• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/segment.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10 
11 /* constant macro */
12 #define NULL_SEGNO			((unsigned int)(~0))
13 #define NULL_SECNO			((unsigned int)(~0))
14 
15 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
17 
18 #define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS	8 /* SB + 2 (CP + SIT + NAT) + SSA */
20 
21 /* L: Logical segment # in volume, R: Relative segment # in main area */
22 #define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
23 #define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
24 
25 #define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
26 #define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27 #define SE_PAGETYPE(se)	((IS_NODESEG((se)->type) ? NODE : DATA))
28 
sanity_check_seg_type(struct f2fs_sb_info * sbi,unsigned short seg_type)29 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
30 						unsigned short seg_type)
31 {
32 	f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
33 }
34 
35 #define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
36 #define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
37 #define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
38 
39 #define IS_CURSEG(sbi, seg)						\
40 	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
41 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
42 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
43 	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
44 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
45 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||	\
46 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||	\
47 	 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
48 
49 #define IS_CURSEC(sbi, secno)						\
50 	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
51 	  (sbi)->segs_per_sec) ||	\
52 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
53 	  (sbi)->segs_per_sec) ||	\
54 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
55 	  (sbi)->segs_per_sec) ||	\
56 	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
57 	  (sbi)->segs_per_sec) ||	\
58 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
59 	  (sbi)->segs_per_sec) ||	\
60 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
61 	  (sbi)->segs_per_sec) ||	\
62 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /	\
63 	  (sbi)->segs_per_sec) ||	\
64 	 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /	\
65 	  (sbi)->segs_per_sec))
66 
67 #define MAIN_BLKADDR(sbi)						\
68 	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
69 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
70 #define SEG0_BLKADDR(sbi)						\
71 	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
72 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
73 
74 #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
75 #define MAIN_SECS(sbi)	((sbi)->total_sections)
76 
77 #define TOTAL_SEGS(sbi)							\
78 	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
79 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
80 #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
81 
82 #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
83 #define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
84 					(sbi)->log_blocks_per_seg))
85 
86 #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
87 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
88 
89 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
90 	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
91 
92 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
93 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
94 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
95 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
96 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
97 
98 #define GET_SEGNO(sbi, blk_addr)					\
99 	((!__is_valid_data_blkaddr(blk_addr)) ?			\
100 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
101 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102 #define BLKS_PER_SEC(sbi)					\
103 	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
104 #define CAP_BLKS_PER_SEC(sbi)					\
105 	((sbi)->segs_per_sec * (sbi)->blocks_per_seg -		\
106 	 (sbi)->unusable_blocks_per_sec)
107 #define CAP_SEGS_PER_SEC(sbi)					\
108 	((sbi)->segs_per_sec - ((sbi)->unusable_blocks_per_sec >>\
109 	(sbi)->log_blocks_per_seg))
110 #define GET_SEC_FROM_SEG(sbi, segno)				\
111 	(((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
112 #define GET_SEG_FROM_SEC(sbi, secno)				\
113 	((secno) * (sbi)->segs_per_sec)
114 #define GET_ZONE_FROM_SEC(sbi, secno)				\
115 	(((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
116 #define GET_ZONE_FROM_SEG(sbi, segno)				\
117 	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
118 
119 #define GET_SUM_BLOCK(sbi, segno)				\
120 	((sbi)->sm_info->ssa_blkaddr + (segno))
121 
122 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
123 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
124 
125 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
126 	((segno) % (sit_i)->sents_per_block)
127 #define SIT_BLOCK_OFFSET(segno)					\
128 	((segno) / SIT_ENTRY_PER_BLOCK)
129 #define	START_SEGNO(segno)		\
130 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
131 #define SIT_BLK_CNT(sbi)			\
132 	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
133 #define f2fs_bitmap_size(nr)			\
134 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
135 
136 #define SECTOR_FROM_BLOCK(blk_addr)					\
137 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
138 #define SECTOR_TO_BLOCK(sectors)					\
139 	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
140 #ifdef CONFIG_F2FS_GRADING_SSR
141 #define KBS_PER_SEGMENT 2048
142 #define SSR_MIN_BLKS_LIMIT (16 << 18)	/* 16G */
143 #define SSR_CONTIG_DIRTY_NUMS	32	/* Dirty pages for LFS alloction in grading ssr. */
144 #define SSR_CONTIG_LARGE	256	/* Larege files */
145 #endif
146 
147 enum {
148 	SEQ_NONE,
149 	SEQ_32BLKS,
150 	SEQ_256BLKS
151 };
152 /*
153  * indicate a block allocation direction: RIGHT and LEFT.
