1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
33 static struct discard_policy dpolicys[MAX_DPOLICY] = {
34 {DPOLICY_BG, 0, DEF_MID_DISCARD_ISSUE_TIME, DEF_MAX_DISCARD_ISSUE_TIME,
35 MAX_PLIST_NUM, false, true, false, false, DISCARD_GRAN_BG,
36 {{1, 0}, {0, 0}, {0, 0}}},
37 {DPOLICY_BALANCE, 0, DEF_MID_DISCARD_ISSUE_TIME, DEF_MAX_DISCARD_ISSUE_TIME,
38 MAX_PLIST_NUM - 1, true, true, false, false, DISCARD_GRAN_BL,
39 {{1, 0}, {2, 50}, {0, 0}}},
40 {DPOLICY_FORCE, 0, DEF_MID_DISCARD_ISSUE_TIME, DEF_MAX_DISCARD_ISSUE_TIME,
41 MAX_PLIST_NUM - 1, true, true, false, false, DISCARD_GRAN_FORCE,
42 {{1, 0}, {2, 50}, {4, 2000}}},
43 {DPOLICY_FSTRIM, 0, DEF_MID_DISCARD_ISSUE_TIME, DEF_MAX_DISCARD_ISSUE_TIME,
44 MAX_PLIST_NUM, false, true, false, false, DISCARD_GRAN_FORCE,
45 {{8, 0}, {8, 0}, {8, 0}}},
46 {DPOLICY_UMOUNT, 0, DEF_MID_DISCARD_ISSUE_TIME, DEF_MAX_DISCARD_ISSUE_TIME,
47 MAX_PLIST_NUM, false, true, false, false, DISCARD_GRAN_BG,
48 {{UINT_MAX, 0}, {0, 0}, {0, 0}}}
49 };
50
__reverse_ulong(unsigned char * str)51 static unsigned long __reverse_ulong(unsigned char *str)
52 {
53 unsigned long tmp = 0;
54 int shift = 24, idx = 0;
55
56 #if BITS_PER_LONG == 64
57 shift = 56;
58 #endif
59 while (shift >= 0) {
60 tmp |= (unsigned long)str[idx++] << shift;
61 shift -= BITS_PER_BYTE;
62 }
63 return tmp;
64 }
65
66 /*
67 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
68 * MSB and LSB are reversed in a byte by f2fs_set_bit.
69 */
__reverse_ffs(unsigned long word)70 static inline unsigned long __reverse_ffs(unsigned long word)
71 {
72 int num = 0;
73
74 #if BITS_PER_LONG == 64
75 if ((word & 0xffffffff00000000UL) == 0)
76 num += 32;
77 else
78 word >>= 32;
79 #endif
80 if ((word & 0xffff0000) == 0)
81 num += 16;
82 else
83 word >>= 16;
84
85 if ((word & 0xff00) == 0)
86 num += 8;
87 else
88 word >>= 8;
89
90 if ((word & 0xf0) == 0)
91 num += 4;
92 else
93 word >>= 4;
94
95 if ((word & 0xc) == 0)
96 num += 2;
97 else
98 word >>= 2;
99
100 if ((word & 0x2) == 0)
101 num += 1;
102 return num;
103 }
104
105 /*
106 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
107 * f2fs_set_bit makes MSB and LSB reversed in a byte.
108 * @size must be integral times of unsigned long.
109 * Example:
110 * MSB <--> LSB
111 * f2fs_set_bit(0, bitmap) => 1000 0000
112 * f2fs_set_bit(7, bitmap) => 0000 0001
113 */
find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)114 unsigned long find_rev_next_bit(const unsigned long *addr,
115 unsigned long size, unsigned long offset)
116 {
117 const unsigned long *p = addr + BIT_WORD(offset);
118 unsigned long result = size;
119 unsigned long tmp;
120
121 if (offset >= size)
122 return size;
123
124 size -= (offset & ~(BITS_PER_LONG - 1));
125 offset %= BITS_PER_LONG;
126
127 while (1) {
128 if (*p == 0)
129 goto pass;
130
131 tmp = __reverse_ulong((unsigned char *)p);
132
133 tmp &= ~0UL >> offset;
134 if (size < BITS_PER_LONG)
135 tmp &= (~0UL << (BITS_PER_LONG - size));
136 if (tmp)
137 goto found;
138 pass:
139 if (size <= BITS_PER_LONG)
140 break;
141 size -= BITS_PER_LONG;
142 offset = 0;
143 p++;
144 }
145 return result;
146 found:
147 return result - size + __reverse_ffs(tmp);
148 }
149
find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)150 unsigned long find_rev_next_zero_bit(const unsigned long *addr,
151 unsigned long size, unsigned long offset)
152 {
153 const unsigned long *p = addr + BIT_WORD(offset);
154 unsigned long result = size;
155 unsigned long tmp;
156
157 if (offset >= size)
158 return size;
159
160 size -= (offset & ~(BITS_PER_LONG - 1));
161 offset %= BITS_PER_LONG;
162
163 while (1) {
164 if (*p == ~0UL)
165 goto pass;
166
167 tmp = __reverse_ulong((unsigned char *)p);
168
169 if (offset)
170 tmp |= ~0UL << (BITS_PER_LONG - offset);
171 if (size < BITS_PER_LONG)
172 tmp |= ~0UL >> size;
173 if (tmp != ~0UL)
174 goto found;
175 pass:
176 if (size <= BITS_PER_LONG)
177 break;
178 size -= BITS_PER_LONG;
179 offset = 0;
180 p++;
181 }
182 return result;
183 found:
184 return result - size + __reverse_ffz(tmp);
185 }
186
f2fs_need_SSR(struct f2fs_sb_info * sbi)187 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
188 {
189 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
190 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
191 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
192
193 if (f2fs_lfs_mode(sbi))
194 return false;
195 if (sbi->gc_mode == GC_URGENT_HIGH)
196 return true;
197 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
198 return true;
199
200 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
201 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
202 }
203
204 #ifdef CONFIG_F2FS_GRADING_SSR
need_ssr_by_type(struct f2fs_sb_info * sbi,int type,int contig_level)205 static bool need_ssr_by_type(struct f2fs_sb_info *sbi, int type, int contig_level)
206 {
207 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
208 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
209 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
210 u64 valid_blocks = sbi->total_valid_block_count;
211 u64 total_blocks = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
212 u64 left_space = (total_blocks - valid_blocks) << 2;
213 unsigned int free_segs = free_segments(sbi);
214 unsigned int ovp_segments = overprovision_segments(sbi);
215 unsigned int lower_limit = 0;
216 unsigned int waterline = 0;
217 int dirty_sum = node_secs + 2 * dent_secs + imeta_secs;
218
219 if (sbi->hot_cold_params.enable == GRADING_SSR_OFF)
220 return f2fs_need_SSR(sbi);
221 if (f2fs_lfs_mode(sbi))
222 return false;
223 if (sbi->gc_mode == GC_URGENT_HIGH)
224 return true;
225 if (contig_level == SEQ_256BLKS && type == CURSEG_WARM_DATA &&
226 free_sections(sbi) > dirty_sum + 3 * reserved_sections(sbi) / 2)
227 return false;
228 if (free_sections(sbi) <= (unsigned int)(dirty_sum + 2 * reserved_sections(sbi)))
229 return true;
230 if (contig_level >= SEQ_32BLKS || total_blocks <= SSR_MIN_BLKS_LIMIT)
231 return false;
232
233 left_space -= ovp_segments * KBS_PER_SEGMENT;
234 if (unlikely(left_space == 0))
235 return false;
236
237 switch (type) {
238 case CURSEG_HOT_DATA:
239 lower_limit = sbi->hot_cold_params.hot_data_lower_limit;
240 waterline = sbi->hot_cold_params.hot_data_waterline;
241 break;
242 case CURSEG_WARM_DATA:
243 lower_limit = sbi->hot_cold_params.warm_data_lower_limit;
244 waterline = sbi->hot_cold_params.warm_data_waterline;
245 break;
246 case CURSEG_HOT_NODE:
247 lower_limit = sbi->hot_cold_params.hot_node_lower_limit;
248 waterline = sbi->hot_cold_params.hot_node_waterline;
249 break;
250 case CURSEG_WARM_NODE:
251 lower_limit = sbi->hot_cold_params.warm_node_lower_limit;
252 waterline = sbi->hot_cold_params.warm_node_waterline;
253 break;
254 default:
255 return false;
256 }
257
258 if (left_space > lower_limit)
259 return false;
260
261 if (div_u64((free_segs - ovp_segments) * 100, (left_space / KBS_PER_SEGMENT))
262 <= waterline) {
263 trace_f2fs_grading_ssr_allocate(
264 (le64_to_cpu(sbi->raw_super->block_count) - sbi->total_valid_block_count),
265 free_segments(sbi), contig_level);
266 return true;
267 } else {
268 return false;
269 }
270 }
271 #endif
272
f2fs_register_inmem_page(struct inode * inode,struct page * page)273 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
274 {
275 struct inmem_pages *new;
276
277 f2fs_trace_pid(page);
278
279 f2fs_set_page_private(page, ATOMIC_WRITTEN_PAGE);
280
281 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
282
283 /* add atomic page indices to the list */
284 new->page = page;
285 INIT_LIST_HEAD(&new->list);
286
287 /* increase reference count with clean state */
288 get_page(page);
289 mutex_lock(&F2FS_I(inode)->inmem_lock);
290 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
291 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
292 mutex_unlock(&F2FS_I(inode)->inmem_lock);
293
294 trace_f2fs_register_inmem_page(page, INMEM);
295 }
296
__revoke_inmem_pages(struct inode * inode,struct list_head * head,bool drop,bool recover,bool trylock)297 static int __revoke_inmem_pages(struct inode *inode,
298 struct list_head *head, bool drop, bool recover,
299 bool trylock)
300 {
301 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
302 struct inmem_pages *cur, *tmp;
303 int err = 0;
304
305 list_for_each_entry_safe(cur, tmp, head, list) {
306 struct page *page = cur->page;
307
308 if (drop)
309 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
310
311 if (trylock) {
312 /*
313 * to avoid deadlock in between page lock and
314 * inmem_lock.
315 */
316 if (!trylock_page(page))
317 continue;
318 } else {
319 lock_page(page);
320 }
321
322 f2fs_wait_on_page_writeback(page, DATA, true, true);
323
324 if (recover) {
325 struct dnode_of_data dn;
326 struct node_info ni;
327
328 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
329 retry:
330 set_new_dnode(&dn, inode, NULL, NULL, 0);
331 err = f2fs_get_dnode_of_data(&dn, page->index,
332 LOOKUP_NODE);
333 if (err) {
334 if (err == -ENOMEM) {
335 congestion_wait(BLK_RW_ASYNC,
336 DEFAULT_IO_TIMEOUT);
337 cond_resched();
338 goto retry;
339 }
340 err = -EAGAIN;
341 goto next;
342 }
343
344 err = f2fs_get_node_info(sbi, dn.nid, &ni);
345 if (err) {
346 f2fs_put_dnode(&dn);
347 return err;
348 }
349
350 if (cur->old_addr == NEW_ADDR) {
351 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
352 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
353 } else
354 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
355 cur->old_addr, ni.version, true, true);
356 f2fs_put_dnode(&dn);
357 }
358 next:
359 /* we don't need to invalidate this in the sccessful status */
360 if (drop || recover) {
361 ClearPageUptodate(page);
362 clear_cold_data(page);
363 }
364 f2fs_clear_page_private(page);
365 f2fs_put_page(page, 1);
366
367 list_del(&cur->list);
368 kmem_cache_free(inmem_entry_slab, cur);
369 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
370 }
371 return err;
372 }
373
f2fs_drop_inmem_pages_all(struct f2fs_sb_info * sbi,bool gc_failure)374 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
375 {
376 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
377 struct inode *inode;
378 struct f2fs_inode_info *fi;
379 unsigned int count = sbi->atomic_files;
380 unsigned int looped = 0;
381 next:
382 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
383 if (list_empty(head)) {
384 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
385 return;
386 }
387 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
388 inode = igrab(&fi->vfs_inode);
389 if (inode)
390 list_move_tail(&fi->inmem_ilist, head);
391 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
392
393 if (inode) {
394 if (gc_failure) {
395 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
396 goto skip;
397 }
398 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
399 f2fs_drop_inmem_pages(inode);
400 skip:
401 iput(inode);
402 }
403 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
404 cond_resched();
405 if (gc_failure) {
406 if (++looped >= count)
407 return;
408 }
409 goto next;
410 }
411
f2fs_drop_inmem_pages(struct inode * inode)412 void f2fs_drop_inmem_pages(struct inode *inode)
413 {
414 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
415 struct f2fs_inode_info *fi = F2FS_I(inode);
416
417 do {
418 mutex_lock(&fi->inmem_lock);
419 if (list_empty(&fi->inmem_pages)) {
420 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
421
422 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
423 if (!list_empty(&fi->inmem_ilist))
424 list_del_init(&fi->inmem_ilist);
425 if (f2fs_is_atomic_file(inode)) {
426 clear_inode_flag(inode, FI_ATOMIC_FILE);
427 sbi->atomic_files--;
428 }
429 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
430
431 mutex_unlock(&fi->inmem_lock);
432 break;
433 }
434 __revoke_inmem_pages(inode, &fi->inmem_pages,
435 true, false, true);
436 mutex_unlock(&fi->inmem_lock);
437 } while (1);
438 }
439
f2fs_drop_inmem_page(struct inode * inode,struct page * page)440 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
441 {
442 struct f2fs_inode_info *fi = F2FS_I(inode);
443 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
444 struct list_head *head = &fi->inmem_pages;
445 struct inmem_pages *cur = NULL;
446 struct inmem_pages *tmp;
447
448 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
449
450 mutex_lock(&fi->inmem_lock);
451 list_for_each_entry(tmp, head, list) {
452 if (tmp->page == page) {
453 cur = tmp;
454 break;
455 }
456 }
457
458 f2fs_bug_on(sbi, !cur);
459 list_del(&cur->list);
460 mutex_unlock(&fi->inmem_lock);
461
462 dec_page_count(sbi, F2FS_INMEM_PAGES);
463 kmem_cache_free(inmem_entry_slab, cur);
464
465 ClearPageUptodate(page);
466 f2fs_clear_page_private(page);
467 f2fs_put_page(page, 0);
468
469 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
470 }
471
__f2fs_commit_inmem_pages(struct inode * inode)472 static int __f2fs_commit_inmem_pages(struct inode *inode)
473 {
474 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
475 struct f2fs_inode_info *fi = F2FS_I(inode);
476 struct inmem_pages *cur, *tmp;
477 struct f2fs_io_info fio = {
478 .sbi = sbi,
479 .ino = inode->i_ino,
480 .type = DATA,
481 .op = REQ_OP_WRITE,
482 .op_flags = REQ_SYNC | REQ_PRIO,
483 .io_type = FS_DATA_IO,
484 };
485 struct list_head revoke_list;
486 bool submit_bio = false;
487 int err = 0;
488
489 INIT_LIST_HEAD(&revoke_list);
490
491 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
492 struct page *page = cur->page;
493
494 lock_page(page);
495 if (page->mapping == inode->i_mapping) {
496 trace_f2fs_commit_inmem_page(page, INMEM);
497
498 f2fs_wait_on_page_writeback(page, DATA, true, true);
499
500 set_page_dirty(page);
501 if (clear_page_dirty_for_io(page)) {
502 inode_dec_dirty_pages(inode);
503 f2fs_remove_dirty_inode(inode);
504 }
505 retry:
506 fio.page = page;
507 fio.old_blkaddr = NULL_ADDR;
508 fio.encrypted_page = NULL;
509 fio.need_lock = LOCK_DONE;
510 err = f2fs_do_write_data_page(&fio);
511 if (err) {
512 if (err == -ENOMEM) {
513 congestion_wait(BLK_RW_ASYNC,
514 DEFAULT_IO_TIMEOUT);
515 cond_resched();
516 goto retry;
517 }
518 unlock_page(page);
519 break;
520 }
521 /* record old blkaddr for revoking */
522 cur->old_addr = fio.old_blkaddr;
523 submit_bio = true;
524 }
525 unlock_page(page);
526 list_move_tail(&cur->list, &revoke_list);
527 }
528
529 if (submit_bio)
530 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
531
532 if (err) {
533 /*
534 * try to revoke all committed pages, but still we could fail
535 * due to no memory or other reason, if that happened, EAGAIN
536 * will be returned, which means in such case, transaction is
537 * already not integrity, caller should use journal to do the
538 * recovery or rewrite & commit last transaction. For other
539 * error number, revoking was done by filesystem itself.
540 */
541 err = __revoke_inmem_pages(inode, &revoke_list,
542 false, true, false);
543
544 /* drop all uncommitted pages */
545 __revoke_inmem_pages(inode, &fi->inmem_pages,
546 true, false, false);
547 } else {
548 __revoke_inmem_pages(inode, &revoke_list,
549 false, false, false);
550 }
551
552 return err;
553 }
554
f2fs_commit_inmem_pages(struct inode * inode)555 int f2fs_commit_inmem_pages(struct inode *inode)
556 {
557 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
558 struct f2fs_inode_info *fi = F2FS_I(inode);
559 int err;
560
561 f2fs_balance_fs(sbi, true);
562
563 down_write(&fi->i_gc_rwsem[WRITE]);
564
565 f2fs_lock_op(sbi);
566 set_inode_flag(inode, FI_ATOMIC_COMMIT);
567
568 mutex_lock(&fi->inmem_lock);
569 err = __f2fs_commit_inmem_pages(inode);
570 mutex_unlock(&fi->inmem_lock);
571
572 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
573
574 f2fs_unlock_op(sbi);
575 up_write(&fi->i_gc_rwsem[WRITE]);
576
577 return err;
578 }
579
580 /*
581 * This function balances dirty node and dentry pages.
582 * In addition, it controls garbage collection.
583 */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)584 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
585 {
586 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
587 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
588 f2fs_stop_checkpoint(sbi, false);
589 }
590
591 /* balance_fs_bg is able to be pending */
592 if (need && excess_cached_nats(sbi))
593 f2fs_balance_fs_bg(sbi, false);
594
595 if (!f2fs_is_checkpoint_ready(sbi))
596 return;
597
598 /*
599 * We should do GC or end up with checkpoint, if there are so many dirty
600 * dir/node pages without enough free segments.
