1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/crypto/hooks.c
4 *
5 * Encryption hooks for higher-level filesystem operations.
6 */
7
8 #include "fscrypt_private.h"
9
10 /**
11 * fscrypt_file_open() - prepare to open a possibly-encrypted regular file
12 * @inode: the inode being opened
13 * @filp: the struct file being set up
14 *
15 * Currently, an encrypted regular file can only be opened if its encryption key
16 * is available; access to the raw encrypted contents is not supported.
17 * Therefore, we first set up the inode's encryption key (if not already done)
18 * and return an error if it's unavailable.
19 *
20 * We also verify that if the parent directory (from the path via which the file
21 * is being opened) is encrypted, then the inode being opened uses the same
22 * encryption policy. This is needed as part of the enforcement that all files
23 * in an encrypted directory tree use the same encryption policy, as a
24 * protection against certain types of offline attacks. Note that this check is
25 * needed even when opening an *unencrypted* file, since it's forbidden to have
26 * an unencrypted file in an encrypted directory.
27 *
28 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
29 */
fscrypt_file_open(struct inode * inode,struct file * filp)30 int fscrypt_file_open(struct inode *inode, struct file *filp)
31 {
32 int err;
33 struct dentry *dir;
34
35 err = fscrypt_require_key(inode);
36 if (err)
37 return err;
38
39 dir = dget_parent(file_dentry(filp));
40 if (IS_ENCRYPTED(d_inode(dir)) &&
41 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
42 fscrypt_warn(inode,
43 "Inconsistent encryption context (parent directory: %lu)",
44 d_inode(dir)->i_ino);
45 err = -EPERM;
46 }
47 dput(dir);
48 return err;
49 }
50 EXPORT_SYMBOL_GPL(fscrypt_file_open);
51
__fscrypt_prepare_link(struct inode * inode,struct inode * dir,struct dentry * dentry)52 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
53 struct dentry *dentry)
54 {
55 int err;
56
57 err = fscrypt_require_key(dir);
58 if (err)
59 return err;
60
61 /* ... in case we looked up no-key name before key was added */
62 if (fscrypt_is_nokey_name(dentry))
63 return -ENOKEY;
64
65 if (!fscrypt_has_permitted_context(dir, inode))
66 return -EXDEV;
67
68 return 0;
69 }
70 EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
71
__fscrypt_prepare_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)72 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
73 struct inode *new_dir, struct dentry *new_dentry,
74 unsigned int flags)
75 {
76 int err;
77
78 err = fscrypt_require_key(old_dir);
79 if (err)
80 return err;
81
82 err = fscrypt_require_key(new_dir);
83 if (err)
84 return err;
85
86 /* ... in case we looked up no-key name(s) before key was added */
87 if (fscrypt_is_nokey_name(old_dentry) ||
88 fscrypt_is_nokey_name(new_dentry))
89 return -ENOKEY;
90
91 if (old_dir != new_dir) {
92 if (IS_ENCRYPTED(new_dir) &&
93 !fscrypt_has_permitted_context(new_dir,
94 d_inode(old_dentry)))
95 return -EXDEV;
96
97 if ((flags & RENAME_EXCHANGE) &&
98 IS_ENCRYPTED(old_dir) &&
99 !fscrypt_has_permitted_context(old_dir,
100 d_inode(new_dentry)))
101 return -EXDEV;
102 }
103 return 0;
104 }
105 EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
106
__fscrypt_prepare_lookup(struct inode * dir,struct dentry * dentry,struct fscrypt_name * fname)107 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
108 struct fscrypt_name *fname)
109 {
110 int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
111
112 if (err && err != -ENOENT)
113 return err;
114
115 if (fname->is_nokey_name) {
116 spin_lock(&dentry->d_lock);
117 dentry->d_flags |= DCACHE_NOKEY_NAME;
118 spin_unlock(&dentry->d_lock);
119 d_set_d_op(dentry, &fscrypt_d_ops);
120 }
121 return err;
122 }
123 EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
124
125 /**
126 * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
127 * @inode: the inode on which flags are being changed
128 * @oldflags: the old flags
129 * @flags: the new flags
130 *
131 * The caller should be holding i_rwsem for write.
132 *
133 * Return: 0 on success; -errno if the flags change isn't allowed or if
134 * another error occurs.
135 */
fscrypt_prepare_setflags(struct inode * inode,unsigned int oldflags,unsigned int flags)136 int fscrypt_prepare_setflags(struct inode *inode,
137 unsigned int oldflags, unsigned int flags)
138 {
139 struct fscrypt_info *ci;
140 struct fscrypt_master_key *mk;
141 int err;
142
143 /*
144 * When the CASEFOLD flag is set on an encrypted directory, we must
145 * derive the secret key needed for the dirhash. This is only possible
146 * if the directory uses a v2 encryption policy.
