• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/crypto/hooks.c
4  *
5  * Encryption hooks for higher-level filesystem operations.
6  */
7 
8 #include "fscrypt_private.h"
9 
10 /**
11  * fscrypt_file_open() - prepare to open a possibly-encrypted regular file
12  * @inode: the inode being opened
13  * @filp: the struct file being set up
14  *
15  * Currently, an encrypted regular file can only be opened if its encryption key
16  * is available; access to the raw encrypted contents is not supported.
17  * Therefore, we first set up the inode's encryption key (if not already done)
18  * and return an error if it's unavailable.
19  *
20  * We also verify that if the parent directory (from the path via which the file
21  * is being opened) is encrypted, then the inode being opened uses the same
22  * encryption policy.  This is needed as part of the enforcement that all files
23  * in an encrypted directory tree use the same encryption policy, as a
24  * protection against certain types of offline attacks.  Note that this check is
25  * needed even when opening an *unencrypted* file, since it's forbidden to have
26  * an unencrypted file in an encrypted directory.
27  *
28  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
29  */
fscrypt_file_open(struct inode * inode,struct file * filp)30 int fscrypt_file_open(struct inode *inode, struct file *filp)
31 {
32 	int err;
33 	struct dentry *dir;
34 
35 	err = fscrypt_require_key(inode);
36 	if (err)
37 		return err;
38 
39 	dir = dget_parent(file_dentry(filp));
40 	if (IS_ENCRYPTED(d_inode(dir)) &&
41 	    !fscrypt_has_permitted_context(d_inode(dir), inode)) {
42 		fscrypt_warn(inode,
43 			     "Inconsistent encryption context (parent directory: %lu)",
44 			     d_inode(dir)->i_ino);
45 		err = -EPERM;
46 	}
47 	dput(dir);
48 	return err;
49 }
50 EXPORT_SYMBOL_GPL(fscrypt_file_open);
51 
__fscrypt_prepare_link(struct inode * inode,struct inode * dir,struct dentry * dentry)52 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
53 			   struct dentry *dentry)
54 {
55 	int err;
56 
57 	err = fscrypt_require_key(dir);
58 	if (err)
59 		return err;
60 
61 	/* ... in case we looked up no-key name before key was added */
62 	if (fscrypt_is_nokey_name(dentry))
63 		return -ENOKEY;
64 
65 	if (!fscrypt_has_permitted_context(dir, inode))
66 		return -EXDEV;
67 
68 	return 0;
69 }
70 EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
71 
__fscrypt_prepare_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)72 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
73 			     struct inode *new_dir, struct dentry *new_dentry,
74 			     unsigned int flags)
75 {
76 	int err;
77 
78 	err = fscrypt_require_key(old_dir);
79 	if (err)
80 		return err;
81 
82 	err = fscrypt_require_key(new_dir);
83 	if (err)
84 		return err;
85 
86 	/* ... in case we looked up no-key name(s) before key was added */
87 	if (fscrypt_is_nokey_name(old_dentry) ||
88 	    fscrypt_is_nokey_name(new_dentry))
89 		return -ENOKEY;
90 
91 	if (old_dir != new_dir) {
92 		if (IS_ENCRYPTED(new_dir) &&
93 		    !fscrypt_has_permitted_context(new_dir,
94 						   d_inode(old_dentry)))
95 			return -EXDEV;
96 
97 		if ((flags & RENAME_EXCHANGE) &&
98 		    IS_ENCRYPTED(old_dir) &&
99 		    !fscrypt_has_permitted_context(old_dir,
100 						   d_inode(new_dentry)))
101 			return -EXDEV;
102 	}
103 	return 0;
104 }
105 EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
106 
__fscrypt_prepare_lookup(struct inode * dir,struct dentry * dentry,struct fscrypt_name * fname)107 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
108 			     struct fscrypt_name *fname)
109 {
110 	int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
111 
112 	if (err && err != -ENOENT)
113 		return err;
114 
115 	if (fname->is_nokey_name) {
116 		spin_lock(&dentry->d_lock);
117 		dentry->d_flags |= DCACHE_NOKEY_NAME;
118 		spin_unlock(&dentry->d_lock);
119 		d_set_d_op(dentry, &fscrypt_d_ops);
120 	}
121 	return err;
122 }
123 EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
124 
125 /**
126  * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
127  * @inode: the inode on which flags are being changed
128  * @oldflags: the old flags
129  * @flags: the new flags
130  *
131  * The caller should be holding i_rwsem for write.