154  * RIGHT means allocating new sections towards the end of volume.
155  * LEFT means the opposite direction.
156  */
157 enum {
158 	ALLOC_RIGHT = 0,
159 	ALLOC_LEFT
160 };
161 
162 /*
163  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
164  * LFS writes data sequentially with cleaning operations.
165  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
166  * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
167  * fragmented segment which has similar aging degree.
168  */
169 enum {
170 	LFS = 0,
171 	SSR,
172 	AT_SSR,
173 };
174 
175 /*
176  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
177  * GC_CB is based on cost-benefit algorithm.
178  * GC_GREEDY is based on greedy algorithm.
179  * GC_AT is based on age-threshold algorithm.
180  */
181 enum {
182 	GC_CB = 0,
183 	GC_GREEDY,
184 	GC_AT,
185 	ALLOC_NEXT,
186 	FLUSH_DEVICE,
187 	MAX_GC_POLICY,
188 };
189 
190 /*
191  * BG_GC means the background cleaning job.
192  * FG_GC means the on-demand cleaning job.
193  * FORCE_FG_GC means on-demand cleaning job in background.
194  */
195 enum {
196 	BG_GC = 0,
197 	FG_GC,
198 	FORCE_FG_GC,
199 };
200 
201 #ifdef CONFIG_F2FS_GRADING_SSR
202 enum {
203 	GRADING_SSR_OFF = 0,
204 	GRADING_SSR_ON
205 };
206 #endif
207 
208 /* for a function parameter to select a victim segment */
209 struct victim_sel_policy {
210 	int alloc_mode;			/* LFS or SSR */
211 	int gc_mode;			/* GC_CB or GC_GREEDY */
212 	unsigned long *dirty_bitmap;	/* dirty segment/section bitmap */
213 	unsigned int max_search;	/*
214 					 * maximum # of segments/sections
215 					 * to search
216 					 */
217 	unsigned int offset;		/* last scanned bitmap offset */
218 	unsigned int ofs_unit;		/* bitmap search unit */
219 	unsigned int min_cost;		/* minimum cost */
220 	unsigned long long oldest_age;	/* oldest age of segments having the same min cost */
221 	unsigned int min_segno;		/* segment # having min. cost */
222 	unsigned long long age;		/* mtime of GCed section*/
223 	unsigned long long age_threshold;/* age threshold */
224 };
225 
226 struct seg_entry {
227 	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
228 	unsigned int valid_blocks:10;	/* # of valid blocks */
229 	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
230 	unsigned int padding:6;		/* padding */
231 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
232 #ifdef CONFIG_F2FS_CHECK_FS
233 	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
234 #endif
235 	/*
236 	 * # of valid blocks and the validity bitmap stored in the last
237 	 * checkpoint pack. This information is used by the SSR mode.
