• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18 
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27 
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32 
33 static struct discard_policy dpolicys[MAX_DPOLICY] = {
34 	{DPOLICY_BG, 0, DEF_MID_DISCARD_ISSUE_TIME, DEF_MAX_DISCARD_ISSUE_TIME,
35 		MAX_PLIST_NUM, false, true, false, false, DISCARD_GRAN_BG,
36 		{{1, 0}, {0, 0}, {0, 0}}},
37 	{DPOLICY_BALANCE, 0, DEF_MID_DISCARD_ISSUE_TIME, DEF_MAX_DISCARD_ISSUE_TIME,
38 		MAX_PLIST_NUM - 1, true, true, false, false, DISCARD_GRAN_BL,
39 		{{1, 0}, {2, 50}, {0, 0}}},
40 	{DPOLICY_FORCE, 0, DEF_MID_DISCARD_ISSUE_TIME, DEF_MAX_DISCARD_ISSUE_TIME,
41 		MAX_PLIST_NUM - 1, true, true, false, false, DISCARD_GRAN_FORCE,
42 		{{1, 0}, {2, 50}, {4, 2000}}},
43 	{DPOLICY_FSTRIM, 0, DEF_MID_DISCARD_ISSUE_TIME, DEF_MAX_DISCARD_ISSUE_TIME,
44 		MAX_PLIST_NUM, false, true, false, false, DISCARD_GRAN_FORCE,
45 		{{8, 0}, {8, 0}, {8, 0}}},
46 	{DPOLICY_UMOUNT, 0, DEF_MID_DISCARD_ISSUE_TIME, DEF_MAX_DISCARD_ISSUE_TIME,
47 		MAX_PLIST_NUM, false, true, false, false, DISCARD_GRAN_BG,
48 		{{UINT_MAX, 0}, {0, 0}, {0, 0}}}
49 };
50 
__reverse_ulong(unsigned char * str)51 static unsigned long __reverse_ulong(unsigned char *str)
52 {
53 	unsigned long tmp = 0;
54 	int shift = 24, idx = 0;
55 
56 #if BITS_PER_LONG == 64
57 	shift = 56;
58 #endif
59 	while (shift >= 0) {
60 		tmp |= (unsigned long)str[idx++] << shift;
61 		shift -= BITS_PER_BYTE;
62 	}
63 	return tmp;
64 }
65 
66 /*
67  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
68  * MSB and LSB are reversed in a byte by f2fs_set_bit.
69  */
__reverse_ffs(unsigned long word)70 static inline unsigned long __reverse_ffs(unsigned long word)
71 {
72 	int num = 0;
73 
74 #if BITS_PER_LONG == 64
75 	if ((word & 0xffffffff00000000UL) == 0)
76 		num += 32;
77 	else
78 		word >>= 32;
79 #endif
80 	if ((word & 0xffff0000) == 0)
81 		num += 16;
82 	else
83 		word >>= 16;
84 
85 	if ((word & 0xff00) == 0)
86 		num += 8;
87 	else
88 		word >>= 8;
89 
90 	if ((word & 0xf0) == 0)
91 		num += 4;
92 	else
93 		word >>= 4;
94 
95 	if ((word & 0xc) == 0)
96 		num += 2;
97 	else
98 		word >>= 2;
99 
100 	if ((word & 0x2) == 0)
101 		num += 1;
102 	return num;
103 }
104 
105 /*
106  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
107  * f2fs_set_bit makes MSB and LSB reversed in a byte.
108  * @size must be integral times of unsigned long.
109  * Example:
110  *                             MSB <--> LSB
111  *   f2fs_set_bit(0, bitmap) => 1000 0000
112  *   f2fs_set_bit(7, bitmap) => 0000 0001
113  */
find_rev_next_bit(const unsigned long * addr,unsigned long size,unsigned long offset)114 unsigned long find_rev_next_bit(const unsigned long *addr,
115 			unsigned long size, unsigned long offset)
116 {
117 	const unsigned long *p = addr + BIT_WORD(offset);
118 	unsigned long result = size;
119 	unsigned long tmp;
120 
121 	if (offset >= size)
122 		return size;
123 
124 	size -= (offset & ~(BITS_PER_LONG - 1));
125 	offset %= BITS_PER_LONG;
126 
127 	while (1) {
128 		if (*p == 0)
129 			goto pass;
130 
131 		tmp = __reverse_ulong((unsigned char *)p);
132 
133 		tmp &= ~0UL >> offset;
134 		if (size < BITS_PER_LONG)
135 			tmp &= (~0UL << (BITS_PER_LONG - size));
136 		if (tmp)
137 			goto found;
138 pass:
139 		if (size <= BITS_PER_LONG)
140 			break;
141 		size -= BITS_PER_LONG;
142 		offset = 0;
143 		p++;
144 	}
145 	return result;
146 found:
147 	return result - size + __reverse_ffs(tmp);
148 }
149 
find_rev_next_zero_bit(const unsigned long * addr,unsigned long size,unsigned long offset)150 unsigned long find_rev_next_zero_bit(const unsigned long *addr,
151 			unsigned long size, unsigned long offset)
152 {
153 	const unsigned long *p = addr + BIT_WORD(offset);
154 	unsigned long result = size;
155 	unsigned long tmp;
156 
157 	if (offset >= size)
158 		return size;
159 
160 	size -= (offset & ~(BITS_PER_LONG - 1));
161 	offset %= BITS_PER_LONG;
162 
163 	while (1) {
164 		if (*p == ~0UL)
165 			goto pass;
166 
167 		tmp = __reverse_ulong((unsigned char *)p);
168 
169 		if (offset)
170 			tmp |= ~0UL << (BITS_PER_LONG - offset);
171 		if (size < BITS_PER_LONG)
172 			tmp |= ~0UL >> size;
173 		if (tmp != ~0UL)
174 			goto found;
175 pass:
176 		if (size <= BITS_PER_LONG)
177 			break;
178 		size -= BITS_PER_LONG;
179 		offset = 0;
180 		p++;
181 	}
182 	return result;
183 found:
184 	return result - size + __reverse_ffz(tmp);
185 }
186 
f2fs_need_SSR(struct f2fs_sb_info * sbi)187 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
188 {
189 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
190 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
191 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
192 
193 	if (f2fs_lfs_mode(sbi))
194 		return false;
195 	if (sbi->gc_mode == GC_URGENT_HIGH)
196 		return true;
197 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
198 		return true;
199 
200 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
201 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
202 }
203 
204 #ifdef CONFIG_F2FS_GRADING_SSR
need_ssr_by_type(struct f2fs_sb_info * sbi,int type,int contig_level)205 static bool need_ssr_by_type(struct f2fs_sb_info *sbi, int type, int contig_level)
206 {
207 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
208 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
209 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
210 	u64 valid_blocks = sbi->total_valid_block_count;
211 	u64 total_blocks = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
212 	u64 left_space = (total_blocks - valid_blocks) << 2;
213 	unsigned int free_segs = free_segments(sbi);
214 	unsigned int ovp_segments = overprovision_segments(sbi);
215 	unsigned int lower_limit = 0;
216 	unsigned int waterline = 0;
217 	int dirty_sum = node_secs + 2 * dent_secs + imeta_secs;
218 
219 	if (sbi->hot_cold_params.enable == GRADING_SSR_OFF)
220 		return f2fs_need_SSR(sbi);
221 	if (f2fs_lfs_mode(sbi))
222 		return false;
223 	if (sbi->gc_mode == GC_URGENT_HIGH)
224 		return true;
225 	if (contig_level == SEQ_256BLKS && type == CURSEG_WARM_DATA &&
226 	    free_sections(sbi) > dirty_sum + 3 * reserved_sections(sbi) / 2)
227 		return false;
228 	if (free_sections(sbi) <= (unsigned int)(dirty_sum + 2 * reserved_sections(sbi)))
229 		return true;
230 	if (contig_level >= SEQ_32BLKS || total_blocks <= SSR_MIN_BLKS_LIMIT)
231 		return false;
232 
233 	left_space -= ovp_segments * KBS_PER_SEGMENT;
234 	if (unlikely(left_space == 0))
235 		return false;
236 
237 	switch (type) {
238 	case CURSEG_HOT_DATA:
239 		lower_limit = sbi->hot_cold_params.hot_data_lower_limit;
240 		waterline = sbi->hot_cold_params.hot_data_waterline;
241 		break;
242 	case CURSEG_WARM_DATA:
243 		lower_limit = sbi->hot_cold_params.warm_data_lower_limit;
244 		waterline = sbi->hot_cold_params.warm_data_waterline;
245 		break;
246 	case CURSEG_HOT_NODE:
247 		lower_limit = sbi->hot_cold_params.hot_node_lower_limit;
248 		waterline = sbi->hot_cold_params.hot_node_waterline;
249 		break;
250 	case CURSEG_WARM_NODE:
251 		lower_limit = sbi->hot_cold_params.warm_node_lower_limit;
252 		waterline = sbi->hot_cold_params.warm_node_waterline;
253 		break;
254 	default:
255 		return false;
256 	}
257 
258 	if (left_space > lower_limit)
259 		return false;
260 
261 	if (div_u64((free_segs - ovp_segments) * 100, (left_space / KBS_PER_SEGMENT))
262 									<= waterline) {
263 		trace_f2fs_grading_ssr_allocate(
264 			(le64_to_cpu(sbi->raw_super->block_count) - sbi->total_valid_block_count),
265 			free_segments(sbi), contig_level);
266 		return true;
267 	} else {
268 		return false;
269 	}
270 }
271 #endif
272 
f2fs_register_inmem_page(struct inode * inode,struct page * page)273 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
274 {
275 	struct inmem_pages *new;
276 
277 	f2fs_trace_pid(page);
278 
279 	f2fs_set_page_private(page, ATOMIC_WRITTEN_PAGE);
280 
281 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
282 
283 	/* add atomic page indices to the list */
284 	new->page = page;
285 	INIT_LIST_HEAD(&new->list);
286 
287 	/* increase reference count with clean state */
288 	get_page(page);
289 	mutex_lock(&F2FS_I(inode)->inmem_lock);
290 	list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
291 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
292 	mutex_unlock(&F2FS_I(inode)->inmem_lock);
293 
294 	trace_f2fs_register_inmem_page(page, INMEM);
295 }
296 
__revoke_inmem_pages(struct inode * inode,struct list_head * head,bool drop,bool recover,bool trylock)297 static int __revoke_inmem_pages(struct inode *inode,
298 				struct list_head *head, bool drop, bool recover,
299 				bool trylock)
300 {
301 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
302 	struct inmem_pages *cur, *tmp;
303 	int err = 0;
304 
305 	list_for_each_entry_safe(cur, tmp, head, list) {
306 		struct page *page = cur->page;
307 
308 		if (drop)
309 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
310 
311 		if (trylock) {
312 			/*
313 			 * to avoid deadlock in between page lock and
314 			 * inmem_lock.
315 			 */
316 			if (!trylock_page(page))
317 				continue;
318 		} else {
319 			lock_page(page);
320 		}
321 
322 		f2fs_wait_on_page_writeback(page, DATA, true, true);
323 
324 		if (recover) {
325 			struct dnode_of_data dn;
326 			struct node_info ni;
327 
328 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
329 retry:
330 			set_new_dnode(&dn, inode, NULL, NULL, 0);
331 			err = f2fs_get_dnode_of_data(&dn, page->index,
332 								LOOKUP_NODE);
333 			if (err) {
334 				if (err == -ENOMEM) {
335 					congestion_wait(BLK_RW_ASYNC,
336 							DEFAULT_IO_TIMEOUT);
337 					cond_resched();
338 					goto retry;
339 				}
340 				err = -EAGAIN;
341 				goto next;
342 			}
343 
344 			err = f2fs_get_node_info(sbi, dn.nid, &ni);
345 			if (err) {
346 				f2fs_put_dnode(&dn);
347 				return err;
348 			}
349 
350 			if (cur->old_addr == NEW_ADDR) {
351 				f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
352 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
353 			} else
354 				f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
355 					cur->old_addr, ni.version, true, true);
356 			f2fs_put_dnode(&dn);
357 		}
358 next:
359 		/* we don't need to invalidate this in the sccessful status */
360 		if (drop || recover) {
361 			ClearPageUptodate(page);
362 			clear_cold_data(page);
363 		}
364 		f2fs_clear_page_private(page);
365 		f2fs_put_page(page, 1);
366 
367 		list_del(&cur->list);
368 		kmem_cache_free(inmem_entry_slab, cur);
369 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
370 	}
371 	return err;
372 }
373 
f2fs_drop_inmem_pages_all(struct f2fs_sb_info * sbi,bool gc_failure)374 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
375 {
376 	struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
377 	struct inode *inode;
378 	struct f2fs_inode_info *fi;
379 	unsigned int count = sbi->atomic_files;
380 	unsigned int looped = 0;
381 next:
382 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
383 	if (list_empty(head)) {
384 		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
385 		return;
386 	}
387 	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
388 	inode = igrab(&fi->vfs_inode);
389 	if (inode)
390 		list_move_tail(&fi->inmem_ilist, head);
391 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
392 
393 	if (inode) {
394 		if (gc_failure) {
395 			if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
396 				goto skip;
397 		}
398 		set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
399 		f2fs_drop_inmem_pages(inode);
400 skip:
401 		iput(inode);
402 	}
403 	congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
404 	cond_resched();
405 	if (gc_failure) {
406 		if (++looped >= count)
407 			return;
408 	}
409 	goto next;
410 }
411 
f2fs_drop_inmem_pages(struct inode * inode)412 void f2fs_drop_inmem_pages(struct inode *inode)
413 {
414 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
415 	struct f2fs_inode_info *fi = F2FS_I(inode);
416 
417 	do {
418 		mutex_lock(&fi->inmem_lock);
419 		if (list_empty(&fi->inmem_pages)) {
420 			fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
421 
422 			spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
423 			if (!list_empty(&fi->inmem_ilist))
424 				list_del_init(&fi->inmem_ilist);
425 			if (f2fs_is_atomic_file(inode)) {
426 				clear_inode_flag(inode, FI_ATOMIC_FILE);
427 				sbi->atomic_files--;
428 			}
429 			spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
430 
431 			mutex_unlock(&fi->inmem_lock);
432 			break;
433 		}
434 		__revoke_inmem_pages(inode, &fi->inmem_pages,
435 						true, false, true);
436 		mutex_unlock(&fi->inmem_lock);
437 	} while (1);
438 }
439 
f2fs_drop_inmem_page(struct inode * inode,struct page * page)440 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
441 {
442 	struct f2fs_inode_info *fi = F2FS_I(inode);
443 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
444 	struct list_head *head = &fi->inmem_pages;
445 	struct inmem_pages *cur = NULL;
446 	struct inmem_pages *tmp;
447 
448 	f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
449 
450 	mutex_lock(&fi->inmem_lock);
451 	list_for_each_entry(tmp, head, list) {
452 		if (tmp->page == page) {
453 			cur = tmp;
454 			break;
455 		}
456 	}
457 
458 	f2fs_bug_on(sbi, !cur);
459 	list_del(&cur->list);
460 	mutex_unlock(&fi->inmem_lock);
461 
462 	dec_page_count(sbi, F2FS_INMEM_PAGES);
463 	kmem_cache_free(inmem_entry_slab, cur);
464 
465 	ClearPageUptodate(page);
466 	f2fs_clear_page_private(page);
467 	f2fs_put_page(page, 0);
468 
469 	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
470 }
471 
__f2fs_commit_inmem_pages(struct inode * inode)472 static int __f2fs_commit_inmem_pages(struct inode *inode)
473 {
474 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
475 	struct f2fs_inode_info *fi = F2FS_I(inode);
476 	struct inmem_pages *cur, *tmp;
477 	struct f2fs_io_info fio = {
478 		.sbi = sbi,
479 		.ino = inode->i_ino,
480 		.type = DATA,
481 		.op = REQ_OP_WRITE,
482 		.op_flags = REQ_SYNC | REQ_PRIO,
483 		.io_type = FS_DATA_IO,
484 	};
485 	struct list_head revoke_list;
486 	bool submit_bio = false;
487 	int err = 0;
488 
489 	INIT_LIST_HEAD(&revoke_list);
490 
491 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
492 		struct page *page = cur->page;
493 
494 		lock_page(page);
495 		if (page->mapping == inode->i_mapping) {
496 			trace_f2fs_commit_inmem_page(page, INMEM);
497 
498 			f2fs_wait_on_page_writeback(page, DATA, true, true);
499 
500 			set_page_dirty(page);
501 			if (clear_page_dirty_for_io(page)) {
502 				inode_dec_dirty_pages(inode);
503 				f2fs_remove_dirty_inode(inode);
504 			}
505 retry:
506 			fio.page = page;
507 			fio.old_blkaddr = NULL_ADDR;
508 			fio.encrypted_page = NULL;
509 			fio.need_lock = LOCK_DONE;
510 			err = f2fs_do_write_data_page(&fio);
511 			if (err) {
512 				if (err == -ENOMEM) {
513 					congestion_wait(BLK_RW_ASYNC,
514 							DEFAULT_IO_TIMEOUT);
515 					cond_resched();
516 					goto retry;
517 				}
518 				unlock_page(page);
519 				break;
520 			}
521 			/* record old blkaddr for revoking */
522 			cur->old_addr = fio.old_blkaddr;
523 			submit_bio = true;
524 		}
525 		unlock_page(page);
526 		list_move_tail(&cur->list, &revoke_list);
527 	}
528 
529 	if (submit_bio)
530 		f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
531 
532 	if (err) {
533 		/*
534 		 * try to revoke all committed pages, but still we could fail
535 		 * due to no memory or other reason, if that happened, EAGAIN
536 		 * will be returned, which means in such case, transaction is
537 		 * already not integrity, caller should use journal to do the
538 		 * recovery or rewrite & commit last transaction. For other
539 		 * error number, revoking was done by filesystem itself.
540 		 */
541 		err = __revoke_inmem_pages(inode, &revoke_list,
542 						false, true, false);
543 
544 		/* drop all uncommitted pages */
545 		__revoke_inmem_pages(inode, &fi->inmem_pages,
546 						true, false, false);
547 	} else {
548 		__revoke_inmem_pages(inode, &revoke_list,
549 						false, false, false);
550 	}
551 
552 	return err;
553 }
554 
f2fs_commit_inmem_pages(struct inode * inode)555 int f2fs_commit_inmem_pages(struct inode *inode)
556 {
557 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
558 	struct f2fs_inode_info *fi = F2FS_I(inode);
559 	int err;
560 
561 	f2fs_balance_fs(sbi, true);
562 
563 	down_write(&fi->i_gc_rwsem[WRITE]);
564 
565 	f2fs_lock_op(sbi);
566 	set_inode_flag(inode, FI_ATOMIC_COMMIT);
567 
568 	mutex_lock(&fi->inmem_lock);
569 	err = __f2fs_commit_inmem_pages(inode);
570 	mutex_unlock(&fi->inmem_lock);
571 
572 	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
573 
574 	f2fs_unlock_op(sbi);
575 	up_write(&fi->i_gc_rwsem[WRITE]);
576 
577 	return err;
578 }
579 
580 /*
581  * This function balances dirty node and dentry pages.
582  * In addition, it controls garbage collection.
583  */
f2fs_balance_fs(struct f2fs_sb_info * sbi,bool need)584 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
585 {
586 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
587 		f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
588 		f2fs_stop_checkpoint(sbi, false);
589 	}
590 
591 	/* balance_fs_bg is able to be pending */
592 	if (need && excess_cached_nats(sbi))
593 		f2fs_balance_fs_bg(sbi, false);
594 
595 	if (!f2fs_is_checkpoint_ready(sbi))
596 		return;
597 
598 	/*
599 	 * We should do GC or end up with checkpoint, if there are so many dirty
600 	 * dir/node pages without enough free segments.