132  *
133  * Return: 0 on success; -errno if the flags change isn't allowed or if
134  *	   another error occurs.
135  */
fscrypt_prepare_setflags(struct inode * inode,unsigned int oldflags,unsigned int flags)136 int fscrypt_prepare_setflags(struct inode *inode,
137 			     unsigned int oldflags, unsigned int flags)
138 {
139 	struct fscrypt_info *ci;
140 	struct fscrypt_master_key *mk;
141 	int err;
142 
143 	/*
144 	 * When the CASEFOLD flag is set on an encrypted directory, we must
145 	 * derive the secret key needed for the dirhash.  This is only possible
146 	 * if the directory uses a v2 encryption policy.
147 	 */
148 	if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
149 		err = fscrypt_require_key(inode);
150 		if (err)
151 			return err;
152 		ci = inode->i_crypt_info;
153 		if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
154 			return -EINVAL;
155 		mk = ci->ci_master_key;
156 		down_read(&mk->mk_sem);
157 		if (is_master_key_secret_present(&mk->mk_secret))
158 			err = fscrypt_derive_dirhash_key(ci, mk);
159 		else
160 			err = -ENOKEY;
161 		up_read(&mk->mk_sem);
162 		return err;
163 	}
164 	return 0;
165 }
166 
167 /**
168  * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink
169  * @dir: directory in which the symlink is being created
170  * @target: plaintext symlink target
171  * @len: length of @target excluding null terminator
172  * @max_len: space the filesystem has available to store the symlink target
173  * @disk_link: (out) the on-disk symlink target being prepared
174  *
175  * This function computes the size the symlink target will require on-disk,
176  * stores it in @disk_link->len, and validates it against @max_len.  An
177  * encrypted symlink may be longer than the original.
178  *
179  * Additionally, @disk_link->name is set to @target if the symlink will be
180  * unencrypted, but left NULL if the symlink will be encrypted.  For encrypted
181  * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
182  * on-disk target later.  (The reason for the two-step process is that some
183  * filesystems need to know the size of the symlink target before creating the
184  * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
185  *
186  * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
187  * -ENOKEY if the encryption key is missing, or another -errno code if a problem
188  * occurred while setting up the encryption key.
189  */
fscrypt_prepare_symlink(struct inode * dir,const char * target,unsigned int len,unsigned int max_len,struct fscrypt_str * disk_link)190 int fscrypt_prepare_symlink(struct inode *dir, const char *target,
191 			    unsigned int len, unsigned int max_len,
192 			    struct fscrypt_str *disk_link)
193 {
194 	const union fscrypt_policy *policy;
195 
196 	/*
197 	 * To calculate the size of the encrypted symlink target we need to know
198 	 * the amount of NUL padding, which is determined by the flags set in
199 	 * the encryption policy which will be inherited from the directory.
200 	 */
201 	policy = fscrypt_policy_to_inherit(dir);
202 	if (policy == NULL) {
203 		/* Not encrypted */
204 		disk_link->name = (unsigned char *)target;
205 		disk_link->len = len + 1;
206 		if (disk_link->len > max_len)
207 			return -ENAMETOOLONG;
208 		return 0;
209 	}
210 	if (IS_ERR(policy))
211 		return PTR_ERR(policy);
212 
213 	/*
214 	 * Calculate the size of the encrypted symlink and verify it won't
215 	 * exceed max_len.  Note that for historical reasons, encrypted symlink
216 	 * targets are prefixed with the ciphertext length, despite this
217 	 * actually being redundant with i_size.  This decreases by 2 bytes the
218 	 * longest symlink target we can accept.