147 */
148 if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
149 err = fscrypt_require_key(inode);
150 if (err)
151 return err;
152 ci = inode->i_crypt_info;
153 if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
154 return -EINVAL;
155 mk = ci->ci_master_key;
156 down_read(&mk->mk_sem);
157 if (is_master_key_secret_present(&mk->mk_secret))
158 err = fscrypt_derive_dirhash_key(ci, mk);
159 else
160 err = -ENOKEY;
161 up_read(&mk->mk_sem);
162 return err;
163 }
164 return 0;
165 }
166
167 /**
168 * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink
169 * @dir: directory in which the symlink is being created
170 * @target: plaintext symlink target
171 * @len: length of @target excluding null terminator
172 * @max_len: space the filesystem has available to store the symlink target
173 * @disk_link: (out) the on-disk symlink target being prepared
174 *
175 * This function computes the size the symlink target will require on-disk,
176 * stores it in @disk_link->len, and validates it against @max_len. An
177 * encrypted symlink may be longer than the original.
178 *
179 * Additionally, @disk_link->name is set to @target if the symlink will be
180 * unencrypted, but left NULL if the symlink will be encrypted. For encrypted
181 * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
182 * on-disk target later. (The reason for the two-step process is that some
183 * filesystems need to know the size of the symlink target before creating the
184 * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
185 *
186 * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
187 * -ENOKEY if the encryption key is missing, or another -errno code if a problem
188 * occurred while setting up the encryption key.
189 */
fscrypt_prepare_symlink(struct inode * dir,const char * target,unsigned int len,unsigned int max_len,struct fscrypt_str * disk_link)190 int fscrypt_prepare_symlink(struct inode *dir, const char *target,
191 unsigned int len, unsigned int max_len,
192 struct fscrypt_str *disk_link)
193 {
194 const union fscrypt_policy *policy;
195
196 /*
197 * To calculate the size of the encrypted symlink target we need to know
198 * the amount of NUL padding, which is determined by the flags set in
199 * the encryption policy which will be inherited from the directory.
200 */
201 policy = fscrypt_policy_to_inherit(dir);
202 if (policy == NULL) {
203 /* Not encrypted */
204 disk_link->name = (unsigned char *)target;
205 disk_link->len = len + 1;
206 if (disk_link->len > max_len)
207 return -ENAMETOOLONG;
208 return 0;
209 }
210 if (IS_ERR(policy))
211 return PTR_ERR(policy);
212
213 /*
214 * Calculate the size of the encrypted symlink and verify it won't
215 * exceed max_len. Note that for historical reasons, encrypted symlink
216 * targets are prefixed with the ciphertext length, despite this
217 * actually being redundant with i_size. This decreases by 2 bytes the
218 * longest symlink target we can accept.
219 *
220 * We could recover 1 byte by not counting a null terminator, but
221 * counting it (even though it is meaningless for ciphertext) is simpler
222 * for now since filesystems will assume it is there and subtract it.
223 */
224 if (!fscrypt_fname_encrypted_size(policy, len,
225 max_len - sizeof(struct fscrypt_symlink_data),
226 &disk_link->len))
227 return -ENAMETOOLONG;
228 disk_link->len += sizeof(struct fscrypt_symlink_data);
229
230 disk_link->name = NULL;
231 return 0;
232 }
233 EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink);
234
__fscrypt_encrypt_symlink(struct inode * inode,const char * target,unsigned int len,struct fscrypt_str * disk_link)235 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
236 unsigned int len, struct fscrypt_str *disk_link)
237 {
238 int err;
239 struct qstr iname = QSTR_INIT(target, len);
240 struct fscrypt_symlink_data *sd;
241 unsigned int ciphertext_len;
242
243 /*
244 * fscrypt_prepare_new_inode() should have already set up the new
245 * symlink inode's encryption key. We don't wait until now to do it,
246 * since we may be in a filesystem transaction now.
247 */
248 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode)))
249 return -ENOKEY;
250
251 if (disk_link->name) {
252 /* filesystem-provided buffer */
253 sd = (struct fscrypt_symlink_data *)disk_link->name;
254 } else {
255 sd = kmalloc(disk_link->len, GFP_NOFS);
256 if (!sd)
257 return -ENOMEM;
258 }
259 ciphertext_len = disk_link->len - sizeof(*sd);
260 sd->len = cpu_to_le16(ciphertext_len);
261
262 err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
263 ciphertext_len);
264 if (err)
265 goto err_free_sd;
266
267 /*
268 * Null-terminating the ciphertext doesn't make sense, but we still
269 * count the null terminator in the length, so we might as well
270 * initialize it just in case the filesystem writes it out.