601 	 */
602 	if (has_not_enough_free_secs(sbi, 0, 0)) {
603 		if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
604 					sbi->gc_thread->f2fs_gc_task) {
605 			DEFINE_WAIT(wait);
606 
607 			prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
608 						TASK_UNINTERRUPTIBLE);
609 			wake_up(&sbi->gc_thread->gc_wait_queue_head);
610 			io_schedule();
611 			finish_wait(&sbi->gc_thread->fggc_wq, &wait);
612 		} else {
613 			down_write(&sbi->gc_lock);
614 			f2fs_gc(sbi, false, false, false, NULL_SEGNO);
615 		}
616 	}
617 }
618 
f2fs_balance_fs_bg(struct f2fs_sb_info * sbi,bool from_bg)619 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
620 {
621 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
622 		return;
623 
624 	/* try to shrink extent cache when there is no enough memory */
625 	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
626 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
627 
628 	/* check the # of cached NAT entries */
629 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
630 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
631 
632 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
633 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
634 	else
635 		f2fs_build_free_nids(sbi, false, false);
636 
637 	if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) ||
638 		excess_prefree_segs(sbi))
639 		goto do_sync;
640 
641 	/* there is background inflight IO or foreground operation recently */
642 	if (is_inflight_io(sbi, REQ_TIME) ||
643 		(!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
644 		return;
645 
646 	/* exceed periodical checkpoint timeout threshold */
647 	if (f2fs_time_over(sbi, CP_TIME))
648 		goto do_sync;
649 
650 	/* checkpoint is the only way to shrink partial cached entries */
651 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
652 		f2fs_available_free_memory(sbi, INO_ENTRIES))
653 		return;
654 
655 do_sync:
656 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
657 		struct blk_plug plug;
658 
659 		mutex_lock(&sbi->flush_lock);
660 
661 		blk_start_plug(&plug);
662 		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
663 		blk_finish_plug(&plug);
664 
665 		mutex_unlock(&sbi->flush_lock);
666 	}
667 	f2fs_sync_fs(sbi->sb, true);
668 	stat_inc_bg_cp_count(sbi->stat_info);
669 }
670 
__submit_flush_wait(struct f2fs_sb_info * sbi,struct block_device * bdev)671 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
672 				struct block_device *bdev)
673 {
674 	struct bio *bio;
675 	int ret;
676 
677 	bio = f2fs_bio_alloc(sbi, 0, false);
678 	if (!bio)
679 		return -ENOMEM;
680 
681 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
682 	bio_set_dev(bio, bdev);
683 	ret = submit_bio_wait(bio);
684 	bio_put(bio);
685 
686 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
687 				test_opt(sbi, FLUSH_MERGE), ret);
688 	return ret;
689 }
690 
submit_flush_wait(struct f2fs_sb_info * sbi,nid_t ino)691 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
692 {
693 	int ret = 0;
694 	int i;
695 
696 	if (!f2fs_is_multi_device(sbi))
697 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
698 
699 	for (i = 0; i < sbi->s_ndevs; i++) {
700 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
701 			continue;
702 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
703 		if (ret)
704 			break;
705 	}
706 	return ret;
707 }
708 
issue_flush_thread(void * data)709 static int issue_flush_thread(void *data)
710 {
711 	struct f2fs_sb_info *sbi = data;
712 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
713 	wait_queue_head_t *q = &fcc->flush_wait_queue;
714 repeat:
715 	if (kthread_should_stop())
716 		return 0;
717 
718 	sb_start_intwrite(sbi->sb);
719 
720 	if (!llist_empty(&fcc->issue_list)) {
721 		struct flush_cmd *cmd, *next;
722 		int ret;
723 
724 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
725 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
726 
727 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
728 
729 		ret = submit_flush_wait(sbi, cmd->ino);
730 		atomic_inc(&fcc->issued_flush);
731 
732 		llist_for_each_entry_safe(cmd, next,
733 					  fcc->dispatch_list, llnode) {
734 			cmd->ret = ret;
735 			complete(&cmd->wait);
736 		}
737 		fcc->dispatch_list = NULL;
738 	}
739 
740 	sb_end_intwrite(sbi->sb);
741 
742 	wait_event_interruptible(*q,
743 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
744 	goto repeat;
745 }
746 
f2fs_issue_flush(struct f2fs_sb_info * sbi,nid_t ino)747 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
748 {
749 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
750 	struct flush_cmd cmd;
751 	int ret;
752 
753 	if (test_opt(sbi, NOBARRIER))
754 		return 0;
755 
756 	if (!test_opt(sbi, FLUSH_MERGE)) {
757 		atomic_inc(&fcc->queued_flush);
758 		ret = submit_flush_wait(sbi, ino);
759 		atomic_dec(&fcc->queued_flush);
760 		atomic_inc(&fcc->issued_flush);
761 		return ret;
762 	}
763 
764 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
765 	    f2fs_is_multi_device(sbi)) {
766 		ret = submit_flush_wait(sbi, ino);
767 		atomic_dec(&fcc->queued_flush);
768 
769 		atomic_inc(&fcc->issued_flush);
770 		return ret;
771 	}
772 
773 	cmd.ino = ino;
774 	init_completion(&cmd.wait);
775 
776 	llist_add(&cmd.llnode, &fcc->issue_list);
777 
778 	/* update issue_list before we wake up issue_flush thread */
779 	smp_mb();
780 
781 	if (waitqueue_active(&fcc->flush_wait_queue))
782 		wake_up(&fcc->flush_wait_queue);
783 
784 	if (fcc->f2fs_issue_flush) {
785 		wait_for_completion(&cmd.wait);
786 		atomic_dec(&fcc->queued_flush);
787 	} else {
788 		struct llist_node *list;
789 
790 		list = llist_del_all(&fcc->issue_list);
791 		if (!list) {
792 			wait_for_completion(&cmd.wait);
793 			atomic_dec(&fcc->queued_flush);
794 		} else {
795 			struct flush_cmd *tmp, *next;
796 
797 			ret = submit_flush_wait(sbi, ino);
798 
799 			llist_for_each_entry_safe(tmp, next, list, llnode) {
800 				if (tmp == &cmd) {
801 					cmd.ret = ret;
802 					atomic_dec(&fcc->queued_flush);
803 					continue;
804 				}
805 				tmp->ret = ret;
806 				complete(&tmp->wait);
807 			}
808 		}
809 	}
810 
811 	return cmd.ret;
812 }
813 
f2fs_create_flush_cmd_control(struct f2fs_sb_info * sbi)814 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
815 {
816 	dev_t dev = sbi->sb->s_bdev->bd_dev;
817 	struct flush_cmd_control *fcc;
818 	int err = 0;
819 
820 	if (SM_I(sbi)->fcc_info) {
821 		fcc = SM_I(sbi)->fcc_info;
822 		if (fcc->f2fs_issue_flush)
823 			return err;
824 		goto init_thread;
825 	}
826 
827 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
828 	if (!fcc)
829 		return -ENOMEM;
830 	atomic_set(&fcc->issued_flush, 0);
831 	atomic_set(&fcc->queued_flush, 0);
832 	init_waitqueue_head(&fcc->flush_wait_queue);
833 	init_llist_head(&fcc->issue_list);
834 	SM_I(sbi)->fcc_info = fcc;
835 	if (!test_opt(sbi, FLUSH_MERGE))
836 		return err;
837 
838 init_thread:
839 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
840 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
841 	if (IS_ERR(fcc->f2fs_issue_flush)) {
842 		err = PTR_ERR(fcc->f2fs_issue_flush);
843 		kfree(fcc);
844 		SM_I(sbi)->fcc_info = NULL;
845 		return err;
846 	}
847 
848 	return err;
849 }
850 
f2fs_destroy_flush_cmd_control(struct f2fs_sb_info * sbi,bool free)851 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
852 {
853 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
854 
855 	if (fcc && fcc->f2fs_issue_flush) {
856 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
857 
858 		fcc->f2fs_issue_flush = NULL;
859 		kthread_stop(flush_thread);
860 	}
861 	if (free) {
862 		kfree(fcc);
863 		SM_I(sbi)->fcc_info = NULL;
864 	}
865 }
866 
f2fs_flush_device_cache(struct f2fs_sb_info * sbi)867 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
868 {
869 	int ret = 0, i;
870 
871 	if (!f2fs_is_multi_device(sbi))
872 		return 0;
873 
874 	if (test_opt(sbi, NOBARRIER))
875 		return 0;
876 
877 	for (i = 1; i < sbi->s_ndevs; i++) {
878 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
879 			continue;
880 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
881 		if (ret)
882 			break;
883 
884 		spin_lock(&sbi->dev_lock);
885 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
886 		spin_unlock(&sbi->dev_lock);
887 	}
888 
889 	return ret;
890 }
891 
__locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)892 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
893 		enum dirty_type dirty_type)
894 {
895 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
896 
897 	/* need not be added */
898 	if (IS_CURSEG(sbi, segno))
899 		return;
900 
901 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
902 		dirty_i->nr_dirty[dirty_type]++;
903 
904 	if (dirty_type == DIRTY) {
905 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
906 		enum dirty_type t = sentry->type;
907 
908 		if (unlikely(t >= DIRTY)) {
909 			f2fs_bug_on(sbi, 1);
910 			return;
911 		}
912 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
913 			dirty_i->nr_dirty[t]++;
914 
915 		if (__is_large_section(sbi)) {
916 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
917 			block_t valid_blocks =
918 				get_valid_blocks(sbi, segno, true);
919 
920 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
921 					valid_blocks == BLKS_PER_SEC(sbi)));
922 
923 			if (!IS_CURSEC(sbi, secno))
924 				set_bit(secno, dirty_i->dirty_secmap);
925 		}
926 	}
927 }
928 
__remove_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno,enum dirty_type dirty_type)929 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
930 		enum dirty_type dirty_type)
931 {
932 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
933 	block_t valid_blocks;
934 
935 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
936 		dirty_i->nr_dirty[dirty_type]--;
937 
938 	if (dirty_type == DIRTY) {
939 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
940 		enum dirty_type t = sentry->type;
941 
942 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
943 			dirty_i->nr_dirty[t]--;
944 
945 		valid_blocks = get_valid_blocks(sbi, segno, true);
946 		if (valid_blocks == 0) {
947 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
948 						dirty_i->victim_secmap);
949 #ifdef CONFIG_F2FS_CHECK_FS
950 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
951 #endif
952 		}
953 		if (__is_large_section(sbi)) {
954 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
955 
956 			if (!valid_blocks ||
957 					valid_blocks == BLKS_PER_SEC(sbi)) {
958 				clear_bit(secno, dirty_i->dirty_secmap);
959 				return;
960 			}
961 
962 			if (!IS_CURSEC(sbi, secno))
963 				set_bit(secno, dirty_i->dirty_secmap);
964 		}
965 	}
966 }
967 
968 /*
969  * Should not occur error such as -ENOMEM.
970  * Adding dirty entry into seglist is not critical operation.
971  * If a given segment is one of current working segments, it won't be added.
972  */
locate_dirty_segment(struct f2fs_sb_info * sbi,unsigned int segno)973 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
974 {
975 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
976 	unsigned short valid_blocks, ckpt_valid_blocks;
977 	unsigned int usable_blocks;
978 
979 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
980 		return;
981 
982 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
983 	mutex_lock(&dirty_i->seglist_lock);
984 
985 	valid_blocks = get_valid_blocks(sbi, segno, false);
986 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
987 
988 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
989 		ckpt_valid_blocks == usable_blocks)) {
990 		__locate_dirty_segment(sbi, segno, PRE);
991 		__remove_dirty_segment(sbi, segno, DIRTY);
992 	} else if (valid_blocks < usable_blocks) {
993 		__locate_dirty_segment(sbi, segno, DIRTY);
994 	} else {
995 		/* Recovery routine with SSR needs this */
996 		__remove_dirty_segment(sbi, segno, DIRTY);
997 	}
998 
999 	mutex_unlock(&dirty_i->seglist_lock);
1000 }
1001 
1002 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
f2fs_dirty_to_prefree(struct f2fs_sb_info * sbi)1003 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
1004 {
1005 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1006 	unsigned int segno;
1007 
1008 	mutex_lock(&dirty_i->seglist_lock);
1009 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
1010 		if (get_valid_blocks(sbi, segno, false))
1011 			continue;
1012 		if (IS_CURSEG(sbi, segno))
1013 			continue;
1014 		__locate_dirty_segment(sbi, segno, PRE);
1015 		__remove_dirty_segment(sbi, segno, DIRTY);
1016 	}
1017 	mutex_unlock(&dirty_i->seglist_lock);
1018 }
1019 
f2fs_get_unusable_blocks(struct f2fs_sb_info * sbi)1020 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
1021 {
1022 	int ovp_hole_segs =
1023 		(overprovision_segments(sbi) - reserved_segments(sbi));
1024 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
1025 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1026 	block_t holes[2] = {0, 0};	/* DATA and NODE */
1027 	block_t unusable;
1028 	struct seg_entry *se;
1029 	unsigned int segno;
1030 
1031 	mutex_lock(&dirty_i->seglist_lock);
1032 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
1033 		se = get_seg_entry(sbi, segno);
1034 		if (IS_NODESEG(se->type))
1035 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
1036 							se->valid_blocks;
1037 		else
1038 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
1039 							se->valid_blocks;
1040 	}
1041 	mutex_unlock(&dirty_i->seglist_lock);
1042 
1043 	unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
1044 	if (unusable > ovp_holes)
1045 		return unusable - ovp_holes;
1046 	return 0;
1047 }
1048 
f2fs_disable_cp_again(struct f2fs_sb_info * sbi,block_t unusable)1049 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
1050 {
1051 	int ovp_hole_segs =
1052 		(overprovision_segments(sbi) - reserved_segments(sbi));
1053 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
1054 		return -EAGAIN;
1055 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
1056 		dirty_segments(sbi) > ovp_hole_segs)
1057 		return -EAGAIN;
1058 	return 0;
1059 }
1060 
1061 /* This is only used by SBI_CP_DISABLED */
get_free_segment(struct f2fs_sb_info * sbi)1062 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
1063 {
1064 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1065 	unsigned int segno = 0;
1066 
1067 	mutex_lock(&dirty_i->seglist_lock);
1068 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
1069 		if (get_valid_blocks(sbi, segno, false))
1070 			continue;
1071 		if (get_ckpt_valid_blocks(sbi, segno, false))
1072 			continue;
1073 		mutex_unlock(&dirty_i->seglist_lock);
1074 		return segno;
1075 	}
1076 	mutex_unlock(&dirty_i->seglist_lock);
1077 	return NULL_SEGNO;
1078 }
1079 
__create_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1080 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
1081 		struct block_device *bdev, block_t lstart,
1082 		block_t start, block_t len)
1083 {
1084 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1085 	struct list_head *pend_list;
1086 	struct discard_cmd *dc;
1087 
1088 	f2fs_bug_on(sbi, !len);
1089 
1090 	pend_list = &dcc->pend_list[plist_idx(len)];
1091 
1092 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
1093 	INIT_LIST_HEAD(&dc->list);
1094 	dc->bdev = bdev;
1095 	dc->lstart = lstart;
1096 	dc->start = start;
1097 	dc->len = len;
1098 	dc->ref = 0;
1099 	dc->state = D_PREP;
1100 	dc->queued = 0;
1101 	dc->error = 0;
1102 	init_completion(&dc->wait);
1103 	list_add_tail(&dc->list, pend_list);
1104 	spin_lock_init(&dc->lock);
1105 	dc->bio_ref = 0;
1106 	atomic_inc(&dcc->discard_cmd_cnt);
1107 	dcc->undiscard_blks += len;
1108 
1109 	return dc;
1110 }
1111 
__attach_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node * parent,struct rb_node ** p,bool leftmost)1112 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1113 				struct block_device *bdev, block_t lstart,
1114 				block_t start, block_t len,
1115 				struct rb_node *parent, struct rb_node **p,
1116 				bool leftmost)
1117 {
1118 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1119 	struct discard_cmd *dc;
1120 
1121 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1122 
1123 	rb_link_node(&dc->rb_node, parent, p);
1124 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1125 
1126 	return dc;
1127 }
1128 
__detach_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1129 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1130 							struct discard_cmd *dc)
1131 {
1132 	if (dc->state == D_DONE)
1133 		atomic_sub(dc->queued, &dcc->queued_discard);
1134 
1135 	list_del(&dc->list);
1136 	rb_erase_cached(&dc->rb_node, &dcc->root);
1137 	dcc->undiscard_blks -= dc->len;
1138 
1139 	kmem_cache_free(discard_cmd_slab, dc);
1140 
1141 	atomic_dec(&dcc->discard_cmd_cnt);
1142 }
1143 
__remove_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1144 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1145 							struct discard_cmd *dc)
1146 {
1147 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1148 	unsigned long flags;
1149 
1150 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1151 
1152 	spin_lock_irqsave(&dc->lock, flags);
1153 	if (dc->bio_ref) {
1154 		spin_unlock_irqrestore(&dc->lock, flags);
1155 		return;
1156 	}
1157 	spin_unlock_irqrestore(&dc->lock, flags);
1158 
1159 	f2fs_bug_on(sbi, dc->ref);
1160 
1161 	if (dc->error == -EOPNOTSUPP)
1162 		dc->error = 0;
1163 
1164 	if (dc->error)
1165 		printk_ratelimited(
1166 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1167 			KERN_INFO, sbi->sb->s_id,
1168 			dc->lstart, dc->start, dc->len, dc->error);
1169 	__detach_discard_cmd(dcc, dc);
1170 }
1171 
f2fs_submit_discard_endio(struct bio * bio)1172 static void f2fs_submit_discard_endio(struct bio *bio)
1173 {
1174 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1175 	unsigned long flags;
1176 
1177 	spin_lock_irqsave(&dc->lock, flags);
1178 	if (!dc->error)
1179 		dc->error = blk_status_to_errno(bio->bi_status);
1180 	dc->bio_ref--;
1181 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1182 		dc->state = D_DONE;
1183 		complete_all(&dc->wait);
1184 	}
1185 	spin_unlock_irqrestore(&dc->lock, flags);
1186 	bio_put(bio);
1187 }
1188 
__check_sit_bitmap(struct f2fs_sb_info * sbi,block_t start,block_t end)1189 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1190 				block_t start, block_t end)
1191 {
1192 #ifdef CONFIG_F2FS_CHECK_FS
1193 	struct seg_entry *sentry;
1194 	unsigned int segno;
1195 	block_t blk = start;
1196 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1197 	unsigned long *map;
1198 
1199 	while (blk < end) {
1200 		segno = GET_SEGNO(sbi, blk);
1201 		sentry = get_seg_entry(sbi, segno);
1202 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1203 
1204 		if (end < START_BLOCK(sbi, segno + 1))
1205 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1206 		else
1207 			size = max_blocks;
1208 		map = (unsigned long *)(sentry->cur_valid_map);
1209 		offset = find_rev_next_bit(map, size, offset);
1210 		f2fs_bug_on(sbi, offset != size);
1211 		blk = START_BLOCK(sbi, segno + 1);
1212 	}
1213 #endif
1214 }
1215 
__init_discard_policy(struct f2fs_sb_info * sbi,struct discard_policy * policy,int discard_type,unsigned int granularity)1216 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1217 				struct discard_policy *policy,
1218 				int discard_type, unsigned int granularity)
1219 {
1220 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1221 
1222 	if (discard_type == DPOLICY_BG) {
1223 		*policy = dpolicys[DPOLICY_BG];
1224 	} else if (discard_type == DPOLICY_BALANCE) {
1225 		*policy = dpolicys[DPOLICY_BALANCE];
1226 	} else if (discard_type == DPOLICY_FORCE) {
1227 		*policy = dpolicys[DPOLICY_FORCE];
1228 	} else if (discard_type == DPOLICY_FSTRIM) {
1229 		*policy = dpolicys[DPOLICY_FSTRIM];
1230 		if (policy->granularity != granularity)
1231 			policy->granularity = granularity;
1232 	} else if (discard_type == DPOLICY_UMOUNT) {
1233 		*policy = dpolicys[DPOLICY_UMOUNT];
1234 	}
1235 	dcc->discard_type = discard_type;
1236 }
1237 
select_sub_discard_policy(struct discard_sub_policy ** spolicy,int index,struct discard_policy * dpolicy)1238 static void select_sub_discard_policy(struct discard_sub_policy **spolicy,
1239 						       int index, struct discard_policy *dpolicy)
1240 {
1241 	if (dpolicy->type == DPOLICY_FSTRIM) {
1242 		*spolicy = &dpolicy->sub_policy[SUB_POLICY_BIG];
1243 		return;
1244 	}
1245 
1246 	if ((index + 1) >= DISCARD_GRAN_BG)
1247 		*spolicy = &dpolicy->sub_policy[SUB_POLICY_BIG];
1248 	else if ((index + 1) >= DISCARD_GRAN_BL)
1249 		*spolicy = &dpolicy->sub_policy[SUB_POLICY_MID];
1250 	else
1251 		*spolicy = &dpolicy->sub_policy[SUB_POLICY_SMALL];
1252 }
1253 
1254 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1255 				struct block_device *bdev, block_t lstart,
1256 				block_t start, block_t len);
1257 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
__submit_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int spolicy_index,struct discard_cmd * dc,unsigned int * issued)1258 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1259 						struct discard_policy *dpolicy,
1260 						int spolicy_index,
1261 						struct discard_cmd *dc,
1262 						unsigned int *issued)
1263 {
1264 	struct block_device *bdev = dc->bdev;
1265 	struct request_queue *q = bdev_get_queue(bdev);
1266 	unsigned int max_discard_blocks =
1267 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1268 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1269 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1270 					&(dcc->fstrim_list) : &(dcc->wait_list);
1271 	int flag = dpolicy->sync ? REQ_SYNC : 0;
1272 	struct discard_sub_policy *spolicy = NULL;
1273 	block_t lstart, start, len, total_len;
1274 	int err = 0;
1275 
1276 	select_sub_discard_policy(&spolicy, spolicy_index, dpolicy);
1277 
1278 	if (dc->state != D_PREP)
1279 		return 0;
1280 
1281 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1282 		return 0;
1283 
1284 	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1285 
1286 	lstart = dc->lstart;
1287 	start = dc->start;
1288 	len = dc->len;
1289 	total_len = len;
1290 
1291 	dc->len = 0;
1292 
1293 	while (total_len && *issued < spolicy->max_requests && !err) {
1294 		struct bio *bio = NULL;
1295 		unsigned long flags;
1296 		bool last = true;
1297 
1298 		if (len > max_discard_blocks) {
1299 			len = max_discard_blocks;
1300 			last = false;
1301 		}
1302 
1303 		(*issued)++;
1304 		if (*issued == spolicy->max_requests)
1305 			last = true;
1306 
1307 		dc->len += len;
1308 
1309 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1310 			f2fs_show_injection_info(sbi, FAULT_DISCARD);
1311 			err = -EIO;
1312 			goto submit;
1313 		}
1314 		err = __blkdev_issue_discard(bdev,
1315 					SECTOR_FROM_BLOCK(start),
1316 					SECTOR_FROM_BLOCK(len),
1317 					GFP_NOFS, 0, &bio);
1318 submit:
1319 		if (err) {
1320 			spin_lock_irqsave(&dc->lock, flags);
1321 			if (dc->state == D_PARTIAL)
1322 				dc->state = D_SUBMIT;