601 */
602 if (has_not_enough_free_secs(sbi, 0, 0)) {
603 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
604 sbi->gc_thread->f2fs_gc_task) {
605 DEFINE_WAIT(wait);
606
607 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
608 TASK_UNINTERRUPTIBLE);
609 wake_up(&sbi->gc_thread->gc_wait_queue_head);
610 io_schedule();
611 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
612 } else {
613 down_write(&sbi->gc_lock);
614 f2fs_gc(sbi, false, false, false, NULL_SEGNO);
615 }
616 }
617 }
618
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi,bool from_bg)619 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
620 {
621 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
622 return;
623
624 /* try to shrink extent cache when there is no enough memory */
625 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
626 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
627
628 /* check the # of cached NAT entries */
629 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
630 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
631
632 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
633 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
634 else
635 f2fs_build_free_nids(sbi, false, false);
636
637 if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) ||
638 excess_prefree_segs(sbi))
639 goto do_sync;
640
641 /* there is background inflight IO or foreground operation recently */
642 if (is_inflight_io(sbi, REQ_TIME) ||
643 (!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
644 return;
645
646 /* exceed periodical checkpoint timeout threshold */
647 if (f2fs_time_over(sbi, CP_TIME))
648 goto do_sync;
649
650 /* checkpoint is the only way to shrink partial cached entries */
651 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
652 f2fs_available_free_memory(sbi, INO_ENTRIES))
653 return;
654
655 do_sync:
656 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
657 struct blk_plug plug;
658
659 mutex_lock(&sbi->flush_lock);
660
661 blk_start_plug(&plug);
662 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
663 blk_finish_plug(&plug);
664
665 mutex_unlock(&sbi->flush_lock);
666 }
667 f2fs_sync_fs(sbi->sb, true);
668 stat_inc_bg_cp_count(sbi->stat_info);
669 }
670
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)671 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
672 struct block_device *bdev)
673 {
674 struct bio *bio;
675 int ret;
676
677 bio = f2fs_bio_alloc(sbi, 0, false);
678 if (!bio)
679 return -ENOMEM;
680
681 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
682 bio_set_dev(bio, bdev);
683 ret = submit_bio_wait(bio);
684 bio_put(bio);
685
686 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
687 test_opt(sbi, FLUSH_MERGE), ret);
688 return ret;
689 }
690
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)691 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
692 {
693 int ret = 0;
694 int i;
695
696 if (!f2fs_is_multi_device(sbi))
697 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
698
699 for (i = 0; i < sbi->s_ndevs; i++) {
700 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
701 continue;
702 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
703 if (ret)
704 break;
705 }
706 return ret;
707 }
708
issue_flush_thread(void * data)709 static int issue_flush_thread(void *data)
710 {
711 struct f2fs_sb_info *sbi = data;
712 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
713 wait_queue_head_t *q = &fcc->flush_wait_queue;
714 repeat:
715 if (kthread_should_stop())
716 return 0;
717
718 sb_start_intwrite(sbi->sb);
719
720 if (!llist_empty(&fcc->issue_list)) {
721 struct flush_cmd *cmd, *next;
722 int ret;
723
724 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
725 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
726
727 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
728
729 ret = submit_flush_wait(sbi, cmd->ino);
730 atomic_inc(&fcc->issued_flush);
731
732 llist_for_each_entry_safe(cmd, next,
733 fcc->dispatch_list, llnode) {
734 cmd->ret = ret;
735 complete(&cmd->wait);
736 }
737 fcc->dispatch_list = NULL;
738 }
739
740 sb_end_intwrite(sbi->sb);
741
742 wait_event_interruptible(*q,
743 kthread_should_stop() || !llist_empty(&fcc->issue_list));
744 goto repeat;
745 }
746
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)747 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
748 {
749 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
750 struct flush_cmd cmd;
751 int ret;
752
753 if (test_opt(sbi, NOBARRIER))
754 return 0;
755
756 if (!test_opt(sbi, FLUSH_MERGE)) {
757 atomic_inc(&fcc->queued_flush);
758 ret = submit_flush_wait(sbi, ino);
759 atomic_dec(&fcc->queued_flush);
760 atomic_inc(&fcc->issued_flush);
761 return ret;
762 }
763
764 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
765 f2fs_is_multi_device(sbi)) {
766 ret = submit_flush_wait(sbi, ino);
767 atomic_dec(&fcc->queued_flush);
768
769 atomic_inc(&fcc->issued_flush);
770 return ret;
771 }
772
773 cmd.ino = ino;
774 init_completion(&cmd.wait);
775
776 llist_add(&cmd.llnode, &fcc->issue_list);
777
778 /* update issue_list before we wake up issue_flush thread */
779 smp_mb();
780
781 if (waitqueue_active(&fcc->flush_wait_queue))
782 wake_up(&fcc->flush_wait_queue);
783
784 if (fcc->f2fs_issue_flush) {
785 wait_for_completion(&cmd.wait);
786 atomic_dec(&fcc->queued_flush);
787 } else {
788 struct llist_node *list;
789
790 list = llist_del_all(&fcc->issue_list);
791 if (!list) {
792 wait_for_completion(&cmd.wait);
793 atomic_dec(&fcc->queued_flush);
794 } else {
795 struct flush_cmd *tmp, *next;
796
797 ret = submit_flush_wait(sbi, ino);
798
799 llist_for_each_entry_safe(tmp, next, list, llnode) {
800 if (tmp == &cmd) {
801 cmd.ret = ret;
802 atomic_dec(&fcc->queued_flush);
803 continue;
804 }
805 tmp->ret = ret;
806 complete(&tmp->wait);
807 }
808 }
809 }
810
811 return cmd.ret;
812 }
813
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)814 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
815 {
816 dev_t dev = sbi->sb->s_bdev->bd_dev;
817 struct flush_cmd_control *fcc;
818 int err = 0;
819
820 if (SM_I(sbi)->fcc_info) {
821 fcc = SM_I(sbi)->fcc_info;
822 if (fcc->f2fs_issue_flush)
823 return err;
824 goto init_thread;
825 }
826
827 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
828 if (!fcc)
829 return -ENOMEM;
830 atomic_set(&fcc->issued_flush, 0);
831 atomic_set(&fcc->queued_flush, 0);
832 init_waitqueue_head(&fcc->flush_wait_queue);
833 init_llist_head(&fcc->issue_list);
834 SM_I(sbi)->fcc_info = fcc;
835 if (!test_opt(sbi, FLUSH_MERGE))
836 return err;
837
838 init_thread:
839 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
840 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
841 if (IS_ERR(fcc->f2fs_issue_flush)) {
842 err = PTR_ERR(fcc->f2fs_issue_flush);
843 kfree(fcc);
844 SM_I(sbi)->fcc_info = NULL;
845 return err;
846 }
847
848 return err;
849 }
850
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)851 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
852 {
853 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
854
855 if (fcc && fcc->f2fs_issue_flush) {
856 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
857
858 fcc->f2fs_issue_flush = NULL;
859 kthread_stop(flush_thread);
860 }
861 if (free) {
862 kfree(fcc);
863 SM_I(sbi)->fcc_info = NULL;
864 }
865 }
866
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)867 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
868 {
869 int ret = 0, i;
870
871 if (!f2fs_is_multi_device(sbi))
872 return 0;
873
874 if (test_opt(sbi, NOBARRIER))
875 return 0;
876
877 for (i = 1; i < sbi->s_ndevs; i++) {
878 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
879 continue;
880 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
881 if (ret)
882 break;
883
884 spin_lock(&sbi->dev_lock);
885 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
886 spin_unlock(&sbi->dev_lock);
887 }
888
889 return ret;
890 }
891
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)892 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
893 enum dirty_type dirty_type)
894 {
895 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
896
897 /* need not be added */
898 if (IS_CURSEG(sbi, segno))
899 return;
900
901 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
902 dirty_i->nr_dirty[dirty_type]++;
903
904 if (dirty_type == DIRTY) {
905 struct seg_entry *sentry = get_seg_entry(sbi, segno);
906 enum dirty_type t = sentry->type;
907
908 if (unlikely(t >= DIRTY)) {
909 f2fs_bug_on(sbi, 1);
910 return;
911 }
912 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
913 dirty_i->nr_dirty[t]++;
914
915 if (__is_large_section(sbi)) {
916 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
917 block_t valid_blocks =
918 get_valid_blocks(sbi, segno, true);
919
920 f2fs_bug_on(sbi, unlikely(!valid_blocks ||
921 valid_blocks == BLKS_PER_SEC(sbi)));
922
923 if (!IS_CURSEC(sbi, secno))
924 set_bit(secno, dirty_i->dirty_secmap);
925 }
926 }
927 }
928
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)929 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
930 enum dirty_type dirty_type)
931 {
932 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
933 block_t valid_blocks;
934
935 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
936 dirty_i->nr_dirty[dirty_type]--;
937
938 if (dirty_type == DIRTY) {
939 struct seg_entry *sentry = get_seg_entry(sbi, segno);
940 enum dirty_type t = sentry->type;
941
942 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
943 dirty_i->nr_dirty[t]--;
944
945 valid_blocks = get_valid_blocks(sbi, segno, true);
946 if (valid_blocks == 0) {
947 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
948 dirty_i->victim_secmap);
949 #ifdef CONFIG_F2FS_CHECK_FS
950 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
951 #endif
952 }
953 if (__is_large_section(sbi)) {
954 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
955
956 if (!valid_blocks ||
957 valid_blocks == BLKS_PER_SEC(sbi)) {
958 clear_bit(secno, dirty_i->dirty_secmap);
959 return;
960 }
961
962 if (!IS_CURSEC(sbi, secno))
963 set_bit(secno, dirty_i->dirty_secmap);
964 }
965 }
966 }
967
968 /*
969 * Should not occur error such as -ENOMEM.
970 * Adding dirty entry into seglist is not critical operation.
971 * If a given segment is one of current working segments, it won't be added.
972 */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)973 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
974 {
975 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
976 unsigned short valid_blocks, ckpt_valid_blocks;
977 unsigned int usable_blocks;
978
979 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
980 return;
981
982 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
983 mutex_lock(&dirty_i->seglist_lock);
984
985 valid_blocks = get_valid_blocks(sbi, segno, false);
986 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
987
988 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
989 ckpt_valid_blocks == usable_blocks)) {
990 __locate_dirty_segment(sbi, segno, PRE);
991 __remove_dirty_segment(sbi, segno, DIRTY);
992 } else if (valid_blocks < usable_blocks) {
993 __locate_dirty_segment(sbi, segno, DIRTY);
994 } else {
995 /* Recovery routine with SSR needs this */
996 __remove_dirty_segment(sbi, segno, DIRTY);
997 }
998
999 mutex_unlock(&dirty_i->seglist_lock);
1000 }
1001
1002 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)1003 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
1004 {
1005 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1006 unsigned int segno;
1007
1008 mutex_lock(&dirty_i->seglist_lock);
1009 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
1010 if (get_valid_blocks(sbi, segno, false))
1011 continue;
1012 if (IS_CURSEG(sbi, segno))
1013 continue;
1014 __locate_dirty_segment(sbi, segno, PRE);
1015 __remove_dirty_segment(sbi, segno, DIRTY);
1016 }
1017 mutex_unlock(&dirty_i->seglist_lock);
1018 }
1019
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)1020 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
1021 {
1022 int ovp_hole_segs =
1023 (overprovision_segments(sbi) - reserved_segments(sbi));
1024 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
1025 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1026 block_t holes[2] = {0, 0}; /* DATA and NODE */
1027 block_t unusable;
1028 struct seg_entry *se;
1029 unsigned int segno;
1030
1031 mutex_lock(&dirty_i->seglist_lock);
1032 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
1033 se = get_seg_entry(sbi, segno);
1034 if (IS_NODESEG(se->type))
1035 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
1036 se->valid_blocks;
1037 else
1038 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
1039 se->valid_blocks;
1040 }
1041 mutex_unlock(&dirty_i->seglist_lock);
1042
1043 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
1044 if (unusable > ovp_holes)
1045 return unusable - ovp_holes;
1046 return 0;
1047 }
1048
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)1049 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
1050 {
1051 int ovp_hole_segs =
1052 (overprovision_segments(sbi) - reserved_segments(sbi));
1053 if (unusable > F2FS_OPTION(sbi).unusable_cap)
1054 return -EAGAIN;
1055 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
1056 dirty_segments(sbi) > ovp_hole_segs)
1057 return -EAGAIN;
1058 return 0;
1059 }
1060
1061 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)1062 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
1063 {
1064 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1065 unsigned int segno = 0;
1066
1067 mutex_lock(&dirty_i->seglist_lock);
1068 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
1069 if (get_valid_blocks(sbi, segno, false))
1070 continue;
1071 if (get_ckpt_valid_blocks(sbi, segno, false))
1072 continue;
1073 mutex_unlock(&dirty_i->seglist_lock);
1074 return segno;
1075 }
1076 mutex_unlock(&dirty_i->seglist_lock);
1077 return NULL_SEGNO;
1078 }
1079
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1080 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
1081 struct block_device *bdev, block_t lstart,
1082 block_t start, block_t len)
1083 {
1084 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1085 struct list_head *pend_list;
1086 struct discard_cmd *dc;
1087
1088 f2fs_bug_on(sbi, !len);
1089
1090 pend_list = &dcc->pend_list[plist_idx(len)];
1091
1092 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
1093 INIT_LIST_HEAD(&dc->list);
1094 dc->bdev = bdev;
1095 dc->lstart = lstart;
1096 dc->start = start;
1097 dc->len = len;
1098 dc->ref = 0;
1099 dc->state = D_PREP;
1100 dc->queued = 0;
1101 dc->error = 0;
1102 init_completion(&dc->wait);
1103 list_add_tail(&dc->list, pend_list);
1104 spin_lock_init(&dc->lock);
1105 dc->bio_ref = 0;
1106 atomic_inc(&dcc->discard_cmd_cnt);
1107 dcc->undiscard_blks += len;
1108
1109 return dc;
1110 }
1111
__attach_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node * parent,struct rb_node ** p,bool leftmost)1112 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1113 struct block_device *bdev, block_t lstart,
1114 block_t start, block_t len,
1115 struct rb_node *parent, struct rb_node **p,
1116 bool leftmost)
1117 {
1118 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1119 struct discard_cmd *dc;
1120
1121 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1122
1123 rb_link_node(&dc->rb_node, parent, p);
1124 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1125
1126 return dc;
1127 }
1128
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1129 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1130 struct discard_cmd *dc)
1131 {
1132 if (dc->state == D_DONE)
1133 atomic_sub(dc->queued, &dcc->queued_discard);
1134
1135 list_del(&dc->list);
1136 rb_erase_cached(&dc->rb_node, &dcc->root);
1137 dcc->undiscard_blks -= dc->len;
1138
1139 kmem_cache_free(discard_cmd_slab, dc);
1140
1141 atomic_dec(&dcc->discard_cmd_cnt);
1142 }
1143
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1144 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1145 struct discard_cmd *dc)
1146 {
1147 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1148 unsigned long flags;
1149
1150 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1151
1152 spin_lock_irqsave(&dc->lock, flags);
1153 if (dc->bio_ref) {
1154 spin_unlock_irqrestore(&dc->lock, flags);
1155 return;
1156 }
1157 spin_unlock_irqrestore(&dc->lock, flags);
1158
1159 f2fs_bug_on(sbi, dc->ref);
1160
1161 if (dc->error == -EOPNOTSUPP)
1162 dc->error = 0;
1163
1164 if (dc->error)
1165 printk_ratelimited(
1166 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1167 KERN_INFO, sbi->sb->s_id,
1168 dc->lstart, dc->start, dc->len, dc->error);
1169 __detach_discard_cmd(dcc, dc);
1170 }
1171
f2fs_submit_discard_endio(struct bio * bio)1172 static void f2fs_submit_discard_endio(struct bio *bio)
1173 {
1174 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1175 unsigned long flags;
1176
1177 spin_lock_irqsave(&dc->lock, flags);
1178 if (!dc->error)
1179 dc->error = blk_status_to_errno(bio->bi_status);
1180 dc->bio_ref--;
1181 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1182 dc->state = D_DONE;
1183 complete_all(&dc->wait);
1184 }
1185 spin_unlock_irqrestore(&dc->lock, flags);
1186 bio_put(bio);
1187 }
1188
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1189 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1190 block_t start, block_t end)
1191 {
1192 #ifdef CONFIG_F2FS_CHECK_FS
1193 struct seg_entry *sentry;
1194 unsigned int segno;
1195 block_t blk = start;
1196 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1197 unsigned long *map;
1198
1199 while (blk < end) {
1200 segno = GET_SEGNO(sbi, blk);
1201 sentry = get_seg_entry(sbi, segno);
1202 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1203
1204 if (end < START_BLOCK(sbi, segno + 1))
1205 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1206 else
1207 size = max_blocks;
1208 map = (unsigned long *)(sentry->cur_valid_map);
1209 offset = find_rev_next_bit(map, size, offset);
1210 f2fs_bug_on(sbi, offset != size);
1211 blk = START_BLOCK(sbi, segno + 1);
1212 }
1213 #endif
1214 }
1215
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * policy,int discard_type,unsigned int granularity)1216 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1217 struct discard_policy *policy,
1218 int discard_type, unsigned int granularity)
1219 {
1220 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1221
1222 if (discard_type == DPOLICY_BG) {
1223 *policy = dpolicys[DPOLICY_BG];
1224 } else if (discard_type == DPOLICY_BALANCE) {
1225 *policy = dpolicys[DPOLICY_BALANCE];
1226 } else if (discard_type == DPOLICY_FORCE) {
1227 *policy = dpolicys[DPOLICY_FORCE];
1228 } else if (discard_type == DPOLICY_FSTRIM) {
1229 *policy = dpolicys[DPOLICY_FSTRIM];
1230 if (policy->granularity != granularity)
1231 policy->granularity = granularity;
1232 } else if (discard_type == DPOLICY_UMOUNT) {
1233 *policy = dpolicys[DPOLICY_UMOUNT];
1234 }
1235 dcc->discard_type = discard_type;
1236 }
1237
select_sub_discard_policy(struct discard_sub_policy ** spolicy,int index,struct discard_policy * dpolicy)1238 static void select_sub_discard_policy(struct discard_sub_policy **spolicy,
1239 int index, struct discard_policy *dpolicy)
1240 {
1241 if (dpolicy->type == DPOLICY_FSTRIM) {
1242 *spolicy = &dpolicy->sub_policy[SUB_POLICY_BIG];
1243 return;
1244 }
1245
1246 if ((index + 1) >= DISCARD_GRAN_BG)
1247 *spolicy = &dpolicy->sub_policy[SUB_POLICY_BIG];
1248 else if ((index + 1) >= DISCARD_GRAN_BL)
1249 *spolicy = &dpolicy->sub_policy[SUB_POLICY_MID];
1250 else
1251 *spolicy = &dpolicy->sub_policy[SUB_POLICY_SMALL];
1252 }
1253
1254 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1255 struct block_device *bdev, block_t lstart,
1256 block_t start, block_t len);
1257 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int spolicy_index,struct discard_cmd * dc,unsigned int * issued)1258 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1259 struct discard_policy *dpolicy,
1260 int spolicy_index,
1261 struct discard_cmd *dc,
1262 unsigned int *issued)
1263 {
1264 struct block_device *bdev = dc->bdev;
1265 struct request_queue *q = bdev_get_queue(bdev);
1266 unsigned int max_discard_blocks =
1267 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1268 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1269 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1270 &(dcc->fstrim_list) : &(dcc->wait_list);
1271 int flag = dpolicy->sync ? REQ_SYNC : 0;
1272 struct discard_sub_policy *spolicy = NULL;
1273 block_t lstart, start, len, total_len;
1274 int err = 0;
1275
1276 select_sub_discard_policy(&spolicy, spolicy_index, dpolicy);
1277
1278 if (dc->state != D_PREP)
1279 return 0;
1280
1281 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1282 return 0;
1283
1284 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1285
1286 lstart = dc->lstart;
1287 start = dc->start;
1288 len = dc->len;
1289 total_len = len;
1290
1291 dc->len = 0;
1292
1293 while (total_len && *issued < spolicy->max_requests && !err) {
1294 struct bio *bio = NULL;
1295 unsigned long flags;
1296 bool last = true;
1297
1298 if (len > max_discard_blocks) {
1299 len = max_discard_blocks;
1300 last = false;
1301 }
1302
1303 (*issued)++;
1304 if (*issued == spolicy->max_requests)
1305 last = true;
1306
1307 dc->len += len;
1308
1309 if (time_to_inject(sbi, FAULT_DISCARD)) {
1310 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1311 err = -EIO;
1312 goto submit;
1313 }
1314 err = __blkdev_issue_discard(bdev,
1315 SECTOR_FROM_BLOCK(start),
1316 SECTOR_FROM_BLOCK(len),
1317 GFP_NOFS, 0, &bio);
1318 submit:
1319 if (err) {
1320 spin_lock_irqsave(&dc->lock, flags);
1321 if (dc->state == D_PARTIAL)
1322 dc->state = D_SUBMIT;
1323 spin_unlock_irqrestore(&dc->lock, flags);
1324
1325 break;
1326 }
1327
1328 f2fs_bug_on(sbi, !bio);
1329
1330 /*
1331 * should keep before submission to avoid D_DONE
1332 * right away
1333 */
1334 spin_lock_irqsave(&dc->lock, flags);
1335 if (last)
1336 dc->state = D_SUBMIT;
1337 else
1338 dc->state = D_PARTIAL;
1339 dc->bio_ref++;
1340 spin_unlock_irqrestore(&dc->lock, flags);
1341
1342 atomic_inc(&dcc->queued_discard);
1343 dc->queued++;
1344 list_move_tail(&dc->list, wait_list);
1345
1346 /* sanity check on discard range */
1347 __check_sit_bitmap(sbi, lstart, lstart + len);
1348
1349 bio->bi_private = dc;
1350 bio->bi_end_io = f2fs_submit_discard_endio;
1351 bio->bi_opf |= flag;
1352 submit_bio(bio);
1353
1354 atomic_inc(&dcc->issued_discard);
1355
1356 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1357
1358 lstart += len;
1359 start += len;