238 	 */
239 	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
240 	unsigned char *discard_map;
241 	unsigned long long mtime;	/* modification time of the segment */
242 };
243 
244 struct sec_entry {
245 	unsigned int valid_blocks;	/* # of valid blocks in a section */
246 };
247 
248 struct segment_allocation {
249 	void (*allocate_segment)(struct f2fs_sb_info *, int, bool, int);
250 };
251 
252 #define MAX_SKIP_GC_COUNT			16
253 
254 struct inmem_pages {
255 	struct list_head list;
256 	struct page *page;
257 	block_t old_addr;		/* for revoking when fail to commit */
258 };
259 
260 struct sit_info {
261 	const struct segment_allocation *s_ops;
262 
263 	block_t sit_base_addr;		/* start block address of SIT area */
264 	block_t sit_blocks;		/* # of blocks used by SIT area */
265 	block_t written_valid_blocks;	/* # of valid blocks in main area */
266 	char *bitmap;			/* all bitmaps pointer */
267 	char *sit_bitmap;		/* SIT bitmap pointer */
268 #ifdef CONFIG_F2FS_CHECK_FS
269 	char *sit_bitmap_mir;		/* SIT bitmap mirror */
270 
271 	/* bitmap of segments to be ignored by GC in case of errors */
272 	unsigned long *invalid_segmap;
273 #endif
274 	unsigned int bitmap_size;	/* SIT bitmap size */
275 
276 	unsigned long *tmp_map;			/* bitmap for temporal use */
277 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
278 	unsigned int dirty_sentries;		/* # of dirty sentries */
279 	unsigned int sents_per_block;		/* # of SIT entries per block */
280 	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
281 	struct seg_entry *sentries;		/* SIT segment-level cache */
282 	struct sec_entry *sec_entries;		/* SIT section-level cache */
283 
284 	/* for cost-benefit algorithm in cleaning procedure */
285 	unsigned long long elapsed_time;	/* elapsed time after mount */
286 	unsigned long long mounted_time;	/* mount time */
287 	unsigned long long min_mtime;		/* min. modification time */
288 	unsigned long long max_mtime;		/* max. modification time */
289 	unsigned long long dirty_min_mtime;	/* rerange candidates in GC_AT */
290 	unsigned long long dirty_max_mtime;	/* rerange candidates in GC_AT */
291 
292 	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
293 };
294 
295 struct free_segmap_info {
296 	unsigned int start_segno;	/* start segment number logically */
297 	unsigned int free_segments;	/* # of free segments */
298 	unsigned int free_sections;	/* # of free sections */
299 	spinlock_t segmap_lock;		/* free segmap lock */
300 	unsigned long *free_segmap;	/* free segment bitmap */
301 	unsigned long *free_secmap;	/* free section bitmap */
302 };
303 
304 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
305 enum dirty_type {
306 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
307 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
308 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
309 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
310 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
311 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
312 	DIRTY,			/* to count # of dirty segments */
313 	PRE,			/* to count # of entirely obsolete segments */
314 	NR_DIRTY_TYPE
315 };
316 
317 struct dirty_seglist_info {
318 	const struct victim_selection *v_ops;	/* victim selction operation */
319 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
320 	unsigned long *dirty_secmap;
321 	struct mutex seglist_lock;		/* lock for segment bitmaps */
322 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
323 	unsigned long *victim_secmap;		/* background GC victims */
324 };
325 
326 /* victim selection function for cleaning and SSR */
327 struct victim_selection {
328 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
329 					int, int, char, unsigned long long);
330 };
331 
332 /* for active log information */
333 struct curseg_info {
334 	struct mutex curseg_mutex;		/* lock for consistency */
335 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
336 	struct rw_semaphore journal_rwsem;	/* protect journal area */
337 	struct f2fs_journal *journal;		/* cached journal info */
338 	unsigned char alloc_type;		/* current allocation type */
339 	unsigned short seg_type;		/* segment type like CURSEG_XXX_TYPE */
340 	unsigned int segno;			/* current segment number */
341 	unsigned short next_blkoff;		/* next block offset to write */
342 	unsigned int zone;			/* current zone number */
343 	unsigned int next_segno;		/* preallocated segment */
344 	bool inited;				/* indicate inmem log is inited */
345 };
346 
347 struct sit_entry_set {
348 	struct list_head set_list;	/* link with all sit sets */
349 	unsigned int start_segno;	/* start segno of sits in set */
350 	unsigned int entry_cnt;		/* the # of sit entries in set */
351 };
352 
353 /*
354  * inline functions
355  */
CURSEG_I(struct f2fs_sb_info * sbi,int type)356 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
357 {
358 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
359 }
360 
get_seg_entry(struct f2fs_sb_info * sbi,unsigned int segno)361 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
362 						unsigned int segno)
363 {
364 	struct sit_info *sit_i = SIT_I(sbi);
365 	return &sit_i->sentries[segno];
366 }
367 
get_sec_entry(struct f2fs_sb_info * sbi,unsigned int segno)368 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
369 						unsigned int segno)
370 {
371 	struct sit_info *sit_i = SIT_I(sbi);
372 	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
373 }
374 
get_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)375 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
376 				unsigned int segno, bool use_section)
377 {
378 	/*
379 	 * In order to get # of valid blocks in a section instantly from many
380 	 * segments, f2fs manages two counting structures separately.