1323 			spin_unlock_irqrestore(&dc->lock, flags);
1324 
1325 			break;
1326 		}
1327 
1328 		f2fs_bug_on(sbi, !bio);
1329 
1330 		/*
1331 		 * should keep before submission to avoid D_DONE
1332 		 * right away
1333 		 */
1334 		spin_lock_irqsave(&dc->lock, flags);
1335 		if (last)
1336 			dc->state = D_SUBMIT;
1337 		else
1338 			dc->state = D_PARTIAL;
1339 		dc->bio_ref++;
1340 		spin_unlock_irqrestore(&dc->lock, flags);
1341 
1342 		atomic_inc(&dcc->queued_discard);
1343 		dc->queued++;
1344 		list_move_tail(&dc->list, wait_list);
1345 
1346 		/* sanity check on discard range */
1347 		__check_sit_bitmap(sbi, lstart, lstart + len);
1348 
1349 		bio->bi_private = dc;
1350 		bio->bi_end_io = f2fs_submit_discard_endio;
1351 		bio->bi_opf |= flag;
1352 		submit_bio(bio);
1353 
1354 		atomic_inc(&dcc->issued_discard);
1355 
1356 		f2fs_update_iostat(sbi, FS_DISCARD, 1);
1357 
1358 		lstart += len;
1359 		start += len;
1360 		total_len -= len;
1361 		len = total_len;
1362 	}
1363 
1364 	if (!err && len) {
1365 		dcc->undiscard_blks -= len;
1366 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1367 	}
1368 	return err;
1369 }
1370 
__insert_discard_tree(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len,struct rb_node ** insert_p,struct rb_node * insert_parent)1371 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1372 				struct block_device *bdev, block_t lstart,
1373 				block_t start, block_t len,
1374 				struct rb_node **insert_p,
1375 				struct rb_node *insert_parent)
1376 {
1377 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1378 	struct rb_node **p;
1379 	struct rb_node *parent = NULL;
1380 	bool leftmost = true;
1381 
1382 	if (insert_p && insert_parent) {
1383 		parent = insert_parent;
1384 		p = insert_p;
1385 		goto do_insert;
1386 	}
1387 
1388 	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1389 							lstart, &leftmost);
1390 do_insert:
1391 	__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1392 								p, leftmost);
1393 }
1394 
__relocate_discard_cmd(struct discard_cmd_control * dcc,struct discard_cmd * dc)1395 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1396 						struct discard_cmd *dc)
1397 {
1398 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1399 }
1400 
__punch_discard_cmd(struct f2fs_sb_info * sbi,struct discard_cmd * dc,block_t blkaddr)1401 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1402 				struct discard_cmd *dc, block_t blkaddr)
1403 {
1404 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1405 	struct discard_info di = dc->di;
1406 	bool modified = false;
1407 
1408 	if (dc->state == D_DONE || dc->len == 1) {
1409 		__remove_discard_cmd(sbi, dc);
1410 		return;
1411 	}
1412 
1413 	dcc->undiscard_blks -= di.len;
1414 
1415 	if (blkaddr > di.lstart) {
1416 		dc->len = blkaddr - dc->lstart;
1417 		dcc->undiscard_blks += dc->len;
1418 		__relocate_discard_cmd(dcc, dc);
1419 		modified = true;
1420 	}
1421 
1422 	if (blkaddr < di.lstart + di.len - 1) {
1423 		if (modified) {
1424 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1425 					di.start + blkaddr + 1 - di.lstart,
1426 					di.lstart + di.len - 1 - blkaddr,
1427 					NULL, NULL);
1428 		} else {
1429 			dc->lstart++;
1430 			dc->len--;
1431 			dc->start++;
1432 			dcc->undiscard_blks += dc->len;
1433 			__relocate_discard_cmd(dcc, dc);
1434 		}
1435 	}
1436 }
1437 
__update_discard_tree_range(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t lstart,block_t start,block_t len)1438 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1439 				struct block_device *bdev, block_t lstart,
1440 				block_t start, block_t len)
1441 {
1442 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1443 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1444 	struct discard_cmd *dc;
1445 	struct discard_info di = {0};
1446 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1447 	struct request_queue *q = bdev_get_queue(bdev);
1448 	unsigned int max_discard_blocks =
1449 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1450 	block_t end = lstart + len;
1451 
1452 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1453 					NULL, lstart,
1454 					(struct rb_entry **)&prev_dc,
1455 					(struct rb_entry **)&next_dc,
1456 					&insert_p, &insert_parent, true, NULL);
1457 	if (dc)
1458 		prev_dc = dc;
1459 
1460 	if (!prev_dc) {
1461 		di.lstart = lstart;
1462 		di.len = next_dc ? next_dc->lstart - lstart : len;
1463 		di.len = min(di.len, len);
1464 		di.start = start;
1465 	}
1466 
1467 	while (1) {
1468 		struct rb_node *node;
1469 		bool merged = false;
1470 		struct discard_cmd *tdc = NULL;
1471 
1472 		if (prev_dc) {
1473 			di.lstart = prev_dc->lstart + prev_dc->len;
1474 			if (di.lstart < lstart)
1475 				di.lstart = lstart;
1476 			if (di.lstart >= end)
1477 				break;
1478 
1479 			if (!next_dc || next_dc->lstart > end)
1480 				di.len = end - di.lstart;
1481 			else
1482 				di.len = next_dc->lstart - di.lstart;
1483 			di.start = start + di.lstart - lstart;
1484 		}
1485 
1486 		if (!di.len)
1487 			goto next;
1488 
1489 		if (prev_dc && prev_dc->state == D_PREP &&
1490 			prev_dc->bdev == bdev &&
1491 			__is_discard_back_mergeable(&di, &prev_dc->di,
1492 							max_discard_blocks)) {
1493 			prev_dc->di.len += di.len;
1494 			dcc->undiscard_blks += di.len;
1495 			__relocate_discard_cmd(dcc, prev_dc);
1496 			di = prev_dc->di;
1497 			tdc = prev_dc;
1498 			merged = true;
1499 		}
1500 
1501 		if (next_dc && next_dc->state == D_PREP &&
1502 			next_dc->bdev == bdev &&
1503 			__is_discard_front_mergeable(&di, &next_dc->di,
1504 							max_discard_blocks)) {
1505 			next_dc->di.lstart = di.lstart;
1506 			next_dc->di.len += di.len;
1507 			next_dc->di.start = di.start;
1508 			dcc->undiscard_blks += di.len;
1509 			__relocate_discard_cmd(dcc, next_dc);
1510 			if (tdc)
1511 				__remove_discard_cmd(sbi, tdc);
1512 			merged = true;
1513 		}
1514 
1515 		if (!merged) {
1516 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1517 							di.len, NULL, NULL);
1518 		}
1519  next:
1520 		prev_dc = next_dc;
1521 		if (!prev_dc)
1522 			break;
1523 
1524 		node = rb_next(&prev_dc->rb_node);
1525 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1526 	}
1527 }
1528 
__queue_discard_cmd(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1529 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1530 		struct block_device *bdev, block_t blkstart, block_t blklen)
1531 {
1532 	block_t lblkstart = blkstart;
1533 
1534 	if (!f2fs_bdev_support_discard(bdev))
1535 		return 0;
1536 
1537 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1538 
1539 	if (f2fs_is_multi_device(sbi)) {
1540 		int devi = f2fs_target_device_index(sbi, blkstart);
1541 
1542 		blkstart -= FDEV(devi).start_blk;
1543 	}
1544 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1545 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1546 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1547 	return 0;
1548 }
1549 
__issue_discard_cmd_orderly(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,int spolicy_index)1550 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1551 					struct discard_policy *dpolicy,
1552 					int spolicy_index)
1553 {
1554 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1555 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1556 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1557 	struct discard_cmd *dc;
1558 	struct blk_plug plug;
1559 	unsigned int pos = dcc->next_pos;
1560 	unsigned int issued = 0;
1561 	bool io_interrupted = false;
1562 	struct discard_sub_policy *spolicy = NULL;
1563 
1564 	select_sub_discard_policy(&spolicy, spolicy_index, dpolicy);
1565 	mutex_lock(&dcc->cmd_lock);
1566 
1567 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1568 					NULL, pos,
1569 					(struct rb_entry **)&prev_dc,
1570 					(struct rb_entry **)&next_dc,
1571 					&insert_p, &insert_parent, true, NULL);
1572 	if (!dc)
1573 		dc = next_dc;
1574 
1575 	blk_start_plug(&plug);
1576 
1577 	while (dc) {
1578 		struct rb_node *node;
1579 		int err = 0;
1580 
1581 		if (dc->state != D_PREP)
1582 			goto next;
1583 
1584 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1585 			io_interrupted = true;
1586 			break;
1587 		}
1588 
1589 		dcc->next_pos = dc->lstart + dc->len;
1590 		err = __submit_discard_cmd(sbi, dpolicy, spolicy_index, dc, &issued);
1591 
1592 		if (issued >= spolicy->max_requests)
1593 			break;
1594 next:
1595 		node = rb_next(&dc->rb_node);
1596 		if (err)
1597 			__remove_discard_cmd(sbi, dc);
1598 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1599 	}
1600 
1601 	blk_finish_plug(&plug);
1602 
1603 	if (!dc)
1604 		dcc->next_pos = 0;
1605 
1606 	mutex_unlock(&dcc->cmd_lock);
1607 
1608 	if (!issued && io_interrupted)
1609 		issued = -1;
1610 
1611 	return issued;
1612 }
1613 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1614 					struct discard_policy *dpolicy);
1615 
__issue_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1616 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1617 					struct discard_policy *dpolicy)
1618 {
1619 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1620 	struct list_head *pend_list;
1621 	struct discard_cmd *dc, *tmp;
1622 	struct blk_plug plug;
1623 	int i, issued;
1624 	bool io_interrupted = false;
1625 	struct discard_sub_policy *spolicy = NULL;
1626 
1627 	if (dpolicy->timeout)
1628 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1629 
1630 	/* only do this check in CHECK_FS, may be time consumed */
1631 	if (unlikely(dcc->rbtree_check)) {
1632 		mutex_lock(&dcc->cmd_lock);
1633 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, &dcc->root, false));
1634 		mutex_unlock(&dcc->cmd_lock);
1635 	}
1636 retry:
1637 	blk_start_plug(&plug);
1638 	issued = 0;
1639 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1640 		if (dpolicy->timeout &&
1641 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1642 			break;
1643 
1644 		if (i + 1 < dpolicy->granularity)
1645 			break;
1646 
1647 		select_sub_discard_policy(&spolicy, i, dpolicy);
1648 
1649 		if (i + 1 < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) {
1650 			issued = __issue_discard_cmd_orderly(sbi, dpolicy, i);
1651 			blk_finish_plug(&plug);
1652 			return issued;
1653 		}
1654 
1655 		pend_list = &dcc->pend_list[i];
1656 
1657 		mutex_lock(&dcc->cmd_lock);
1658 		if (list_empty(pend_list))
1659 			goto next;
1660 		if (unlikely(dcc->rbtree_check))
1661 			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1662 							&dcc->root, false));
1663 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1664 			f2fs_bug_on(sbi, dc->state != D_PREP);
1665 
1666 			if (dpolicy->timeout &&
1667 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1668 				break;
1669 
1670 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1671 						!is_idle(sbi, DISCARD_TIME)) {
1672 				io_interrupted = true;
1673 				goto skip;
1674 			}
1675 			__submit_discard_cmd(sbi, dpolicy, i, dc, &issued);
1676 skip:
1677 			if (issued >= spolicy->max_requests)
1678 				break;
1679 		}
1680 next:
1681 		mutex_unlock(&dcc->cmd_lock);
1682 
1683 		if (issued >= spolicy->max_requests || io_interrupted)
1684 			break;
1685 	}
1686 
1687 	blk_finish_plug(&plug);
1688 	if (spolicy)
1689 		dpolicy->min_interval = spolicy->interval;
1690 
1691 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1692 		__wait_all_discard_cmd(sbi, dpolicy);
1693 		goto retry;
1694 	}
1695 
1696 	if (!issued && io_interrupted)
1697 		issued = -1;
1698 
1699 	return issued;
1700 }
1701 
__drop_discard_cmd(struct f2fs_sb_info * sbi)1702 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1703 {
1704 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1705 	struct list_head *pend_list;
1706 	struct discard_cmd *dc, *tmp;
1707 	int i;
1708 	bool dropped = false;
1709 
1710 	mutex_lock(&dcc->cmd_lock);
1711 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1712 		pend_list = &dcc->pend_list[i];
1713 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1714 			f2fs_bug_on(sbi, dc->state != D_PREP);
1715 			__remove_discard_cmd(sbi, dc);
1716 			dropped = true;
1717 		}
1718 	}
1719 	mutex_unlock(&dcc->cmd_lock);
1720 
1721 	return dropped;
1722 }
1723 
f2fs_drop_discard_cmd(struct f2fs_sb_info * sbi)1724 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1725 {
1726 	__drop_discard_cmd(sbi);
1727 }
1728 
__wait_one_discard_bio(struct f2fs_sb_info * sbi,struct discard_cmd * dc)1729 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1730 							struct discard_cmd *dc)
1731 {
1732 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1733 	unsigned int len = 0;
1734 
1735 	wait_for_completion_io(&dc->wait);
1736 	mutex_lock(&dcc->cmd_lock);
1737 	f2fs_bug_on(sbi, dc->state != D_DONE);
1738 	dc->ref--;
1739 	if (!dc->ref) {
1740 		if (!dc->error)
1741 			len = dc->len;
1742 		__remove_discard_cmd(sbi, dc);
1743 	}
1744 	mutex_unlock(&dcc->cmd_lock);
1745 
1746 	return len;
1747 }
1748 
__wait_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,block_t start,block_t end)1749 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1750 						struct discard_policy *dpolicy,
1751 						block_t start, block_t end)
1752 {
1753 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1754 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1755 					&(dcc->fstrim_list) : &(dcc->wait_list);
1756 	struct discard_cmd *dc, *tmp;
1757 	bool need_wait;
1758 	unsigned int trimmed = 0;
1759 
1760 next:
1761 	need_wait = false;
1762 
1763 	mutex_lock(&dcc->cmd_lock);
1764 	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1765 		if (dc->lstart + dc->len <= start || end <= dc->lstart)
1766 			continue;
1767 		if (dc->len < dpolicy->granularity)
1768 			continue;
1769 		if (dc->state == D_DONE && !dc->ref) {
1770 			wait_for_completion_io(&dc->wait);
1771 			if (!dc->error)
1772 				trimmed += dc->len;
1773 			__remove_discard_cmd(sbi, dc);
1774 		} else {
1775 			dc->ref++;
1776 			need_wait = true;
1777 			break;
1778 		}
1779 	}
1780 	mutex_unlock(&dcc->cmd_lock);
1781 
1782 	if (need_wait) {
1783 		trimmed += __wait_one_discard_bio(sbi, dc);
1784 		goto next;
1785 	}
1786 
1787 	return trimmed;
1788 }
1789 
__wait_all_discard_cmd(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy)1790 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1791 						struct discard_policy *dpolicy)
1792 {
1793 	struct discard_policy dp;
1794 	unsigned int discard_blks;
1795 
1796 	if (dpolicy)
1797 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1798 
1799 	/* wait all */
1800 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1801 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1802 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1803 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1804 
1805 	return discard_blks;
1806 }
1807 
1808 /* This should be covered by global mutex, &sit_i->sentry_lock */
f2fs_wait_discard_bio(struct f2fs_sb_info * sbi,block_t blkaddr)1809 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1810 {
1811 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1812 	struct discard_cmd *dc;
1813 	bool need_wait = false;
1814 
1815 	mutex_lock(&dcc->cmd_lock);
1816 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1817 							NULL, blkaddr);
1818 	if (dc) {
1819 		if (dc->state == D_PREP) {
1820 			__punch_discard_cmd(sbi, dc, blkaddr);
1821 		} else {
1822 			dc->ref++;
1823 			need_wait = true;
1824 		}
1825 	}
1826 	mutex_unlock(&dcc->cmd_lock);
1827 
1828 	if (need_wait)
1829 		__wait_one_discard_bio(sbi, dc);
1830 }
1831 
f2fs_stop_discard_thread(struct f2fs_sb_info * sbi)1832 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1833 {
1834 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1835 
1836 	if (dcc && dcc->f2fs_issue_discard) {
1837 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1838 
1839 		dcc->f2fs_issue_discard = NULL;
1840 		kthread_stop(discard_thread);
1841 	}
1842 }
1843 
1844 /* This comes from f2fs_put_super */
f2fs_issue_discard_timeout(struct f2fs_sb_info * sbi)1845 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1846 {
1847 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1848 	struct discard_policy dpolicy;
1849 	bool dropped;
1850 
1851 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 0);
1852 	__issue_discard_cmd(sbi, &dpolicy);
1853 	dropped = __drop_discard_cmd(sbi);
1854 
1855 	/* just to make sure there is no pending discard commands */
1856 	__wait_all_discard_cmd(sbi, NULL);
1857 
1858 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1859 	return dropped;
1860 }
1861 
select_discard_type(struct f2fs_sb_info * sbi)1862 static int select_discard_type(struct f2fs_sb_info *sbi)
1863 {
1864 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1865 	block_t user_block_count = sbi->user_block_count;
1866 	block_t ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
1867 	block_t fs_available_blocks = user_block_count -
1868 				valid_user_blocks(sbi) + ovp_count;
1869 	int discard_type;
1870 
1871 	if (fs_available_blocks >= fs_free_space_threshold(sbi) &&
1872 			fs_available_blocks - dcc->undiscard_blks >=
1873 			device_free_space_threshold(sbi)) {
1874 		discard_type = DPOLICY_BG;
1875 	} else if (fs_available_blocks < fs_free_space_threshold(sbi) &&
1876 			fs_available_blocks - dcc->undiscard_blks <
1877 			device_free_space_threshold(sbi)) {
1878 		discard_type = DPOLICY_FORCE;
1879 	} else {
1880 		discard_type = DPOLICY_BALANCE;
1881 	}
1882 	return discard_type;
1883 }
1884 
issue_discard_thread(void * data)1885 static int issue_discard_thread(void *data)
1886 {
1887 	struct f2fs_sb_info *sbi = data;
1888 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1889 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1890 	struct discard_policy dpolicy;
1891 	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1892 	int issued, discard_type;
1893 
1894 	set_freezable();
1895 
1896 	do {
1897 		discard_type = select_discard_type(sbi);
1898 		__init_discard_policy(sbi, &dpolicy, discard_type, 0);
1899 
1900 		wait_event_interruptible_timeout(*q,
1901 				kthread_should_stop() || freezing(current) ||
1902 				dcc->discard_wake,
1903 				msecs_to_jiffies(wait_ms));
1904 
1905 		if (dcc->discard_wake)
1906 			dcc->discard_wake = 0;
1907 
1908 		/* clean up pending candidates before going to sleep */
1909 		if (atomic_read(&dcc->queued_discard))
1910 			__wait_all_discard_cmd(sbi, NULL);
1911 
1912 		if (try_to_freeze())
1913 			continue;
1914 		if (f2fs_readonly(sbi->sb))
1915 			continue;
1916 		if (kthread_should_stop())
1917 			return 0;
1918 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1919 			wait_ms = dpolicy.max_interval;
1920 			continue;
1921 		}
1922 
1923 		if (sbi->gc_mode == GC_URGENT_HIGH)
1924 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 0);
1925 
1926 		sb_start_intwrite(sbi->sb);
1927 
1928 		issued = __issue_discard_cmd(sbi, &dpolicy);
1929 		if (issued > 0) {
1930 			__wait_all_discard_cmd(sbi, &dpolicy);
1931 			wait_ms = dpolicy.min_interval;
1932 		} else if (issued == -1){
1933 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1934 			if (!wait_ms)
1935 				wait_ms = dpolicy.mid_interval;
1936 		} else {
1937 			wait_ms = dpolicy.max_interval;
1938 		}
1939 
1940 		sb_end_intwrite(sbi->sb);
1941 
1942 	} while (!kthread_should_stop());
1943 	return 0;
1944 }
1945 
1946 #ifdef CONFIG_BLK_DEV_ZONED
__f2fs_issue_discard_zone(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1947 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1948 		struct block_device *bdev, block_t blkstart, block_t blklen)
1949 {
1950 	sector_t sector, nr_sects;
1951 	block_t lblkstart = blkstart;
1952 	int devi = 0;
1953 
1954 	if (f2fs_is_multi_device(sbi)) {
1955 		devi = f2fs_target_device_index(sbi, blkstart);
1956 		if (blkstart < FDEV(devi).start_blk ||
1957 		    blkstart > FDEV(devi).end_blk) {
1958 			f2fs_err(sbi, "Invalid block %x", blkstart);
1959 			return -EIO;
1960 		}
1961 		blkstart -= FDEV(devi).start_blk;
1962 	}
1963 
1964 	/* For sequential zones, reset the zone write pointer */
1965 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1966 		sector = SECTOR_FROM_BLOCK(blkstart);
1967 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1968 
1969 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1970 				nr_sects != bdev_zone_sectors(bdev)) {
1971 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1972 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1973 				 blkstart, blklen);
1974 			return -EIO;
1975 		}
1976 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1977 		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1978 					sector, nr_sects, GFP_NOFS);
1979 	}
1980 
1981 	/* For conventional zones, use regular discard if supported */
1982 	return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1983 }
1984 #endif
1985 
__issue_discard_async(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkstart,block_t blklen)1986 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1987 		struct block_device *bdev, block_t blkstart, block_t blklen)
1988 {
1989 #ifdef CONFIG_BLK_DEV_ZONED
1990 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1991 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1992 #endif
1993 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1994 }
1995 
f2fs_issue_discard(struct f2fs_sb_info * sbi,block_t blkstart,block_t blklen)1996 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1997 				block_t blkstart, block_t blklen)
1998 {
1999 	sector_t start = blkstart, len = 0;
2000 	struct block_device *bdev;
2001 	struct seg_entry *se;
2002 	unsigned int offset;
2003 	block_t i;
2004 	int err = 0;
2005 
2006 	bdev = f2fs_target_device(sbi, blkstart, NULL);
2007 
2008 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
2009 		if (i != start) {
2010 			struct block_device *bdev2 =
2011 				f2fs_target_device(sbi, i, NULL);
2012 
2013 			if (bdev2 != bdev) {
2014 				err = __issue_discard_async(sbi, bdev,
2015 						start, len);
2016 				if (err)
2017 					return err;
2018 				bdev = bdev2;
2019 				start = i;
2020 				len = 0;
2021 			}
2022 		}
2023 
2024 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2025 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2026 
2027 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
2028 			sbi->discard_blks--;
2029 	}
2030 
2031 	if (len)
2032 		err = __issue_discard_async(sbi, bdev, start, len);
2033 	return err;
2034 }
2035 
add_discard_addrs(struct f2fs_sb_info * sbi,struct cp_control * cpc,bool check_only)2036 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2037 							bool check_only)
2038 {
2039 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2040 	int max_blocks = sbi->blocks_per_seg;
2041 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2042 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2043 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2044 	unsigned long *discard_map = (unsigned long *)se->discard_map;