1360 total_len -= len;
1361 len = total_len;
1362 }
1363
1364 if (!err && len) {
1365 dcc->undiscard_blks -= len;
1366 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1367 }
1368 return err;
1369 }
1370
__insert_discard_tree(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node ** insert_p,struct rb_node * insert_parent)1371 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1372 struct block_device *bdev, block_t lstart,
1373 block_t start, block_t len,
1374 struct rb_node **insert_p,
1375 struct rb_node *insert_parent)
1376 {
1377 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1378 struct rb_node **p;
1379 struct rb_node *parent = NULL;
1380 bool leftmost = true;
1381
1382 if (insert_p && insert_parent) {
1383 parent = insert_parent;
1384 p = insert_p;
1385 goto do_insert;
1386 }
1387
1388 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1389 lstart, &leftmost);
1390 do_insert:
1391 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1392 p, leftmost);
1393 }
1394
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1395 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1396 struct discard_cmd *dc)
1397 {
1398 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1399 }
1400
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1401 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1402 struct discard_cmd *dc, block_t blkaddr)
1403 {
1404 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1405 struct discard_info di = dc->di;
1406 bool modified = false;
1407
1408 if (dc->state == D_DONE || dc->len == 1) {
1409 __remove_discard_cmd(sbi, dc);
1410 return;
1411 }
1412
1413 dcc->undiscard_blks -= di.len;
1414
1415 if (blkaddr > di.lstart) {
1416 dc->len = blkaddr - dc->lstart;
1417 dcc->undiscard_blks += dc->len;
1418 __relocate_discard_cmd(dcc, dc);
1419 modified = true;
1420 }
1421
1422 if (blkaddr < di.lstart + di.len - 1) {
1423 if (modified) {
1424 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1425 di.start + blkaddr + 1 - di.lstart,
1426 di.lstart + di.len - 1 - blkaddr,
1427 NULL, NULL);
1428 } else {
1429 dc->lstart++;
1430 dc->len--;
1431 dc->start++;
1432 dcc->undiscard_blks += dc->len;
1433 __relocate_discard_cmd(dcc, dc);
1434 }
1435 }
1436 }
1437
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1438 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1439 struct block_device *bdev, block_t lstart,
1440 block_t start, block_t len)
1441 {
1442 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1443 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1444 struct discard_cmd *dc;
1445 struct discard_info di = {0};
1446 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1447 struct request_queue *q = bdev_get_queue(bdev);
1448 unsigned int max_discard_blocks =
1449 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1450 block_t end = lstart + len;
1451
1452 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1453 NULL, lstart,
1454 (struct rb_entry **)&prev_dc,
1455 (struct rb_entry **)&next_dc,
1456 &insert_p, &insert_parent, true, NULL);
1457 if (dc)
1458 prev_dc = dc;
1459
1460 if (!prev_dc) {
1461 di.lstart = lstart;
1462 di.len = next_dc ? next_dc->lstart - lstart : len;
1463 di.len = min(di.len, len);
1464 di.start = start;
1465 }
1466
1467 while (1) {
1468 struct rb_node *node;
1469 bool merged = false;
1470 struct discard_cmd *tdc = NULL;
1471
1472 if (prev_dc) {
1473 di.lstart = prev_dc->lstart + prev_dc->len;
1474 if (di.lstart < lstart)
1475 di.lstart = lstart;
1476 if (di.lstart >= end)
1477 break;
1478
1479 if (!next_dc || next_dc->lstart > end)
1480 di.len = end - di.lstart;
1481 else
1482 di.len = next_dc->lstart - di.lstart;
1483 di.start = start + di.lstart - lstart;
1484 }
1485
1486 if (!di.len)
1487 goto next;
1488
1489 if (prev_dc && prev_dc->state == D_PREP &&
1490 prev_dc->bdev == bdev &&
1491 __is_discard_back_mergeable(&di, &prev_dc->di,
1492 max_discard_blocks)) {
1493 prev_dc->di.len += di.len;
1494 dcc->undiscard_blks += di.len;
1495 __relocate_discard_cmd(dcc, prev_dc);
1496 di = prev_dc->di;
1497 tdc = prev_dc;
1498 merged = true;
1499 }
1500
1501 if (next_dc && next_dc->state == D_PREP &&
1502 next_dc->bdev == bdev &&
1503 __is_discard_front_mergeable(&di, &next_dc->di,
1504 max_discard_blocks)) {
1505 next_dc->di.lstart = di.lstart;
1506 next_dc->di.len += di.len;
1507 next_dc->di.start = di.start;
1508 dcc->undiscard_blks += di.len;
1509 __relocate_discard_cmd(dcc, next_dc);
1510 if (tdc)
1511 __remove_discard_cmd(sbi, tdc);
1512 merged = true;
1513 }
1514
1515 if (!merged) {
1516 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1517 di.len, NULL, NULL);
1518 }
1519 next:
1520 prev_dc = next_dc;
1521 if (!prev_dc)
1522 break;
1523
1524 node = rb_next(&prev_dc->rb_node);
1525 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1526 }
1527 }
1528
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1529 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1530 struct block_device *bdev, block_t blkstart, block_t blklen)
1531 {
1532 block_t lblkstart = blkstart;
1533
1534 if (!f2fs_bdev_support_discard(bdev))
1535 return 0;
1536
1537 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1538
1539 if (f2fs_is_multi_device(sbi)) {
1540 int devi = f2fs_target_device_index(sbi, blkstart);
1541
1542 blkstart -= FDEV(devi).start_blk;
1543 }
1544 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1545 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1546 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1547 return 0;
1548 }
1549
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int spolicy_index)1550 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1551 struct discard_policy *dpolicy,
1552 int spolicy_index)
1553 {
1554 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1555 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1556 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1557 struct discard_cmd *dc;
1558 struct blk_plug plug;
1559 unsigned int pos = dcc->next_pos;
1560 unsigned int issued = 0;
1561 bool io_interrupted = false;
1562 struct discard_sub_policy *spolicy = NULL;
1563
1564 select_sub_discard_policy(&spolicy, spolicy_index, dpolicy);
1565 mutex_lock(&dcc->cmd_lock);
1566
1567 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1568 NULL, pos,
1569 (struct rb_entry **)&prev_dc,
1570 (struct rb_entry **)&next_dc,
1571 &insert_p, &insert_parent, true, NULL);
1572 if (!dc)
1573 dc = next_dc;
1574
1575 blk_start_plug(&plug);
1576
1577 while (dc) {
1578 struct rb_node *node;
1579 int err = 0;
1580
1581 if (dc->state != D_PREP)
1582 goto next;
1583
1584 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1585 io_interrupted = true;
1586 break;
1587 }
1588
1589 dcc->next_pos = dc->lstart + dc->len;
1590 err = __submit_discard_cmd(sbi, dpolicy, spolicy_index, dc, &issued);
1591
1592 if (issued >= spolicy->max_requests)
1593 break;
1594 next:
1595 node = rb_next(&dc->rb_node);
1596 if (err)
1597 __remove_discard_cmd(sbi, dc);
1598 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1599 }
1600
1601 blk_finish_plug(&plug);
1602
1603 if (!dc)
1604 dcc->next_pos = 0;
1605
1606 mutex_unlock(&dcc->cmd_lock);
1607
1608 if (!issued && io_interrupted)
1609 issued = -1;
1610
1611 return issued;
1612 }
1613 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1614 struct discard_policy *dpolicy);
1615
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1616 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1617 struct discard_policy *dpolicy)
1618 {
1619 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1620 struct list_head *pend_list;
1621 struct discard_cmd *dc, *tmp;
1622 struct blk_plug plug;
1623 int i, issued;
1624 bool io_interrupted = false;
1625 struct discard_sub_policy *spolicy = NULL;
1626
1627 if (dpolicy->timeout)
1628 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1629
1630 /* only do this check in CHECK_FS, may be time consumed */
1631 if (unlikely(dcc->rbtree_check)) {
1632 mutex_lock(&dcc->cmd_lock);
1633 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, &dcc->root, false));
1634 mutex_unlock(&dcc->cmd_lock);
1635 }
1636 retry:
1637 blk_start_plug(&plug);
1638 issued = 0;
1639 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1640 if (dpolicy->timeout &&
1641 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1642 break;
1643
1644 if (i + 1 < dpolicy->granularity)
1645 break;
1646
1647 select_sub_discard_policy(&spolicy, i, dpolicy);
1648
1649 if (i + 1 < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) {
1650 issued = __issue_discard_cmd_orderly(sbi, dpolicy, i);
1651 blk_finish_plug(&plug);
1652 return issued;
1653 }
1654
1655 pend_list = &dcc->pend_list[i];
1656
1657 mutex_lock(&dcc->cmd_lock);
1658 if (list_empty(pend_list))
1659 goto next;
1660 if (unlikely(dcc->rbtree_check))
1661 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1662 &dcc->root, false));
1663 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1664 f2fs_bug_on(sbi, dc->state != D_PREP);
1665
1666 if (dpolicy->timeout &&
1667 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1668 break;
1669
1670 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1671 !is_idle(sbi, DISCARD_TIME)) {
1672 io_interrupted = true;
1673 goto skip;
1674 }
1675 __submit_discard_cmd(sbi, dpolicy, i, dc, &issued);
1676 skip:
1677 if (issued >= spolicy->max_requests)
1678 break;
1679 }
1680 next:
1681 mutex_unlock(&dcc->cmd_lock);
1682
1683 if (issued >= spolicy->max_requests || io_interrupted)
1684 break;
1685 }
1686
1687 blk_finish_plug(&plug);
1688 if (spolicy)
1689 dpolicy->min_interval = spolicy->interval;
1690
1691 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1692 __wait_all_discard_cmd(sbi, dpolicy);
1693 goto retry;
1694 }
1695
1696 if (!issued && io_interrupted)
1697 issued = -1;
1698
1699 return issued;
1700 }
1701
__drop_discard_cmd(struct f2fs_sb_info * sbi)1702 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1703 {
1704 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1705 struct list_head *pend_list;
1706 struct discard_cmd *dc, *tmp;
1707 int i;
1708 bool dropped = false;
1709
1710 mutex_lock(&dcc->cmd_lock);
1711 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1712 pend_list = &dcc->pend_list[i];
1713 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1714 f2fs_bug_on(sbi, dc->state != D_PREP);
1715 __remove_discard_cmd(sbi, dc);
1716 dropped = true;
1717 }
1718 }
1719 mutex_unlock(&dcc->cmd_lock);
1720
1721 return dropped;
1722 }
1723
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1724 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1725 {
1726 __drop_discard_cmd(sbi);
1727 }
1728
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1729 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1730 struct discard_cmd *dc)
1731 {
1732 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1733 unsigned int len = 0;
1734
1735 wait_for_completion_io(&dc->wait);
1736 mutex_lock(&dcc->cmd_lock);
1737 f2fs_bug_on(sbi, dc->state != D_DONE);
1738 dc->ref--;
1739 if (!dc->ref) {
1740 if (!dc->error)
1741 len = dc->len;
1742 __remove_discard_cmd(sbi, dc);
1743 }
1744 mutex_unlock(&dcc->cmd_lock);
1745
1746 return len;
1747 }
1748
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1749 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1750 struct discard_policy *dpolicy,
1751 block_t start, block_t end)
1752 {
1753 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1754 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1755 &(dcc->fstrim_list) : &(dcc->wait_list);
1756 struct discard_cmd *dc, *tmp;
1757 bool need_wait;
1758 unsigned int trimmed = 0;
1759
1760 next:
1761 need_wait = false;
1762
1763 mutex_lock(&dcc->cmd_lock);
1764 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1765 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1766 continue;
1767 if (dc->len < dpolicy->granularity)
1768 continue;
1769 if (dc->state == D_DONE && !dc->ref) {
1770 wait_for_completion_io(&dc->wait);
1771 if (!dc->error)
1772 trimmed += dc->len;
1773 __remove_discard_cmd(sbi, dc);
1774 } else {
1775 dc->ref++;
1776 need_wait = true;
1777 break;
1778 }
1779 }
1780 mutex_unlock(&dcc->cmd_lock);
1781
1782 if (need_wait) {
1783 trimmed += __wait_one_discard_bio(sbi, dc);
1784 goto next;
1785 }
1786
1787 return trimmed;
1788 }
1789
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1790 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1791 struct discard_policy *dpolicy)
1792 {
1793 struct discard_policy dp;
1794 unsigned int discard_blks;
1795
1796 if (dpolicy)
1797 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1798
1799 /* wait all */
1800 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1801 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1802 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1803 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1804
1805 return discard_blks;
1806 }
1807
1808 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1809 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1810 {
1811 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1812 struct discard_cmd *dc;
1813 bool need_wait = false;
1814
1815 mutex_lock(&dcc->cmd_lock);
1816 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1817 NULL, blkaddr);
1818 if (dc) {
1819 if (dc->state == D_PREP) {
1820 __punch_discard_cmd(sbi, dc, blkaddr);
1821 } else {
1822 dc->ref++;
1823 need_wait = true;
1824 }
1825 }
1826 mutex_unlock(&dcc->cmd_lock);
1827
1828 if (need_wait)
1829 __wait_one_discard_bio(sbi, dc);
1830 }
1831
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1832 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1833 {
1834 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1835
1836 if (dcc && dcc->f2fs_issue_discard) {
1837 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1838
1839 dcc->f2fs_issue_discard = NULL;
1840 kthread_stop(discard_thread);
1841 }
1842 }
1843
1844 /* This comes from f2fs_put_super */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1845 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1846 {
1847 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1848 struct discard_policy dpolicy;
1849 bool dropped;
1850
1851 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 0);
1852 __issue_discard_cmd(sbi, &dpolicy);
1853 dropped = __drop_discard_cmd(sbi);
1854
1855 /* just to make sure there is no pending discard commands */
1856 __wait_all_discard_cmd(sbi, NULL);
1857
1858 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1859 return dropped;
1860 }
1861
select_discard_type(struct f2fs_sb_info * sbi)1862 static int select_discard_type(struct f2fs_sb_info *sbi)
1863 {
1864 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1865 block_t user_block_count = sbi->user_block_count;
1866 block_t ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
1867 block_t fs_available_blocks = user_block_count -
1868 valid_user_blocks(sbi) + ovp_count;
1869 int discard_type;
1870
1871 if (fs_available_blocks >= fs_free_space_threshold(sbi) &&
1872 fs_available_blocks - dcc->undiscard_blks >=
1873 device_free_space_threshold(sbi)) {
1874 discard_type = DPOLICY_BG;
1875 } else if (fs_available_blocks < fs_free_space_threshold(sbi) &&
1876 fs_available_blocks - dcc->undiscard_blks <
1877 device_free_space_threshold(sbi)) {
1878 discard_type = DPOLICY_FORCE;
1879 } else {
1880 discard_type = DPOLICY_BALANCE;
1881 }
1882 return discard_type;
1883 }
1884
issue_discard_thread(void * data)1885 static int issue_discard_thread(void *data)
1886 {
1887 struct f2fs_sb_info *sbi = data;
1888 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1889 wait_queue_head_t *q = &dcc->discard_wait_queue;
1890 struct discard_policy dpolicy;
1891 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1892 int issued, discard_type;
1893
1894 set_freezable();
1895
1896 do {
1897 discard_type = select_discard_type(sbi);
1898 __init_discard_policy(sbi, &dpolicy, discard_type, 0);
1899
1900 wait_event_interruptible_timeout(*q,
1901 kthread_should_stop() || freezing(current) ||
1902 dcc->discard_wake,
1903 msecs_to_jiffies(wait_ms));
1904
1905 if (dcc->discard_wake)
1906 dcc->discard_wake = 0;
1907
1908 /* clean up pending candidates before going to sleep */
1909 if (atomic_read(&dcc->queued_discard))
1910 __wait_all_discard_cmd(sbi, NULL);
1911
1912 if (try_to_freeze())
1913 continue;
1914 if (f2fs_readonly(sbi->sb))
1915 continue;
1916 if (kthread_should_stop())
1917 return 0;
1918 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1919 wait_ms = dpolicy.max_interval;
1920 continue;
1921 }
1922
1923 if (sbi->gc_mode == GC_URGENT_HIGH)
1924 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 0);
1925
1926 sb_start_intwrite(sbi->sb);
1927
1928 issued = __issue_discard_cmd(sbi, &dpolicy);
1929 if (issued > 0) {
1930 __wait_all_discard_cmd(sbi, &dpolicy);
1931 wait_ms = dpolicy.min_interval;
1932 } else if (issued == -1){
1933 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1934 if (!wait_ms)
1935 wait_ms = dpolicy.mid_interval;
1936 } else {
1937 wait_ms = dpolicy.max_interval;
1938 }
1939
1940 sb_end_intwrite(sbi->sb);
1941
1942 } while (!kthread_should_stop());
1943 return 0;
1944 }
1945
1946 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1947 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1948 struct block_device *bdev, block_t blkstart, block_t blklen)
1949 {
1950 sector_t sector, nr_sects;
1951 block_t lblkstart = blkstart;
1952 int devi = 0;
1953
1954 if (f2fs_is_multi_device(sbi)) {
1955 devi = f2fs_target_device_index(sbi, blkstart);
1956 if (blkstart < FDEV(devi).start_blk ||
1957 blkstart > FDEV(devi).end_blk) {
1958 f2fs_err(sbi, "Invalid block %x", blkstart);
1959 return -EIO;
1960 }
1961 blkstart -= FDEV(devi).start_blk;
1962 }
1963
1964 /* For sequential zones, reset the zone write pointer */
1965 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1966 sector = SECTOR_FROM_BLOCK(blkstart);
1967 nr_sects = SECTOR_FROM_BLOCK(blklen);
1968
1969 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1970 nr_sects != bdev_zone_sectors(bdev)) {
1971 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1972 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1973 blkstart, blklen);
1974 return -EIO;
1975 }
1976 trace_f2fs_issue_reset_zone(bdev, blkstart);
1977 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1978 sector, nr_sects, GFP_NOFS);
1979 }
1980
1981 /* For conventional zones, use regular discard if supported */
1982 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1983 }
1984 #endif
1985
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1986 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1987 struct block_device *bdev, block_t blkstart, block_t blklen)
1988 {
1989 #ifdef CONFIG_BLK_DEV_ZONED
1990 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1991 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1992 #endif
1993 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1994 }
1995
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)1996 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1997 block_t blkstart, block_t blklen)
1998 {
1999 sector_t start = blkstart, len = 0;
2000 struct block_device *bdev;
2001 struct seg_entry *se;
2002 unsigned int offset;
2003 block_t i;
2004 int err = 0;
2005
2006 bdev = f2fs_target_device(sbi, blkstart, NULL);
2007
2008 for (i = blkstart; i < blkstart + blklen; i++, len++) {
2009 if (i != start) {
2010 struct block_device *bdev2 =
2011 f2fs_target_device(sbi, i, NULL);
2012
2013 if (bdev2 != bdev) {
2014 err = __issue_discard_async(sbi, bdev,
2015 start, len);
2016 if (err)
2017 return err;
2018 bdev = bdev2;
2019 start = i;
2020 len = 0;
2021 }
2022 }
2023
2024 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2025 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2026
2027 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2028 sbi->discard_blks--;
2029 }
2030
2031 if (len)
2032 err = __issue_discard_async(sbi, bdev, start, len);
2033 return err;
2034 }
2035
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)2036 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2037 bool check_only)
2038 {
2039 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2040 int max_blocks = sbi->blocks_per_seg;
2041 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2042 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2043 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2044 unsigned long *discard_map = (unsigned long *)se->discard_map;
2045 unsigned long *dmap = SIT_I(sbi)->tmp_map;
2046 unsigned int start = 0, end = -1;
2047 bool force = (cpc->reason & CP_DISCARD);
2048 struct discard_entry *de = NULL;
2049 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2050 int i;
2051
2052 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
2053 return false;
2054
2055 if (!force) {
2056 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2057 SM_I(sbi)->dcc_info->nr_discards >=
2058 SM_I(sbi)->dcc_info->max_discards)
2059 return false;
2060 }
2061
2062 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2063 for (i = 0; i < entries; i++)
2064 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2065 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2066
2067 while (force || SM_I(sbi)->dcc_info->nr_discards <=
2068 SM_I(sbi)->dcc_info->max_discards) {
2069 start = find_rev_next_bit(dmap, max_blocks, end + 1);
2070 if (start >= max_blocks)
2071 break;
2072
2073 end = find_rev_next_zero_bit(dmap, max_blocks, start + 1);
2074 if (force && start && end != max_blocks
2075 && (end - start) < cpc->trim_minlen)
2076 continue;
2077
2078 if (check_only)
2079 return true;
2080
2081 if (!de) {
2082 de = f2fs_kmem_cache_alloc(discard_entry_slab,
2083 GFP_F2FS_ZERO);
2084 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2085 list_add_tail(&de->list, head);
2086 }
2087
2088 for (i = start; i < end; i++)
2089 __set_bit_le(i, (void *)de->discard_map);
2090
2091 SM_I(sbi)->dcc_info->nr_discards += end - start;
2092 }
2093 return false;
2094 }
2095
release_discard_addr(struct discard_entry * entry)2096 static void release_discard_addr(struct discard_entry *entry)
2097 {
2098 list_del(&entry->list);
2099 kmem_cache_free(discard_entry_slab, entry);
2100 }
2101
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)2102 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2103 {
2104 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2105 struct discard_entry *entry, *this;
2106
2107 /* drop caches */
2108 list_for_each_entry_safe(entry, this, head, list)
2109 release_discard_addr(entry);
2110 }
2111
2112 /*
2113 * Should call f2fs_clear_prefree_segments after checkpoint is done.