271 */
272 sd->encrypted_path[ciphertext_len] = '\0';
273
274 /* Cache the plaintext symlink target for later use by get_link() */
275 err = -ENOMEM;
276 inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
277 if (!inode->i_link)
278 goto err_free_sd;
279
280 if (!disk_link->name)
281 disk_link->name = (unsigned char *)sd;
282 return 0;
283
284 err_free_sd:
285 if (!disk_link->name)
286 kfree(sd);
287 return err;
288 }
289 EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
290
291 /**
292 * fscrypt_get_symlink() - get the target of an encrypted symlink
293 * @inode: the symlink inode
294 * @caddr: the on-disk contents of the symlink
295 * @max_size: size of @caddr buffer
296 * @done: if successful, will be set up to free the returned target if needed
297 *
298 * If the symlink's encryption key is available, we decrypt its target.
299 * Otherwise, we encode its target for presentation.
300 *
301 * This may sleep, so the filesystem must have dropped out of RCU mode already.
302 *
303 * Return: the presentable symlink target or an ERR_PTR()
304 */
fscrypt_get_symlink(struct inode * inode,const void * caddr,unsigned int max_size,struct delayed_call * done)305 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
306 unsigned int max_size,
307 struct delayed_call *done)
308 {
309 const struct fscrypt_symlink_data *sd;
310 struct fscrypt_str cstr, pstr;
311 bool has_key;
312 int err;
313
314 /* This is for encrypted symlinks only */
315 if (WARN_ON(!IS_ENCRYPTED(inode)))
316 return ERR_PTR(-EINVAL);
317
318 /* If the decrypted target is already cached, just return it. */
319 pstr.name = READ_ONCE(inode->i_link);
320 if (pstr.name)
321 return pstr.name;
322
323 /*
324 * Try to set up the symlink's encryption key, but we can continue
325 * regardless of whether the key is available or not.
326 */
327 err = fscrypt_get_encryption_info(inode);
328 if (err)
329 return ERR_PTR(err);
330 has_key = fscrypt_has_encryption_key(inode);
331
332 /*
333 * For historical reasons, encrypted symlink targets are prefixed with
334 * the ciphertext length, even though this is redundant with i_size.
335 */
336
337 if (max_size < sizeof(*sd))
338 return ERR_PTR(-EUCLEAN);
339 sd = caddr;
340 cstr.name = (unsigned char *)sd->encrypted_path;
341 cstr.len = le16_to_cpu(sd->len);
342
343 if (cstr.len == 0)
344 return ERR_PTR(-EUCLEAN);
345
346 if (cstr.len + sizeof(*sd) - 1 > max_size)
347 return ERR_PTR(-EUCLEAN);
348
349 err = fscrypt_fname_alloc_buffer(cstr.len, &pstr);
350 if (err)
351 return ERR_PTR(err);
352
353 err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
354 if (err)
355 goto err_kfree;
356
357 err = -EUCLEAN;
358 if (pstr.name[0] == '\0')
359 goto err_kfree;
360
361 pstr.name[pstr.len] = '\0';
362
363 /*
364 * Cache decrypted symlink targets in i_link for later use. Don't cache
365 * symlink targets encoded without the key, since those become outdated
366 * once the key is added. This pairs with the READ_ONCE() above and in
367 * the VFS path lookup code.
368 */
369 if (!has_key ||
370 cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
371 set_delayed_call(done, kfree_link, pstr.name);
372
373 return pstr.name;
374
375 err_kfree:
376 kfree(pstr.name);
377 return ERR_PTR(err);
378 }
379 EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
380
381 /**
382 * fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks
383 * @path: the path for the encrypted symlink being queried
384 * @stat: the struct being filled with the symlink's attributes
385 *
386 * Override st_size of encrypted symlinks to be the length of the decrypted
387 * symlink target (or the no-key encoded symlink target, if the key is
388 * unavailable) rather than the length of the encrypted symlink target. This is
389 * necessary for st_size to match the symlink target that userspace actually
390 * sees. POSIX requires this, and some userspace programs depend on it.
391 *
392 * This requires reading the symlink target from disk if needed, setting up the
393 * inode's encryption key if possible, and then decrypting or encoding the
394 * symlink target. This makes lstat() more heavyweight than is normally the
395 * case. However, decrypted symlink targets will be cached in ->i_link, so
396 * usually the symlink won't have to be read and decrypted again later if/when
397 * it is actually followed, readlink() is called, or lstat() is called again.
398 *
399 * Return: 0 on success, -errno on failure
400 */
fscrypt_symlink_getattr(const struct path * path,struct kstat * stat)401 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat)
402 {
403 struct dentry *dentry = path->dentry;
404 struct inode *inode = d_inode(dentry);
405 const char *link;
406 DEFINE_DELAYED_CALL(done);
407
408 /*
409 * To get the symlink target that userspace will see (whether it's the
410 * decrypted target or the no-key encoded target), we can just get it in
411 * the same way the VFS does during path resolution and readlink().
412 */
413 link = READ_ONCE(inode->i_link);
414 if (!link) {
415 link = inode->i_op->get_link(dentry, inode, &done);
416 if (IS_ERR(link))
417 return PTR_ERR(link);
418 }
419 stat->size = strlen(link);
420 do_delayed_call(&done);
421 return 0;
422 }
423 EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr);
424