2045 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
2046 	unsigned int start = 0, end = -1;
2047 	bool force = (cpc->reason & CP_DISCARD);
2048 	struct discard_entry *de = NULL;
2049 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2050 	int i;
2051 
2052 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
2053 		return false;
2054 
2055 	if (!force) {
2056 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2057 			SM_I(sbi)->dcc_info->nr_discards >=
2058 				SM_I(sbi)->dcc_info->max_discards)
2059 			return false;
2060 	}
2061 
2062 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2063 	for (i = 0; i < entries; i++)
2064 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2065 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2066 
2067 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
2068 				SM_I(sbi)->dcc_info->max_discards) {
2069 		start = find_rev_next_bit(dmap, max_blocks, end + 1);
2070 		if (start >= max_blocks)
2071 			break;
2072 
2073 		end = find_rev_next_zero_bit(dmap, max_blocks, start + 1);
2074 		if (force && start && end != max_blocks
2075 					&& (end - start) < cpc->trim_minlen)
2076 			continue;
2077 
2078 		if (check_only)
2079 			return true;
2080 
2081 		if (!de) {
2082 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
2083 								GFP_F2FS_ZERO);
2084 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2085 			list_add_tail(&de->list, head);
2086 		}
2087 
2088 		for (i = start; i < end; i++)
2089 			__set_bit_le(i, (void *)de->discard_map);
2090 
2091 		SM_I(sbi)->dcc_info->nr_discards += end - start;
2092 	}
2093 	return false;
2094 }
2095 
release_discard_addr(struct discard_entry * entry)2096 static void release_discard_addr(struct discard_entry *entry)
2097 {
2098 	list_del(&entry->list);
2099 	kmem_cache_free(discard_entry_slab, entry);
2100 }
2101 
f2fs_release_discard_addrs(struct f2fs_sb_info * sbi)2102 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2103 {
2104 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2105 	struct discard_entry *entry, *this;
2106 
2107 	/* drop caches */
2108 	list_for_each_entry_safe(entry, this, head, list)
2109 		release_discard_addr(entry);
2110 }
2111 
2112 /*
2113  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2114  */
set_prefree_as_free_segments(struct f2fs_sb_info * sbi)2115 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2116 {
2117 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2118 	unsigned int segno;
2119 
2120 	mutex_lock(&dirty_i->seglist_lock);
2121 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2122 		__set_test_and_free(sbi, segno, false);
2123 	mutex_unlock(&dirty_i->seglist_lock);
2124 }
2125 
f2fs_clear_prefree_segments(struct f2fs_sb_info * sbi,struct cp_control * cpc)2126 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2127 						struct cp_control *cpc)
2128 {
2129 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2130 	struct list_head *head = &dcc->entry_list;
2131 	struct discard_entry *entry, *this;
2132 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2133 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2134 	unsigned int start = 0, end = -1;
2135 	unsigned int secno, start_segno;
2136 	bool force = (cpc->reason & CP_DISCARD);
2137 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
2138 
2139 	mutex_lock(&dirty_i->seglist_lock);
2140 
2141 	while (1) {
2142 		int i;
2143 
2144 		if (need_align && end != -1)
2145 			end--;
2146 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2147 		if (start >= MAIN_SEGS(sbi))
2148 			break;
2149 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2150 								start + 1);
2151 
2152 		if (need_align) {
2153 			start = rounddown(start, sbi->segs_per_sec);
2154 			end = roundup(end, sbi->segs_per_sec);
2155 		}
2156 
2157 		for (i = start; i < end; i++) {
2158 			if (test_and_clear_bit(i, prefree_map))
2159 				dirty_i->nr_dirty[PRE]--;
2160 		}
2161 
2162 		if (!f2fs_realtime_discard_enable(sbi))
2163 			continue;
2164 
2165 		if (force && start >= cpc->trim_start &&
2166 					(end - 1) <= cpc->trim_end)
2167 				continue;
2168 
2169 		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2170 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2171 				(end - start) << sbi->log_blocks_per_seg);
2172 			continue;
2173 		}
2174 next:
2175 		secno = GET_SEC_FROM_SEG(sbi, start);
2176 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2177 		if (!IS_CURSEC(sbi, secno) &&
2178 			!get_valid_blocks(sbi, start, true))
2179 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2180 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
2181 
2182 		start = start_segno + sbi->segs_per_sec;
2183 		if (start < end)
2184 			goto next;
2185 		else
2186 			end = start - 1;
2187 	}
2188 	mutex_unlock(&dirty_i->seglist_lock);
2189 
2190 	/* send small discards */
2191 	list_for_each_entry_safe(entry, this, head, list) {
2192 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2193 		bool is_valid = test_bit_le(0, entry->discard_map);
2194 
2195 find_next:
2196 		if (is_valid) {
2197 			next_pos = find_next_zero_bit_le(entry->discard_map,
2198 					sbi->blocks_per_seg, cur_pos);
2199 			len = next_pos - cur_pos;
2200 
2201 			if (f2fs_sb_has_blkzoned(sbi) ||
2202 			    (force && len < cpc->trim_minlen))
2203 				goto skip;
2204 
2205 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2206 									len);
2207 			total_len += len;
2208 		} else {
2209 			next_pos = find_next_bit_le(entry->discard_map,
2210 					sbi->blocks_per_seg, cur_pos);
2211 		}
2212 skip:
2213 		cur_pos = next_pos;
2214 		is_valid = !is_valid;
2215 
2216 		if (cur_pos < sbi->blocks_per_seg)
2217 			goto find_next;
2218 
2219 		release_discard_addr(entry);
2220 		dcc->nr_discards -= total_len;
2221 	}
2222 
2223 	wake_up_discard_thread(sbi, false);
2224 }
2225 
create_discard_cmd_control(struct f2fs_sb_info * sbi)2226 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2227 {
2228 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2229 	struct discard_cmd_control *dcc;
2230 	int err = 0, i;
2231 
2232 	if (SM_I(sbi)->dcc_info) {
2233 		dcc = SM_I(sbi)->dcc_info;
2234 		goto init_thread;
2235 	}
2236 
2237 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2238 	if (!dcc)
2239 		return -ENOMEM;
2240 
2241 	dcc->discard_granularity = DISCARD_GRAN_BG;
2242 	INIT_LIST_HEAD(&dcc->entry_list);
2243 	for (i = 0; i < MAX_PLIST_NUM; i++)
2244 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2245 	INIT_LIST_HEAD(&dcc->wait_list);
2246 	INIT_LIST_HEAD(&dcc->fstrim_list);
2247 	mutex_init(&dcc->cmd_lock);
2248 	atomic_set(&dcc->issued_discard, 0);
2249 	atomic_set(&dcc->queued_discard, 0);
2250 	atomic_set(&dcc->discard_cmd_cnt, 0);
2251 	dcc->nr_discards = 0;
2252 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2253 	dcc->undiscard_blks = 0;
2254 	dcc->next_pos = 0;
2255 	dcc->root = RB_ROOT_CACHED;
2256 	dcc->rbtree_check = false;
2257 
2258 	init_waitqueue_head(&dcc->discard_wait_queue);
2259 	SM_I(sbi)->dcc_info = dcc;
2260 init_thread:
2261 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2262 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2263 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2264 		err = PTR_ERR(dcc->f2fs_issue_discard);
2265 		kfree(dcc);
2266 		SM_I(sbi)->dcc_info = NULL;
2267 		return err;
2268 	}
2269 
2270 	return err;
2271 }
2272 
destroy_discard_cmd_control(struct f2fs_sb_info * sbi)2273 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2274 {
2275 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2276 
2277 	if (!dcc)
2278 		return;
2279 
2280 	f2fs_stop_discard_thread(sbi);
2281 
2282 	/*
2283 	 * Recovery can cache discard commands, so in error path of
2284 	 * fill_super(), it needs to give a chance to handle them.
2285 	 */
2286 	if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2287 		f2fs_issue_discard_timeout(sbi);
2288 
2289 	kfree(dcc);
2290 	SM_I(sbi)->dcc_info = NULL;
2291 }
2292 
__mark_sit_entry_dirty(struct f2fs_sb_info * sbi,unsigned int segno)2293 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2294 {
2295 	struct sit_info *sit_i = SIT_I(sbi);
2296 
2297 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2298 		sit_i->dirty_sentries++;
2299 		return false;
2300 	}
2301 
2302 	return true;
2303 }
2304 
__set_sit_entry_type(struct f2fs_sb_info * sbi,int type,unsigned int segno,int modified)2305 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2306 					unsigned int segno, int modified)
2307 {
2308 	struct seg_entry *se = get_seg_entry(sbi, segno);
2309 	se->type = type;
2310 	if (modified)
2311 		__mark_sit_entry_dirty(sbi, segno);
2312 }
2313 
get_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr)2314 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2315 								block_t blkaddr)
2316 {
2317 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2318 
2319 	if (segno == NULL_SEGNO)
2320 		return 0;
2321 	return get_seg_entry(sbi, segno)->mtime;
2322 }
2323 
update_segment_mtime(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned long long old_mtime)2324 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2325 						unsigned long long old_mtime)
2326 {
2327 	struct seg_entry *se;
2328 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2329 	unsigned long long ctime = get_mtime(sbi, false);
2330 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2331 
2332 	if (segno == NULL_SEGNO)
2333 		return;
2334 
2335 	se = get_seg_entry(sbi, segno);
2336 
2337 	if (!se->mtime)
2338 		se->mtime = mtime;
2339 	else
2340 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2341 						se->valid_blocks + 1);
2342 
2343 	if (ctime > SIT_I(sbi)->max_mtime)
2344 		SIT_I(sbi)->max_mtime = ctime;
2345 }
2346 
update_sit_entry(struct f2fs_sb_info * sbi,block_t blkaddr,int del)2347 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2348 {
2349 	struct seg_entry *se;
2350 	unsigned int segno, offset;
2351 	long int new_vblocks;
2352 	bool exist;
2353 #ifdef CONFIG_F2FS_CHECK_FS
2354 	bool mir_exist;
2355 #endif
2356 
2357 	segno = GET_SEGNO(sbi, blkaddr);
2358 
2359 	se = get_seg_entry(sbi, segno);
2360 	new_vblocks = se->valid_blocks + del;
2361 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2362 
2363 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2364 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2365 
2366 	se->valid_blocks = new_vblocks;
2367 
2368 	/* Update valid block bitmap */
2369 	if (del > 0) {
2370 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2371 #ifdef CONFIG_F2FS_CHECK_FS
2372 		mir_exist = f2fs_test_and_set_bit(offset,
2373 						se->cur_valid_map_mir);
2374 		if (unlikely(exist != mir_exist)) {
2375 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2376 				 blkaddr, exist);
2377 			f2fs_bug_on(sbi, 1);
2378 		}
2379 #endif
2380 		if (unlikely(exist)) {
2381 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2382 				 blkaddr);
2383 			f2fs_bug_on(sbi, 1);
2384 			se->valid_blocks--;
2385 			del = 0;
2386 		}
2387 
2388 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
2389 			sbi->discard_blks--;
2390 
2391 		/*
2392 		 * SSR should never reuse block which is checkpointed
2393 		 * or newly invalidated.
2394 		 */
2395 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2396 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2397 				se->ckpt_valid_blocks++;
2398 		}
2399 	} else {
2400 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2401 #ifdef CONFIG_F2FS_CHECK_FS
2402 		mir_exist = f2fs_test_and_clear_bit(offset,
2403 						se->cur_valid_map_mir);
2404 		if (unlikely(exist != mir_exist)) {
2405 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2406 				 blkaddr, exist);
2407 			f2fs_bug_on(sbi, 1);
2408 		}
2409 #endif
2410 		if (unlikely(!exist)) {
2411 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2412 				 blkaddr);
2413 			f2fs_bug_on(sbi, 1);
2414 			se->valid_blocks++;
2415 			del = 0;
2416 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2417 			/*
2418 			 * If checkpoints are off, we must not reuse data that
2419 			 * was used in the previous checkpoint. If it was used
2420 			 * before, we must track that to know how much space we
2421 			 * really have.
2422 			 */
2423 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2424 				spin_lock(&sbi->stat_lock);
2425 				sbi->unusable_block_count++;
2426 				spin_unlock(&sbi->stat_lock);
2427 			}
2428 		}
2429 
2430 		if (f2fs_test_and_clear_bit(offset, se->discard_map))
2431 			sbi->discard_blks++;
2432 	}
2433 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2434 		se->ckpt_valid_blocks += del;
2435 
2436 	__mark_sit_entry_dirty(sbi, segno);
2437 
2438 	/* update total number of valid blocks to be written in ckpt area */
2439 	SIT_I(sbi)->written_valid_blocks += del;
2440 
2441 	if (__is_large_section(sbi))
2442 		get_sec_entry(sbi, segno)->valid_blocks += del;
2443 }
2444 
f2fs_invalidate_blocks(struct f2fs_sb_info * sbi,block_t addr)2445 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2446 {
2447 	unsigned int segno = GET_SEGNO(sbi, addr);
2448 	struct sit_info *sit_i = SIT_I(sbi);
2449 
2450 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2451 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2452 		return;
2453 
2454 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2455 
2456 	/* add it into sit main buffer */
2457 	down_write(&sit_i->sentry_lock);
2458 
2459 	update_segment_mtime(sbi, addr, 0);
2460 	update_sit_entry(sbi, addr, -1);
2461 
2462 	/* add it into dirty seglist */
2463 	locate_dirty_segment(sbi, segno);
2464 
2465 	up_write(&sit_i->sentry_lock);
2466 }
2467 
f2fs_is_checkpointed_data(struct f2fs_sb_info * sbi,block_t blkaddr)2468 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2469 {
2470 	struct sit_info *sit_i = SIT_I(sbi);
2471 	unsigned int segno, offset;
2472 	struct seg_entry *se;
2473 	bool is_cp = false;
2474 
2475 	if (!__is_valid_data_blkaddr(blkaddr))
2476 		return true;
2477 
2478 	down_read(&sit_i->sentry_lock);
2479 
2480 	segno = GET_SEGNO(sbi, blkaddr);
2481 	se = get_seg_entry(sbi, segno);
2482 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2483 
2484 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2485 		is_cp = true;
2486 
2487 	up_read(&sit_i->sentry_lock);
2488 
2489 	return is_cp;
2490 }
2491 
2492 /*
2493  * This function should be resided under the curseg_mutex lock
2494  */
__add_sum_entry(struct f2fs_sb_info * sbi,int type,struct f2fs_summary * sum)2495 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2496 					struct f2fs_summary *sum)
2497 {
2498 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2499 	void *addr = curseg->sum_blk;
2500 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2501 	memcpy(addr, sum, sizeof(struct f2fs_summary));
2502 }
2503 
2504 /*
2505  * Calculate the number of current summary pages for writing
2506  */
f2fs_npages_for_summary_flush(struct f2fs_sb_info * sbi,bool for_ra)2507 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2508 {
2509 	int valid_sum_count = 0;
2510 	int i, sum_in_page;
2511 
2512 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2513 		if (sbi->ckpt->alloc_type[i] == SSR)
2514 			valid_sum_count += sbi->blocks_per_seg;
2515 		else {
2516 			if (for_ra)
2517 				valid_sum_count += le16_to_cpu(
2518 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2519 			else
2520 				valid_sum_count += curseg_blkoff(sbi, i);
2521 		}
2522 	}
2523 
2524 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2525 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2526 	if (valid_sum_count <= sum_in_page)
2527 		return 1;
2528 	else if ((valid_sum_count - sum_in_page) <=
2529 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2530 		return 2;
2531 	return 3;
2532 }
2533 
2534 /*
2535  * Caller should put this summary page
2536  */
f2fs_get_sum_page(struct f2fs_sb_info * sbi,unsigned int segno)2537 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2538 {
2539 	if (unlikely(f2fs_cp_error(sbi)))
2540 		return ERR_PTR(-EIO);
2541 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2542 }
2543 
f2fs_update_meta_page(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)2544 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2545 					void *src, block_t blk_addr)
2546 {
2547 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2548 
2549 	memcpy(page_address(page), src, PAGE_SIZE);
2550 	set_page_dirty(page);
2551 	f2fs_put_page(page, 1);
2552 }
2553 
write_sum_page(struct f2fs_sb_info * sbi,struct f2fs_summary_block * sum_blk,block_t blk_addr)2554 static void write_sum_page(struct f2fs_sb_info *sbi,
2555 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2556 {
2557 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2558 }
2559 
write_current_sum_page(struct f2fs_sb_info * sbi,int type,block_t blk_addr)2560 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2561 						int type, block_t blk_addr)
2562 {
2563 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2564 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2565 	struct f2fs_summary_block *src = curseg->sum_blk;
2566 	struct f2fs_summary_block *dst;
2567 
2568 	dst = (struct f2fs_summary_block *)page_address(page);
2569 	memset(dst, 0, PAGE_SIZE);
2570 
2571 	mutex_lock(&curseg->curseg_mutex);
2572 
2573 	down_read(&curseg->journal_rwsem);
2574 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2575 	up_read(&curseg->journal_rwsem);
2576 
2577 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2578 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2579 
2580 	mutex_unlock(&curseg->curseg_mutex);
2581 
2582 	set_page_dirty(page);
2583 	f2fs_put_page(page, 1);
2584 }
2585 
is_next_segment_free(struct f2fs_sb_info * sbi,struct curseg_info * curseg,int type)2586 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2587 				struct curseg_info *curseg, int type)
2588 {
2589 	unsigned int segno = curseg->segno + 1;
2590 	struct free_segmap_info *free_i = FREE_I(sbi);
2591 
2592 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2593 		return !test_bit(segno, free_i->free_segmap);
2594 	return 0;
2595 }
2596 
2597 /*
2598  * Find a new segment from the free segments bitmap to right order
2599  * This function should be returned with success, otherwise BUG
2600  */
get_new_segment(struct f2fs_sb_info * sbi,unsigned int * newseg,bool new_sec,int dir)2601 static void get_new_segment(struct f2fs_sb_info *sbi,
2602 			unsigned int *newseg, bool new_sec, int dir)
2603 {
2604 	struct free_segmap_info *free_i = FREE_I(sbi);
2605 	unsigned int segno, secno, zoneno;
2606 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2607 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2608 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2609 	unsigned int left_start = hint;
2610 	bool init = true;
2611 	int go_left = 0;
2612 	int i;
2613 
2614 	spin_lock(&free_i->segmap_lock);
2615 
2616 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2617 		segno = find_next_zero_bit(free_i->free_segmap,
2618 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2619 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2620 			goto got_it;
2621 	}
2622 find_other_zone:
2623 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2624 	if (secno >= MAIN_SECS(sbi)) {
2625 		if (dir == ALLOC_RIGHT) {
2626 			secno = find_next_zero_bit(free_i->free_secmap,
2627 							MAIN_SECS(sbi), 0);
2628 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2629 		} else {
2630 			go_left = 1;
2631 			left_start = hint - 1;
2632 		}
2633 	}
2634 	if (go_left == 0)
2635 		goto skip_left;
2636 
2637 	while (test_bit(left_start, free_i->free_secmap)) {
2638 		if (left_start > 0) {
2639 			left_start--;
2640 			continue;
2641 		}
2642 		left_start = find_next_zero_bit(free_i->free_secmap,
2643 							MAIN_SECS(sbi), 0);
2644 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2645 		break;
2646 	}
2647 	secno = left_start;
2648 skip_left:
2649 	segno = GET_SEG_FROM_SEC(sbi, secno);
2650 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2651 
2652 	/* give up on finding another zone */
2653 	if (!init)
2654 		goto got_it;
2655 	if (sbi->secs_per_zone == 1)
2656 		goto got_it;
2657 	if (zoneno == old_zoneno)
2658 		goto got_it;
2659 	if (dir == ALLOC_LEFT) {
2660 		if (!go_left && zoneno + 1 >= total_zones)
2661 			goto got_it;
2662 		if (go_left && zoneno == 0)
2663 			goto got_it;
2664 	}
2665 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2666 		if (CURSEG_I(sbi, i)->zone == zoneno)
2667 			break;
2668 
2669 	if (i < NR_CURSEG_TYPE) {
2670 		/* zone is in user, try another */
2671 		if (go_left)
2672 			hint = zoneno * sbi->secs_per_zone - 1;
2673 		else if (zoneno + 1 >= total_zones)
2674 			hint = 0;
2675 		else
2676 			hint = (zoneno + 1) * sbi->secs_per_zone;
2677 		init = false;
2678 		goto find_other_zone;
2679 	}
2680 got_it:
2681 	/* set it as dirty segment in free segmap */
2682 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2683 	__set_inuse(sbi, segno);
2684 	*newseg = segno;
2685 	spin_unlock(&free_i->segmap_lock);
2686 }
2687 
reset_curseg(struct f2fs_sb_info * sbi,int type,int modified)2688 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2689 {
2690 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2691 	struct summary_footer *sum_footer;
2692 	unsigned short seg_type = curseg->seg_type;
2693 
2694 	curseg->inited = true;
2695 	curseg->segno = curseg->next_segno;
2696 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2697 	curseg->next_blkoff = 0;
2698 	curseg->next_segno = NULL_SEGNO;
2699 
2700 	sum_footer = &(curseg->sum_blk->footer);
2701 	memset(sum_footer, 0, sizeof(struct summary_footer));
2702 
2703 	sanity_check_seg_type(sbi, seg_type);
2704 
2705 	if (IS_DATASEG(seg_type))
2706 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2707 	if (IS_NODESEG(seg_type))
2708 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2709 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2710 }
2711 
__get_next_segno(struct f2fs_sb_info * sbi,int type)2712 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2713 {
2714 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2715 	unsigned short seg_type = curseg->seg_type;
2716 
2717 	sanity_check_seg_type(sbi, seg_type);
2718 
2719 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2720 	if (__is_large_section(sbi))
2721 		return curseg->segno;
2722 
2723 	/* inmem log may not locate on any segment after mount */
2724 	if (!curseg->inited)
2725 		return 0;
2726 
2727 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2728 		return 0;
2729 
2730 	if (test_opt(sbi, NOHEAP) &&
2731 		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2732 		return 0;
2733 
2734 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2735 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2736 
2737 	/* find segments from 0 to reuse freed segments */
2738 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2739 		return 0;
2740 
2741 	return curseg->segno;
2742 }
2743 
2744 /*
2745  * Allocate a current working segment.