2114 */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)2115 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2116 {
2117 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2118 unsigned int segno;
2119
2120 mutex_lock(&dirty_i->seglist_lock);
2121 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2122 __set_test_and_free(sbi, segno, false);
2123 mutex_unlock(&dirty_i->seglist_lock);
2124 }
2125
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)2126 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2127 struct cp_control *cpc)
2128 {
2129 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2130 struct list_head *head = &dcc->entry_list;
2131 struct discard_entry *entry, *this;
2132 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2133 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2134 unsigned int start = 0, end = -1;
2135 unsigned int secno, start_segno;
2136 bool force = (cpc->reason & CP_DISCARD);
2137 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
2138
2139 mutex_lock(&dirty_i->seglist_lock);
2140
2141 while (1) {
2142 int i;
2143
2144 if (need_align && end != -1)
2145 end--;
2146 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2147 if (start >= MAIN_SEGS(sbi))
2148 break;
2149 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2150 start + 1);
2151
2152 if (need_align) {
2153 start = rounddown(start, sbi->segs_per_sec);
2154 end = roundup(end, sbi->segs_per_sec);
2155 }
2156
2157 for (i = start; i < end; i++) {
2158 if (test_and_clear_bit(i, prefree_map))
2159 dirty_i->nr_dirty[PRE]--;
2160 }
2161
2162 if (!f2fs_realtime_discard_enable(sbi))
2163 continue;
2164
2165 if (force && start >= cpc->trim_start &&
2166 (end - 1) <= cpc->trim_end)
2167 continue;
2168
2169 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2170 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2171 (end - start) << sbi->log_blocks_per_seg);
2172 continue;
2173 }
2174 next:
2175 secno = GET_SEC_FROM_SEG(sbi, start);
2176 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2177 if (!IS_CURSEC(sbi, secno) &&
2178 !get_valid_blocks(sbi, start, true))
2179 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2180 sbi->segs_per_sec << sbi->log_blocks_per_seg);
2181
2182 start = start_segno + sbi->segs_per_sec;
2183 if (start < end)
2184 goto next;
2185 else
2186 end = start - 1;
2187 }
2188 mutex_unlock(&dirty_i->seglist_lock);
2189
2190 /* send small discards */
2191 list_for_each_entry_safe(entry, this, head, list) {
2192 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2193 bool is_valid = test_bit_le(0, entry->discard_map);
2194
2195 find_next:
2196 if (is_valid) {
2197 next_pos = find_next_zero_bit_le(entry->discard_map,
2198 sbi->blocks_per_seg, cur_pos);
2199 len = next_pos - cur_pos;
2200
2201 if (f2fs_sb_has_blkzoned(sbi) ||
2202 (force && len < cpc->trim_minlen))
2203 goto skip;
2204
2205 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2206 len);
2207 total_len += len;
2208 } else {
2209 next_pos = find_next_bit_le(entry->discard_map,
2210 sbi->blocks_per_seg, cur_pos);
2211 }
2212 skip:
2213 cur_pos = next_pos;
2214 is_valid = !is_valid;
2215
2216 if (cur_pos < sbi->blocks_per_seg)
2217 goto find_next;
2218
2219 release_discard_addr(entry);
2220 dcc->nr_discards -= total_len;
2221 }
2222
2223 wake_up_discard_thread(sbi, false);
2224 }
2225
create_discard_cmd_control(struct f2fs_sb_info * sbi)2226 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2227 {
2228 dev_t dev = sbi->sb->s_bdev->bd_dev;
2229 struct discard_cmd_control *dcc;
2230 int err = 0, i;
2231
2232 if (SM_I(sbi)->dcc_info) {
2233 dcc = SM_I(sbi)->dcc_info;
2234 goto init_thread;
2235 }
2236
2237 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2238 if (!dcc)
2239 return -ENOMEM;
2240
2241 dcc->discard_granularity = DISCARD_GRAN_BG;
2242 INIT_LIST_HEAD(&dcc->entry_list);
2243 for (i = 0; i < MAX_PLIST_NUM; i++)
2244 INIT_LIST_HEAD(&dcc->pend_list[i]);
2245 INIT_LIST_HEAD(&dcc->wait_list);
2246 INIT_LIST_HEAD(&dcc->fstrim_list);
2247 mutex_init(&dcc->cmd_lock);
2248 atomic_set(&dcc->issued_discard, 0);
2249 atomic_set(&dcc->queued_discard, 0);
2250 atomic_set(&dcc->discard_cmd_cnt, 0);
2251 dcc->nr_discards = 0;
2252 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2253 dcc->undiscard_blks = 0;
2254 dcc->next_pos = 0;
2255 dcc->root = RB_ROOT_CACHED;
2256 dcc->rbtree_check = false;
2257
2258 init_waitqueue_head(&dcc->discard_wait_queue);
2259 SM_I(sbi)->dcc_info = dcc;
2260 init_thread:
2261 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2262 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2263 if (IS_ERR(dcc->f2fs_issue_discard)) {
2264 err = PTR_ERR(dcc->f2fs_issue_discard);
2265 kfree(dcc);
2266 SM_I(sbi)->dcc_info = NULL;
2267 return err;
2268 }
2269
2270 return err;
2271 }
2272
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2273 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2274 {
2275 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2276
2277 if (!dcc)
2278 return;
2279
2280 f2fs_stop_discard_thread(sbi);
2281
2282 /*
2283 * Recovery can cache discard commands, so in error path of
2284 * fill_super(), it needs to give a chance to handle them.
2285 */
2286 if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2287 f2fs_issue_discard_timeout(sbi);
2288
2289 kfree(dcc);
2290 SM_I(sbi)->dcc_info = NULL;
2291 }
2292
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2293 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2294 {
2295 struct sit_info *sit_i = SIT_I(sbi);
2296
2297 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2298 sit_i->dirty_sentries++;
2299 return false;
2300 }
2301
2302 return true;
2303 }
2304
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2305 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2306 unsigned int segno, int modified)
2307 {
2308 struct seg_entry *se = get_seg_entry(sbi, segno);
2309 se->type = type;
2310 if (modified)
2311 __mark_sit_entry_dirty(sbi, segno);
2312 }
2313
get_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr)2314 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2315 block_t blkaddr)
2316 {
2317 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2318
2319 if (segno == NULL_SEGNO)
2320 return 0;
2321 return get_seg_entry(sbi, segno)->mtime;
2322 }
2323
update_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned long long old_mtime)2324 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2325 unsigned long long old_mtime)
2326 {
2327 struct seg_entry *se;
2328 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2329 unsigned long long ctime = get_mtime(sbi, false);
2330 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2331
2332 if (segno == NULL_SEGNO)
2333 return;
2334
2335 se = get_seg_entry(sbi, segno);
2336
2337 if (!se->mtime)
2338 se->mtime = mtime;
2339 else
2340 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2341 se->valid_blocks + 1);
2342
2343 if (ctime > SIT_I(sbi)->max_mtime)
2344 SIT_I(sbi)->max_mtime = ctime;
2345 }
2346
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2347 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2348 {
2349 struct seg_entry *se;
2350 unsigned int segno, offset;
2351 long int new_vblocks;
2352 bool exist;
2353 #ifdef CONFIG_F2FS_CHECK_FS
2354 bool mir_exist;
2355 #endif
2356
2357 segno = GET_SEGNO(sbi, blkaddr);
2358
2359 se = get_seg_entry(sbi, segno);
2360 new_vblocks = se->valid_blocks + del;
2361 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2362
2363 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2364 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2365
2366 se->valid_blocks = new_vblocks;
2367
2368 /* Update valid block bitmap */
2369 if (del > 0) {
2370 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2371 #ifdef CONFIG_F2FS_CHECK_FS
2372 mir_exist = f2fs_test_and_set_bit(offset,
2373 se->cur_valid_map_mir);
2374 if (unlikely(exist != mir_exist)) {
2375 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2376 blkaddr, exist);
2377 f2fs_bug_on(sbi, 1);
2378 }
2379 #endif
2380 if (unlikely(exist)) {
2381 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2382 blkaddr);
2383 f2fs_bug_on(sbi, 1);
2384 se->valid_blocks--;
2385 del = 0;
2386 }
2387
2388 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2389 sbi->discard_blks--;
2390
2391 /*
2392 * SSR should never reuse block which is checkpointed
2393 * or newly invalidated.
2394 */
2395 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2396 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2397 se->ckpt_valid_blocks++;
2398 }
2399 } else {
2400 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2401 #ifdef CONFIG_F2FS_CHECK_FS
2402 mir_exist = f2fs_test_and_clear_bit(offset,
2403 se->cur_valid_map_mir);
2404 if (unlikely(exist != mir_exist)) {
2405 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2406 blkaddr, exist);
2407 f2fs_bug_on(sbi, 1);
2408 }
2409 #endif
2410 if (unlikely(!exist)) {
2411 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2412 blkaddr);
2413 f2fs_bug_on(sbi, 1);
2414 se->valid_blocks++;
2415 del = 0;
2416 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2417 /*
2418 * If checkpoints are off, we must not reuse data that
2419 * was used in the previous checkpoint. If it was used
2420 * before, we must track that to know how much space we
2421 * really have.
2422 */
2423 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2424 spin_lock(&sbi->stat_lock);
2425 sbi->unusable_block_count++;
2426 spin_unlock(&sbi->stat_lock);
2427 }
2428 }
2429
2430 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2431 sbi->discard_blks++;
2432 }
2433 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2434 se->ckpt_valid_blocks += del;
2435
2436 __mark_sit_entry_dirty(sbi, segno);
2437
2438 /* update total number of valid blocks to be written in ckpt area */
2439 SIT_I(sbi)->written_valid_blocks += del;
2440
2441 if (__is_large_section(sbi))
2442 get_sec_entry(sbi, segno)->valid_blocks += del;
2443 }
2444
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr)2445 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2446 {
2447 unsigned int segno = GET_SEGNO(sbi, addr);
2448 struct sit_info *sit_i = SIT_I(sbi);
2449
2450 f2fs_bug_on(sbi, addr == NULL_ADDR);
2451 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2452 return;
2453
2454 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2455
2456 /* add it into sit main buffer */
2457 down_write(&sit_i->sentry_lock);
2458
2459 update_segment_mtime(sbi, addr, 0);
2460 update_sit_entry(sbi, addr, -1);
2461
2462 /* add it into dirty seglist */
2463 locate_dirty_segment(sbi, segno);
2464
2465 up_write(&sit_i->sentry_lock);
2466 }
2467
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2468 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2469 {
2470 struct sit_info *sit_i = SIT_I(sbi);
2471 unsigned int segno, offset;
2472 struct seg_entry *se;
2473 bool is_cp = false;
2474
2475 if (!__is_valid_data_blkaddr(blkaddr))
2476 return true;
2477
2478 down_read(&sit_i->sentry_lock);
2479
2480 segno = GET_SEGNO(sbi, blkaddr);
2481 se = get_seg_entry(sbi, segno);
2482 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2483
2484 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2485 is_cp = true;
2486
2487 up_read(&sit_i->sentry_lock);
2488
2489 return is_cp;
2490 }
2491
2492 /*
2493 * This function should be resided under the curseg_mutex lock
2494 */
__add_sum_entry(struct f2fs_sb_info * sbi,int type,struct f2fs_summary * sum)2495 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2496 struct f2fs_summary *sum)
2497 {
2498 struct curseg_info *curseg = CURSEG_I(sbi, type);
2499 void *addr = curseg->sum_blk;
2500 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2501 memcpy(addr, sum, sizeof(struct f2fs_summary));
2502 }
2503
2504 /*
2505 * Calculate the number of current summary pages for writing
2506 */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2507 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2508 {
2509 int valid_sum_count = 0;
2510 int i, sum_in_page;
2511
2512 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2513 if (sbi->ckpt->alloc_type[i] == SSR)
2514 valid_sum_count += sbi->blocks_per_seg;
2515 else {
2516 if (for_ra)
2517 valid_sum_count += le16_to_cpu(
2518 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2519 else
2520 valid_sum_count += curseg_blkoff(sbi, i);
2521 }
2522 }
2523
2524 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2525 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2526 if (valid_sum_count <= sum_in_page)
2527 return 1;
2528 else if ((valid_sum_count - sum_in_page) <=
2529 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2530 return 2;
2531 return 3;
2532 }
2533
2534 /*
2535 * Caller should put this summary page
2536 */
f2fs_get_sum_page(struct f2fs_sb_info * sbi,unsigned int segno)2537 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2538 {
2539 if (unlikely(f2fs_cp_error(sbi)))
2540 return ERR_PTR(-EIO);
2541 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2542 }
2543
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2544 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2545 void *src, block_t blk_addr)
2546 {
2547 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2548
2549 memcpy(page_address(page), src, PAGE_SIZE);
2550 set_page_dirty(page);
2551 f2fs_put_page(page, 1);
2552 }
2553
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2554 static void write_sum_page(struct f2fs_sb_info *sbi,
2555 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2556 {
2557 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2558 }
2559
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2560 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2561 int type, block_t blk_addr)
2562 {
2563 struct curseg_info *curseg = CURSEG_I(sbi, type);
2564 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2565 struct f2fs_summary_block *src = curseg->sum_blk;
2566 struct f2fs_summary_block *dst;
2567
2568 dst = (struct f2fs_summary_block *)page_address(page);
2569 memset(dst, 0, PAGE_SIZE);
2570
2571 mutex_lock(&curseg->curseg_mutex);
2572
2573 down_read(&curseg->journal_rwsem);
2574 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2575 up_read(&curseg->journal_rwsem);
2576
2577 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2578 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2579
2580 mutex_unlock(&curseg->curseg_mutex);
2581
2582 set_page_dirty(page);
2583 f2fs_put_page(page, 1);
2584 }
2585
is_next_segment_free(struct f2fs_sb_info * sbi,struct curseg_info * curseg,int type)2586 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2587 struct curseg_info *curseg, int type)
2588 {
2589 unsigned int segno = curseg->segno + 1;
2590 struct free_segmap_info *free_i = FREE_I(sbi);
2591
2592 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2593 return !test_bit(segno, free_i->free_segmap);
2594 return 0;
2595 }
2596
2597 /*
2598 * Find a new segment from the free segments bitmap to right order
2599 * This function should be returned with success, otherwise BUG
2600 */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,int dir)2601 static void get_new_segment(struct f2fs_sb_info *sbi,
2602 unsigned int *newseg, bool new_sec, int dir)
2603 {
2604 struct free_segmap_info *free_i = FREE_I(sbi);
2605 unsigned int segno, secno, zoneno;
2606 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2607 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2608 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2609 unsigned int left_start = hint;
2610 bool init = true;
2611 int go_left = 0;
2612 int i;
2613
2614 spin_lock(&free_i->segmap_lock);
2615
2616 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2617 segno = find_next_zero_bit(free_i->free_segmap,
2618 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2619 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2620 goto got_it;
2621 }
2622 find_other_zone:
2623 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2624 if (secno >= MAIN_SECS(sbi)) {
2625 if (dir == ALLOC_RIGHT) {
2626 secno = find_next_zero_bit(free_i->free_secmap,
2627 MAIN_SECS(sbi), 0);
2628 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2629 } else {
2630 go_left = 1;
2631 left_start = hint - 1;
2632 }
2633 }
2634 if (go_left == 0)
2635 goto skip_left;
2636
2637 while (test_bit(left_start, free_i->free_secmap)) {
2638 if (left_start > 0) {
2639 left_start--;
2640 continue;
2641 }
2642 left_start = find_next_zero_bit(free_i->free_secmap,
2643 MAIN_SECS(sbi), 0);
2644 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2645 break;
2646 }
2647 secno = left_start;
2648 skip_left:
2649 segno = GET_SEG_FROM_SEC(sbi, secno);
2650 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2651
2652 /* give up on finding another zone */
2653 if (!init)
2654 goto got_it;
2655 if (sbi->secs_per_zone == 1)
2656 goto got_it;
2657 if (zoneno == old_zoneno)
2658 goto got_it;
2659 if (dir == ALLOC_LEFT) {
2660 if (!go_left && zoneno + 1 >= total_zones)
2661 goto got_it;
2662 if (go_left && zoneno == 0)
2663 goto got_it;
2664 }
2665 for (i = 0; i < NR_CURSEG_TYPE; i++)
2666 if (CURSEG_I(sbi, i)->zone == zoneno)
2667 break;
2668
2669 if (i < NR_CURSEG_TYPE) {
2670 /* zone is in user, try another */
2671 if (go_left)
2672 hint = zoneno * sbi->secs_per_zone - 1;
2673 else if (zoneno + 1 >= total_zones)
2674 hint = 0;
2675 else
2676 hint = (zoneno + 1) * sbi->secs_per_zone;
2677 init = false;
2678 goto find_other_zone;
2679 }
2680 got_it:
2681 /* set it as dirty segment in free segmap */
2682 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2683 __set_inuse(sbi, segno);
2684 *newseg = segno;
2685 spin_unlock(&free_i->segmap_lock);
2686 }
2687
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2688 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2689 {
2690 struct curseg_info *curseg = CURSEG_I(sbi, type);
2691 struct summary_footer *sum_footer;
2692 unsigned short seg_type = curseg->seg_type;
2693
2694 curseg->inited = true;
2695 curseg->segno = curseg->next_segno;
2696 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2697 curseg->next_blkoff = 0;
2698 curseg->next_segno = NULL_SEGNO;
2699
2700 sum_footer = &(curseg->sum_blk->footer);
2701 memset(sum_footer, 0, sizeof(struct summary_footer));
2702
2703 sanity_check_seg_type(sbi, seg_type);
2704
2705 if (IS_DATASEG(seg_type))
2706 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2707 if (IS_NODESEG(seg_type))
2708 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2709 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2710 }
2711
__get_next_segno(struct f2fs_sb_info * sbi,int type)2712 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2713 {
2714 struct curseg_info *curseg = CURSEG_I(sbi, type);
2715 unsigned short seg_type = curseg->seg_type;
2716
2717 sanity_check_seg_type(sbi, seg_type);
2718
2719 /* if segs_per_sec is large than 1, we need to keep original policy. */
2720 if (__is_large_section(sbi))
2721 return curseg->segno;
2722
2723 /* inmem log may not locate on any segment after mount */
2724 if (!curseg->inited)
2725 return 0;
2726
2727 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2728 return 0;
2729
2730 if (test_opt(sbi, NOHEAP) &&
2731 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2732 return 0;
2733
2734 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2735 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2736
2737 /* find segments from 0 to reuse freed segments */
2738 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2739 return 0;
2740
2741 return curseg->segno;
2742 }
2743
2744 /*
2745 * Allocate a current working segment.
2746 * This function always allocates a free segment in LFS manner.