381 	 */
382 	if (use_section && __is_large_section(sbi))
383 		return get_sec_entry(sbi, segno)->valid_blocks;
384 	else
385 		return get_seg_entry(sbi, segno)->valid_blocks;
386 }
387 
get_ckpt_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)388 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
389 				unsigned int segno, bool use_section)
390 {
391 	if (use_section && __is_large_section(sbi)) {
392 		unsigned int start_segno = START_SEGNO(segno);
393 		unsigned int blocks = 0;
394 		int i;
395 
396 		for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
397 			struct seg_entry *se = get_seg_entry(sbi, start_segno);
398 
399 			blocks += se->ckpt_valid_blocks;
400 		}
401 		return blocks;
402 	}
403 	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
404 }
405 
seg_info_from_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)406 static inline void seg_info_from_raw_sit(struct seg_entry *se,
407 					struct f2fs_sit_entry *rs)
408 {
409 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
410 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
411 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
412 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
413 #ifdef CONFIG_F2FS_CHECK_FS
414 	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
415 #endif
416 	se->type = GET_SIT_TYPE(rs);
417 	se->mtime = le64_to_cpu(rs->mtime);
418 }
419 
__seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)420 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
421 					struct f2fs_sit_entry *rs)
422 {
423 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
424 					se->valid_blocks;
425 	rs->vblocks = cpu_to_le16(raw_vblocks);
426 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
427 	rs->mtime = cpu_to_le64(se->mtime);
428 }
429 
seg_info_to_sit_page(struct f2fs_sb_info * sbi,struct page * page,unsigned int start)430 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
431 				struct page *page, unsigned int start)
432 {
433 	struct f2fs_sit_block *raw_sit;
434 	struct seg_entry *se;
435 	struct f2fs_sit_entry *rs;
436 	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
437 					(unsigned long)MAIN_SEGS(sbi));
438 	int i;
439 
440 	raw_sit = (struct f2fs_sit_block *)page_address(page);
441 	memset(raw_sit, 0, PAGE_SIZE);
442 	for (i = 0; i < end - start; i++) {
443 		rs = &raw_sit->entries[i];
444 		se = get_seg_entry(sbi, start + i);
445 		__seg_info_to_raw_sit(se, rs);
446 	}
447 }
448 
seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)449 static inline void seg_info_to_raw_sit(struct seg_entry *se,
450 					struct f2fs_sit_entry *rs)
451 {
452 	__seg_info_to_raw_sit(se, rs);
453 
454 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
455 	se->ckpt_valid_blocks = se->valid_blocks;
456 }
457 
find_next_inuse(struct free_segmap_info * free_i,unsigned int max,unsigned int segno)458 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
459 		unsigned int max, unsigned int segno)
460 {
461 	unsigned int ret;
462 	spin_lock(&free_i->segmap_lock);
463 	ret = find_next_bit(free_i->free_segmap, max, segno);
464 	spin_unlock(&free_i->segmap_lock);
465 	return ret;
466 }
467 
__set_free(struct f2fs_sb_info * sbi,unsigned int segno)468 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
469 {
470 	struct free_segmap_info *free_i = FREE_I(sbi);
471 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
472 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
473 	unsigned int next;
474 	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
475 
476 	spin_lock(&free_i->segmap_lock);
477 	clear_bit(segno, free_i->free_segmap);
478 	free_i->free_segments++;
479 
480 	next = find_next_bit(free_i->free_segmap,
481 			start_segno + sbi->segs_per_sec, start_segno);
482 	if (next >= start_segno + usable_segs) {
483 		clear_bit(secno, free_i->free_secmap);
484 		free_i->free_sections++;
485 	}
486 	spin_unlock(&free_i->segmap_lock);
487 }
488 
__set_inuse(struct f2fs_sb_info * sbi,unsigned int segno)489 static inline void __set_inuse(struct f2fs_sb_info *sbi,
490 		unsigned int segno)
491 {
492 	struct free_segmap_info *free_i = FREE_I(sbi);
493 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
494 
495 	set_bit(segno, free_i->free_segmap);