2746  * This function always allocates a free segment in LFS manner.
2747  */
new_curseg(struct f2fs_sb_info * sbi,int type,bool new_sec)2748 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2749 {
2750 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2751 	unsigned short seg_type = curseg->seg_type;
2752 	unsigned int segno = curseg->segno;
2753 	int dir = ALLOC_LEFT;
2754 
2755 	if (curseg->inited)
2756 		write_sum_page(sbi, curseg->sum_blk,
2757 				GET_SUM_BLOCK(sbi, segno));
2758 	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2759 		dir = ALLOC_RIGHT;
2760 
2761 	if (test_opt(sbi, NOHEAP))
2762 		dir = ALLOC_RIGHT;
2763 
2764 	segno = __get_next_segno(sbi, type);
2765 	get_new_segment(sbi, &segno, new_sec, dir);
2766 	curseg->next_segno = segno;
2767 	reset_curseg(sbi, type, 1);
2768 	curseg->alloc_type = LFS;
2769 }
2770 
__next_free_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg,block_t start)2771 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2772 			struct curseg_info *seg, block_t start)
2773 {
2774 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2775 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2776 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2777 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2778 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2779 	int i, pos;
2780 
2781 	for (i = 0; i < entries; i++)
2782 		target_map[i] = ckpt_map[i] | cur_map[i];
2783 
2784 	pos = find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2785 
2786 	seg->next_blkoff = pos;
2787 }
2788 
2789 /*
2790  * If a segment is written by LFS manner, next block offset is just obtained
2791  * by increasing the current block offset. However, if a segment is written by
2792  * SSR manner, next block offset obtained by calling __next_free_blkoff
2793  */
__refresh_next_blkoff(struct f2fs_sb_info * sbi,struct curseg_info * seg)2794 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2795 				struct curseg_info *seg)
2796 {
2797 	if (seg->alloc_type == SSR)
2798 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2799 	else
2800 		seg->next_blkoff++;
2801 }
2802 
f2fs_segment_has_free_slot(struct f2fs_sb_info * sbi,int segno)2803 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2804 {
2805 	struct seg_entry *se = get_seg_entry(sbi, segno);
2806 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2807 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2808 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2809 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2810 	int i, pos;
2811 
2812 	for (i = 0; i < entries; i++)
2813 		target_map[i] = ckpt_map[i] | cur_map[i];
2814 
2815 	pos = find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, 0);
2816 
2817 	return pos < sbi->blocks_per_seg;
2818 }
2819 
2820 /*
2821  * This function always allocates a used segment(from dirty seglist) by SSR
2822  * manner, so it should recover the existing segment information of valid blocks
2823  */
change_curseg(struct f2fs_sb_info * sbi,int type,bool flush)2824 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2825 {
2826 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2827 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2828 	unsigned int new_segno = curseg->next_segno;
2829 	struct f2fs_summary_block *sum_node;
2830 	struct page *sum_page;
2831 
2832 	if (flush)
2833 		write_sum_page(sbi, curseg->sum_blk,
2834 					GET_SUM_BLOCK(sbi, curseg->segno));
2835 
2836 	__set_test_and_inuse(sbi, new_segno);
2837 
2838 	mutex_lock(&dirty_i->seglist_lock);
2839 	__remove_dirty_segment(sbi, new_segno, PRE);
2840 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2841 	mutex_unlock(&dirty_i->seglist_lock);
2842 
2843 	reset_curseg(sbi, type, 1);
2844 	curseg->alloc_type = SSR;
2845 	__next_free_blkoff(sbi, curseg, 0);
2846 
2847 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2848 	if (IS_ERR(sum_page)) {
2849 		/* GC won't be able to use stale summary pages by cp_error */
2850 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2851 		return;
2852 	}
2853 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2854 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2855 	f2fs_put_page(sum_page, 1);
2856 }
2857 
2858 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2859 				int alloc_mode, unsigned long long age);
2860 
get_atssr_segment(struct f2fs_sb_info * sbi,int type,int target_type,int alloc_mode,unsigned long long age)2861 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2862 					int target_type, int alloc_mode,
2863 					unsigned long long age)
2864 {
2865 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2866 
2867 	curseg->seg_type = target_type;
2868 
2869 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2870 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2871 
2872 		curseg->seg_type = se->type;
2873 		change_curseg(sbi, type, true);
2874 	} else {
2875 		/* allocate cold segment by default */
2876 		curseg->seg_type = CURSEG_COLD_DATA;
2877 		new_curseg(sbi, type, true);
2878 	}
2879 	stat_inc_seg_type(sbi, curseg);
2880 }
2881 
__f2fs_init_atgc_curseg(struct f2fs_sb_info * sbi)2882 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2883 {
2884 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2885 
2886 	if (!sbi->am.atgc_enabled)
2887 		return;
2888 
2889 	down_read(&SM_I(sbi)->curseg_lock);
2890 
2891 	mutex_lock(&curseg->curseg_mutex);
2892 	down_write(&SIT_I(sbi)->sentry_lock);
2893 
2894 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2895 
2896 	up_write(&SIT_I(sbi)->sentry_lock);
2897 	mutex_unlock(&curseg->curseg_mutex);
2898 
2899 	up_read(&SM_I(sbi)->curseg_lock);
2900 
2901 }
f2fs_init_inmem_curseg(struct f2fs_sb_info * sbi)2902 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2903 {
2904 	__f2fs_init_atgc_curseg(sbi);
2905 }
2906 
__f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi,int type)2907 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2908 {
2909 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2910 
2911 	mutex_lock(&curseg->curseg_mutex);
2912 	if (!curseg->inited)
2913 		goto out;
2914 
2915 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2916 		write_sum_page(sbi, curseg->sum_blk,
2917 				GET_SUM_BLOCK(sbi, curseg->segno));
2918 	} else {
2919 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2920 		__set_test_and_free(sbi, curseg->segno, true);
2921 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2922 	}
2923 out:
2924 	mutex_unlock(&curseg->curseg_mutex);
2925 }
2926 
f2fs_save_inmem_curseg(struct f2fs_sb_info * sbi)2927 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2928 {
2929 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2930 
2931 	if (sbi->am.atgc_enabled)
2932 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2933 }
2934 
__f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi,int type)2935 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2936 {
2937 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2938 
2939 	mutex_lock(&curseg->curseg_mutex);
2940 	if (!curseg->inited)
2941 		goto out;
2942 	if (get_valid_blocks(sbi, curseg->segno, false))
2943 		goto out;
2944 
2945 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2946 	__set_test_and_inuse(sbi, curseg->segno);
2947 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2948 out:
2949 	mutex_unlock(&curseg->curseg_mutex);
2950 }
2951 
f2fs_restore_inmem_curseg(struct f2fs_sb_info * sbi)2952 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2953 {
2954 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2955 
2956 	if (sbi->am.atgc_enabled)
2957 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2958 }
2959 
get_ssr_segment(struct f2fs_sb_info * sbi,int type,int alloc_mode,unsigned long long age)2960 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2961 				int alloc_mode, unsigned long long age)
2962 {
2963 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2964 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2965 	unsigned segno = NULL_SEGNO;
2966 	unsigned short seg_type = curseg->seg_type;
2967 	int i, cnt;
2968 	bool reversed = false;
2969 
2970 	sanity_check_seg_type(sbi, seg_type);
2971 
2972 	/* f2fs_need_SSR() already forces to do this */
2973 	if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2974 		curseg->next_segno = segno;
2975 		return 1;
2976 	}
2977 
2978 	/* For node segments, let's do SSR more intensively */
2979 	if (IS_NODESEG(seg_type)) {
2980 		if (seg_type >= CURSEG_WARM_NODE) {
2981 			reversed = true;
2982 			i = CURSEG_COLD_NODE;
2983 		} else {
2984 			i = CURSEG_HOT_NODE;
2985 		}
2986 		cnt = NR_CURSEG_NODE_TYPE;
2987 	} else {
2988 		if (seg_type >= CURSEG_WARM_DATA) {
2989 			reversed = true;
2990 			i = CURSEG_COLD_DATA;
2991 		} else {
2992 			i = CURSEG_HOT_DATA;
2993 		}
2994 		cnt = NR_CURSEG_DATA_TYPE;
2995 	}
2996 
2997 	for (; cnt-- > 0; reversed ? i-- : i++) {
2998 		if (i == seg_type)
2999 			continue;
3000 		if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
3001 			curseg->next_segno = segno;
3002 			return 1;
3003 		}
3004 	}
3005 
3006 	/* find valid_blocks=0 in dirty list */
3007 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3008 		segno = get_free_segment(sbi);
3009 		if (segno != NULL_SEGNO) {
3010 			curseg->next_segno = segno;
3011 			return 1;
3012 		}
3013 	}
3014 	return 0;
3015 }
3016 
3017 /*
3018  * flush out current segment and replace it with new segment
3019  * This function should be returned with success, otherwise BUG
3020  */
allocate_segment_by_default(struct f2fs_sb_info * sbi,int type,bool force,int contig_level)3021 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
3022 					int type, bool force, int contig_level)
3023 {
3024 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3025 
3026 	if (force)
3027 		new_curseg(sbi, type, true);
3028 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3029 					curseg->seg_type == CURSEG_WARM_NODE)
3030 		new_curseg(sbi, type, false);
3031 	else if (curseg->alloc_type == LFS &&
3032 			is_next_segment_free(sbi, curseg, type) &&
3033 			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3034 		new_curseg(sbi, type, false);
3035 #ifdef CONFIG_F2FS_GRADING_SSR
3036 	else if (need_ssr_by_type(sbi, type, contig_level) && get_ssr_segment(sbi, type, SSR, 0))
3037 #else
3038 	else if (f2fs_need_SSR(sbi) &&
3039 			get_ssr_segment(sbi, type, SSR, 0))
3040 #endif
3041 		change_curseg(sbi, type, true);
3042 	else
3043 		new_curseg(sbi, type, false);
3044 
3045 	stat_inc_seg_type(sbi, curseg);
3046 }
3047 
f2fs_allocate_segment_for_resize(struct f2fs_sb_info * sbi,int type,unsigned int start,unsigned int end)3048 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3049 					unsigned int start, unsigned int end)
3050 {
3051 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3052 	unsigned int segno;
3053 
3054 	down_read(&SM_I(sbi)->curseg_lock);
3055 	mutex_lock(&curseg->curseg_mutex);
3056 	down_write(&SIT_I(sbi)->sentry_lock);
3057 
3058 	segno = CURSEG_I(sbi, type)->segno;
3059 	if (segno < start || segno > end)
3060 		goto unlock;
3061 
3062 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3063 		change_curseg(sbi, type, true);
3064 	else
3065 		new_curseg(sbi, type, true);
3066 
3067 	stat_inc_seg_type(sbi, curseg);
3068 
3069 	locate_dirty_segment(sbi, segno);
3070 unlock:
3071 	up_write(&SIT_I(sbi)->sentry_lock);
3072 
3073 	if (segno != curseg->segno)
3074 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3075 			    type, segno, curseg->segno);
3076 
3077 	mutex_unlock(&curseg->curseg_mutex);
3078 	up_read(&SM_I(sbi)->curseg_lock);
3079 }
3080 
__allocate_new_segment(struct f2fs_sb_info * sbi,int type,bool new_sec)3081 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3082 								bool new_sec)
3083 {
3084 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3085 	unsigned int old_segno;
3086 
3087 	if (!curseg->inited)
3088 		goto alloc;
3089 
3090 	if (curseg->next_blkoff ||
3091 		get_valid_blocks(sbi, curseg->segno, new_sec))
3092 		goto alloc;
3093 
3094 	if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3095 		return;
3096 alloc:
3097 	old_segno = curseg->segno;
3098 	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true, SEQ_NONE);
3099 	locate_dirty_segment(sbi, old_segno);
3100 }
3101 
__allocate_new_section(struct f2fs_sb_info * sbi,int type)3102 static void __allocate_new_section(struct f2fs_sb_info *sbi, int type)
3103 {
3104 	__allocate_new_segment(sbi, type, true);
3105 }
3106 
f2fs_allocate_new_section(struct f2fs_sb_info * sbi,int type)3107 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type)
3108 {
3109 	down_read(&SM_I(sbi)->curseg_lock);
3110 	down_write(&SIT_I(sbi)->sentry_lock);
3111 	__allocate_new_section(sbi, type);
3112 	up_write(&SIT_I(sbi)->sentry_lock);
3113 	up_read(&SM_I(sbi)->curseg_lock);
3114 }
3115 
f2fs_allocate_new_segments(struct f2fs_sb_info * sbi)3116 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3117 {
3118 	int i;
3119 
3120 	down_read(&SM_I(sbi)->curseg_lock);
3121 	down_write(&SIT_I(sbi)->sentry_lock);
3122 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3123 		__allocate_new_segment(sbi, i, false);
3124 	up_write(&SIT_I(sbi)->sentry_lock);
3125 	up_read(&SM_I(sbi)->curseg_lock);
3126 }
3127 
3128 static const struct segment_allocation default_salloc_ops = {
3129 	.allocate_segment = allocate_segment_by_default,
3130 };
3131 
f2fs_exist_trim_candidates(struct f2fs_sb_info * sbi,struct cp_control * cpc)3132 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3133 						struct cp_control *cpc)
3134 {
3135 	__u64 trim_start = cpc->trim_start;
3136 	bool has_candidate = false;
3137 
3138 	down_write(&SIT_I(sbi)->sentry_lock);
3139 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3140 		if (add_discard_addrs(sbi, cpc, true)) {
3141 			has_candidate = true;
3142 			break;
3143 		}
3144 	}
3145 	up_write(&SIT_I(sbi)->sentry_lock);
3146 
3147 	cpc->trim_start = trim_start;
3148 	return has_candidate;
3149 }
3150 
__issue_discard_cmd_range(struct f2fs_sb_info * sbi,struct discard_policy * dpolicy,unsigned int start,unsigned int end)3151 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3152 					struct discard_policy *dpolicy,
3153 					unsigned int start, unsigned int end)
3154 {
3155 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3156 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3157 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3158 	struct discard_cmd *dc;
3159 	struct blk_plug plug;
3160 	struct discard_sub_policy *spolicy = NULL;
3161 	int issued;
3162 	unsigned int trimmed = 0;
3163 	/* fstrim each time 8 discard without no interrupt */
3164 	select_sub_discard_policy(&spolicy, 0, dpolicy);
3165 
3166 	if (dcc->rbtree_check) {
3167 		mutex_lock(&dcc->cmd_lock);
3168 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, &dcc->root, false));
3169 		mutex_unlock(&dcc->cmd_lock);
3170 	}
3171 
3172 next:
3173 	issued = 0;
3174 
3175 	mutex_lock(&dcc->cmd_lock);
3176 	if (unlikely(dcc->rbtree_check))
3177 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3178 							&dcc->root, false));
3179 
3180 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3181 					NULL, start,
3182 					(struct rb_entry **)&prev_dc,
3183 					(struct rb_entry **)&next_dc,
3184 					&insert_p, &insert_parent, true, NULL);
3185 	if (!dc)
3186 		dc = next_dc;
3187 
3188 	blk_start_plug(&plug);
3189 
3190 	while (dc && dc->lstart <= end) {
3191 		struct rb_node *node;
3192 		int err = 0;
3193 
3194 		if (dc->len < dpolicy->granularity)
3195 			goto skip;
3196 
3197 		if (dc->state != D_PREP) {
3198 			list_move_tail(&dc->list, &dcc->fstrim_list);
3199 			goto skip;
3200 		}
3201 
3202 		err = __submit_discard_cmd(sbi, dpolicy, 0, dc, &issued);
3203 
3204 		if (issued >= spolicy->max_requests) {
3205 			start = dc->lstart + dc->len;
3206 
3207 			if (err)
3208 				__remove_discard_cmd(sbi, dc);
3209 
3210 			blk_finish_plug(&plug);
3211 			mutex_unlock(&dcc->cmd_lock);
3212 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3213 			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3214 			goto next;
3215 		}
3216 skip:
3217 		node = rb_next(&dc->rb_node);
3218 		if (err)
3219 			__remove_discard_cmd(sbi, dc);
3220 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3221 
3222 		if (fatal_signal_pending(current))
3223 			break;
3224 	}
3225 
3226 	blk_finish_plug(&plug);
3227 	mutex_unlock(&dcc->cmd_lock);
3228 
3229 	return trimmed;
3230 }
3231 
f2fs_trim_fs(struct f2fs_sb_info * sbi,struct fstrim_range * range)3232 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3233 {
3234 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3235 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3236 	unsigned int start_segno, end_segno;
3237 	block_t start_block, end_block;
3238 	struct cp_control cpc;
3239 	struct discard_policy dpolicy;
3240 	unsigned long long trimmed = 0;
3241 	int err = 0;
3242 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3243 
3244 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3245 		return -EINVAL;
3246 
3247 	if (end < MAIN_BLKADDR(sbi))
3248 		goto out;
3249 
3250 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3251 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3252 		return -EFSCORRUPTED;
3253 	}
3254 
3255 	/* start/end segment number in main_area */
3256 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3257 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3258 						GET_SEGNO(sbi, end);
3259 	if (need_align) {
3260 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3261 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3262 	}
3263 
3264 	cpc.reason = CP_DISCARD;
3265 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3266 	cpc.trim_start = start_segno;
3267 	cpc.trim_end = end_segno;
3268 
3269 	if (sbi->discard_blks == 0)
3270 		goto out;
3271 
3272 	down_write(&sbi->gc_lock);
3273 	err = f2fs_write_checkpoint(sbi, &cpc);
3274 	up_write(&sbi->gc_lock);
3275 	if (err)
3276 		goto out;
3277 
3278 	/*
3279 	 * We filed discard candidates, but actually we don't need to wait for
3280 	 * all of them, since they'll be issued in idle time along with runtime
3281 	 * discard option. User configuration looks like using runtime discard
3282 	 * or periodic fstrim instead of it.
3283 	 */
3284 	if (f2fs_realtime_discard_enable(sbi))
3285 		goto out;
3286 
3287 	start_block = START_BLOCK(sbi, start_segno);
3288 	end_block = START_BLOCK(sbi, end_segno + 1);
3289 
3290 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3291 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3292 					start_block, end_block);
3293 
3294 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3295 					start_block, end_block);
3296 out:
3297 	if (!err)
3298 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3299 	return err;
3300 }
3301 
__has_curseg_space(struct f2fs_sb_info * sbi,struct curseg_info * curseg)3302 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3303 					struct curseg_info *curseg)
3304 {
3305 	return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3306 							curseg->segno);
3307 }
3308 
f2fs_rw_hint_to_seg_type(enum rw_hint hint)3309 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3310 {
3311 	switch (hint) {
3312 	case WRITE_LIFE_SHORT:
3313 		return CURSEG_HOT_DATA;
3314 	case WRITE_LIFE_EXTREME:
3315 		return CURSEG_COLD_DATA;
3316 	default:
3317 		return CURSEG_WARM_DATA;
3318 	}
3319 }
3320 
3321 /* This returns write hints for each segment type. This hints will be
3322  * passed down to block layer. There are mapping tables which depend on
3323  * the mount option 'whint_mode'.