2747 */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2748 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2749 {
2750 struct curseg_info *curseg = CURSEG_I(sbi, type);
2751 unsigned short seg_type = curseg->seg_type;
2752 unsigned int segno = curseg->segno;
2753 int dir = ALLOC_LEFT;
2754
2755 if (curseg->inited)
2756 write_sum_page(sbi, curseg->sum_blk,
2757 GET_SUM_BLOCK(sbi, segno));
2758 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2759 dir = ALLOC_RIGHT;
2760
2761 if (test_opt(sbi, NOHEAP))
2762 dir = ALLOC_RIGHT;
2763
2764 segno = __get_next_segno(sbi, type);
2765 get_new_segment(sbi, &segno, new_sec, dir);
2766 curseg->next_segno = segno;
2767 reset_curseg(sbi, type, 1);
2768 curseg->alloc_type = LFS;
2769 }
2770
__next_free_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg,block_t start)2771 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2772 struct curseg_info *seg, block_t start)
2773 {
2774 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2775 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2776 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2777 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2778 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2779 int i, pos;
2780
2781 for (i = 0; i < entries; i++)
2782 target_map[i] = ckpt_map[i] | cur_map[i];
2783
2784 pos = find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2785
2786 seg->next_blkoff = pos;
2787 }
2788
2789 /*
2790 * If a segment is written by LFS manner, next block offset is just obtained
2791 * by increasing the current block offset. However, if a segment is written by
2792 * SSR manner, next block offset obtained by calling __next_free_blkoff
2793 */
__refresh_next_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg)2794 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2795 struct curseg_info *seg)
2796 {
2797 if (seg->alloc_type == SSR)
2798 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2799 else
2800 seg->next_blkoff++;
2801 }
2802
f2fs_segment_has_free_slot(struct f2fs_sb_info * sbi,int segno)2803 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2804 {
2805 struct seg_entry *se = get_seg_entry(sbi, segno);
2806 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2807 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2808 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2809 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2810 int i, pos;
2811
2812 for (i = 0; i < entries; i++)
2813 target_map[i] = ckpt_map[i] | cur_map[i];
2814
2815 pos = find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, 0);
2816
2817 return pos < sbi->blocks_per_seg;
2818 }
2819
2820 /*
2821 * This function always allocates a used segment(from dirty seglist) by SSR
2822 * manner, so it should recover the existing segment information of valid blocks
2823 */
change_curseg(struct f2fs_sb_info * sbi,int type,bool flush)2824 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2825 {
2826 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2827 struct curseg_info *curseg = CURSEG_I(sbi, type);
2828 unsigned int new_segno = curseg->next_segno;
2829 struct f2fs_summary_block *sum_node;
2830 struct page *sum_page;
2831
2832 if (flush)
2833 write_sum_page(sbi, curseg->sum_blk,
2834 GET_SUM_BLOCK(sbi, curseg->segno));
2835
2836 __set_test_and_inuse(sbi, new_segno);
2837
2838 mutex_lock(&dirty_i->seglist_lock);
2839 __remove_dirty_segment(sbi, new_segno, PRE);
2840 __remove_dirty_segment(sbi, new_segno, DIRTY);
2841 mutex_unlock(&dirty_i->seglist_lock);
2842
2843 reset_curseg(sbi, type, 1);
2844 curseg->alloc_type = SSR;
2845 __next_free_blkoff(sbi, curseg, 0);
2846
2847 sum_page = f2fs_get_sum_page(sbi, new_segno);
2848 if (IS_ERR(sum_page)) {
2849 /* GC won't be able to use stale summary pages by cp_error */
2850 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2851 return;
2852 }
2853 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2854 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2855 f2fs_put_page(sum_page, 1);
2856 }
2857
2858 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2859 int alloc_mode, unsigned long long age);
2860
get_atssr_segment(struct f2fs_sb_info * sbi,int type,int target_type,int alloc_mode,unsigned long long age)2861 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2862 int target_type, int alloc_mode,
2863 unsigned long long age)
2864 {
2865 struct curseg_info *curseg = CURSEG_I(sbi, type);
2866
2867 curseg->seg_type = target_type;
2868
2869 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2870 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2871
2872 curseg->seg_type = se->type;
2873 change_curseg(sbi, type, true);
2874 } else {
2875 /* allocate cold segment by default */
2876 curseg->seg_type = CURSEG_COLD_DATA;
2877 new_curseg(sbi, type, true);
2878 }
2879 stat_inc_seg_type(sbi, curseg);
2880 }
2881
__f2fs_init_atgc_curseg(struct f2fs_sb_info * sbi)2882 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2883 {
2884 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2885
2886 if (!sbi->am.atgc_enabled)
2887 return;
2888
2889 down_read(&SM_I(sbi)->curseg_lock);
2890
2891 mutex_lock(&curseg->curseg_mutex);
2892 down_write(&SIT_I(sbi)->sentry_lock);
2893
2894 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2895
2896 up_write(&SIT_I(sbi)->sentry_lock);
2897 mutex_unlock(&curseg->curseg_mutex);
2898
2899 up_read(&SM_I(sbi)->curseg_lock);
2900
2901 }
f2fs_init_inmem_curseg(struct f2fs_sb_info * sbi)2902 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2903 {
2904 __f2fs_init_atgc_curseg(sbi);
2905 }
2906
__f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi,int type)2907 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2908 {
2909 struct curseg_info *curseg = CURSEG_I(sbi, type);
2910
2911 mutex_lock(&curseg->curseg_mutex);
2912 if (!curseg->inited)
2913 goto out;
2914
2915 if (get_valid_blocks(sbi, curseg->segno, false)) {
2916 write_sum_page(sbi, curseg->sum_blk,
2917 GET_SUM_BLOCK(sbi, curseg->segno));
2918 } else {
2919 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2920 __set_test_and_free(sbi, curseg->segno, true);
2921 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2922 }
2923 out:
2924 mutex_unlock(&curseg->curseg_mutex);
2925 }
2926
f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi)2927 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2928 {
2929 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2930
2931 if (sbi->am.atgc_enabled)
2932 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2933 }
2934
__f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi,int type)2935 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2936 {
2937 struct curseg_info *curseg = CURSEG_I(sbi, type);
2938
2939 mutex_lock(&curseg->curseg_mutex);
2940 if (!curseg->inited)
2941 goto out;
2942 if (get_valid_blocks(sbi, curseg->segno, false))
2943 goto out;
2944
2945 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2946 __set_test_and_inuse(sbi, curseg->segno);
2947 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2948 out:
2949 mutex_unlock(&curseg->curseg_mutex);
2950 }
2951
f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi)2952 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2953 {
2954 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2955
2956 if (sbi->am.atgc_enabled)
2957 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2958 }
2959
get_ssr_segment(struct f2fs_sb_info * sbi,int type,int alloc_mode,unsigned long long age)2960 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2961 int alloc_mode, unsigned long long age)
2962 {
2963 struct curseg_info *curseg = CURSEG_I(sbi, type);
2964 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2965 unsigned segno = NULL_SEGNO;
2966 unsigned short seg_type = curseg->seg_type;
2967 int i, cnt;
2968 bool reversed = false;
2969
2970 sanity_check_seg_type(sbi, seg_type);
2971
2972 /* f2fs_need_SSR() already forces to do this */
2973 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2974 curseg->next_segno = segno;
2975 return 1;
2976 }
2977
2978 /* For node segments, let's do SSR more intensively */
2979 if (IS_NODESEG(seg_type)) {
2980 if (seg_type >= CURSEG_WARM_NODE) {
2981 reversed = true;
2982 i = CURSEG_COLD_NODE;
2983 } else {
2984 i = CURSEG_HOT_NODE;
2985 }
2986 cnt = NR_CURSEG_NODE_TYPE;
2987 } else {
2988 if (seg_type >= CURSEG_WARM_DATA) {
2989 reversed = true;
2990 i = CURSEG_COLD_DATA;
2991 } else {
2992 i = CURSEG_HOT_DATA;
2993 }
2994 cnt = NR_CURSEG_DATA_TYPE;
2995 }
2996
2997 for (; cnt-- > 0; reversed ? i-- : i++) {
2998 if (i == seg_type)
2999 continue;
3000 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
3001 curseg->next_segno = segno;
3002 return 1;
3003 }
3004 }
3005
3006 /* find valid_blocks=0 in dirty list */
3007 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3008 segno = get_free_segment(sbi);
3009 if (segno != NULL_SEGNO) {
3010 curseg->next_segno = segno;
3011 return 1;
3012 }
3013 }
3014 return 0;
3015 }
3016
3017 /*
3018 * flush out current segment and replace it with new segment
3019 * This function should be returned with success, otherwise BUG
3020 */
allocate_segment_by_default(struct f2fs_sb_info * sbi,int type,bool force,int contig_level)3021 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
3022 int type, bool force, int contig_level)
3023 {
3024 struct curseg_info *curseg = CURSEG_I(sbi, type);
3025
3026 if (force)
3027 new_curseg(sbi, type, true);
3028 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3029 curseg->seg_type == CURSEG_WARM_NODE)
3030 new_curseg(sbi, type, false);
3031 else if (curseg->alloc_type == LFS &&
3032 is_next_segment_free(sbi, curseg, type) &&
3033 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3034 new_curseg(sbi, type, false);
3035 #ifdef CONFIG_F2FS_GRADING_SSR
3036 else if (need_ssr_by_type(sbi, type, contig_level) && get_ssr_segment(sbi, type, SSR, 0))
3037 #else
3038 else if (f2fs_need_SSR(sbi) &&
3039 get_ssr_segment(sbi, type, SSR, 0))
3040 #endif
3041 change_curseg(sbi, type, true);
3042 else
3043 new_curseg(sbi, type, false);
3044
3045 stat_inc_seg_type(sbi, curseg);
3046 }
3047
f2fs_allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)3048 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3049 unsigned int start, unsigned int end)
3050 {
3051 struct curseg_info *curseg = CURSEG_I(sbi, type);
3052 unsigned int segno;
3053
3054 down_read(&SM_I(sbi)->curseg_lock);
3055 mutex_lock(&curseg->curseg_mutex);
3056 down_write(&SIT_I(sbi)->sentry_lock);
3057
3058 segno = CURSEG_I(sbi, type)->segno;
3059 if (segno < start || segno > end)
3060 goto unlock;
3061
3062 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3063 change_curseg(sbi, type, true);
3064 else
3065 new_curseg(sbi, type, true);
3066
3067 stat_inc_seg_type(sbi, curseg);
3068
3069 locate_dirty_segment(sbi, segno);
3070 unlock:
3071 up_write(&SIT_I(sbi)->sentry_lock);
3072
3073 if (segno != curseg->segno)
3074 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3075 type, segno, curseg->segno);
3076
3077 mutex_unlock(&curseg->curseg_mutex);
3078 up_read(&SM_I(sbi)->curseg_lock);
3079 }
3080
__allocate_new_segment(struct f2fs_sb_info * sbi,int type,bool new_sec)3081 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3082 bool new_sec)
3083 {
3084 struct curseg_info *curseg = CURSEG_I(sbi, type);
3085 unsigned int old_segno;
3086
3087 if (!curseg->inited)
3088 goto alloc;
3089
3090 if (curseg->next_blkoff ||
3091 get_valid_blocks(sbi, curseg->segno, new_sec))
3092 goto alloc;
3093
3094 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3095 return;
3096 alloc:
3097 old_segno = curseg->segno;
3098 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true, SEQ_NONE);
3099 locate_dirty_segment(sbi, old_segno);
3100 }
3101
__allocate_new_section(struct f2fs_sb_info * sbi,int type)3102 static void __allocate_new_section(struct f2fs_sb_info *sbi, int type)
3103 {
3104 __allocate_new_segment(sbi, type, true);
3105 }
3106
f2fs_allocate_new_section(struct f2fs_sb_info * sbi,int type)3107 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type)
3108 {
3109 down_read(&SM_I(sbi)->curseg_lock);
3110 down_write(&SIT_I(sbi)->sentry_lock);
3111 __allocate_new_section(sbi, type);
3112 up_write(&SIT_I(sbi)->sentry_lock);
3113 up_read(&SM_I(sbi)->curseg_lock);
3114 }
3115
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)3116 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3117 {
3118 int i;
3119
3120 down_read(&SM_I(sbi)->curseg_lock);
3121 down_write(&SIT_I(sbi)->sentry_lock);
3122 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3123 __allocate_new_segment(sbi, i, false);
3124 up_write(&SIT_I(sbi)->sentry_lock);
3125 up_read(&SM_I(sbi)->curseg_lock);
3126 }
3127
3128 static const struct segment_allocation default_salloc_ops = {
3129 .allocate_segment = allocate_segment_by_default,
3130 };
3131
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)3132 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3133 struct cp_control *cpc)
3134 {
3135 __u64 trim_start = cpc->trim_start;
3136 bool has_candidate = false;
3137
3138 down_write(&SIT_I(sbi)->sentry_lock);
3139 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3140 if (add_discard_addrs(sbi, cpc, true)) {
3141 has_candidate = true;
3142 break;
3143 }
3144 }
3145 up_write(&SIT_I(sbi)->sentry_lock);
3146
3147 cpc->trim_start = trim_start;
3148 return has_candidate;
3149 }
3150
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)3151 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3152 struct discard_policy *dpolicy,
3153 unsigned int start, unsigned int end)
3154 {
3155 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3156 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3157 struct rb_node **insert_p = NULL, *insert_parent = NULL;
3158 struct discard_cmd *dc;
3159 struct blk_plug plug;
3160 struct discard_sub_policy *spolicy = NULL;
3161 int issued;
3162 unsigned int trimmed = 0;
3163 /* fstrim each time 8 discard without no interrupt */
3164 select_sub_discard_policy(&spolicy, 0, dpolicy);
3165
3166 if (dcc->rbtree_check) {
3167 mutex_lock(&dcc->cmd_lock);
3168 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, &dcc->root, false));
3169 mutex_unlock(&dcc->cmd_lock);
3170 }
3171
3172 next:
3173 issued = 0;
3174
3175 mutex_lock(&dcc->cmd_lock);
3176 if (unlikely(dcc->rbtree_check))
3177 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3178 &dcc->root, false));
3179
3180 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3181 NULL, start,
3182 (struct rb_entry **)&prev_dc,
3183 (struct rb_entry **)&next_dc,
3184 &insert_p, &insert_parent, true, NULL);
3185 if (!dc)
3186 dc = next_dc;
3187
3188 blk_start_plug(&plug);
3189
3190 while (dc && dc->lstart <= end) {
3191 struct rb_node *node;
3192 int err = 0;
3193
3194 if (dc->len < dpolicy->granularity)
3195 goto skip;
3196
3197 if (dc->state != D_PREP) {
3198 list_move_tail(&dc->list, &dcc->fstrim_list);
3199 goto skip;
3200 }
3201
3202 err = __submit_discard_cmd(sbi, dpolicy, 0, dc, &issued);
3203
3204 if (issued >= spolicy->max_requests) {
3205 start = dc->lstart + dc->len;
3206
3207 if (err)
3208 __remove_discard_cmd(sbi, dc);
3209
3210 blk_finish_plug(&plug);
3211 mutex_unlock(&dcc->cmd_lock);
3212 trimmed += __wait_all_discard_cmd(sbi, NULL);
3213 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3214 goto next;
3215 }
3216 skip:
3217 node = rb_next(&dc->rb_node);
3218 if (err)
3219 __remove_discard_cmd(sbi, dc);
3220 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3221
3222 if (fatal_signal_pending(current))
3223 break;
3224 }
3225
3226 blk_finish_plug(&plug);
3227 mutex_unlock(&dcc->cmd_lock);
3228
3229 return trimmed;
3230 }
3231
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)3232 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3233 {
3234 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3235 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3236 unsigned int start_segno, end_segno;
3237 block_t start_block, end_block;
3238 struct cp_control cpc;
3239 struct discard_policy dpolicy;
3240 unsigned long long trimmed = 0;
3241 int err = 0;
3242 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3243
3244 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3245 return -EINVAL;
3246
3247 if (end < MAIN_BLKADDR(sbi))
3248 goto out;
3249
3250 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3251 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3252 return -EFSCORRUPTED;
3253 }
3254
3255 /* start/end segment number in main_area */
3256 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3257 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3258 GET_SEGNO(sbi, end);
3259 if (need_align) {
3260 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3261 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3262 }
3263
3264 cpc.reason = CP_DISCARD;
3265 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3266 cpc.trim_start = start_segno;
3267 cpc.trim_end = end_segno;
3268
3269 if (sbi->discard_blks == 0)
3270 goto out;
3271
3272 down_write(&sbi->gc_lock);
3273 err = f2fs_write_checkpoint(sbi, &cpc);
3274 up_write(&sbi->gc_lock);
3275 if (err)
3276 goto out;
3277
3278 /*
3279 * We filed discard candidates, but actually we don't need to wait for
3280 * all of them, since they'll be issued in idle time along with runtime
3281 * discard option. User configuration looks like using runtime discard
3282 * or periodic fstrim instead of it.
3283 */
3284 if (f2fs_realtime_discard_enable(sbi))
3285 goto out;
3286
3287 start_block = START_BLOCK(sbi, start_segno);
3288 end_block = START_BLOCK(sbi, end_segno + 1);
3289
3290 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3291 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3292 start_block, end_block);
3293
3294 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3295 start_block, end_block);
3296 out:
3297 if (!err)
3298 range->len = F2FS_BLK_TO_BYTES(trimmed);
3299 return err;
3300 }
3301
__has_curseg_space(struct f2fs_sb_info * sbi,struct curseg_info * curseg)3302 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3303 struct curseg_info *curseg)
3304 {
3305 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3306 curseg->segno);
3307 }
3308
f2fs_rw_hint_to_seg_type(enum rw_hint hint)3309 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3310 {
3311 switch (hint) {
3312 case WRITE_LIFE_SHORT:
3313 return CURSEG_HOT_DATA;
3314 case WRITE_LIFE_EXTREME:
3315 return CURSEG_COLD_DATA;
3316 default:
3317 return CURSEG_WARM_DATA;
3318 }
3319 }
3320
3321 /* This returns write hints for each segment type. This hints will be
3322 * passed down to block layer. There are mapping tables which depend on
3323 * the mount option 'whint_mode'.
