ioctl_resize(file, argp);
4928 case BTRFS_IOC_ADD_DEV:
4929 return btrfs_ioctl_add_dev(fs_info, argp);
4930 case BTRFS_IOC_RM_DEV:
4931 return btrfs_ioctl_rm_dev(file, argp);
4932 case BTRFS_IOC_RM_DEV_V2:
4933 return btrfs_ioctl_rm_dev_v2(file, argp);
4934 case BTRFS_IOC_FS_INFO:
4935 return btrfs_ioctl_fs_info(fs_info, argp);
4936 case BTRFS_IOC_DEV_INFO:
4937 return btrfs_ioctl_dev_info(fs_info, argp);
4938 case BTRFS_IOC_BALANCE:
4939 return btrfs_ioctl_balance(file, NULL);
4940 case BTRFS_IOC_TREE_SEARCH:
4941 return btrfs_ioctl_tree_search(file, argp);
4942 case BTRFS_IOC_TREE_SEARCH_V2:
4943 return btrfs_ioctl_tree_search_v2(file, argp);
4944 case BTRFS_IOC_INO_LOOKUP:
4945 return btrfs_ioctl_ino_lookup(file, argp);
4946 case BTRFS_IOC_INO_PATHS:
4947 return btrfs_ioctl_ino_to_path(root, argp);
4948 case BTRFS_IOC_LOGICAL_INO:
4949 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4950 case BTRFS_IOC_LOGICAL_INO_V2:
4951 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4952 case BTRFS_IOC_SPACE_INFO:
4953 return btrfs_ioctl_space_info(fs_info, argp);
4954 case BTRFS_IOC_SYNC: {
4955 int ret;
4956
4957 ret = btrfs_start_delalloc_roots(fs_info, U64_MAX, false);
4958 if (ret)
4959 return ret;
4960 ret = btrfs_sync_fs(inode->i_sb, 1);
4961 /*
4962 * The transaction thread may want to do more work,
4963 * namely it pokes the cleaner kthread that will start
4964 * processing uncleaned subvols.
4965 */
4966 wake_up_process(fs_info->transaction_kthread);
4967 return ret;
4968 }
4969 case BTRFS_IOC_START_SYNC:
4970 return btrfs_ioctl_start_sync(root, argp);
4971 case BTRFS_IOC_WAIT_SYNC:
4972 return btrfs_ioctl_wait_sync(fs_info, argp);
4973 case BTRFS_IOC_SCRUB:
4974 return btrfs_ioctl_scrub(file, argp);
4975 case BTRFS_IOC_SCRUB_CANCEL:
4976 return btrfs_ioctl_scrub_cancel(fs_info);
4977 case BTRFS_IOC_SCRUB_PROGRESS:
4978 return btrfs_ioctl_scrub_progress(fs_info, argp);
4979 case BTRFS_IOC_BALANCE_V2:
4980 return btrfs_ioctl_balance(file, argp);
4981 case BTRFS_IOC_BALANCE_CTL:
4982 return btrfs_ioctl_balance_ctl(fs_info, arg);
4983 case BTRFS_IOC_BALANCE_PROGRESS:
4984 return btrfs_ioctl_balance_progress(fs_info, argp);
4985 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4986 return btrfs_ioctl_set_received_subvol(file, argp);
4987 #ifdef CONFIG_64BIT
4988 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4989 return btrfs_ioctl_set_received_subvol_32(file, argp);
4990 #endif
4991 case BTRFS_IOC_SEND:
4992 return _btrfs_ioctl_send(file, argp, false);
4993 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4994 case BTRFS_IOC_SEND_32:
4995 return _btrfs_ioctl_send(file, argp, true);
4996 #endif
4997 case BTRFS_IOC_GET_DEV_STATS:
4998 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4999 case BTRFS_IOC_QUOTA_CTL:
5000 return btrfs_ioctl_quota_ctl(file, argp);
5001 case BTRFS_IOC_QGROUP_ASSIGN:
5002 return btrfs_ioctl_qgroup_assign(file, argp);
5003 case BTRFS_IOC_QGROUP_CREATE:
5004 return btrfs_ioctl_qgroup_create(file, argp);
5005 case BTRFS_IOC_QGROUP_LIMIT:
5006 return btrfs_ioctl_qgroup_limit(file, argp);
5007 case BTRFS_IOC_QUOTA_RESCAN:
5008 return btrfs_ioctl_quota_rescan(file, argp);
5009 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5010 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5011 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5012 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5013 case BTRFS_IOC_DEV_REPLACE:
5014 return btrfs_ioctl_dev_replace(fs_info, argp);
5015 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5016 return btrfs_ioctl_get_supported_features(argp);
5017 case BTRFS_IOC_GET_FEATURES:
5018 return btrfs_ioctl_get_features(fs_info, argp);
5019 case BTRFS_IOC_SET_FEATURES:
5020 return btrfs_ioctl_set_features(file, argp);
5021 case FS_IOC_FSGETXATTR:
5022 return btrfs_ioctl_fsgetxattr(file, argp);
5023 case FS_IOC_FSSETXATTR:
5024 return btrfs_ioctl_fssetxattr(file, argp);
5025 case BTRFS_IOC_GET_SUBVOL_INFO:
5026 return btrfs_ioctl_get_subvol_info(file, argp);
5027 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5028 return btrfs_ioctl_get_subvol_rootref(file, argp);
5029 case BTRFS_IOC_INO_LOOKUP_USER:
5030 return btrfs_ioctl_ino_lookup_user(file, argp);
5031 }
5032
5033 return -ENOTTY;
5034 }
5035
5036 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5037 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5038 {
5039 /*
5040 * These all access 32-bit values anyway so no further
5041 * handling is necessary.
5042 */
5043 switch (cmd) {
5044 case FS_IOC32_GETFLAGS:
5045 cmd = FS_IOC_GETFLAGS;
5046 break;
5047 case FS_IOC32_SETFLAGS:
5048 cmd = FS_IOC_SETFLAGS;
5049 break;
5050 case FS_IOC32_GETVERSION:
5051 cmd = FS_IOC_GETVERSION;
5052 break;
5053 }
5054
5055 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5056 }
5057 #endif
5058