3324  *
3325  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3326  *
3327  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3328  *
3329  * User                  F2FS                     Block
3330  * ----                  ----                     -----
3331  *                       META                     WRITE_LIFE_NOT_SET
3332  *                       HOT_NODE                 "
3333  *                       WARM_NODE                "
3334  *                       COLD_NODE                "
3335  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3336  * extension list        "                        "
3337  *
3338  * -- buffered io
3339  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3340  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3341  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3342  * WRITE_LIFE_NONE       "                        "
3343  * WRITE_LIFE_MEDIUM     "                        "
3344  * WRITE_LIFE_LONG       "                        "
3345  *
3346  * -- direct io
3347  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3348  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3349  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3350  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3351  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3352  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3353  *
3354  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3355  *
3356  * User                  F2FS                     Block
3357  * ----                  ----                     -----
3358  *                       META                     WRITE_LIFE_MEDIUM;
3359  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
3360  *                       WARM_NODE                "
3361  *                       COLD_NODE                WRITE_LIFE_NONE
3362  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3363  * extension list        "                        "
3364  *
3365  * -- buffered io
3366  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3367  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3368  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
3369  * WRITE_LIFE_NONE       "                        "
3370  * WRITE_LIFE_MEDIUM     "                        "
3371  * WRITE_LIFE_LONG       "                        "
3372  *
3373  * -- direct io
3374  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3375  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3376  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3377  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3378  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3379  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3380  */
3381 
f2fs_io_type_to_rw_hint(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)3382 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3383 				enum page_type type, enum temp_type temp)
3384 {
3385 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3386 		if (type == DATA) {
3387 			if (temp == WARM)
3388 				return WRITE_LIFE_NOT_SET;
3389 			else if (temp == HOT)
3390 				return WRITE_LIFE_SHORT;
3391 			else if (temp == COLD)
3392 				return WRITE_LIFE_EXTREME;
3393 		} else {
3394 			return WRITE_LIFE_NOT_SET;
3395 		}
3396 	} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3397 		if (type == DATA) {
3398 			if (temp == WARM)
3399 				return WRITE_LIFE_LONG;
3400 			else if (temp == HOT)
3401 				return WRITE_LIFE_SHORT;
3402 			else if (temp == COLD)
3403 				return WRITE_LIFE_EXTREME;
3404 		} else if (type == NODE) {
3405 			if (temp == WARM || temp == HOT)
3406 				return WRITE_LIFE_NOT_SET;
3407 			else if (temp == COLD)
3408 				return WRITE_LIFE_NONE;
3409 		} else if (type == META) {
3410 			return WRITE_LIFE_MEDIUM;
3411 		}
3412 	}
3413 	return WRITE_LIFE_NOT_SET;
3414 }
3415 
__get_segment_type_2(struct f2fs_io_info * fio)3416 static int __get_segment_type_2(struct f2fs_io_info *fio)
3417 {
3418 	if (fio->type == DATA)
3419 		return CURSEG_HOT_DATA;
3420 	else
3421 		return CURSEG_HOT_NODE;
3422 }
3423 
__get_segment_type_4(struct f2fs_io_info * fio)3424 static int __get_segment_type_4(struct f2fs_io_info *fio)
3425 {
3426 	if (fio->type == DATA) {
3427 		struct inode *inode = fio->page->mapping->host;
3428 
3429 		if (S_ISDIR(inode->i_mode))
3430 			return CURSEG_HOT_DATA;
3431 		else
3432 			return CURSEG_COLD_DATA;
3433 	} else {
3434 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3435 			return CURSEG_WARM_NODE;
3436 		else
3437 			return CURSEG_COLD_NODE;
3438 	}
3439 }
3440 
__get_segment_type_6(struct f2fs_io_info * fio)3441 static int __get_segment_type_6(struct f2fs_io_info *fio)
3442 {
3443 	if (fio->type == DATA) {
3444 		struct inode *inode = fio->page->mapping->host;
3445 
3446 		if (is_cold_data(fio->page)) {
3447 			if (fio->sbi->am.atgc_enabled)
3448 				return CURSEG_ALL_DATA_ATGC;
3449 			else
3450 				return CURSEG_COLD_DATA;
3451 		}
3452 		if (file_is_cold(inode) || f2fs_compressed_file(inode))
3453 			return CURSEG_COLD_DATA;
3454 		if (file_is_hot(inode) ||
3455 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3456 				f2fs_is_atomic_file(inode) ||
3457 				f2fs_is_volatile_file(inode))
3458 			return CURSEG_HOT_DATA;
3459 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3460 	} else {
3461 		if (IS_DNODE(fio->page))
3462 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3463 						CURSEG_HOT_NODE;
3464 		return CURSEG_COLD_NODE;
3465 	}
3466 }
3467 
__get_segment_type(struct f2fs_io_info * fio)3468 static int __get_segment_type(struct f2fs_io_info *fio)
3469 {
3470 	int type = 0;
3471 
3472 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3473 	case 2:
3474 		type = __get_segment_type_2(fio);
3475 		break;
3476 	case 4:
3477 		type = __get_segment_type_4(fio);
3478 		break;
3479 	case 6:
3480 		type = __get_segment_type_6(fio);
3481 		break;
3482 	default:
3483 		f2fs_bug_on(fio->sbi, true);
3484 	}
3485 
3486 	if (IS_HOT(type))
3487 		fio->temp = HOT;
3488 	else if (IS_WARM(type))
3489 		fio->temp = WARM;
3490 	else
3491 		fio->temp = COLD;
3492 	return type;
3493 }
3494 
f2fs_allocate_data_block(struct f2fs_sb_info * sbi,struct page * page,block_t old_blkaddr,block_t * new_blkaddr,struct f2fs_summary * sum,int type,struct f2fs_io_info * fio,int contig_level)3495 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3496 		block_t old_blkaddr, block_t *new_blkaddr,
3497 		struct f2fs_summary *sum, int type,
3498 		struct f2fs_io_info *fio, int contig_level)
3499 {
3500 	struct sit_info *sit_i = SIT_I(sbi);
3501 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3502 	unsigned long long old_mtime;
3503 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3504 	struct seg_entry *se = NULL;
3505 #ifdef CONFIG_F2FS_GRADING_SSR
3506 	struct inode *inode = NULL;
3507 #endif
3508 	int contig = SEQ_NONE;
3509 
3510 	down_read(&SM_I(sbi)->curseg_lock);
3511 
3512 	mutex_lock(&curseg->curseg_mutex);
3513 	down_write(&sit_i->sentry_lock);
3514 
3515 	if (from_gc) {
3516 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3517 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3518 		sanity_check_seg_type(sbi, se->type);
3519 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3520 	}
3521 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3522 
3523 	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3524 
3525 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3526 
3527 	/*
3528 	 * __add_sum_entry should be resided under the curseg_mutex
3529 	 * because, this function updates a summary entry in the
3530 	 * current summary block.
3531 	 */
3532 	__add_sum_entry(sbi, type, sum);
3533 
3534 	__refresh_next_blkoff(sbi, curseg);
3535 
3536 	stat_inc_block_count(sbi, curseg);
3537 
3538 	if (from_gc) {
3539 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3540 	} else {
3541 		update_segment_mtime(sbi, old_blkaddr, 0);
3542 		old_mtime = 0;
3543 	}
3544 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3545 
3546 	/*
3547 	 * SIT information should be updated before segment allocation,
3548 	 * since SSR needs latest valid block information.
3549 	 */
3550 	update_sit_entry(sbi, *new_blkaddr, 1);
3551 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3552 		update_sit_entry(sbi, old_blkaddr, -1);
3553 
3554 	if (!__has_curseg_space(sbi, curseg)) {
3555 		if (from_gc) {
3556 			get_atssr_segment(sbi, type, se->type,
3557 						AT_SSR, se->mtime);
3558 		} else {
3559 #ifdef CONFIG_F2FS_GRADING_SSR
3560 			if (contig_level != SEQ_NONE) {
3561 				contig = contig_level;
3562 				goto allocate_label;
3563 			}
3564 
3565 			if (page && page->mapping && page->mapping != NODE_MAPPING(sbi) &&
3566 					page->mapping != META_MAPPING(sbi)) {
3567 				inode = page->mapping->host;
3568 				contig = check_io_seq(get_dirty_pages(inode));
3569 			}
3570 allocate_label:
3571 #endif
3572 			sit_i->s_ops->allocate_segment(sbi, type, false, contig);
3573 		}
3574 	}
3575 	/*
3576 	 * segment dirty status should be updated after segment allocation,
3577 	 * so we just need to update status only one time after previous
3578 	 * segment being closed.
3579 	 */
3580 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3581 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3582 
3583 	up_write(&sit_i->sentry_lock);
3584 
3585 	if (page && IS_NODESEG(type)) {
3586 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3587 
3588 		f2fs_inode_chksum_set(sbi, page);
3589 	}
3590 
3591 	if (fio) {
3592 		struct f2fs_bio_info *io;
3593 
3594 		if (F2FS_IO_ALIGNED(sbi))
3595 			fio->retry = false;
3596 
3597 		INIT_LIST_HEAD(&fio->list);
3598 		fio->in_list = true;
3599 		io = sbi->write_io[fio->type] + fio->temp;
3600 		spin_lock(&io->io_lock);
3601 		list_add_tail(&fio->list, &io->io_list);
3602 		spin_unlock(&io->io_lock);
3603 	}
3604 
3605 	mutex_unlock(&curseg->curseg_mutex);
3606 
3607 	up_read(&SM_I(sbi)->curseg_lock);
3608 }
3609 
update_device_state(struct f2fs_io_info * fio)3610 static void update_device_state(struct f2fs_io_info *fio)
3611 {
3612 	struct f2fs_sb_info *sbi = fio->sbi;
3613 	unsigned int devidx;
3614 
3615 	if (!f2fs_is_multi_device(sbi))
3616 		return;
3617 
3618 	devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3619 
3620 	/* update device state for fsync */
3621 	f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3622 
3623 	/* update device state for checkpoint */
3624 	if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3625 		spin_lock(&sbi->dev_lock);
3626 		f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3627 		spin_unlock(&sbi->dev_lock);
3628 	}
3629 }
3630 
do_write_page(struct f2fs_summary * sum,struct f2fs_io_info * fio)3631 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3632 {
3633 	int type = __get_segment_type(fio);
3634 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3635 
3636 	if (keep_order)
3637 		down_read(&fio->sbi->io_order_lock);
3638 reallocate:
3639 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3640 			&fio->new_blkaddr, sum, type, fio, SEQ_NONE);
3641 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3642 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3643 					fio->old_blkaddr, fio->old_blkaddr);
3644 
3645 	/* writeout dirty page into bdev */
3646 	f2fs_submit_page_write(fio);
3647 	if (fio->retry) {
3648 		fio->old_blkaddr = fio->new_blkaddr;
3649 		goto reallocate;
3650 	}
3651 
3652 	update_device_state(fio);
3653 
3654 	if (keep_order)
3655 		up_read(&fio->sbi->io_order_lock);
3656 }
3657 
f2fs_do_write_meta_page(struct f2fs_sb_info * sbi,struct page * page,enum iostat_type io_type)3658 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3659 					enum iostat_type io_type)
3660 {
3661 	struct f2fs_io_info fio = {
3662 		.sbi = sbi,
3663 		.type = META,
3664 		.temp = HOT,
3665 		.op = REQ_OP_WRITE,
3666 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3667 		.old_blkaddr = page->index,
3668 		.new_blkaddr = page->index,
3669 		.page = page,
3670 		.encrypted_page = NULL,
3671 		.in_list = false,
3672 	};
3673 
3674 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3675 		fio.op_flags &= ~REQ_META;
3676 
3677 	set_page_writeback(page);
3678 	ClearPageError(page);
3679 	f2fs_submit_page_write(&fio);
3680 
3681 	stat_inc_meta_count(sbi, page->index);
3682 	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3683 }
3684 
f2fs_do_write_node_page(unsigned int nid,struct f2fs_io_info * fio)3685 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3686 {
3687 	struct f2fs_summary sum;
3688 
3689 	set_summary(&sum, nid, 0, 0);
3690 	do_write_page(&sum, fio);
3691 
3692 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3693 }
3694 
f2fs_outplace_write_data(struct dnode_of_data * dn,struct f2fs_io_info * fio)3695 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3696 					struct f2fs_io_info *fio)
3697 {
3698 	struct f2fs_sb_info *sbi = fio->sbi;
3699 	struct f2fs_summary sum;
3700 
3701 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3702 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3703 	do_write_page(&sum, fio);
3704 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3705 
3706 	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3707 }
3708 
f2fs_inplace_write_data(struct f2fs_io_info * fio)3709 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3710 {
3711 	int err;
3712 	struct f2fs_sb_info *sbi = fio->sbi;
3713 	unsigned int segno;
3714 
3715 	fio->new_blkaddr = fio->old_blkaddr;
3716 	/* i/o temperature is needed for passing down write hints */
3717 	__get_segment_type(fio);
3718 
3719 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3720 
3721 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3722 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3723 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3724 			  __func__, segno);
3725 		return -EFSCORRUPTED;
3726 	}
3727 
3728 	stat_inc_inplace_blocks(fio->sbi);
3729 
3730 	if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3731 		err = f2fs_merge_page_bio(fio);
3732 	else
3733 		err = f2fs_submit_page_bio(fio);
3734 	if (!err) {
3735 		update_device_state(fio);
3736 		f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3737 	}
3738 
3739 	return err;
3740 }
3741 
__f2fs_get_curseg(struct f2fs_sb_info * sbi,unsigned int segno)3742 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3743 						unsigned int segno)
3744 {
3745 	int i;
3746 
3747 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3748 		if (CURSEG_I(sbi, i)->segno == segno)
3749 			break;
3750 	}
3751 	return i;
3752 }
3753 
f2fs_do_replace_block(struct f2fs_sb_info * sbi,struct f2fs_summary * sum,block_t old_blkaddr,block_t new_blkaddr,bool recover_curseg,bool recover_newaddr,bool from_gc)3754 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3755 				block_t old_blkaddr, block_t new_blkaddr,
3756 				bool recover_curseg, bool recover_newaddr,
3757 				bool from_gc)
3758 {
3759 	struct sit_info *sit_i = SIT_I(sbi);
3760 	struct curseg_info *curseg;
3761 	unsigned int segno, old_cursegno;
3762 	struct seg_entry *se;
3763 	int type;
3764 	unsigned short old_blkoff;
3765 
3766 	segno = GET_SEGNO(sbi, new_blkaddr);
3767 	se = get_seg_entry(sbi, segno);
3768 	type = se->type;
3769 
3770 	down_write(&SM_I(sbi)->curseg_lock);
3771 
3772 	if (!recover_curseg) {
3773 		/* for recovery flow */
3774 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3775 			if (old_blkaddr == NULL_ADDR)
3776 				type = CURSEG_COLD_DATA;
3777 			else
3778 				type = CURSEG_WARM_DATA;
3779 		}
3780 	} else {
3781 		if (IS_CURSEG(sbi, segno)) {
3782 			/* se->type is volatile as SSR allocation */
3783 			type = __f2fs_get_curseg(sbi, segno);
3784 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3785 		} else {
3786 			type = CURSEG_WARM_DATA;
3787 		}
3788 	}
3789 
3790 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3791 	curseg = CURSEG_I(sbi, type);
3792 
3793 	mutex_lock(&curseg->curseg_mutex);
3794 	down_write(&sit_i->sentry_lock);
3795 
3796 	old_cursegno = curseg->segno;
3797 	old_blkoff = curseg->next_blkoff;
3798 
3799 	/* change the current segment */
3800 	if (segno != curseg->segno) {
3801 		curseg->next_segno = segno;
3802 		change_curseg(sbi, type, true);
3803 	}
3804 
3805 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3806 	__add_sum_entry(sbi, type, sum);
3807 
3808 	if (!recover_curseg || recover_newaddr) {
3809 		if (!from_gc)
3810 			update_segment_mtime(sbi, new_blkaddr, 0);
3811 		update_sit_entry(sbi, new_blkaddr, 1);
3812 	}
3813 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3814 		invalidate_mapping_pages(META_MAPPING(sbi),
3815 					old_blkaddr, old_blkaddr);
3816 		if (!from_gc)
3817 			update_segment_mtime(sbi, old_blkaddr, 0);
3818 		update_sit_entry(sbi, old_blkaddr, -1);
3819 	}
3820 
3821 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3822 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3823 
3824 	locate_dirty_segment(sbi, old_cursegno);
3825 
3826 	if (recover_curseg) {
3827 		if (old_cursegno != curseg->segno) {
3828 			curseg->next_segno = old_cursegno;
3829 			change_curseg(sbi, type, true);
3830 		}
3831 		curseg->next_blkoff = old_blkoff;
3832 	}
3833 
3834 	up_write(&sit_i->sentry_lock);
3835 	mutex_unlock(&curseg->curseg_mutex);
3836 	up_write(&SM_I(sbi)->curseg_lock);
3837 }
3838 
f2fs_replace_block(struct f2fs_sb_info * sbi,struct dnode_of_data * dn,block_t old_addr,block_t new_addr,unsigned char version,bool recover_curseg,bool recover_newaddr)3839 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3840 				block_t old_addr, block_t new_addr,
3841 				unsigned char version, bool recover_curseg,
3842 				bool recover_newaddr)
3843 {
3844 	struct f2fs_summary sum;
3845 
3846 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3847 
3848 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3849 					recover_curseg, recover_newaddr, false);
3850 
3851 	f2fs_update_data_blkaddr(dn, new_addr);
3852 }
3853 
f2fs_wait_on_page_writeback(struct page * page,enum page_type type,bool ordered,bool locked)3854 void f2fs_wait_on_page_writeback(struct page *page,
3855 				enum page_type type, bool ordered, bool locked)
3856 {
3857 	if (PageWriteback(page)) {
3858 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3859 
3860 		/* submit cached LFS IO */
3861 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3862 		/* sbumit cached IPU IO */
3863 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3864 		if (ordered) {
3865 			wait_on_page_writeback(page);
3866 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3867 		} else {
3868 			wait_for_stable_page(page);
3869 		}
3870 	}
3871 }
3872 
f2fs_wait_on_block_writeback(struct inode * inode,block_t blkaddr)3873 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3874 {
3875 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3876 	struct page *cpage;
3877 
3878 	if (!f2fs_post_read_required(inode))
3879 		return;
3880 
3881 	if (!__is_valid_data_blkaddr(blkaddr))
3882 		return;
3883 
3884 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3885 	if (cpage) {
3886 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3887 		f2fs_put_page(cpage, 1);
3888 	}
3889 }
3890 
f2fs_wait_on_block_writeback_range(struct inode * inode,block_t blkaddr,block_t len)3891 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3892 								block_t len)
3893 {
3894 	block_t i;
3895 
3896 	for (i = 0; i < len; i++)
3897 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3898 }
3899 
read_compacted_summaries(struct f2fs_sb_info * sbi)3900 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3901 {
3902 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3903 	struct curseg_info *seg_i;
3904 	unsigned char *kaddr;
3905 	struct page *page;
3906 	block_t start;
3907 	int i, j, offset;
3908 
3909 	start = start_sum_block(sbi);
3910 
3911 	page = f2fs_get_meta_page(sbi, start++);
3912 	if (IS_ERR(page))
3913 		return PTR_ERR(page);
3914 	kaddr = (unsigned char *)page_address(page);
3915 
3916 	/* Step 1: restore nat cache */
3917 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3918 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3919 
3920 	/* Step 2: restore sit cache */
3921 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3922 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3923 	offset = 2 * SUM_JOURNAL_SIZE;
3924 
3925 	/* Step 3: restore summary entries */
3926 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3927 		unsigned short blk_off;
3928 		unsigned int segno;
3929 
3930 		seg_i = CURSEG_I(sbi, i);
3931 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3932 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3933 		seg_i->next_segno = segno;
3934 		reset_curseg(sbi, i, 0);
3935 		seg_i->alloc_type = ckpt->alloc_type[i];
3936 		seg_i->next_blkoff = blk_off;
3937 
3938 		if (seg_i->alloc_type == SSR)
3939 			blk_off = sbi->blocks_per_seg;
3940 
3941 		for (j = 0; j < blk_off; j++) {
3942 			struct f2fs_summary *s;
3943 			s = (struct f2fs_summary *)(kaddr + offset);
3944 			seg_i->sum_blk->entries[j] = *s;
3945 			offset += SUMMARY_SIZE;
3946 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3947 						SUM_FOOTER_SIZE)
3948 				continue;
3949 
3950 			f2fs_put_page(page, 1);
3951 			page = NULL;
3952 
3953 			page = f2fs_get_meta_page(sbi, start++);
3954 			if (IS_ERR(page))
3955 				return PTR_ERR(page);
3956 			kaddr = (unsigned char *)page_address(page);
3957 			offset = 0;
3958 		}
3959 	}
3960 	f2fs_put_page(page, 1);
3961 	return 0;
3962 }
3963 
read_normal_summaries(struct f2fs_sb_info * sbi,int type)3964 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3965 {
3966 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3967 	struct f2fs_summary_block *sum;
3968 	struct curseg_info *curseg;
3969 	struct page *new;
3970 	unsigned short blk_off;
3971 	unsigned int segno = 0;
3972 	block_t blk_addr = 0;
3973 	int err = 0;
3974 
3975 	/* get segment number and block addr */
3976 	if (IS_DATASEG(type)) {
3977 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3978 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3979 							CURSEG_HOT_DATA]);
3980 		if (__exist_node_summaries(sbi))
3981 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3982 		else
3983 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3984 	} else {
3985 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3986 							CURSEG_HOT_NODE]);
3987 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3988 							CURSEG_HOT_NODE]);
3989 		if (__exist_node_summaries(sbi))
3990 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3991 							type - CURSEG_HOT_NODE);
3992 		else
3993 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3994 	}
3995 
3996 	new = f2fs_get_meta_page(sbi, blk_addr);
3997 	if (IS_ERR(new))
3998 		return PTR_ERR(new);
3999 	sum = (struct f2fs_summary_block *)page_address(new);
4000 
4001 	if (IS_NODESEG(type)) {
4002 		if (__exist_node_summaries(sbi)) {
4003 			struct f2fs_summary *ns = &sum->entries[0];
4004 			int i;
4005 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
4006 				ns->version = 0;
4007 				ns->ofs_in_node = 0;
4008 			}
4009 		} else {
4010 			err = f2fs_restore_node_summary(sbi, segno, sum);
4011 			if (err)
4012 				goto out;
4013 		}
4014 	}
4015 
4016 	/* set uncompleted segment to curseg */
4017 	curseg = CURSEG_I(sbi, type);
4018 	mutex_lock(&curseg->curseg_mutex);
4019 
4020 	/* update journal info */
4021 	down_write(&curseg->journal_rwsem);
4022 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4023 	up_write(&curseg->journal_rwsem);
4024 
4025 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4026 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4027 	curseg->next_segno = segno;
4028 	reset_curseg(sbi, type, 0);
4029 	curseg->alloc_type = ckpt->alloc_type[type];
4030 	curseg->next_blkoff = blk_off;
4031 	mutex_unlock(&curseg->curseg_mutex);
4032 out:
4033 	f2fs_put_page(new, 1);
4034 	return err;
4035 }
4036 
restore_curseg_summaries(struct f2fs_sb_info * sbi)4037 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4038 {
4039 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4040 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4041 	int type = CURSEG_HOT_DATA;
4042 	int err;
4043 
4044 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4045 		int npages = f2fs_npages_for_summary_flush(sbi, true);
4046 
4047 		if (npages >= 2)
4048 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4049 							META_CP, true);
4050 
4051 		/* restore for compacted data summary */
4052 		err = read_compacted_summaries(sbi);
4053 		if (err)
4054 			return err;
4055 		type = CURSEG_HOT_NODE;
4056 	}
4057 
4058 	if (__exist_node_summaries(sbi))
4059 		f2fs_ra_meta_pages(sbi,
4060 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4061 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4062 
4063 	for (; type <= CURSEG_COLD_NODE; type++) {
4064 		err = read_normal_summaries(sbi, type);
4065 		if (err)
4066 			return err;
4067 	}
4068 
4069 	/* sanity check for summary blocks */
4070 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4071 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4072 		f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
4073 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4074 		return -EINVAL;
4075 	}
4076 
4077 	return 0;
4078 }
4079 
write_compacted_summaries(struct f2fs_sb_info * sbi,block_t blkaddr)4080 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4081 {
4082 	struct page *page;
4083 	unsigned char *kaddr;
4084 	struct f2fs_summary *summary;
4085 	struct curseg_info *seg_i;
4086 	int written_size = 0;
4087 	int i, j;
4088 
4089 	page = f2fs_grab_meta_page(sbi, blkaddr++);
4090 	kaddr = (unsigned char *)page_address(page);
4091 	memset(kaddr, 0, PAGE_SIZE);
4092 
4093 	/* Step 1: write nat cache */
4094 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4095 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4096 	written_size += SUM_JOURNAL_SIZE;
4097 
4098 	/* Step 2: write sit cache */
4099 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4100 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4101 	written_size += SUM_JOURNAL_SIZE;
4102 
4103 	/* Step 3: write summary entries */
4104 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4105 		unsigned short blkoff;
4106 		seg_i = CURSEG_I(sbi, i);