219 	 *
220 	 * We could recover 1 byte by not counting a null terminator, but
221 	 * counting it (even though it is meaningless for ciphertext) is simpler
222 	 * for now since filesystems will assume it is there and subtract it.
223 	 */
224 	if (!fscrypt_fname_encrypted_size(policy, len,
225 					  max_len - sizeof(struct fscrypt_symlink_data),
226 					  &disk_link->len))
227 		return -ENAMETOOLONG;
228 	disk_link->len += sizeof(struct fscrypt_symlink_data);
229 
230 	disk_link->name = NULL;
231 	return 0;
232 }
233 EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink);
234 
__fscrypt_encrypt_symlink(struct inode * inode,const char * target,unsigned int len,struct fscrypt_str * disk_link)235 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
236 			      unsigned int len, struct fscrypt_str *disk_link)
237 {
238 	int err;
239 	struct qstr iname = QSTR_INIT(target, len);
240 	struct fscrypt_symlink_data *sd;
241 	unsigned int ciphertext_len;
242 
243 	/*
244 	 * fscrypt_prepare_new_inode() should have already set up the new
245 	 * symlink inode's encryption key.  We don't wait until now to do it,
246 	 * since we may be in a filesystem transaction now.
247 	 */
248 	if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode)))
249 		return -ENOKEY;
250 
251 	if (disk_link->name) {
252 		/* filesystem-provided buffer */
253 		sd = (struct fscrypt_symlink_data *)disk_link->name;
254 	} else {
255 		sd = kmalloc(disk_link->len, GFP_NOFS);
256 		if (!sd)
257 			return -ENOMEM;
258 	}
259 	ciphertext_len = disk_link->len - sizeof(*sd);
260 	sd->len = cpu_to_le16(ciphertext_len);
261 
262 	err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
263 				    ciphertext_len);
264 	if (err)
265 		goto err_free_sd;
266 
267 	/*
268 	 * Null-terminating the ciphertext doesn't make sense, but we still
269 	 * count the null terminator in the length, so we might as well
270 	 * initialize it just in case the filesystem writes it out.
271 	 */
272 	sd->encrypted_path[ciphertext_len] = '\0';
273 
274 	/* Cache the plaintext symlink target for later use by get_link() */
275 	err = -ENOMEM;
276 	inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
277 	if (!inode->i_link)
278 		goto err_free_sd;
279 
280 	if (!disk_link->name)
281 		disk_link->name = (unsigned char *)sd;
282 	return 0;
283 
284 err_free_sd:
285 	if (!disk_link->name)
286 		kfree(sd);
287 	return err;
288 }
289 EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
290 
291 /**
292  * fscrypt_get_symlink() - get the target of an encrypted symlink
293  * @inode: the symlink inode
294  * @caddr: the on-disk contents of the symlink
295  * @max_size: size of @caddr buffer
296  * @done: if successful, will be set up to free the returned target if needed
297  *
298  * If the symlink's encryption key is available, we decrypt its target.
299  * Otherwise, we encode its target for presentation.
300  *
301  * This may sleep, so the filesystem must have dropped out of RCU mode already.
302  *
303  * Return: the presentable symlink target or an ERR_PTR()
304  */
fscrypt_get_symlink(struct inode * inode,const void * caddr,unsigned int max_size,struct delayed_call * done)305 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
306 				unsigned int max_size,
307 				struct delayed_call *done)
308 {
309 	const struct fscrypt_symlink_data *sd;
310 	struct fscrypt_str cstr, pstr;
311 	bool has_key;
312 	int err;
313 
314 	/* This is for encrypted symlinks only */
315 	if (WARN_ON(!IS_ENCRYPTED(inode)))
316 		return ERR_PTR(-EINVAL);
317 
318 	/* If the decrypted target is already cached, just return it. */
319 	pstr.name = READ_ONCE(inode->i_link);
320 	if (pstr.name)
321 		return pstr.name;
322 
323 	/*
324 	 * Try to set up the symlink's encryption key, but we can continue
325 	 * regardless of whether the key is available or not.