496 	free_i->free_segments--;
497 	if (!test_and_set_bit(secno, free_i->free_secmap))
498 		free_i->free_sections--;
499 }
500 
__set_test_and_free(struct f2fs_sb_info * sbi,unsigned int segno,bool inmem)501 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
502 		unsigned int segno, bool inmem)
503 {
504 	struct free_segmap_info *free_i = FREE_I(sbi);
505 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
506 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
507 	unsigned int next;
508 	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
509 
510 	spin_lock(&free_i->segmap_lock);
511 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
512 		free_i->free_segments++;
513 
514 		if (!inmem && IS_CURSEC(sbi, secno))
515 			goto skip_free;
516 		next = find_next_bit(free_i->free_segmap,
517 				start_segno + sbi->segs_per_sec, start_segno);
518 		if (next >= start_segno + usable_segs) {
519 			if (test_and_clear_bit(secno, free_i->free_secmap))
520 				free_i->free_sections++;
521 		}
522 	}
523 skip_free:
524 	spin_unlock(&free_i->segmap_lock);
525 }
526 
__set_test_and_inuse(struct f2fs_sb_info * sbi,unsigned int segno)527 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
528 		unsigned int segno)
529 {
530 	struct free_segmap_info *free_i = FREE_I(sbi);
531 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
532 
533 	spin_lock(&free_i->segmap_lock);
534 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
535 		free_i->free_segments--;
536 		if (!test_and_set_bit(secno, free_i->free_secmap))
537 			free_i->free_sections--;
538 	}
539 	spin_unlock(&free_i->segmap_lock);
540 }
541 
get_sit_bitmap(struct f2fs_sb_info * sbi,void * dst_addr)542 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
543 		void *dst_addr)
544 {
545 	struct sit_info *sit_i = SIT_I(sbi);
546 
547 #ifdef CONFIG_F2FS_CHECK_FS
548 	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
549 						sit_i->bitmap_size))
550 		f2fs_bug_on(sbi, 1);
551 #endif
552 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
553 }
554 
written_block_count(struct f2fs_sb_info * sbi)555 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
556 {
557 	return SIT_I(sbi)->written_valid_blocks;
558 }
559 
free_segments(struct f2fs_sb_info * sbi)560 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
561 {
562 	return FREE_I(sbi)->free_segments;
563 }
564 
reserved_segments(struct f2fs_sb_info * sbi)565 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
566 {
567 	return SM_I(sbi)->reserved_segments +
568 			SM_I(sbi)->additional_reserved_segments;
569 }
570 
free_sections(struct f2fs_sb_info * sbi)571 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
572 {
573 	return FREE_I(sbi)->free_sections;
574 }
575 
prefree_segments(struct f2fs_sb_info * sbi)576 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
577 {
578 	return DIRTY_I(sbi)->nr_dirty[PRE];
579 }
580 
dirty_segments(struct f2fs_sb_info * sbi)581 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
582 {
583 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
584 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
585 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
586 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
587 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
588 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
589 }
590 
overprovision_segments(struct f2fs_sb_info * sbi)591 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
592 {
593 	return SM_I(sbi)->ovp_segments;
594 }
595 
reserved_sections(struct f2fs_sb_info * sbi)596 static inline int reserved_sections(struct f2fs_sb_info *sbi)
597 {
598 	return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
599 }
600 
has_curseg_enough_space(struct f2fs_sb_info * sbi,unsigned int node_blocks,unsigned int dent_blocks)601 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
602 			unsigned int node_blocks, unsigned int dent_blocks)
603 {
604 
605 	unsigned int segno, left_blocks;
606 	int i;
607 
608 	/* check current node segment */
609 	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
610 		segno = CURSEG_I(sbi, i)->segno;
611 		left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