4107 		if (sbi->ckpt->alloc_type[i] == SSR)
4108 			blkoff = sbi->blocks_per_seg;
4109 		else
4110 			blkoff = curseg_blkoff(sbi, i);
4111 
4112 		for (j = 0; j < blkoff; j++) {
4113 			if (!page) {
4114 				page = f2fs_grab_meta_page(sbi, blkaddr++);
4115 				kaddr = (unsigned char *)page_address(page);
4116 				memset(kaddr, 0, PAGE_SIZE);
4117 				written_size = 0;
4118 			}
4119 			summary = (struct f2fs_summary *)(kaddr + written_size);
4120 			*summary = seg_i->sum_blk->entries[j];
4121 			written_size += SUMMARY_SIZE;
4122 
4123 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4124 							SUM_FOOTER_SIZE)
4125 				continue;
4126 
4127 			set_page_dirty(page);
4128 			f2fs_put_page(page, 1);
4129 			page = NULL;
4130 		}
4131 	}
4132 	if (page) {
4133 		set_page_dirty(page);
4134 		f2fs_put_page(page, 1);
4135 	}
4136 }
4137 
write_normal_summaries(struct f2fs_sb_info * sbi,block_t blkaddr,int type)4138 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4139 					block_t blkaddr, int type)
4140 {
4141 	int i, end;
4142 	if (IS_DATASEG(type))
4143 		end = type + NR_CURSEG_DATA_TYPE;
4144 	else
4145 		end = type + NR_CURSEG_NODE_TYPE;
4146 
4147 	for (i = type; i < end; i++)
4148 		write_current_sum_page(sbi, i, blkaddr + (i - type));
4149 }
4150 
f2fs_write_data_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4151 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4152 {
4153 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4154 		write_compacted_summaries(sbi, start_blk);
4155 	else
4156 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4157 }
4158 
f2fs_write_node_summaries(struct f2fs_sb_info * sbi,block_t start_blk)4159 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4160 {
4161 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4162 }
4163 
f2fs_lookup_journal_in_cursum(struct f2fs_journal * journal,int type,unsigned int val,int alloc)4164 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4165 					unsigned int val, int alloc)
4166 {
4167 	int i;
4168 
4169 	if (type == NAT_JOURNAL) {
4170 		for (i = 0; i < nats_in_cursum(journal); i++) {
4171 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4172 				return i;
4173 		}
4174 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4175 			return update_nats_in_cursum(journal, 1);
4176 	} else if (type == SIT_JOURNAL) {
4177 		for (i = 0; i < sits_in_cursum(journal); i++)
4178 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4179 				return i;
4180 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4181 			return update_sits_in_cursum(journal, 1);
4182 	}
4183 	return -1;
4184 }
4185 
get_current_sit_page(struct f2fs_sb_info * sbi,unsigned int segno)4186 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4187 					unsigned int segno)
4188 {
4189 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4190 }
4191 
get_next_sit_page(struct f2fs_sb_info * sbi,unsigned int start)4192 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4193 					unsigned int start)
4194 {
4195 	struct sit_info *sit_i = SIT_I(sbi);
4196 	struct page *page;
4197 	pgoff_t src_off, dst_off;
4198 
4199 	src_off = current_sit_addr(sbi, start);
4200 	dst_off = next_sit_addr(sbi, src_off);
4201 
4202 	page = f2fs_grab_meta_page(sbi, dst_off);
4203 	seg_info_to_sit_page(sbi, page, start);
4204 
4205 	set_page_dirty(page);
4206 	set_to_next_sit(sit_i, start);
4207 
4208 	return page;
4209 }
4210 
grab_sit_entry_set(void)4211 static struct sit_entry_set *grab_sit_entry_set(void)
4212 {
4213 	struct sit_entry_set *ses =
4214 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
4215 
4216 	ses->entry_cnt = 0;
4217 	INIT_LIST_HEAD(&ses->set_list);
4218 	return ses;
4219 }
4220 
release_sit_entry_set(struct sit_entry_set * ses)4221 static void release_sit_entry_set(struct sit_entry_set *ses)
4222 {
4223 	list_del(&ses->set_list);
4224 	kmem_cache_free(sit_entry_set_slab, ses);
4225 }
4226 
adjust_sit_entry_set(struct sit_entry_set * ses,struct list_head * head)4227 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4228 						struct list_head *head)
4229 {
4230 	struct sit_entry_set *next = ses;
4231 
4232 	if (list_is_last(&ses->set_list, head))
4233 		return;
4234 
4235 	list_for_each_entry_continue(next, head, set_list)
4236 		if (ses->entry_cnt <= next->entry_cnt)
4237 			break;
4238 
4239 	list_move_tail(&ses->set_list, &next->set_list);
4240 }
4241 
add_sit_entry(unsigned int segno,struct list_head * head)4242 static void add_sit_entry(unsigned int segno, struct list_head *head)
4243 {
4244 	struct sit_entry_set *ses;
4245 	unsigned int start_segno = START_SEGNO(segno);
4246 
4247 	list_for_each_entry(ses, head, set_list) {
4248 		if (ses->start_segno == start_segno) {
4249 			ses->entry_cnt++;
4250 			adjust_sit_entry_set(ses, head);
4251 			return;
4252 		}
4253 	}
4254 
4255 	ses = grab_sit_entry_set();
4256 
4257 	ses->start_segno = start_segno;
4258 	ses->entry_cnt++;
4259 	list_add(&ses->set_list, head);
4260 }
4261 
add_sits_in_set(struct f2fs_sb_info * sbi)4262 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4263 {
4264 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4265 	struct list_head *set_list = &sm_info->sit_entry_set;
4266 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4267 	unsigned int segno;
4268 
4269 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4270 		add_sit_entry(segno, set_list);
4271 }
4272 
remove_sits_in_journal(struct f2fs_sb_info * sbi)4273 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4274 {
4275 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4276 	struct f2fs_journal *journal = curseg->journal;
4277 	int i;
4278 
4279 	down_write(&curseg->journal_rwsem);
4280 	for (i = 0; i < sits_in_cursum(journal); i++) {
4281 		unsigned int segno;
4282 		bool dirtied;
4283 
4284 		segno = le32_to_cpu(segno_in_journal(journal, i));
4285 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4286 
4287 		if (!dirtied)
4288 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4289 	}
4290 	update_sits_in_cursum(journal, -i);
4291 	up_write(&curseg->journal_rwsem);
4292 }
4293 
4294 /*
4295  * CP calls this function, which flushes SIT entries including sit_journal,
4296  * and moves prefree segs to free segs.
4297  */
f2fs_flush_sit_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)4298 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4299 {
4300 	struct sit_info *sit_i = SIT_I(sbi);
4301 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4302 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4303 	struct f2fs_journal *journal = curseg->journal;
4304 	struct sit_entry_set *ses, *tmp;
4305 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4306 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4307 	struct seg_entry *se;
4308 
4309 	down_write(&sit_i->sentry_lock);
4310 
4311 	if (!sit_i->dirty_sentries)
4312 		goto out;
4313 
4314 	/*
4315 	 * add and account sit entries of dirty bitmap in sit entry
4316 	 * set temporarily
4317 	 */
4318 	add_sits_in_set(sbi);
4319 
4320 	/*
4321 	 * if there are no enough space in journal to store dirty sit
4322 	 * entries, remove all entries from journal and add and account
4323 	 * them in sit entry set.
4324 	 */
4325 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4326 								!to_journal)
4327 		remove_sits_in_journal(sbi);
4328 
4329 	/*
4330 	 * there are two steps to flush sit entries:
4331 	 * #1, flush sit entries to journal in current cold data summary block.
4332 	 * #2, flush sit entries to sit page.
4333 	 */
4334 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4335 		struct page *page = NULL;
4336 		struct f2fs_sit_block *raw_sit = NULL;
4337 		unsigned int start_segno = ses->start_segno;
4338 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4339 						(unsigned long)MAIN_SEGS(sbi));
4340 		unsigned int segno = start_segno;
4341 
4342 		if (to_journal &&
4343 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4344 			to_journal = false;
4345 
4346 		if (to_journal) {
4347 			down_write(&curseg->journal_rwsem);
4348 		} else {
4349 			page = get_next_sit_page(sbi, start_segno);
4350 			raw_sit = page_address(page);
4351 		}
4352 
4353 		/* flush dirty sit entries in region of current sit set */
4354 		for_each_set_bit_from(segno, bitmap, end) {
4355 			int offset, sit_offset;
4356 
4357 			se = get_seg_entry(sbi, segno);
4358 #ifdef CONFIG_F2FS_CHECK_FS
4359 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4360 						SIT_VBLOCK_MAP_SIZE))
4361 				f2fs_bug_on(sbi, 1);
4362 #endif
4363 
4364 			/* add discard candidates */
4365 			if (!(cpc->reason & CP_DISCARD)) {
4366 				cpc->trim_start = segno;
4367 				add_discard_addrs(sbi, cpc, false);
4368 			}
4369 
4370 			if (to_journal) {
4371 				offset = f2fs_lookup_journal_in_cursum(journal,
4372 							SIT_JOURNAL, segno, 1);
4373 				f2fs_bug_on(sbi, offset < 0);
4374 				segno_in_journal(journal, offset) =
4375 							cpu_to_le32(segno);
4376 				seg_info_to_raw_sit(se,
4377 					&sit_in_journal(journal, offset));
4378 				check_block_count(sbi, segno,
4379 					&sit_in_journal(journal, offset));
4380 			} else {
4381 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4382 				seg_info_to_raw_sit(se,
4383 						&raw_sit->entries[sit_offset]);
4384 				check_block_count(sbi, segno,
4385 						&raw_sit->entries[sit_offset]);
4386 			}
4387 
4388 			__clear_bit(segno, bitmap);
4389 			sit_i->dirty_sentries--;
4390 			ses->entry_cnt--;
4391 		}
4392 
4393 		if (to_journal)
4394 			up_write(&curseg->journal_rwsem);
4395 		else
4396 			f2fs_put_page(page, 1);
4397 
4398 		f2fs_bug_on(sbi, ses->entry_cnt);
4399 		release_sit_entry_set(ses);
4400 	}
4401 
4402 	f2fs_bug_on(sbi, !list_empty(head));
4403 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4404 out:
4405 	if (cpc->reason & CP_DISCARD) {
4406 		__u64 trim_start = cpc->trim_start;
4407 
4408 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4409 			add_discard_addrs(sbi, cpc, false);
4410 
4411 		cpc->trim_start = trim_start;
4412 	}
4413 	up_write(&sit_i->sentry_lock);
4414 
4415 	set_prefree_as_free_segments(sbi);
4416 }
4417 
build_sit_info(struct f2fs_sb_info * sbi)4418 static int build_sit_info(struct f2fs_sb_info *sbi)
4419 {
4420 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4421 	struct sit_info *sit_i;
4422 	unsigned int sit_segs, start;
4423 	char *src_bitmap, *bitmap;
4424 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4425 
4426 	/* allocate memory for SIT information */
4427 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4428 	if (!sit_i)
4429 		return -ENOMEM;
4430 
4431 	SM_I(sbi)->sit_info = sit_i;
4432 
4433 	sit_i->sentries =
4434 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4435 					      MAIN_SEGS(sbi)),
4436 			      GFP_KERNEL);
4437 	if (!sit_i->sentries)
4438 		return -ENOMEM;
4439 
4440 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4441 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4442 								GFP_KERNEL);
4443 	if (!sit_i->dirty_sentries_bitmap)
4444 		return -ENOMEM;
4445 
4446 #ifdef CONFIG_F2FS_CHECK_FS
4447 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4448 #else
4449 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4450 #endif
4451 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4452 	if (!sit_i->bitmap)
4453 		return -ENOMEM;
4454 
4455 	bitmap = sit_i->bitmap;
4456 
4457 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4458 		sit_i->sentries[start].cur_valid_map = bitmap;
4459 		bitmap += SIT_VBLOCK_MAP_SIZE;
4460 
4461 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4462 		bitmap += SIT_VBLOCK_MAP_SIZE;
4463 
4464 #ifdef CONFIG_F2FS_CHECK_FS
4465 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4466 		bitmap += SIT_VBLOCK_MAP_SIZE;
4467 #endif
4468 
4469 		sit_i->sentries[start].discard_map = bitmap;
4470 		bitmap += SIT_VBLOCK_MAP_SIZE;
4471 	}
4472 
4473 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4474 	if (!sit_i->tmp_map)
4475 		return -ENOMEM;
4476 
4477 	if (__is_large_section(sbi)) {
4478 		sit_i->sec_entries =
4479 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4480 						      MAIN_SECS(sbi)),
4481 				      GFP_KERNEL);
4482 		if (!sit_i->sec_entries)
4483 			return -ENOMEM;
4484 	}
4485 
4486 	/* get information related with SIT */
4487 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4488 
4489 	/* setup SIT bitmap from ckeckpoint pack */
4490 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4491 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4492 
4493 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4494 	if (!sit_i->sit_bitmap)
4495 		return -ENOMEM;
4496 
4497 #ifdef CONFIG_F2FS_CHECK_FS
4498 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4499 					sit_bitmap_size, GFP_KERNEL);
4500 	if (!sit_i->sit_bitmap_mir)
4501 		return -ENOMEM;
4502 
4503 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4504 					main_bitmap_size, GFP_KERNEL);
4505 	if (!sit_i->invalid_segmap)
4506 		return -ENOMEM;
4507 #endif
4508 
4509 	/* init SIT information */
4510 	sit_i->s_ops = &default_salloc_ops;
4511 
4512 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4513 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4514 	sit_i->written_valid_blocks = 0;
4515 	sit_i->bitmap_size = sit_bitmap_size;
4516 	sit_i->dirty_sentries = 0;
4517 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4518 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4519 	sit_i->mounted_time = ktime_get_boottime_seconds();
4520 	init_rwsem(&sit_i->sentry_lock);
4521 	return 0;
4522 }
4523 
build_free_segmap(struct f2fs_sb_info * sbi)4524 static int build_free_segmap(struct f2fs_sb_info *sbi)
4525 {
4526 	struct free_segmap_info *free_i;
4527 	unsigned int bitmap_size, sec_bitmap_size;
4528 
4529 	/* allocate memory for free segmap information */
4530 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4531 	if (!free_i)
4532 		return -ENOMEM;
4533 
4534 	SM_I(sbi)->free_info = free_i;
4535 
4536 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4537 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4538 	if (!free_i->free_segmap)
4539 		return -ENOMEM;
4540 
4541 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4542 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4543 	if (!free_i->free_secmap)
4544 		return -ENOMEM;
4545 
4546 	/* set all segments as dirty temporarily */
4547 	memset(free_i->free_segmap, 0xff, bitmap_size);
4548 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4549 
4550 	/* init free segmap information */
4551 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4552 	free_i->free_segments = 0;
4553 	free_i->free_sections = 0;
4554 	spin_lock_init(&free_i->segmap_lock);
4555 	return 0;
4556 }
4557 
build_curseg(struct f2fs_sb_info * sbi)4558 static int build_curseg(struct f2fs_sb_info *sbi)
4559 {
4560 	struct curseg_info *array;
4561 	int i;
4562 
4563 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4564 					sizeof(*array)), GFP_KERNEL);
4565 	if (!array)
4566 		return -ENOMEM;
4567 
4568 	SM_I(sbi)->curseg_array = array;
4569 
4570 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4571 		mutex_init(&array[i].curseg_mutex);
4572 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4573 		if (!array[i].sum_blk)
4574 			return -ENOMEM;
4575 		init_rwsem(&array[i].journal_rwsem);
4576 		array[i].journal = f2fs_kzalloc(sbi,
4577 				sizeof(struct f2fs_journal), GFP_KERNEL);
4578 		if (!array[i].journal)
4579 			return -ENOMEM;
4580 		if (i < NR_PERSISTENT_LOG)
4581 			array[i].seg_type = CURSEG_HOT_DATA + i;
4582 		else if (i == CURSEG_COLD_DATA_PINNED)
4583 			array[i].seg_type = CURSEG_COLD_DATA;
4584 		else if (i == CURSEG_ALL_DATA_ATGC)
4585 			array[i].seg_type = CURSEG_COLD_DATA;
4586 		array[i].segno = NULL_SEGNO;
4587 		array[i].next_blkoff = 0;
4588 		array[i].inited = false;
4589 	}
4590 	return restore_curseg_summaries(sbi);
4591 }
4592 
build_sit_entries(struct f2fs_sb_info * sbi)4593 static int build_sit_entries(struct f2fs_sb_info *sbi)
4594 {
4595 	struct sit_info *sit_i = SIT_I(sbi);
4596 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4597 	struct f2fs_journal *journal = curseg->journal;
4598 	struct seg_entry *se;
4599 	struct f2fs_sit_entry sit;
4600 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4601 	unsigned int i, start, end;
4602 	unsigned int readed, start_blk = 0;
4603 	int err = 0;
4604 	block_t sit_valid_blocks[2] = {0, 0};
4605 
4606 	do {
4607 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4608 							META_SIT, true);
4609 
4610 		start = start_blk * sit_i->sents_per_block;
4611 		end = (start_blk + readed) * sit_i->sents_per_block;
4612 
4613 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4614 			struct f2fs_sit_block *sit_blk;
4615 			struct page *page;
4616 
4617 			se = &sit_i->sentries[start];
4618 			page = get_current_sit_page(sbi, start);
4619 			if (IS_ERR(page))
4620 				return PTR_ERR(page);
4621 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4622 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4623 			f2fs_put_page(page, 1);
4624 
4625 			err = check_block_count(sbi, start, &sit);
4626 			if (err)
4627 				return err;
4628 			seg_info_from_raw_sit(se, &sit);
4629 
4630 			if (se->type >= NR_PERSISTENT_LOG) {
4631 				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4632 							se->type, start);
4633 				return -EFSCORRUPTED;
4634 			}
4635 
4636 			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4637 
4638 			/* build discard map only one time */
4639 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4640 				memset(se->discard_map, 0xff,
4641 					SIT_VBLOCK_MAP_SIZE);
4642 			} else {
4643 				memcpy(se->discard_map,
4644 					se->cur_valid_map,
4645 					SIT_VBLOCK_MAP_SIZE);
4646 				sbi->discard_blks +=
4647 					sbi->blocks_per_seg -
4648 					se->valid_blocks;
4649 			}
4650 
4651 			if (__is_large_section(sbi))
4652 				get_sec_entry(sbi, start)->valid_blocks +=
4653 							se->valid_blocks;
4654 		}
4655 		start_blk += readed;
4656 	} while (start_blk < sit_blk_cnt);
4657 
4658 	down_read(&curseg->journal_rwsem);
4659 	for (i = 0; i < sits_in_cursum(journal); i++) {
4660 		unsigned int old_valid_blocks;
4661 
4662 		start = le32_to_cpu(segno_in_journal(journal, i));
4663 		if (start >= MAIN_SEGS(sbi)) {
4664 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4665 				 start);
4666 			err = -EFSCORRUPTED;
4667 			break;
4668 		}
4669 
4670 		se = &sit_i->sentries[start];
4671 		sit = sit_in_journal(journal, i);
4672 
4673 		old_valid_blocks = se->valid_blocks;
4674 
4675 		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4676 
4677 		err = check_block_count(sbi, start, &sit);
4678 		if (err)
4679 			break;
4680 		seg_info_from_raw_sit(se, &sit);
4681 
4682 		if (se->type >= NR_PERSISTENT_LOG) {
4683 			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4684 							se->type, start);
4685 			err = -EFSCORRUPTED;
4686 			break;
4687 		}
4688 
4689 		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4690 
4691 		if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4692 			memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4693 		} else {
4694 			memcpy(se->discard_map, se->cur_valid_map,
4695 						SIT_VBLOCK_MAP_SIZE);
4696 			sbi->discard_blks += old_valid_blocks;
4697 			sbi->discard_blks -= se->valid_blocks;
4698 		}
4699 
4700 		if (__is_large_section(sbi)) {
4701 			get_sec_entry(sbi, start)->valid_blocks +=
4702 							se->valid_blocks;
4703 			get_sec_entry(sbi, start)->valid_blocks -=
4704 							old_valid_blocks;
4705 		}
4706 	}
4707 	up_read(&curseg->journal_rwsem);
4708 
4709 	if (err)
4710 		return err;
4711 
4712 	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4713 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4714 			 sit_valid_blocks[NODE], valid_node_count(sbi));
4715 		return -EFSCORRUPTED;
4716 	}
4717 
4718 	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4719 				valid_user_blocks(sbi)) {
4720 		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4721 			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4722 			 valid_user_blocks(sbi));
4723 		return -EFSCORRUPTED;
4724 	}
4725 
4726 	return 0;
4727 }
4728 
init_free_segmap(struct f2fs_sb_info * sbi)4729 static void init_free_segmap(struct f2fs_sb_info *sbi)
4730 {
4731 	unsigned int start;
4732 	int type;
4733 	struct seg_entry *sentry;
4734 
4735 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4736 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4737 			continue;
4738 		sentry = get_seg_entry(sbi, start);
4739 		if (!sentry->valid_blocks)
4740 			__set_free(sbi, start);
4741 		else
4742 			SIT_I(sbi)->written_valid_blocks +=
4743 						sentry->valid_blocks;
4744 	}
4745 
4746 	/* set use the current segments */
4747 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4748 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4749 		__set_test_and_inuse(sbi, curseg_t->segno);
4750 	}
4751 }
4752 
init_dirty_segmap(struct f2fs_sb_info * sbi)4753 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4754 {
4755 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4756 	struct free_segmap_info *free_i = FREE_I(sbi);
4757 	unsigned int segno = 0, offset = 0, secno;
4758 	block_t valid_blocks, usable_blks_in_seg;
4759 	block_t blks_per_sec = BLKS_PER_SEC(sbi);
4760 
4761 	while (1) {
4762 		/* find dirty segment based on free segmap */
4763 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4764 		if (segno >= MAIN_SEGS(sbi))
4765 			break;
4766 		offset = segno + 1;
4767 		valid_blocks = get_valid_blocks(sbi, segno, false);
4768 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4769 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4770 			continue;
4771 		if (valid_blocks > usable_blks_in_seg) {
4772 			f2fs_bug_on(sbi, 1);
4773 			continue;
4774 		}
4775 		mutex_lock(&dirty_i->seglist_lock);
4776 		__locate_dirty_segment(sbi, segno, DIRTY);
4777 		mutex_unlock(&dirty_i->seglist_lock);
4778 	}
4779 
4780 	if (!__is_large_section(sbi))
4781 		return;
4782 
4783 	mutex_lock(&dirty_i->seglist_lock);
4784 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4785 		valid_blocks = get_valid_blocks(sbi, segno, true);
4786 		secno = GET_SEC_FROM_SEG(sbi, segno);
4787 
4788 		if (!valid_blocks || valid_blocks == blks_per_sec)
4789 			continue;
4790 		if (IS_CURSEC(sbi, secno))
4791 			continue;
4792 		set_bit(secno, dirty_i->dirty_secmap);
4793 	}
4794 	mutex_unlock(&dirty_i->seglist_lock);
4795 }
4796 
init_victim_secmap(struct f2fs_sb_info * sbi)4797 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4798 {
4799 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4800 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4801 
4802 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4803 	if (!dirty_i->victim_secmap)
4804 		return -ENOMEM;
4805 	return 0;
4806 }
4807 
build_dirty_segmap(struct f2fs_sb_info * sbi)4808 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4809 {
4810 	struct dirty_seglist_info *dirty_i;
4811 	unsigned int bitmap_size, i;
4812 
4813 	/* allocate memory for dirty segments list information */
4814 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4815 								GFP_KERNEL);
4816 	if (!dirty_i)
4817 		return -ENOMEM;
4818 
4819 	SM_I(sbi)->dirty_info = dirty_i;
4820 	mutex_init(&dirty_i->seglist_lock);
4821 
4822 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4823 
4824 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4825 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4826 								GFP_KERNEL);
4827 		if (!dirty_i->dirty_segmap[i])
4828 			return -ENOMEM;
4829 	}
4830 
4831 	if (__is_large_section(sbi)) {
4832 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4833 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4834 						bitmap_size, GFP_KERNEL);
4835 		if (!dirty_i->dirty_secmap)
4836 			return -ENOMEM;
4837 	}
4838 
4839 	init_dirty_segmap(sbi);
4840 	return init_victim_secmap(sbi);
4841 }
4842 
sanity_check_curseg(struct f2fs_sb_info * sbi)4843 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4844 {
4845 	int i;
4846 
4847 	/*
4848 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4849 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4850 	 */
4851 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4852 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4853 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4854 		unsigned int blkofs = curseg->next_blkoff;
4855 
4856 		sanity_check_seg_type(sbi, curseg->seg_type);
4857 
4858 		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4859 			f2fs_err(sbi,
4860 				 "Current segment has invalid alloc_type:%d",
4861 				 curseg->alloc_type);
4862 			return -EFSCORRUPTED;
4863 		}
4864 
4865 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4866 			goto out;
4867 
4868 		if (curseg->alloc_type == SSR)
4869 			continue;
4870 
4871 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4872 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4873 				continue;
4874 out:
4875 			f2fs_err(sbi,
4876 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4877 				 i, curseg->segno, curseg->alloc_type,
4878 				 curseg->next_blkoff, blkofs);
4879 			return -EFSCORRUPTED;
4880 		}
4881 	}
4882 	return 0;
4883 }
4884 
4885 #ifdef CONFIG_BLK_DEV_ZONED
4886 
check_zone_write_pointer(struct f2fs_sb_info * sbi,struct f2fs_dev_info * fdev,struct blk_zone * zone)4887 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4888 				    struct f2fs_dev_info *fdev,
4889 				    struct blk_zone *zone)
4890 {
4891 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4892 	block_t zone_block, wp_block, last_valid_block;
4893 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4894 	int i, s, b, ret;
4895 	struct seg_entry *se;
4896 
4897 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4898 		return 0;
4899 
4900 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4901 	wp_segno = GET_SEGNO(sbi, wp_block);
4902 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4903 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4904 	zone_segno = GET_SEGNO(sbi, zone_block);
4905 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4906 
4907 	if (zone_segno >= MAIN_SEGS(sbi))
4908 		return 0;
4909 
4910 	/*
4911 	 * Skip check of zones cursegs point to, since
4912 	 * fix_curseg_write_pointer() checks them.