326 	 */
327 	err = fscrypt_get_encryption_info(inode);
328 	if (err)
329 		return ERR_PTR(err);
330 	has_key = fscrypt_has_encryption_key(inode);
331 
332 	/*
333 	 * For historical reasons, encrypted symlink targets are prefixed with
334 	 * the ciphertext length, even though this is redundant with i_size.
335 	 */
336 
337 	if (max_size < sizeof(*sd))
338 		return ERR_PTR(-EUCLEAN);
339 	sd = caddr;
340 	cstr.name = (unsigned char *)sd->encrypted_path;
341 	cstr.len = le16_to_cpu(sd->len);
342 
343 	if (cstr.len == 0)
344 		return ERR_PTR(-EUCLEAN);
345 
346 	if (cstr.len + sizeof(*sd) - 1 > max_size)
347 		return ERR_PTR(-EUCLEAN);
348 
349 	err = fscrypt_fname_alloc_buffer(cstr.len, &pstr);
350 	if (err)
351 		return ERR_PTR(err);
352 
353 	err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
354 	if (err)
355 		goto err_kfree;
356 
357 	err = -EUCLEAN;
358 	if (pstr.name[0] == '\0')
359 		goto err_kfree;
360 
361 	pstr.name[pstr.len] = '\0';
362 
363 	/*
364 	 * Cache decrypted symlink targets in i_link for later use.  Don't cache
365 	 * symlink targets encoded without the key, since those become outdated
366 	 * once the key is added.  This pairs with the READ_ONCE() above and in
367 	 * the VFS path lookup code.
368 	 */
369 	if (!has_key ||
370 	    cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
371 		set_delayed_call(done, kfree_link, pstr.name);
372 
373 	return pstr.name;
374 
375 err_kfree:
376 	kfree(pstr.name);
377 	return ERR_PTR(err);
378 }
379 EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
380 
381 /**
382  * fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks
383  * @path: the path for the encrypted symlink being queried
384  * @stat: the struct being filled with the symlink's attributes
385  *
386  * Override st_size of encrypted symlinks to be the length of the decrypted
387  * symlink target (or the no-key encoded symlink target, if the key is
388  * unavailable) rather than the length of the encrypted symlink target.  This is
389  * necessary for st_size to match the symlink target that userspace actually
390  * sees.  POSIX requires this, and some userspace programs depend on it.
391  *
392  * This requires reading the symlink target from disk if needed, setting up the
393  * inode's encryption key if possible, and then decrypting or encoding the
394  * symlink target.  This makes lstat() more heavyweight than is normally the
395  * case.  However, decrypted symlink targets will be cached in ->i_link, so
396  * usually the symlink won't have to be read and decrypted again later if/when
397  * it is actually followed, readlink() is called, or lstat() is called again.
398  *
399  * Return: 0 on success, -errno on failure
400  */
fscrypt_symlink_getattr(const struct path * path,struct kstat * stat)401 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat)
402 {
403 	struct dentry *dentry = path->dentry;
404 	struct inode *inode = d_inode(dentry);
405 	const char *link;
406 	DEFINE_DELAYED_CALL(done);
407 
408 	/*
409 	 * To get the symlink target that userspace will see (whether it's the
410 	 * decrypted target or the no-key encoded target), we can just get it in
411 	 * the same way the VFS does during path resolution and readlink().
412 	 */
413 	link = READ_ONCE(inode->i_link);
414 	if (!link) {
415 		link = inode->i_op->get_link(dentry, inode, &done);
416 		if (IS_ERR(link))
417 			return PTR_ERR(link);
418 	}
419 	stat->size = strlen(link);
420 	do_delayed_call(&done);
421 	return 0;
422 }
423 EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr);
424