612 				get_seg_entry(sbi, segno)->ckpt_valid_blocks;
613 
614 		if (node_blocks > left_blocks)
615 			return false;
616 	}
617 
618 	/* check current data segment */
619 	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
620 	left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
621 			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
622 	if (dent_blocks > left_blocks)
623 		return false;
624 	return true;
625 }
626 
has_not_enough_free_secs(struct f2fs_sb_info * sbi,int freed,int needed)627 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
628 					int freed, int needed)
629 {
630 	unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
631 					get_pages(sbi, F2FS_DIRTY_DENTS) +
632 					get_pages(sbi, F2FS_DIRTY_IMETA);
633 	unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
634 	unsigned int node_secs = total_node_blocks / BLKS_PER_SEC(sbi);
635 	unsigned int dent_secs = total_dent_blocks / BLKS_PER_SEC(sbi);
636 	unsigned int node_blocks = total_node_blocks % BLKS_PER_SEC(sbi);
637 	unsigned int dent_blocks = total_dent_blocks % BLKS_PER_SEC(sbi);
638 	unsigned int free, need_lower, need_upper;
639 
640 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
641 		return false;
642 
643 	free = free_sections(sbi) + freed;
644 	need_lower = node_secs + dent_secs + reserved_sections(sbi) + needed;
645 	need_upper = need_lower + (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
646 
647 	if (free > need_upper)
648 		return false;
649 	else if (free <= need_lower)
650 		return true;
651 	return !has_curseg_enough_space(sbi, node_blocks, dent_blocks);
652 }
653 
f2fs_is_checkpoint_ready(struct f2fs_sb_info * sbi)654 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
655 {
656 	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
657 		return true;
658 	if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
659 		return true;
660 	return false;
661 }
662 
excess_prefree_segs(struct f2fs_sb_info * sbi)663 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
664 {
665 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
666 }
667 
utilization(struct f2fs_sb_info * sbi)668 static inline int utilization(struct f2fs_sb_info *sbi)
669 {
670 	return div_u64((u64)valid_user_blocks(sbi) * 100,
671 					sbi->user_block_count);
672 }
673 
674 /*
675  * Sometimes f2fs may be better to drop out-of-place update policy.
676  * And, users can control the policy through sysfs entries.
677  * There are five policies with triggering conditions as follows.
678  * F2FS_IPU_FORCE - all the time,
679  * F2FS_IPU_SSR - if SSR mode is activated,
680  * F2FS_IPU_UTIL - if FS utilization is over threashold,
681  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
682  *                     threashold,
683  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
684  *                     storages. IPU will be triggered only if the # of dirty
685  *                     pages over min_fsync_blocks. (=default option)
686  * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
687  * F2FS_IPU_NOCACHE - disable IPU bio cache.
688  * F2FS_IPUT_DISABLE - disable IPU. (=default option in LFS mode)
689  */
690 #define DEF_MIN_IPU_UTIL	70
691 #define DEF_MIN_FSYNC_BLOCKS	8
692 #define DEF_MIN_HOT_BLOCKS	16
693 
694 #define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
695 
696 enum {
697 	F2FS_IPU_FORCE,
698 	F2FS_IPU_SSR,
699 	F2FS_IPU_UTIL,
700 	F2FS_IPU_SSR_UTIL,
701 	F2FS_IPU_FSYNC,
702 	F2FS_IPU_ASYNC,
703 	F2FS_IPU_NOCACHE,
704 };
705 
curseg_segno(struct f2fs_sb_info * sbi,int type)706 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
707 		int type)
708 {
709 	struct curseg_info *curseg = CURSEG_I(sbi, type);
710 	return curseg->segno;
711 }
712 
curseg_alloc_type(struct f2fs_sb_info * sbi,int type)713 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
714 		int type)
715 {
716 	struct curseg_info *curseg = CURSEG_I(sbi, type);
717 	return curseg->alloc_type;
718 }
719 
curseg_blkoff(struct f2fs_sb_info * sbi,int type)720 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
721 {
722 	struct curseg_info *curseg = CURSEG_I(sbi, type);
723 	return curseg->next_blkoff;
724 }
725 