4913 	 */
4914 	for (i = 0; i < NO_CHECK_TYPE; i++)
4915 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4916 						   CURSEG_I(sbi, i)->segno))
4917 			return 0;
4918 
4919 	/*
4920 	 * Get last valid block of the zone.
4921 	 */
4922 	last_valid_block = zone_block - 1;
4923 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4924 		segno = zone_segno + s;
4925 		se = get_seg_entry(sbi, segno);
4926 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4927 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4928 				last_valid_block = START_BLOCK(sbi, segno) + b;
4929 				break;
4930 			}
4931 		if (last_valid_block >= zone_block)
4932 			break;
4933 	}
4934 
4935 	/*
4936 	 * If last valid block is beyond the write pointer, report the
4937 	 * inconsistency. This inconsistency does not cause write error
4938 	 * because the zone will not be selected for write operation until
4939 	 * it get discarded. Just report it.
4940 	 */
4941 	if (last_valid_block >= wp_block) {
4942 		f2fs_notice(sbi, "Valid block beyond write pointer: "
4943 			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4944 			    GET_SEGNO(sbi, last_valid_block),
4945 			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4946 			    wp_segno, wp_blkoff);
4947 		return 0;
4948 	}
4949 
4950 	/*
4951 	 * If there is no valid block in the zone and if write pointer is
4952 	 * not at zone start, reset the write pointer.
4953 	 */
4954 	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4955 		f2fs_notice(sbi,
4956 			    "Zone without valid block has non-zero write "
4957 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4958 			    wp_segno, wp_blkoff);
4959 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4960 					zone->len >> log_sectors_per_block);
4961 		if (ret) {
4962 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4963 				 fdev->path, ret);
4964 			return ret;
4965 		}
4966 	}
4967 
4968 	return 0;
4969 }
4970 
get_target_zoned_dev(struct f2fs_sb_info * sbi,block_t zone_blkaddr)4971 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4972 						  block_t zone_blkaddr)
4973 {
4974 	int i;
4975 
4976 	for (i = 0; i < sbi->s_ndevs; i++) {
4977 		if (!bdev_is_zoned(FDEV(i).bdev))
4978 			continue;
4979 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4980 				zone_blkaddr <= FDEV(i).end_blk))
4981 			return &FDEV(i);
4982 	}
4983 
4984 	return NULL;
4985 }
4986 
report_one_zone_cb(struct blk_zone * zone,unsigned int idx,void * data)4987 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4988 			      void *data) {
4989 	memcpy(data, zone, sizeof(struct blk_zone));
4990 	return 0;
4991 }
4992 
fix_curseg_write_pointer(struct f2fs_sb_info * sbi,int type)4993 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4994 {
4995 	struct curseg_info *cs = CURSEG_I(sbi, type);
4996 	struct f2fs_dev_info *zbd;
4997 	struct blk_zone zone;
4998 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4999 	block_t cs_zone_block, wp_block;
5000 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5001 	sector_t zone_sector;
5002 	int err;
5003 
5004 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5005 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5006 
5007 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5008 	if (!zbd)
5009 		return 0;
5010 
5011 	/* report zone for the sector the curseg points to */
5012 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5013 		<< log_sectors_per_block;
5014 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5015 				  report_one_zone_cb, &zone);
5016 	if (err != 1) {
5017 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5018 			 zbd->path, err);
5019 		return err;
5020 	}
5021 
5022 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5023 		return 0;
5024 
5025 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5026 	wp_segno = GET_SEGNO(sbi, wp_block);
5027 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5028 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5029 
5030 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5031 		wp_sector_off == 0)
5032 		return 0;
5033 
5034 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5035 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
5036 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
5037 
5038 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5039 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
5040 	allocate_segment_by_default(sbi, type, true, SEQ_NONE);
5041 
5042 	/* check consistency of the zone curseg pointed to */
5043 	if (check_zone_write_pointer(sbi, zbd, &zone))
5044 		return -EIO;
5045 
5046 	/* check newly assigned zone */
5047 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5048 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5049 
5050 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5051 	if (!zbd)
5052 		return 0;
5053 
5054 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5055 		<< log_sectors_per_block;
5056 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5057 				  report_one_zone_cb, &zone);
5058 	if (err != 1) {
5059 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5060 			 zbd->path, err);
5061 		return err;
5062 	}
5063 
5064 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5065 		return 0;
5066 
5067 	if (zone.wp != zone.start) {
5068 		f2fs_notice(sbi,
5069 			    "New zone for curseg[%d] is not yet discarded. "
5070 			    "Reset the zone: curseg[0x%x,0x%x]",
5071 			    type, cs->segno, cs->next_blkoff);
5072 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
5073 				zone_sector >> log_sectors_per_block,
5074 				zone.len >> log_sectors_per_block);
5075 		if (err) {
5076 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5077 				 zbd->path, err);
5078 			return err;
5079 		}
5080 	}
5081 
5082 	return 0;
5083 }
5084 
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5085 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5086 {
5087 	int i, ret;
5088 
5089 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5090 		ret = fix_curseg_write_pointer(sbi, i);
5091 		if (ret)
5092 			return ret;
5093 	}
5094 
5095 	return 0;
5096 }
5097 
5098 struct check_zone_write_pointer_args {
5099 	struct f2fs_sb_info *sbi;
5100 	struct f2fs_dev_info *fdev;
5101 };
5102 
check_zone_write_pointer_cb(struct blk_zone * zone,unsigned int idx,void * data)5103 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5104 				      void *data) {
5105 	struct check_zone_write_pointer_args *args;
5106 	args = (struct check_zone_write_pointer_args *)data;
5107 
5108 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
5109 }
5110 
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)5111 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5112 {
5113 	int i, ret;
5114 	struct check_zone_write_pointer_args args;
5115 
5116 	for (i = 0; i < sbi->s_ndevs; i++) {
5117 		if (!bdev_is_zoned(FDEV(i).bdev))
5118 			continue;
5119 
5120 		args.sbi = sbi;
5121 		args.fdev = &FDEV(i);
5122 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5123 					  check_zone_write_pointer_cb, &args);
5124 		if (ret < 0)
5125 			return ret;
5126 	}
5127 
5128 	return 0;
5129 }
5130 
5131 /*
5132  * Return the number of usable blocks in a segment. The number of blocks
5133  * returned is always equal to the number of blocks in a segment for
5134  * segments fully contained within a sequential zone capacity or a
5135  * conventional zone. For segments partially contained in a sequential
5136  * zone capacity, the number of usable blocks up to the zone capacity
5137  * is returned. 0 is returned in all other cases.
5138  */
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5139 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5140 			struct f2fs_sb_info *sbi, unsigned int segno)
5141 {
5142 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5143 	unsigned int secno;
5144 
5145 	if (!sbi->unusable_blocks_per_sec)
5146 		return sbi->blocks_per_seg;
5147 
5148 	secno = GET_SEC_FROM_SEG(sbi, segno);
5149 	seg_start = START_BLOCK(sbi, segno);
5150 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5151 	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5152 
5153 	/*
5154 	 * If segment starts before zone capacity and spans beyond
5155 	 * zone capacity, then usable blocks are from seg start to
5156 	 * zone capacity. If the segment starts after the zone capacity,
5157 	 * then there are no usable blocks.
5158 	 */
5159 	if (seg_start >= sec_cap_blkaddr)
5160 		return 0;
5161 	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5162 		return sec_cap_blkaddr - seg_start;
5163 
5164 	return sbi->blocks_per_seg;
5165 }
5166 #else
f2fs_fix_curseg_write_pointer(struct f2fs_sb_info * sbi)5167 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5168 {
5169 	return 0;
5170 }
5171 
f2fs_check_write_pointer(struct f2fs_sb_info * sbi)5172 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5173 {
5174 	return 0;
5175 }
5176 
f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5177 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5178 							unsigned int segno)
5179 {
5180 	return 0;
5181 }
5182 
5183 #endif
f2fs_usable_blks_in_seg(struct f2fs_sb_info * sbi,unsigned int segno)5184 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5185 					unsigned int segno)
5186 {
5187 	if (f2fs_sb_has_blkzoned(sbi))
5188 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5189 
5190 	return sbi->blocks_per_seg;
5191 }
5192 
f2fs_usable_segs_in_sec(struct f2fs_sb_info * sbi,unsigned int segno)5193 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5194 					unsigned int segno)
5195 {
5196 	if (f2fs_sb_has_blkzoned(sbi))
5197 		return CAP_SEGS_PER_SEC(sbi);
5198 
5199 	return sbi->segs_per_sec;
5200 }
5201 
5202 /*
5203  * Update min, max modified time for cost-benefit GC algorithm
5204  */
init_min_max_mtime(struct f2fs_sb_info * sbi)5205 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5206 {
5207 	struct sit_info *sit_i = SIT_I(sbi);
5208 	unsigned int segno;
5209 
5210 	down_write(&sit_i->sentry_lock);
5211 
5212 	sit_i->min_mtime = ULLONG_MAX;
5213 
5214 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5215 		unsigned int i;
5216 		unsigned long long mtime = 0;
5217 
5218 		for (i = 0; i < sbi->segs_per_sec; i++)
5219 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5220 
5221 		mtime = div_u64(mtime, sbi->segs_per_sec);
5222 
5223 		if (sit_i->min_mtime > mtime)
5224 			sit_i->min_mtime = mtime;
5225 	}
5226 	sit_i->max_mtime = get_mtime(sbi, false);
5227 	sit_i->dirty_max_mtime = 0;
5228 	up_write(&sit_i->sentry_lock);
5229 }
5230 
f2fs_build_segment_manager(struct f2fs_sb_info * sbi)5231 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5232 {
5233 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5234 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5235 	struct f2fs_sm_info *sm_info;
5236 	int err;
5237 
5238 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5239 	if (!sm_info)
5240 		return -ENOMEM;
5241 
5242 	/* init sm info */
5243 	sbi->sm_info = sm_info;
5244 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5245 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5246 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5247 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5248 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5249 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5250 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5251 	sm_info->rec_prefree_segments = sm_info->main_segments *
5252 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5253 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5254 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5255 
5256 	if (!f2fs_lfs_mode(sbi))
5257 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5258 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5259 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5260 	sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
5261 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5262 	sm_info->min_ssr_sections = reserved_sections(sbi);
5263 
5264 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5265 
5266 	init_rwsem(&sm_info->curseg_lock);
5267 
5268 	if (!f2fs_readonly(sbi->sb)) {
5269 		err = f2fs_create_flush_cmd_control(sbi);
5270 		if (err)
5271 			return err;
5272 	}
5273 
5274 	err = create_discard_cmd_control(sbi);
5275 	if (err)
5276 		return err;
5277 
5278 	err = build_sit_info(sbi);
5279 	if (err)
5280 		return err;
5281 	err = build_free_segmap(sbi);
5282 	if (err)
5283 		return err;
5284 	err = build_curseg(sbi);
5285 	if (err)
5286 		return err;
5287 
5288 	/* reinit free segmap based on SIT */
5289 	err = build_sit_entries(sbi);
5290 	if (err)
5291 		return err;
5292 
5293 	init_free_segmap(sbi);
5294 	err = build_dirty_segmap(sbi);
5295 	if (err)
5296 		return err;
5297 
5298 	err = sanity_check_curseg(sbi);
5299 	if (err)
5300 		return err;
5301 
5302 	init_min_max_mtime(sbi);
5303 	return 0;
5304 }
5305 
discard_dirty_segmap(struct f2fs_sb_info * sbi,enum dirty_type dirty_type)5306 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5307 		enum dirty_type dirty_type)
5308 {
5309 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5310 
5311 	mutex_lock(&dirty_i->seglist_lock);
5312 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5313 	dirty_i->nr_dirty[dirty_type] = 0;
5314 	mutex_unlock(&dirty_i->seglist_lock);
5315 }
5316 
destroy_victim_secmap(struct f2fs_sb_info * sbi)5317 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5318 {
5319 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5320 	kvfree(dirty_i->victim_secmap);
5321 }
5322 
destroy_dirty_segmap(struct f2fs_sb_info * sbi)5323 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5324 {
5325 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5326 	int i;
5327 
5328 	if (!dirty_i)
5329 		return;
5330 
5331 	/* discard pre-free/dirty segments list */
5332 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5333 		discard_dirty_segmap(sbi, i);
5334 
5335 	if (__is_large_section(sbi)) {
5336 		mutex_lock(&dirty_i->seglist_lock);
5337 		kvfree(dirty_i->dirty_secmap);
5338 		mutex_unlock(&dirty_i->seglist_lock);
5339 	}
5340 
5341 	destroy_victim_secmap(sbi);
5342 	SM_I(sbi)->dirty_info = NULL;
5343 	kfree(dirty_i);
5344 }
5345 
destroy_curseg(struct f2fs_sb_info * sbi)5346 static void destroy_curseg(struct f2fs_sb_info *sbi)
5347 {
5348 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5349 	int i;
5350 
5351 	if (!array)
5352 		return;
5353 	SM_I(sbi)->curseg_array = NULL;
5354 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5355 		kfree(array[i].sum_blk);
5356 		kfree(array[i].journal);
5357 	}
5358 	kfree(array);
5359 }
5360 
destroy_free_segmap(struct f2fs_sb_info * sbi)5361 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5362 {
5363 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5364 	if (!free_i)
5365 		return;
5366 	SM_I(sbi)->free_info = NULL;
5367 	kvfree(free_i->free_segmap);
5368 	kvfree(free_i->free_secmap);
5369 	kfree(free_i);
5370 }
5371 
destroy_sit_info(struct f2fs_sb_info * sbi)5372 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5373 {
5374 	struct sit_info *sit_i = SIT_I(sbi);
5375 
5376 	if (!sit_i)
5377 		return;
5378 
5379 	if (sit_i->sentries)
5380 		kvfree(sit_i->bitmap);
5381 	kfree(sit_i->tmp_map);
5382 
5383 	kvfree(sit_i->sentries);
5384 	kvfree(sit_i->sec_entries);
5385 	kvfree(sit_i->dirty_sentries_bitmap);
5386 
5387 	SM_I(sbi)->sit_info = NULL;
5388 	kvfree(sit_i->sit_bitmap);
5389 #ifdef CONFIG_F2FS_CHECK_FS
5390 	kvfree(sit_i->sit_bitmap_mir);
5391 	kvfree(sit_i->invalid_segmap);
5392 #endif
5393 	kfree(sit_i);
5394 }
5395 
f2fs_destroy_segment_manager(struct f2fs_sb_info * sbi)5396 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5397 {
5398 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5399 
5400 	if (!sm_info)
5401 		return;
5402 	f2fs_destroy_flush_cmd_control(sbi, true);
5403 	destroy_discard_cmd_control(sbi);
5404 	destroy_dirty_segmap(sbi);
5405 	destroy_curseg(sbi);
5406 	destroy_free_segmap(sbi);
5407 	destroy_sit_info(sbi);
5408 	sbi->sm_info = NULL;
5409 	kfree(sm_info);
5410 }
5411 
f2fs_create_segment_manager_caches(void)5412 int __init f2fs_create_segment_manager_caches(void)
5413 {
5414 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5415 			sizeof(struct discard_entry));
5416 	if (!discard_entry_slab)
5417 		goto fail;
5418 
5419 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5420 			sizeof(struct discard_cmd));
5421 	if (!discard_cmd_slab)
5422 		goto destroy_discard_entry;
5423 
5424 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5425 			sizeof(struct sit_entry_set));
5426 	if (!sit_entry_set_slab)
5427 		goto destroy_discard_cmd;
5428 
5429 	inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5430 			sizeof(struct inmem_pages));
5431 	if (!inmem_entry_slab)
5432 		goto destroy_sit_entry_set;
5433 	return 0;
5434 
5435 destroy_sit_entry_set:
5436 	kmem_cache_destroy(sit_entry_set_slab);
5437 destroy_discard_cmd:
5438 	kmem_cache_destroy(discard_cmd_slab);
5439 destroy_discard_entry:
5440 	kmem_cache_destroy(discard_entry_slab);
5441 fail:
5442 	return -ENOMEM;
5443 }
5444 
f2fs_destroy_segment_manager_caches(void)5445 void f2fs_destroy_segment_manager_caches(void)
5446 {
5447 	kmem_cache_destroy(sit_entry_set_slab);
5448 	kmem_cache_destroy(discard_cmd_slab);
5449 	kmem_cache_destroy(discard_entry_slab);
5450 	kmem_cache_destroy(inmem_entry_slab);
5451 }
5452