3324 *
3325 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3326 *
3327 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3328 *
3329 * User F2FS Block
3330 * ---- ---- -----
3331 * META WRITE_LIFE_NOT_SET
3332 * HOT_NODE "
3333 * WARM_NODE "
3334 * COLD_NODE "
3335 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3336 * extension list " "
3337 *
3338 * -- buffered io
3339 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3340 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3341 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3342 * WRITE_LIFE_NONE " "
3343 * WRITE_LIFE_MEDIUM " "
3344 * WRITE_LIFE_LONG " "
3345 *
3346 * -- direct io
3347 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3348 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3349 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3350 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3351 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3352 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3353 *
3354 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3355 *
3356 * User F2FS Block
3357 * ---- ---- -----
3358 * META WRITE_LIFE_MEDIUM;
3359 * HOT_NODE WRITE_LIFE_NOT_SET
3360 * WARM_NODE "
3361 * COLD_NODE WRITE_LIFE_NONE
3362 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3363 * extension list " "
3364 *
3365 * -- buffered io
3366 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3367 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3368 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
3369 * WRITE_LIFE_NONE " "
3370 * WRITE_LIFE_MEDIUM " "
3371 * WRITE_LIFE_LONG " "
3372 *
3373 * -- direct io
3374 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3375 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3376 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3377 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3378 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3379 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3380 */
3381
f2fs_io_type_to_rw_hint(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)3382 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3383 enum page_type type, enum temp_type temp)
3384 {
3385 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3386 if (type == DATA) {
3387 if (temp == WARM)
3388 return WRITE_LIFE_NOT_SET;
3389 else if (temp == HOT)
3390 return WRITE_LIFE_SHORT;
3391 else if (temp == COLD)
3392 return WRITE_LIFE_EXTREME;
3393 } else {
3394 return WRITE_LIFE_NOT_SET;
3395 }
3396 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3397 if (type == DATA) {
3398 if (temp == WARM)
3399 return WRITE_LIFE_LONG;
3400 else if (temp == HOT)
3401 return WRITE_LIFE_SHORT;
3402 else if (temp == COLD)
3403 return WRITE_LIFE_EXTREME;
3404 } else if (type == NODE) {
3405 if (temp == WARM || temp == HOT)
3406 return WRITE_LIFE_NOT_SET;
3407 else if (temp == COLD)
3408 return WRITE_LIFE_NONE;
3409 } else if (type == META) {
3410 return WRITE_LIFE_MEDIUM;
3411 }
3412 }
3413 return WRITE_LIFE_NOT_SET;
3414 }
3415
__get_segment_type_2(struct f2fs_io_info * fio)3416 static int __get_segment_type_2(struct f2fs_io_info *fio)
3417 {
3418 if (fio->type == DATA)
3419 return CURSEG_HOT_DATA;
3420 else
3421 return CURSEG_HOT_NODE;
3422 }
3423
__get_segment_type_4(struct f2fs_io_info * fio)3424 static int __get_segment_type_4(struct f2fs_io_info *fio)
3425 {
3426 if (fio->type == DATA) {
3427 struct inode *inode = fio->page->mapping->host;
3428
3429 if (S_ISDIR(inode->i_mode))
3430 return CURSEG_HOT_DATA;
3431 else
3432 return CURSEG_COLD_DATA;
3433 } else {
3434 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3435 return CURSEG_WARM_NODE;
3436 else
3437 return CURSEG_COLD_NODE;
3438 }
3439 }
3440
__get_segment_type_6(struct f2fs_io_info * fio)3441 static int __get_segment_type_6(struct f2fs_io_info *fio)
3442 {
3443 if (fio->type == DATA) {
3444 struct inode *inode = fio->page->mapping->host;
3445
3446 if (is_cold_data(fio->page)) {
3447 if (fio->sbi->am.atgc_enabled)
3448 return CURSEG_ALL_DATA_ATGC;
3449 else
3450 return CURSEG_COLD_DATA;
3451 }
3452 if (file_is_cold(inode) || f2fs_compressed_file(inode))
3453 return CURSEG_COLD_DATA;
3454 if (file_is_hot(inode) ||
3455 is_inode_flag_set(inode, FI_HOT_DATA) ||
3456 f2fs_is_atomic_file(inode) ||
3457 f2fs_is_volatile_file(inode))
3458 return CURSEG_HOT_DATA;
3459 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3460 } else {
3461 if (IS_DNODE(fio->page))
3462 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3463 CURSEG_HOT_NODE;
3464 return CURSEG_COLD_NODE;
3465 }
3466 }
3467
__get_segment_type(struct f2fs_io_info * fio)3468 static int __get_segment_type(struct f2fs_io_info *fio)
3469 {
3470 int type = 0;
3471
3472 switch (F2FS_OPTION(fio->sbi).active_logs) {
3473 case 2:
3474 type = __get_segment_type_2(fio);
3475 break;
3476 case 4:
3477 type = __get_segment_type_4(fio);
3478 break;
3479 case 6:
3480 type = __get_segment_type_6(fio);
3481 break;
3482 default:
3483 f2fs_bug_on(fio->sbi, true);
3484 }
3485
3486 if (IS_HOT(type))
3487 fio->temp = HOT;
3488 else if (IS_WARM(type))
3489 fio->temp = WARM;
3490 else
3491 fio->temp = COLD;
3492 return type;
3493 }
3494
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio,int contig_level)3495 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3496 block_t old_blkaddr, block_t *new_blkaddr,
3497 struct f2fs_summary *sum, int type,
3498 struct f2fs_io_info *fio, int contig_level)
3499 {
3500 struct sit_info *sit_i = SIT_I(sbi);
3501 struct curseg_info *curseg = CURSEG_I(sbi, type);
3502 unsigned long long old_mtime;
3503 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3504 struct seg_entry *se = NULL;
3505 #ifdef CONFIG_F2FS_GRADING_SSR
3506 struct inode *inode = NULL;
3507 #endif
3508 int contig = SEQ_NONE;
3509
3510 down_read(&SM_I(sbi)->curseg_lock);
3511
3512 mutex_lock(&curseg->curseg_mutex);
3513 down_write(&sit_i->sentry_lock);
3514
3515 if (from_gc) {
3516 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3517 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3518 sanity_check_seg_type(sbi, se->type);
3519 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3520 }
3521 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3522
3523 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3524
3525 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3526
3527 /*
3528 * __add_sum_entry should be resided under the curseg_mutex
3529 * because, this function updates a summary entry in the
3530 * current summary block.
3531 */
3532 __add_sum_entry(sbi, type, sum);
3533
3534 __refresh_next_blkoff(sbi, curseg);
3535
3536 stat_inc_block_count(sbi, curseg);
3537
3538 if (from_gc) {
3539 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3540 } else {
3541 update_segment_mtime(sbi, old_blkaddr, 0);
3542 old_mtime = 0;
3543 }
3544 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3545
3546 /*
3547 * SIT information should be updated before segment allocation,
3548 * since SSR needs latest valid block information.
3549 */
3550 update_sit_entry(sbi, *new_blkaddr, 1);
3551 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3552 update_sit_entry(sbi, old_blkaddr, -1);
3553
3554 if (!__has_curseg_space(sbi, curseg)) {
3555 if (from_gc) {
3556 get_atssr_segment(sbi, type, se->type,
3557 AT_SSR, se->mtime);
3558 } else {
3559 #ifdef CONFIG_F2FS_GRADING_SSR
3560 if (contig_level != SEQ_NONE) {
3561 contig = contig_level;
3562 goto allocate_label;
3563 }
3564
3565 if (page && page->mapping && page->mapping != NODE_MAPPING(sbi) &&
3566 page->mapping != META_MAPPING(sbi)) {
3567 inode = page->mapping->host;
3568 contig = check_io_seq(get_dirty_pages(inode));
3569 }
3570 allocate_label:
3571 #endif
3572 sit_i->s_ops->allocate_segment(sbi, type, false, contig);
3573 }
3574 }
3575 /*
3576 * segment dirty status should be updated after segment allocation,
3577 * so we just need to update status only one time after previous
3578 * segment being closed.
3579 */
3580 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3581 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3582
3583 up_write(&sit_i->sentry_lock);
3584
3585 if (page && IS_NODESEG(type)) {
3586 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3587
3588 f2fs_inode_chksum_set(sbi, page);
3589 }
3590
3591 if (fio) {
3592 struct f2fs_bio_info *io;
3593
3594 if (F2FS_IO_ALIGNED(sbi))
3595 fio->retry = false;
3596
3597 INIT_LIST_HEAD(&fio->list);
3598 fio->in_list = true;
3599 io = sbi->write_io[fio->type] + fio->temp;
3600 spin_lock(&io->io_lock);
3601 list_add_tail(&fio->list, &io->io_list);
3602 spin_unlock(&io->io_lock);
3603 }
3604
3605 mutex_unlock(&curseg->curseg_mutex);
3606
3607 up_read(&SM_I(sbi)->curseg_lock);
3608 }
3609
update_device_state(struct f2fs_io_info * fio)3610 static void update_device_state(struct f2fs_io_info *fio)
3611 {
3612 struct f2fs_sb_info *sbi = fio->sbi;
3613 unsigned int devidx;
3614
3615 if (!f2fs_is_multi_device(sbi))
3616 return;
3617
3618 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3619
3620 /* update device state for fsync */
3621 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3622
3623 /* update device state for checkpoint */
3624 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3625 spin_lock(&sbi->dev_lock);
3626 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3627 spin_unlock(&sbi->dev_lock);
3628 }
3629 }
3630
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3631 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3632 {
3633 int type = __get_segment_type(fio);
3634 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3635
3636 if (keep_order)
3637 down_read(&fio->sbi->io_order_lock);
3638 reallocate:
3639 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3640 &fio->new_blkaddr, sum, type, fio, SEQ_NONE);
3641 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3642 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3643 fio->old_blkaddr, fio->old_blkaddr);
3644
3645 /* writeout dirty page into bdev */
3646 f2fs_submit_page_write(fio);
3647 if (fio->retry) {
3648 fio->old_blkaddr = fio->new_blkaddr;
3649 goto reallocate;
3650 }
3651
3652 update_device_state(fio);
3653
3654 if (keep_order)
3655 up_read(&fio->sbi->io_order_lock);
3656 }
3657
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct page * page,enum iostat_type io_type)3658 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3659 enum iostat_type io_type)
3660 {
3661 struct f2fs_io_info fio = {
3662 .sbi = sbi,
3663 .type = META,
3664 .temp = HOT,
3665 .op = REQ_OP_WRITE,
3666 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3667 .old_blkaddr = page->index,
3668 .new_blkaddr = page->index,
3669 .page = page,
3670 .encrypted_page = NULL,
3671 .in_list = false,
3672 };
3673
3674 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3675 fio.op_flags &= ~REQ_META;
3676
3677 set_page_writeback(page);
3678 ClearPageError(page);
3679 f2fs_submit_page_write(&fio);
3680
3681 stat_inc_meta_count(sbi, page->index);
3682 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3683 }
3684
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)3685 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3686 {
3687 struct f2fs_summary sum;
3688
3689 set_summary(&sum, nid, 0, 0);
3690 do_write_page(&sum, fio);
3691
3692 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3693 }
3694
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)3695 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3696 struct f2fs_io_info *fio)
3697 {
3698 struct f2fs_sb_info *sbi = fio->sbi;
3699 struct f2fs_summary sum;
3700
3701 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3702 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3703 do_write_page(&sum, fio);
3704 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3705
3706 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3707 }
3708
f2fs_inplace_write_data(struct f2fs_io_info * fio)3709 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3710 {
3711 int err;
3712 struct f2fs_sb_info *sbi = fio->sbi;
3713 unsigned int segno;
3714
3715 fio->new_blkaddr = fio->old_blkaddr;
3716 /* i/o temperature is needed for passing down write hints */
3717 __get_segment_type(fio);
3718
3719 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3720
3721 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3722 set_sbi_flag(sbi, SBI_NEED_FSCK);
3723 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3724 __func__, segno);
3725 return -EFSCORRUPTED;
3726 }
3727
3728 stat_inc_inplace_blocks(fio->sbi);
3729
3730 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3731 err = f2fs_merge_page_bio(fio);
3732 else
3733 err = f2fs_submit_page_bio(fio);
3734 if (!err) {
3735 update_device_state(fio);
3736 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3737 }
3738
3739 return err;
3740 }
3741
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)3742 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3743 unsigned int segno)
3744 {
3745 int i;
3746
3747 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3748 if (CURSEG_I(sbi, i)->segno == segno)
3749 break;
3750 }
3751 return i;
3752 }
3753
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr,bool from_gc)3754 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3755 block_t old_blkaddr, block_t new_blkaddr,
3756 bool recover_curseg, bool recover_newaddr,
3757 bool from_gc)
3758 {
3759 struct sit_info *sit_i = SIT_I(sbi);
3760 struct curseg_info *curseg;
3761 unsigned int segno, old_cursegno;
3762 struct seg_entry *se;
3763 int type;
3764 unsigned short old_blkoff;
3765
3766 segno = GET_SEGNO(sbi, new_blkaddr);
3767 se = get_seg_entry(sbi, segno);
3768 type = se->type;
3769
3770 down_write(&SM_I(sbi)->curseg_lock);
3771
3772 if (!recover_curseg) {
3773 /* for recovery flow */
3774 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3775 if (old_blkaddr == NULL_ADDR)
3776 type = CURSEG_COLD_DATA;
3777 else
3778 type = CURSEG_WARM_DATA;
3779 }
3780 } else {
3781 if (IS_CURSEG(sbi, segno)) {
3782 /* se->type is volatile as SSR allocation */
3783 type = __f2fs_get_curseg(sbi, segno);
3784 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3785 } else {
3786 type = CURSEG_WARM_DATA;
3787 }
3788 }
3789
3790 f2fs_bug_on(sbi, !IS_DATASEG(type));
3791 curseg = CURSEG_I(sbi, type);
3792
3793 mutex_lock(&curseg->curseg_mutex);
3794 down_write(&sit_i->sentry_lock);
3795
3796 old_cursegno = curseg->segno;
3797 old_blkoff = curseg->next_blkoff;
3798
3799 /* change the current segment */
3800 if (segno != curseg->segno) {
3801 curseg->next_segno = segno;
3802 change_curseg(sbi, type, true);
3803 }
3804
3805 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3806 __add_sum_entry(sbi, type, sum);
3807
3808 if (!recover_curseg || recover_newaddr) {
3809 if (!from_gc)
3810 update_segment_mtime(sbi, new_blkaddr, 0);
3811 update_sit_entry(sbi, new_blkaddr, 1);
3812 }
3813 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3814 invalidate_mapping_pages(META_MAPPING(sbi),
3815 old_blkaddr, old_blkaddr);
3816 if (!from_gc)
3817 update_segment_mtime(sbi, old_blkaddr, 0);
3818 update_sit_entry(sbi, old_blkaddr, -1);
3819 }
3820
3821 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3822 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3823
3824 locate_dirty_segment(sbi, old_cursegno);
3825
3826 if (recover_curseg) {
3827 if (old_cursegno != curseg->segno) {
3828 curseg->next_segno = old_cursegno;
3829 change_curseg(sbi, type, true);
3830 }
3831 curseg->next_blkoff = old_blkoff;
3832 }
3833
3834 up_write(&sit_i->sentry_lock);
3835 mutex_unlock(&curseg->curseg_mutex);
3836 up_write(&SM_I(sbi)->curseg_lock);
3837 }
3838
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)3839 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3840 block_t old_addr, block_t new_addr,
3841 unsigned char version, bool recover_curseg,
3842 bool recover_newaddr)
3843 {
3844 struct f2fs_summary sum;
3845
3846 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3847
3848 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3849 recover_curseg, recover_newaddr, false);
3850
3851 f2fs_update_data_blkaddr(dn, new_addr);
3852 }
3853
f2fs_wait_on_page_writeback(struct page * page,enum page_type type,bool ordered,bool locked)3854 void f2fs_wait_on_page_writeback(struct page *page,
3855 enum page_type type, bool ordered, bool locked)
3856 {
3857 if (PageWriteback(page)) {
3858 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3859
3860 /* submit cached LFS IO */
3861 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3862 /* sbumit cached IPU IO */
3863 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3864 if (ordered) {
3865 wait_on_page_writeback(page);
3866 f2fs_bug_on(sbi, locked && PageWriteback(page));
3867 } else {
3868 wait_for_stable_page(page);
3869 }
3870 }
3871 }
3872
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)3873 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3874 {
3875 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3876 struct page *cpage;
3877
3878 if (!f2fs_post_read_required(inode))
3879 return;
3880
3881 if (!__is_valid_data_blkaddr(blkaddr))
3882 return;
3883
3884 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3885 if (cpage) {
3886 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3887 f2fs_put_page(cpage, 1);
3888 }
3889 }
3890
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)3891 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3892 block_t len)
3893 {
3894 block_t i;
3895
3896 for (i = 0; i < len; i++)
3897 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3898 }
3899
read_compacted_summaries(struct f2fs_sb_info * sbi)3900 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3901 {
3902 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3903 struct curseg_info *seg_i;
3904 unsigned char *kaddr;
3905 struct page *page;
3906 block_t start;
3907 int i, j, offset;
3908
3909 start = start_sum_block(sbi);
3910
3911 page = f2fs_get_meta_page(sbi, start++);
3912 if (IS_ERR(page))
3913 return PTR_ERR(page);
3914 kaddr = (unsigned char *)page_address(page);
3915
3916 /* Step 1: restore nat cache */
3917 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3918 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3919
3920 /* Step 2: restore sit cache */
3921 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3922 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3923 offset = 2 * SUM_JOURNAL_SIZE;
3924
3925 /* Step 3: restore summary entries */
3926 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3927 unsigned short blk_off;
3928 unsigned int segno;
3929
3930 seg_i = CURSEG_I(sbi, i);
3931 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3932 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3933 seg_i->next_segno = segno;
3934 reset_curseg(sbi, i, 0);
3935 seg_i->alloc_type = ckpt->alloc_type[i];
3936 seg_i->next_blkoff = blk_off;
3937
3938 if (seg_i->alloc_type == SSR)
3939 blk_off = sbi->blocks_per_seg;
3940
3941 for (j = 0; j < blk_off; j++) {
3942 struct f2fs_summary *s;
3943 s = (struct f2fs_summary *)(kaddr + offset);
3944 seg_i->sum_blk->entries[j] = *s;
3945 offset += SUMMARY_SIZE;
3946 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3947 SUM_FOOTER_SIZE)
3948 continue;
3949
3950 f2fs_put_page(page, 1);
3951 page = NULL;
3952
3953 page = f2fs_get_meta_page(sbi, start++);
3954 if (IS_ERR(page))
3955 return PTR_ERR(page);
3956 kaddr = (unsigned char *)page_address(page);
3957 offset = 0;
3958 }
3959 }
3960 f2fs_put_page(page, 1);
3961 return 0;
3962 }
3963
read_normal_summaries(struct f2fs_sb_info * sbi,int type)3964 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3965 {
3966 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3967 struct f2fs_summary_block *sum;
3968 struct curseg_info *curseg;
3969 struct page *new;
3970 unsigned short blk_off;
3971 unsigned int segno = 0;
3972 block_t blk_addr = 0;
3973 int err = 0;
3974
3975 /* get segment number and block addr */
3976 if (IS_DATASEG(type)) {
3977 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3978 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3979 CURSEG_HOT_DATA]);
3980 if (__exist_node_summaries(sbi))
3981 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3982 else
3983 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3984 } else {
3985 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3986 CURSEG_HOT_NODE]);
3987 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3988 CURSEG_HOT_NODE]);
3989 if (__exist_node_summaries(sbi))
3990 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3991 type - CURSEG_HOT_NODE);
3992 else
3993 blk_addr = GET_SUM_BLOCK(sbi, segno);
3994 }
3995
3996 new = f2fs_get_meta_page(sbi, blk_addr);
3997 if (IS_ERR(new))
3998 return PTR_ERR(new);
3999 sum = (struct f2fs_summary_block *)page_address(new);
4000
4001 if (IS_NODESEG(type)) {
4002 if (__exist_node_summaries(sbi)) {
4003 struct f2fs_summary *ns = &sum->entries[0];
4004 int i;
4005 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
4006 ns->version = 0;
4007 ns->ofs_in_node = 0;
4008 }
4009 } else {
4010 err = f2fs_restore_node_summary(sbi, segno, sum);
4011 if (err)
4012 goto out;
4013 }
4014 }
4015
4016 /* set uncompleted segment to curseg */
4017 curseg = CURSEG_I(sbi, type);
4018 mutex_lock(&curseg->curseg_mutex);
4019
4020 /* update journal info */
4021 down_write(&curseg->journal_rwsem);
4022 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4023 up_write(&curseg->journal_rwsem);
4024
4025 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4026 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4027 curseg->next_segno = segno;
4028 reset_curseg(sbi, type, 0);
4029 curseg->alloc_type = ckpt->alloc_type[type];
4030 curseg->next_blkoff = blk_off;
4031 mutex_unlock(&curseg->curseg_mutex);
4032 out:
4033 f2fs_put_page(new, 1);
4034 return err;
4035 }
4036
restore_curseg_summaries(struct f2fs_sb_info * sbi)4037 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4038 {
4039 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4040 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4041 int type = CURSEG_HOT_DATA;
4042 int err;
4043
4044 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4045 int npages = f2fs_npages_for_summary_flush(sbi, true);
4046
4047 if (npages >= 2)
4048 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4049 META_CP, true);
4050
4051 /* restore for compacted data summary */
4052 err = read_compacted_summaries(sbi);
4053 if (err)
4054 return err;
4055 type = CURSEG_HOT_NODE;
4056 }
4057
4058 if (__exist_node_summaries(sbi))
4059 f2fs_ra_meta_pages(sbi,
4060 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4061 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4062
4063 for (; type <= CURSEG_COLD_NODE; type++) {
4064 err = read_normal_summaries(sbi, type);
4065 if (err)
4066 return err;
4067 }
4068
4069 /* sanity check for summary blocks */
4070 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4071 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4072 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
4073 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4074 return -EINVAL;
4075 }
4076
4077 return 0;
4078 }
4079
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)4080 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4081 {
4082 struct page *page;
4083 unsigned char *kaddr;
4084 struct f2fs_summary *summary;
4085 struct curseg_info *seg_i;
4086 int written_size = 0;
4087 int i, j;
4088
4089 page = f2fs_grab_meta_page(sbi, blkaddr++);
4090 kaddr = (unsigned char *)page_address(page);
4091 memset(kaddr, 0, PAGE_SIZE);
4092
4093 /* Step 1: write nat cache */
4094 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4095 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4096 written_size += SUM_JOURNAL_SIZE;
4097
4098 /* Step 2: write sit cache */
4099 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4100 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4101 written_size += SUM_JOURNAL_SIZE;
4102
4103 /* Step 3: write summary entries */
4104 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4105 unsigned short blkoff;
4106 seg_i = CURSEG_I(sbi, i);
4107 if (sbi->ckpt->alloc_type[i] == SSR)
4108 blkoff = sbi->blocks_per_seg;
4109 else
4110 blkoff = curseg_blkoff(sbi, i);
4111
4112 for (j = 0; j < blkoff; j++) {
4113 if (!page) {
4114 page = f2fs_grab_meta_page(sbi, blkaddr++);
4115 kaddr = (unsigned char *)page_address(page);
4116 memset(kaddr, 0, PAGE_SIZE);
4117 written_size = 0;
4118 }
4119 summary = (struct f2fs_summary *)(kaddr + written_size);
4120 *summary = seg_i->sum_blk->entries[j];
4121 written_size += SUMMARY_SIZE;
4122
4123 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4124 SUM_FOOTER_SIZE)
4125 continue;
4126
4127 set_page_dirty(page);
4128 f2fs_put_page(page, 1);
4129 page = NULL;
4130 }
4131 }
4132 if (page) {
4133 set_page_dirty(page);
4134 f2fs_put_page(page, 1);
4135 }
4136 }
4137
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)4138 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4139 block_t blkaddr, int type)
4140 {
4141 int i, end;
4142 if (IS_DATASEG(type))
4143 end = type + NR_CURSEG_DATA_TYPE;
4144 else
4145 end = type + NR_CURSEG_NODE_TYPE;
4146
4147 for (i = type; i < end; i++)
4148 write_current_sum_page(sbi, i, blkaddr + (i - type));
4149 }
4150
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4151 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4152 {
4153 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4154 write_compacted_summaries(sbi, start_blk);
4155 else
4156 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4157 }
4158
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4159 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4160 {
4161 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4162 }
4163
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)4164 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4165 unsigned int val, int alloc)
4166 {
4167 int i;
4168
4169 if (type == NAT_JOURNAL) {
4170 for (i = 0; i < nats_in_cursum(journal); i++) {
4171 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4172 return i;
4173 }
4174 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4175 return update_nats_in_cursum(journal, 1);
4176 } else if (type == SIT_JOURNAL) {
4177 for (i = 0; i < sits_in_cursum(journal); i++)
4178 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4179 return i;
4180 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4181 return update_sits_in_cursum(journal, 1);
4182 }
4183 return -1;
4184 }
4185
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)4186 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4187 unsigned int segno)
4188 {
4189 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4190 }
4191
get_next_sit_page(struct f2fs_sb_info * sbi,unsigned int start)4192 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4193 unsigned int start)
4194 {
4195 struct sit_info *sit_i = SIT_I(sbi);
4196 struct page *page;
4197 pgoff_t src_off, dst_off;
4198
4199 src_off = current_sit_addr(sbi, start);
4200 dst_off = next_sit_addr(sbi, src_off);
4201
4202 page = f2fs_grab_meta_page(sbi, dst_off);
4203 seg_info_to_sit_page(sbi, page, start);
4204
4205 set_page_dirty(page);
4206 set_to_next_sit(sit_i, start);
4207
4208 return page;
4209 }
4210
grab_sit_entry_set(void)4211 static struct sit_entry_set *grab_sit_entry_set(void)
4212 {
4213 struct sit_entry_set *ses =
4214 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
4215
4216 ses->entry_cnt = 0;
4217 INIT_LIST_HEAD(&ses->set_list);
4218 return ses;
4219 }
4220
release_sit_entry_set(struct sit_entry_set * ses)4221 static void release_sit_entry_set(struct sit_entry_set *ses)
4222 {
4223 list_del(&ses->set_list);
4224 kmem_cache_free(sit_entry_set_slab, ses);
4225 }
4226
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)4227 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4228 struct list_head *head)
4229 {
4230 struct sit_entry_set *next = ses;
4231
4232 if (list_is_last(&ses->set_list, head))
4233 return;
4234
4235 list_for_each_entry_continue(next, head, set_list)
4236 if (ses->entry_cnt <= next->entry_cnt)
4237 break;
4238
4239 list_move_tail(&ses->set_list, &next->set_list);
4240 }
4241
add_sit_entry(unsigned int segno,struct list_head * head)4242 static void add_sit_entry(unsigned int segno, struct list_head *head)
4243 {
4244 struct sit_entry_set *ses;
4245 unsigned int start_segno = START_SEGNO(segno);
4246
4247 list_for_each_entry(ses, head, set_list) {
4248 if (ses->start_segno == start_segno) {
4249 ses->entry_cnt++;
4250 adjust_sit_entry_set(ses, head);
4251 return;
4252 }
4253 }
4254
4255 ses = grab_sit_entry_set();
4256
4257 ses->start_segno = start_segno;
4258 ses->entry_cnt++;
4259 list_add(&ses->set_list, head);
4260 }
4261
add_sits_in_set(struct f2fs_sb_info * sbi)4262 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4263 {
4264 struct f2fs_sm_info *sm_info = SM_I(sbi);
4265 struct list_head *set_list = &sm_info->sit_entry_set;
4266 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4267 unsigned int segno;
4268
4269 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4270 add_sit_entry(segno, set_list);
4271 }
4272
remove_sits_in_journal(struct f2fs_sb_info * sbi)4273 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4274 {
4275 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4276 struct f2fs_journal *journal = curseg->journal;
4277 int i;
4278
4279 down_write(&curseg->journal_rwsem);
4280 for (i = 0; i < sits_in_cursum(journal); i++) {
4281 unsigned int segno;
4282 bool dirtied;
4283
4284 segno = le32_to_cpu(segno_in_journal(journal, i));
4285 dirtied = __mark_sit_entry_dirty(sbi, segno);
4286
4287 if (!dirtied)
4288 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4289 }
4290 update_sits_in_cursum(journal, -i);
4291 up_write(&curseg->journal_rwsem);
4292 }
4293
4294 /*
4295 * CP calls this function, which flushes SIT entries including sit_journal,
4296 * and moves prefree segs to free segs.
4297 */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)4298 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4299 {
4300 struct sit_info *sit_i = SIT_I(sbi);
4301 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4302 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4303 struct f2fs_journal *journal = curseg->journal;
4304 struct sit_entry_set *ses, *tmp;
4305 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4306 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4307 struct seg_entry *se;
4308
4309 down_write(&sit_i->sentry_lock);
4310
4311 if (!sit_i->dirty_sentries)
4312 goto out;
4313
4314 /*
4315 * add and account sit entries of dirty bitmap in sit entry
4316 * set temporarily
4317 */
4318 add_sits_in_set(sbi);
4319
4320 /*
4321 * if there are no enough space in journal to store dirty sit
4322 * entries, remove all entries from journal and add and account
4323 * them in sit entry set.
4324 */
4325 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4326 !to_journal)
4327 remove_sits_in_journal(sbi);
4328
4329 /*
4330 * there are two steps to flush sit entries:
4331 * #1, flush sit entries to journal in current cold data summary block.
4332 * #2, flush sit entries to sit page.
4333 */
4334 list_for_each_entry_safe(ses, tmp, head, set_list) {
4335 struct page *page = NULL;
4336 struct f2fs_sit_block *raw_sit = NULL;
4337 unsigned int start_segno = ses->start_segno;
4338 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4339 (unsigned long)MAIN_SEGS(sbi));
4340 unsigned int segno = start_segno;
4341
4342 if (to_journal &&
4343 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4344 to_journal = false;
4345
4346 if (to_journal) {
4347 down_write(&curseg->journal_rwsem);
4348 } else {
4349 page = get_next_sit_page(sbi, start_segno);
4350 raw_sit = page_address(page);
4351 }
4352
4353 /* flush dirty sit entries in region of current sit set */
4354 for_each_set_bit_from(segno, bitmap, end) {
4355 int offset, sit_offset;
4356
4357 se = get_seg_entry(sbi, segno);
4358 #ifdef CONFIG_F2FS_CHECK_FS
4359 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4360 SIT_VBLOCK_MAP_SIZE))
4361 f2fs_bug_on(sbi, 1);
4362 #endif
4363
4364 /* add discard candidates */
4365 if (!(cpc->reason & CP_DISCARD)) {
4366 cpc->trim_start = segno;
4367 add_discard_addrs(sbi, cpc, false);
4368 }
4369
4370 if (to_journal) {
4371 offset = f2fs_lookup_journal_in_cursum(journal,
4372 SIT_JOURNAL, segno, 1);
4373 f2fs_bug_on(sbi, offset < 0);
4374 segno_in_journal(journal, offset) =
4375 cpu_to_le32(segno);
4376 seg_info_to_raw_sit(se,
4377 &sit_in_journal(journal, offset));
4378 check_block_count(sbi, segno,
4379 &sit_in_journal(journal, offset));
4380 } else {
4381 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4382 seg_info_to_raw_sit(se,
4383 &raw_sit->entries[sit_offset]);
4384 check_block_count(sbi, segno,
4385 &raw_sit->entries[sit_offset]);
4386 }
4387
4388 __clear_bit(segno, bitmap);
4389 sit_i->dirty_sentries--;
4390 ses->entry_cnt--;
4391 }
4392
4393 if (to_journal)
4394 up_write(&curseg->journal_rwsem);
4395 else
4396 f2fs_put_page(page, 1);
4397
4398 f2fs_bug_on(sbi, ses->entry_cnt);
4399 release_sit_entry_set(ses);
4400 }
4401
4402 f2fs_bug_on(sbi, !list_empty(head));
4403 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4404 out:
4405 if (cpc->reason & CP_DISCARD) {
4406 __u64 trim_start = cpc->trim_start;
4407
4408 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4409 add_discard_addrs(sbi, cpc, false);
4410
4411 cpc->trim_start = trim_start;
4412 }
4413 up_write(&sit_i->sentry_lock);
4414
4415 set_prefree_as_free_segments(sbi);
4416 }
4417
build_sit_info(struct f2fs_sb_info * sbi)4418 static int build_sit_info(struct f2fs_sb_info *sbi)
4419 {
4420 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4421 struct sit_info *sit_i;
4422 unsigned int sit_segs, start;
4423 char *src_bitmap, *bitmap;
4424 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4425
4426 /* allocate memory for SIT information */
4427 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4428 if (!sit_i)
4429 return -ENOMEM;
4430
4431 SM_I(sbi)->sit_info = sit_i;
4432
4433 sit_i->sentries =
4434 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4435 MAIN_SEGS(sbi)),
4436 GFP_KERNEL);
4437 if (!sit_i->sentries)
4438 return -ENOMEM;
4439
4440 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4441 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4442 GFP_KERNEL);
4443 if (!sit_i->dirty_sentries_bitmap)
4444 return -ENOMEM;
4445
4446 #ifdef CONFIG_F2FS_CHECK_FS
4447 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4448 #else
4449 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4450 #endif
4451 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4452 if (!sit_i->bitmap)
4453 return -ENOMEM;
4454
4455 bitmap = sit_i->bitmap;
4456
4457 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4458 sit_i->sentries[start].cur_valid_map = bitmap;
4459 bitmap += SIT_VBLOCK_MAP_SIZE;
4460
4461 sit_i->sentries[start].ckpt_valid_map = bitmap;
4462 bitmap += SIT_VBLOCK_MAP_SIZE;
4463
4464 #ifdef CONFIG_F2FS_CHECK_FS
4465 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4466 bitmap += SIT_VBLOCK_MAP_SIZE;
4467 #endif
4468
4469 sit_i->sentries[start].discard_map = bitmap;
4470 bitmap += SIT_VBLOCK_MAP_SIZE;
4471 }
4472
4473 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4474 if (!sit_i->tmp_map)
4475 return -ENOMEM;
4476
4477 if (__is_large_section(sbi)) {
4478 sit_i->sec_entries =
4479 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4480 MAIN_SECS(sbi)),
4481 GFP_KERNEL);
4482 if (!sit_i->sec_entries)
4483 return -ENOMEM;
4484 }
4485
4486 /* get information related with SIT */
4487 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4488
4489 /* setup SIT bitmap from ckeckpoint pack */
4490 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4491 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4492
4493 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4494 if (!sit_i->sit_bitmap)
4495 return -ENOMEM;
4496
4497 #ifdef CONFIG_F2FS_CHECK_FS
4498 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4499 sit_bitmap_size, GFP_KERNEL);
4500 if (!sit_i->sit_bitmap_mir)
4501 return -ENOMEM;
4502
4503 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4504 main_bitmap_size, GFP_KERNEL);
4505 if (!sit_i->invalid_segmap)
4506 return -ENOMEM;
4507 #endif
4508
4509 /* init SIT information */
4510 sit_i->s_ops = &default_salloc_ops;
4511
4512 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4513 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4514 sit_i->written_valid_blocks = 0;
4515 sit_i->bitmap_size = sit_bitmap_size;
4516 sit_i->dirty_sentries = 0;
4517 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4518 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4519 sit_i->mounted_time = ktime_get_boottime_seconds();
4520 init_rwsem(&sit_i->sentry_lock);
4521 return 0;
4522 }
4523
build_free_segmap(struct f2fs_sb_info * sbi)4524 static int build_free_segmap(struct f2fs_sb_info *sbi)
4525 {
4526 struct free_segmap_info *free_i;
4527 unsigned int bitmap_size, sec_bitmap_size;
4528
4529 /* allocate memory for free segmap information */
4530 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4531 if (!free_i)
4532 return -ENOMEM;
4533
4534 SM_I(sbi)->free_info = free_i;
4535
4536 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4537 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4538 if (!free_i->free_segmap)
4539 return -ENOMEM;
4540
4541 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4542 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4543 if (!free_i->free_secmap)
4544 return -ENOMEM;
4545
4546 /* set all segments as dirty temporarily */
4547 memset(free_i->free_segmap, 0xff, bitmap_size);
4548 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4549
4550 /* init free segmap information */
4551 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4552 free_i->free_segments = 0;
4553 free_i->free_sections = 0;
4554 spin_lock_init(&free_i->segmap_lock);
4555 return 0;
4556 }
4557
build_curseg(struct f2fs_sb_info * sbi)4558 static int build_curseg(struct f2fs_sb_info *sbi)
4559 {
4560 struct curseg_info *array;
4561 int i;
4562
4563 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4564 sizeof(*array)), GFP_KERNEL);
4565 if (!array)
4566 return -ENOMEM;
4567
4568 SM_I(sbi)->curseg_array = array;
4569
4570 for (i = 0; i < NO_CHECK_TYPE; i++) {
4571 mutex_init(&array[i].curseg_mutex);
4572 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4573 if (!array[i].sum_blk)
4574 return -ENOMEM;
4575 init_rwsem(&array[i].journal_rwsem);
4576 array[i].journal = f2fs_kzalloc(sbi,
4577 sizeof(struct f2fs_journal), GFP_KERNEL);
4578 if (!array[i].journal)
4579 return -ENOMEM;
4580 if (i < NR_PERSISTENT_LOG)
4581 array[i].seg_type = CURSEG_HOT_DATA + i;
4582 else if (i == CURSEG_COLD_DATA_PINNED)
4583 array[i].seg_type = CURSEG_COLD_DATA;
4584 else if (i == CURSEG_ALL_DATA_ATGC)
4585 array[i].seg_type = CURSEG_COLD_DATA;
4586 array[i].segno = NULL_SEGNO;
4587 array[i].next_blkoff = 0;
4588 array[i].inited = false;
4589 }
4590 return restore_curseg_summaries(sbi);
4591 }
4592
build_sit_entries(struct f2fs_sb_info * sbi)4593 static int build_sit_entries(struct f2fs_sb_info *sbi)
4594 {
4595 struct sit_info *sit_i = SIT_I(sbi);
4596 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4597 struct f2fs_journal *journal = curseg->journal;
4598 struct seg_entry *se;
4599 struct f2fs_sit_entry sit;
4600 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4601 unsigned int i, start, end;
4602 unsigned int readed, start_blk = 0;
4603 int err = 0;
4604 block_t sit_valid_blocks[2] = {0, 0};
4605
4606 do {
4607 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4608 META_SIT, true);
4609
4610 start = start_blk * sit_i->sents_per_block;
4611 end = (start_blk + readed) * sit_i->sents_per_block;
4612
4613 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4614 struct f2fs_sit_block *sit_blk;
4615 struct page *page;
4616
4617 se = &sit_i->sentries[start];
4618 page = get_current_sit_page(sbi, start);
4619 if (IS_ERR(page))
4620 return PTR_ERR(page);
4621 sit_blk = (struct f2fs_sit_block *)page_address(page);
4622 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4623 f2fs_put_page(page, 1);
4624
4625 err = check_block_count(sbi, start, &sit);
4626 if (err)
4627 return err;
4628 seg_info_from_raw_sit(se, &sit);
4629
4630 if (se->type >= NR_PERSISTENT_LOG) {
4631 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4632 se->type, start);
4633 return -EFSCORRUPTED;
4634 }
4635
4636 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4637
4638 /* build discard map only one time */
4639 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4640 memset(se->discard_map, 0xff,
4641 SIT_VBLOCK_MAP_SIZE);
4642 } else {
4643 memcpy(se->discard_map,
4644 se->cur_valid_map,
4645 SIT_VBLOCK_MAP_SIZE);
4646 sbi->discard_blks +=
4647 sbi->blocks_per_seg -
4648 se->valid_blocks;
4649 }
4650
4651 if (__is_large_section(sbi))
4652 get_sec_entry(sbi, start)->valid_blocks +=
4653 se->valid_blocks;
4654 }
4655 start_blk += readed;
4656 } while (start_blk < sit_blk_cnt);
4657
4658 down_read(&curseg->journal_rwsem);
4659 for (i = 0; i < sits_in_cursum(journal); i++) {
4660 unsigned int old_valid_blocks;
4661
4662 start = le32_to_cpu(segno_in_journal(journal, i));
4663 if (start >= MAIN_SEGS(sbi)) {
4664 f2fs_err(sbi, "Wrong journal entry on segno %u",
4665 start);
4666 err = -EFSCORRUPTED;
4667 break;
4668 }
4669
4670 se = &sit_i->sentries[start];
4671 sit = sit_in_journal(journal, i);
4672
4673 old_valid_blocks = se->valid_blocks;
4674
4675 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4676
4677 err = check_block_count(sbi, start, &sit);
4678 if (err)
4679 break;
4680 seg_info_from_raw_sit(se, &sit);
4681
4682 if (se->type >= NR_PERSISTENT_LOG) {
4683 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4684 se->type, start);
4685 err = -EFSCORRUPTED;
4686 break;
4687 }
4688
4689 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4690
4691 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4692 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4693 } else {
4694 memcpy(se->discard_map, se->cur_valid_map,
4695 SIT_VBLOCK_MAP_SIZE);
4696 sbi->discard_blks += old_valid_blocks;
4697 sbi->discard_blks -= se->valid_blocks;
4698 }
4699
4700 if (__is_large_section(sbi)) {
4701 get_sec_entry(sbi, start)->valid_blocks +=
4702 se->valid_blocks;
4703 get_sec_entry(sbi, start)->valid_blocks -=
4704 old_valid_blocks;
4705 }
4706 }
4707 up_read(&curseg->journal_rwsem);
4708
4709 if (err)
4710 return err;
4711
4712 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4713 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4714 sit_valid_blocks[NODE], valid_node_count(sbi));
4715 return -EFSCORRUPTED;
4716 }
4717
4718 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4719 valid_user_blocks(sbi)) {
4720 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4721 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4722 valid_user_blocks(sbi));
4723 return -EFSCORRUPTED;
4724 }
4725
4726 return 0;
4727 }
4728
init_free_segmap(struct f2fs_sb_info * sbi)4729 static void init_free_segmap(struct f2fs_sb_info *sbi)
4730 {
4731 unsigned int start;
4732 int type;
4733 struct seg_entry *sentry;
4734
4735 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4736 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4737 continue;
4738 sentry = get_seg_entry(sbi, start);
4739 if (!sentry->valid_blocks)
4740 __set_free(sbi, start);
4741 else
4742 SIT_I(sbi)->written_valid_blocks +=
4743 sentry->valid_blocks;
4744 }
4745
4746 /* set use the current segments */
4747 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4748 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4749 __set_test_and_inuse(sbi, curseg_t->segno);
4750 }
4751 }
4752
init_dirty_segmap(struct f2fs_sb_info * sbi)4753 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4754 {
4755 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4756 struct free_segmap_info *free_i = FREE_I(sbi);
4757 unsigned int segno = 0, offset = 0, secno;
4758 block_t valid_blocks, usable_blks_in_seg;
4759 block_t blks_per_sec = BLKS_PER_SEC(sbi);
4760
4761 while (1) {
4762 /* find dirty segment based on free segmap */
4763 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4764 if (segno >= MAIN_SEGS(sbi))
4765 break;
4766 offset = segno + 1;
4767 valid_blocks = get_valid_blocks(sbi, segno, false);
4768 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4769 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4770 continue;
4771 if (valid_blocks > usable_blks_in_seg) {
4772 f2fs_bug_on(sbi, 1);
4773 continue;
4774 }
4775 mutex_lock(&dirty_i->seglist_lock);
4776 __locate_dirty_segment(sbi, segno, DIRTY);
4777 mutex_unlock(&dirty_i->seglist_lock);
4778 }
4779
4780 if (!__is_large_section(sbi))
4781 return;
4782
4783 mutex_lock(&dirty_i->seglist_lock);
4784 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4785 valid_blocks = get_valid_blocks(sbi, segno, true);
4786 secno = GET_SEC_FROM_SEG(sbi, segno);
4787
4788 if (!valid_blocks || valid_blocks == blks_per_sec)
4789 continue;
4790 if (IS_CURSEC(sbi, secno))
4791 continue;
4792 set_bit(secno, dirty_i->dirty_secmap);
4793 }
4794 mutex_unlock(&dirty_i->seglist_lock);
4795 }
4796
init_victim_secmap(struct f2fs_sb_info * sbi)4797 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4798 {
4799 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4800 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4801
4802 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4803 if (!dirty_i->victim_secmap)
4804 return -ENOMEM;
4805 return 0;
4806 }
4807
build_dirty_segmap(struct f2fs_sb_info * sbi)4808 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4809 {
4810 struct dirty_seglist_info *dirty_i;
4811 unsigned int bitmap_size, i;
4812
4813 /* allocate memory for dirty segments list information */
4814 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4815 GFP_KERNEL);
4816 if (!dirty_i)
4817 return -ENOMEM;
4818
4819 SM_I(sbi)->dirty_info = dirty_i;
4820 mutex_init(&dirty_i->seglist_lock);
4821
4822 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4823
4824 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4825 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4826 GFP_KERNEL);
4827 if (!dirty_i->dirty_segmap[i])
4828 return -ENOMEM;
4829 }
4830
4831 if (__is_large_section(sbi)) {
4832 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4833 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4834 bitmap_size, GFP_KERNEL);
4835 if (!dirty_i->dirty_secmap)
4836 return -ENOMEM;
4837 }
4838
4839 init_dirty_segmap(sbi);
4840 return init_victim_secmap(sbi);
4841 }
4842
sanity_check_curseg(struct f2fs_sb_info * sbi)4843 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4844 {
4845 int i;
4846
4847 /*
4848 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4849 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4850 */
4851 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4852 struct curseg_info *curseg = CURSEG_I(sbi, i);
4853 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4854 unsigned int blkofs = curseg->next_blkoff;
4855
4856 sanity_check_seg_type(sbi, curseg->seg_type);
4857
4858 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4859 f2fs_err(sbi,
4860 "Current segment has invalid alloc_type:%d",
4861 curseg->alloc_type);
4862 return -EFSCORRUPTED;
4863 }
4864
4865 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4866 goto out;
4867
4868 if (curseg->alloc_type == SSR)
4869 continue;
4870
4871 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4872 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4873 continue;
4874 out:
4875 f2fs_err(sbi,
4876 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4877 i, curseg->segno, curseg->alloc_type,
4878 curseg->next_blkoff, blkofs);
4879 return -EFSCORRUPTED;
4880 }
4881 }
4882 return 0;
4883 }
4884
4885 #ifdef CONFIG_BLK_DEV_ZONED
4886
check_zone_write_pointer(struct f2fs_sb_info * sbi,struct f2fs_dev_info * fdev,struct blk_zone * zone)4887 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4888 struct f2fs_dev_info *fdev,
4889 struct blk_zone *zone)
4890 {
4891 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4892 block_t zone_block, wp_block, last_valid_block;
4893 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4894 int i, s, b, ret;
4895 struct seg_entry *se;
4896
4897 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4898 return 0;
4899
4900 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4901 wp_segno = GET_SEGNO(sbi, wp_block);
4902 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4903 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4904 zone_segno = GET_SEGNO(sbi, zone_block);
4905 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4906
4907 if (zone_segno >= MAIN_SEGS(sbi))
4908 return 0;
4909
4910 /*
4911 * Skip check of zones cursegs point to, since
4912 * fix_curseg_write_pointer() checks them.
4913 */
4914 for (i = 0; i < NO_CHECK_TYPE; i++)
4915 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4916 CURSEG_I(sbi, i)->segno))
4917 return 0;
4918
4919 /*
4920 * Get last valid block of the zone.
4921 */
4922 last_valid_block = zone_block - 1;
4923 for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4924 segno = zone_segno + s;
4925 se = get_seg_entry(sbi, segno);
4926 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4927 if (f2fs_test_bit(b, se->cur_valid_map)) {
4928 last_valid_block = START_BLOCK(sbi, segno) + b;
4929 break;
4930 }
4931 if (last_valid_block >= zone_block)
4932 break;
4933 }
4934
4935 /*
4936 * If last valid block is beyond the write pointer, report the
4937 * inconsistency. This inconsistency does not cause write error
4938 * because the zone will not be selected for write operation until
4939 * it get discarded. Just report it.
4940 */
4941 if (last_valid_block >= wp_block) {
4942 f2fs_notice(sbi, "Valid block beyond write pointer: "
4943 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4944 GET_SEGNO(sbi, last_valid_block),
4945 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4946 wp_segno, wp_blkoff);
4947 return 0;
4948 }
4949
4950 /*
4951 * If there is no valid block in the zone and if write pointer is
4952 * not at zone start, reset the write pointer.
4953 */
4954 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4955 f2fs_notice(sbi,
4956 "Zone without valid block has non-zero write "
4957 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4958 wp_segno, wp_blkoff);
4959 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4960 zone->len >> log_sectors_per_block);
4961 if (ret) {
4962 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4963 fdev->path, ret);
4964 return ret;
4965 }
4966 }
4967
4968 return 0;
4969 }
4970
get_target_zoned_dev(struct f2fs_sb_info * sbi,block_t zone_blkaddr)4971 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4972 block_t zone_blkaddr)
4973 {
4974 int i;
4975
4976 for (i = 0; i < sbi->s_ndevs; i++) {
4977 if (!bdev_is_zoned(FDEV(i).bdev))
4978 continue;
4979 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4980 zone_blkaddr <= FDEV(i).end_blk))
4981 return &FDEV(i);
4982 }
4983
4984 return NULL;
4985 }
4986
report_one_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)4987 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4988 void *data) {
4989 memcpy(data, zone, sizeof(struct blk_zone));
4990 return 0;
4991 }
4992
fix_curseg_write_pointer(struct f2fs_sb_info * sbi,int type)4993 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4994 {
4995 struct curseg_info *cs = CURSEG_I(sbi, type);
4996 struct f2fs_dev_info *zbd;
4997 struct blk_zone zone;
4998 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4999 block_t cs_zone_block, wp_block;
5000 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5001 sector_t zone_sector;
5002 int err;
5003
5004 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5005 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5006
5007 zbd = get_target_zoned_dev(sbi, cs_zone_block);
5008 if (!zbd)
5009 return 0;
5010
5011 /* report zone for the sector the curseg points to */
5012 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5013 << log_sectors_per_block;
5014 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5015 report_one_zone_cb, &zone);
5016 if (err != 1) {
5017 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5018 zbd->path, err);
5019 return err;
5020 }
5021
5022 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5023 return 0;
5024
5025 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5026 wp_segno = GET_SEGNO(sbi, wp_block);
5027 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5028 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5029
5030 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5031 wp_sector_off == 0)
5032 return 0;
5033
5034 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5035 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
5036 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
5037
5038 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5039 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
5040 allocate_segment_by_default(sbi, type, true, SEQ_NONE);
5041
5042 /* check consistency of the zone curseg pointed to */
5043 if (check_zone_write_pointer(sbi, zbd, &zone))
5044 return -EIO;
5045
5046 /* check newly assigned zone */
5047 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5048 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5049
5050 zbd = get_target_zoned_dev(sbi, cs_zone_block);
5051 if (!zbd)
5052 return 0;
5053
5054 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5055 << log_sectors_per_block;
5056 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5057 report_one_zone_cb, &zone);
5058 if (err != 1) {
5059 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5060 zbd->path, err);
5061 return err;
5062 }
5063
5064 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5065 return 0;
5066
5067 if (zone.wp != zone.start) {
5068 f2fs_notice(sbi,
5069 "New zone for curseg[%d] is not yet discarded. "
5070 "Reset the zone: curseg[0x%x,0x%x]",
5071 type, cs->segno, cs->next_blkoff);
5072 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
5073 zone_sector >> log_sectors_per_block,
5074 zone.len >> log_sectors_per_block);
5075 if (err) {
5076 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5077 zbd->path, err);
5078 return err;
5079 }
5080 }
5081
5082 return 0;
5083 }
5084
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5085 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5086 {
5087 int i, ret;
5088
5089 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5090 ret = fix_curseg_write_pointer(sbi, i);
5091 if (ret)
5092 return ret;
5093 }
5094
5095 return 0;
5096 }
5097
5098 struct check_zone_write_pointer_args {
5099 struct f2fs_sb_info *sbi;
5100 struct f2fs_dev_info *fdev;
5101 };
5102
check_zone_write_pointer_cb(struct blk_zone * zone,unsigned int idx,void * data)5103 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5104 void *data) {
5105 struct check_zone_write_pointer_args *args;
5106 args = (struct check_zone_write_pointer_args *)data;
5107
5108 return check_zone_write_pointer(args->sbi, args->fdev, zone);
5109 }
5110
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)5111 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5112 {
5113 int i, ret;
5114 struct check_zone_write_pointer_args args;
5115
5116 for (i = 0; i < sbi->s_ndevs; i++) {
5117 if (!bdev_is_zoned(FDEV(i).bdev))
5118 continue;
5119
5120 args.sbi = sbi;
5121 args.fdev = &FDEV(i);
5122 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5123 check_zone_write_pointer_cb, &args);
5124 if (ret < 0)
5125 return ret;
5126 }
5127
5128 return 0;
5129 }
5130
5131 /*
5132 * Return the number of usable blocks in a segment. The number of blocks
5133 * returned is always equal to the number of blocks in a segment for
5134 * segments fully contained within a sequential zone capacity or a
5135 * conventional zone. For segments partially contained in a sequential
5136 * zone capacity, the number of usable blocks up to the zone capacity
5137 * is returned. 0 is returned in all other cases.
5138 */
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5139 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5140 struct f2fs_sb_info *sbi, unsigned int segno)
5141 {
5142 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5143 unsigned int secno;
5144
5145 if (!sbi->unusable_blocks_per_sec)
5146 return sbi->blocks_per_seg;
5147
5148 secno = GET_SEC_FROM_SEG(sbi, segno);
5149 seg_start = START_BLOCK(sbi, segno);
5150 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5151 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5152
5153 /*
5154 * If segment starts before zone capacity and spans beyond
5155 * zone capacity, then usable blocks are from seg start to
5156 * zone capacity. If the segment starts after the zone capacity,
5157 * then there are no usable blocks.
5158 */
5159 if (seg_start >= sec_cap_blkaddr)
5160 return 0;
5161 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5162 return sec_cap_blkaddr - seg_start;
5163
5164 return sbi->blocks_per_seg;
5165 }
5166 #else
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5167 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5168 {
5169 return 0;
5170 }
5171
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)5172 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5173 {
5174 return 0;
5175 }
5176
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5177 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5178 unsigned int segno)
5179 {
5180 return 0;
5181 }
5182
5183 #endif
f2fs_usable_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5184 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5185 unsigned int segno)
5186 {
5187 if (f2fs_sb_has_blkzoned(sbi))
5188 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5189
5190 return sbi->blocks_per_seg;
5191 }
5192
f2fs_usable_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)5193 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5194 unsigned int segno)
5195 {
5196 if (f2fs_sb_has_blkzoned(sbi))
5197 return CAP_SEGS_PER_SEC(sbi);
5198
5199 return sbi->segs_per_sec;
5200 }
5201
5202 /*
5203 * Update min, max modified time for cost-benefit GC algorithm
5204 */
init_min_max_mtime(struct f2fs_sb_info * sbi)5205 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5206 {
5207 struct sit_info *sit_i = SIT_I(sbi);
5208 unsigned int segno;
5209
5210 down_write(&sit_i->sentry_lock);
5211
5212 sit_i->min_mtime = ULLONG_MAX;
5213
5214 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5215 unsigned int i;
5216 unsigned long long mtime = 0;
5217
5218 for (i = 0; i < sbi->segs_per_sec; i++)
5219 mtime += get_seg_entry(sbi, segno + i)->mtime;
5220
5221 mtime = div_u64(mtime, sbi->segs_per_sec);
5222
5223 if (sit_i->min_mtime > mtime)
5224 sit_i->min_mtime = mtime;
5225 }
5226 sit_i->max_mtime = get_mtime(sbi, false);
5227 sit_i->dirty_max_mtime = 0;
5228 up_write(&sit_i->sentry_lock);
5229 }
5230
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)5231 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5232 {
5233 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5234 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5235 struct f2fs_sm_info *sm_info;
5236 int err;
5237
5238 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5239 if (!sm_info)
5240 return -ENOMEM;
5241
5242 /* init sm info */
5243 sbi->sm_info = sm_info;
5244 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5245 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5246 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5247 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5248 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5249 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5250 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5251 sm_info->rec_prefree_segments = sm_info->main_segments *
5252 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5253 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5254 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5255
5256 if (!f2fs_lfs_mode(sbi))
5257 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5258 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5259 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5260 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
5261 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5262 sm_info->min_ssr_sections = reserved_sections(sbi);
5263
5264 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5265
5266 init_rwsem(&sm_info->curseg_lock);
5267
5268 if (!f2fs_readonly(sbi->sb)) {
5269 err = f2fs_create_flush_cmd_control(sbi);
5270 if (err)
5271 return err;
5272 }
5273
5274 err = create_discard_cmd_control(sbi);
5275 if (err)
5276 return err;
5277
5278 err = build_sit_info(sbi);
5279 if (err)
5280 return err;
5281 err = build_free_segmap(sbi);
5282 if (err)
5283 return err;
5284 err = build_curseg(sbi);
5285 if (err)
5286 return err;
5287
5288 /* reinit free segmap based on SIT */
5289 err = build_sit_entries(sbi);
5290 if (err)
5291 return err;
5292
5293 init_free_segmap(sbi);
5294 err = build_dirty_segmap(sbi);
5295 if (err)
5296 return err;
5297
5298 err = sanity_check_curseg(sbi);
5299 if (err)
5300 return err;
5301
5302 init_min_max_mtime(sbi);
5303 return 0;
5304 }
5305
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)5306 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5307 enum dirty_type dirty_type)
5308 {
5309 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5310
5311 mutex_lock(&dirty_i->seglist_lock);
5312 kvfree(dirty_i->dirty_segmap[dirty_type]);
5313 dirty_i->nr_dirty[dirty_type] = 0;
5314 mutex_unlock(&dirty_i->seglist_lock);
5315 }
5316
destroy_victim_secmap(struct f2fs_sb_info * sbi)5317 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5318 {
5319 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5320 kvfree(dirty_i->victim_secmap);
5321 }
5322
destroy_dirty_segmap(struct f2fs_sb_info * sbi)5323 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5324 {
5325 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5326 int i;
5327
5328 if (!dirty_i)
5329 return;
5330
5331 /* discard pre-free/dirty segments list */
5332 for (i = 0; i < NR_DIRTY_TYPE; i++)
5333 discard_dirty_segmap(sbi, i);
5334
5335 if (__is_large_section(sbi)) {
5336 mutex_lock(&dirty_i->seglist_lock);
5337 kvfree(dirty_i->dirty_secmap);
5338 mutex_unlock(&dirty_i->seglist_lock);
5339 }
5340
5341 destroy_victim_secmap(sbi);
5342 SM_I(sbi)->dirty_info = NULL;
5343 kfree(dirty_i);
5344 }
5345
destroy_curseg(struct f2fs_sb_info * sbi)5346 static void destroy_curseg(struct f2fs_sb_info *sbi)
5347 {
5348 struct curseg_info *array = SM_I(sbi)->curseg_array;
5349 int i;
5350
5351 if (!array)
5352 return;
5353 SM_I(sbi)->curseg_array = NULL;
5354 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5355 kfree(array[i].sum_blk);
5356 kfree(array[i].journal);
5357 }
5358 kfree(array);
5359 }
5360
destroy_free_segmap(struct f2fs_sb_info * sbi)5361 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5362 {
5363 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5364 if (!free_i)
5365 return;
5366 SM_I(sbi)->free_info = NULL;
5367 kvfree(free_i->free_segmap);
5368 kvfree(free_i->free_secmap);
5369 kfree(free_i);
5370 }
5371
destroy_sit_info(struct f2fs_sb_info * sbi)5372 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5373 {
5374 struct sit_info *sit_i = SIT_I(sbi);
5375
5376 if (!sit_i)
5377 return;
5378
5379 if (sit_i->sentries)
5380 kvfree(sit_i->bitmap);
5381 kfree(sit_i->tmp_map);
5382
5383 kvfree(sit_i->sentries);
5384 kvfree(sit_i->sec_entries);
5385 kvfree(sit_i->dirty_sentries_bitmap);
5386
5387 SM_I(sbi)->sit_info = NULL;
5388 kvfree(sit_i->sit_bitmap);
5389 #ifdef CONFIG_F2FS_CHECK_FS
5390 kvfree(sit_i->sit_bitmap_mir);
5391 kvfree(sit_i->invalid_segmap);
5392 #endif
5393 kfree(sit_i);
5394 }
5395
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)5396 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5397 {
5398 struct f2fs_sm_info *sm_info = SM_I(sbi);
5399
5400 if (!sm_info)
5401 return;
5402 f2fs_destroy_flush_cmd_control(sbi, true);
5403 destroy_discard_cmd_control(sbi);
5404 destroy_dirty_segmap(sbi);
5405 destroy_curseg(sbi);
5406 destroy_free_segmap(sbi);
5407 destroy_sit_info(sbi);
5408 sbi->sm_info = NULL;
5409 kfree(sm_info);
5410 }
5411
f2fs_create_segment_manager_caches(void)5412 int __init f2fs_create_segment_manager_caches(void)
5413 {
5414 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5415 sizeof(struct discard_entry));
5416 if (!discard_entry_slab)
5417 goto fail;
5418
5419 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5420 sizeof(struct discard_cmd));
5421 if (!discard_cmd_slab)
5422 goto destroy_discard_entry;
5423
5424 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5425 sizeof(struct sit_entry_set));
5426 if (!sit_entry_set_slab)
5427 goto destroy_discard_cmd;
5428
5429 inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5430 sizeof(struct inmem_pages));
5431 if (!inmem_entry_slab)
5432 goto destroy_sit_entry_set;
5433 return 0;
5434
5435 destroy_sit_entry_set:
5436 kmem_cache_destroy(sit_entry_set_slab);
5437 destroy_discard_cmd:
5438 kmem_cache_destroy(discard_cmd_slab);
5439 destroy_discard_entry:
5440 kmem_cache_destroy(discard_entry_slab);
5441 fail:
5442 return -ENOMEM;
5443 }
5444
f2fs_destroy_segment_manager_caches(void)5445 void f2fs_destroy_segment_manager_caches(void)
5446 {
5447 kmem_cache_destroy(sit_entry_set_slab);
5448 kmem_cache_destroy(discard_cmd_slab);
5449 kmem_cache_destroy(discard_entry_slab);
5450 kmem_cache_destroy(inmem_entry_slab);
5451 }
5452