check_seg_range(struct f2fs_sb_info * sbi,unsigned int segno)726 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
727 {
728 	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
729 }
730 
verify_fio_blkaddr(struct f2fs_io_info * fio)731 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
732 {
733 	struct f2fs_sb_info *sbi = fio->sbi;
734 
735 	if (__is_valid_data_blkaddr(fio->old_blkaddr))
736 		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
737 					META_GENERIC : DATA_GENERIC);
738 	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
739 					META_GENERIC : DATA_GENERIC_ENHANCE);
740 }
741 
742 /*
743  * Summary block is always treated as an invalid block
744  */
check_block_count(struct f2fs_sb_info * sbi,int segno,struct f2fs_sit_entry * raw_sit)745 static inline int check_block_count(struct f2fs_sb_info *sbi,
746 		int segno, struct f2fs_sit_entry *raw_sit)
747 {
748 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
749 	int valid_blocks = 0;
750 	int cur_pos = 0, next_pos;
751 	unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
752 
753 	/* check bitmap with valid block count */
754 	do {
755 		if (is_valid) {
756 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
757 					usable_blks_per_seg,
758 					cur_pos);
759 			valid_blocks += next_pos - cur_pos;
760 		} else
761 			next_pos = find_next_bit_le(&raw_sit->valid_map,
762 					usable_blks_per_seg,
763 					cur_pos);
764 		cur_pos = next_pos;
765 		is_valid = !is_valid;
766 	} while (cur_pos < usable_blks_per_seg);
767 
768 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
769 		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
770 			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
771 		set_sbi_flag(sbi, SBI_NEED_FSCK);
772 		return -EFSCORRUPTED;
773 	}
774 
775 	if (usable_blks_per_seg < sbi->blocks_per_seg)
776 		f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
777 				sbi->blocks_per_seg,
778 				usable_blks_per_seg) != sbi->blocks_per_seg);
779 
780 	/* check segment usage, and check boundary of a given segment number */
781 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
782 					|| segno > TOTAL_SEGS(sbi) - 1)) {
783 		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
784 			 GET_SIT_VBLOCKS(raw_sit), segno);
785 		set_sbi_flag(sbi, SBI_NEED_FSCK);
786 		return -EFSCORRUPTED;
787 	}
788 	return 0;
789 }
790 
current_sit_addr(struct f2fs_sb_info * sbi,unsigned int start)791 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
792 						unsigned int start)
793 {
794 	struct sit_info *sit_i = SIT_I(sbi);
795 	unsigned int offset = SIT_BLOCK_OFFSET(start);
796 	block_t blk_addr = sit_i->sit_base_addr + offset;
797 
798 	check_seg_range(sbi, start);
799 
800 #ifdef CONFIG_F2FS_CHECK_FS
801 	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
802 			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
803 		f2fs_bug_on(sbi, 1);
804 #endif
805 
806 	/* calculate sit block address */
807 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
808 		blk_addr += sit_i->sit_blocks;
809 
810 	return blk_addr;
811 }
812 
next_sit_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)813 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
814 						pgoff_t block_addr)
815 {
816 	struct sit_info *sit_i = SIT_I(sbi);
817 	block_addr -= sit_i->sit_base_addr;
818 	if (block_addr < sit_i->sit_blocks)
819 		block_addr += sit_i->sit_blocks;
820 	else
821 		block_addr -= sit_i->sit_blocks;
822 
823 	return block_addr + sit_i->sit_base_addr;
824 }
825 
set_to_next_sit(struct sit_info * sit_i,unsigned int start)826 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
827 {
828 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
829 
830 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
831 #ifdef CONFIG_F2FS_CHECK_FS
832 	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
833 #endif
834 }
835 
get_mtime(struct f2fs_sb_info * sbi,bool base_time)836 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
837 						bool base_time)
838 {
839 	struct sit_info *sit_i = SIT_I(sbi);
840 	time64_t diff, now = ktime_get_boottime_seconds();
841 
842 	if (now >= sit_i->mounted_time)
843 		return sit_i->elapsed_time + now - sit_i->mounted_time;
844 
845 	/* system time is set to the past */
846 	if (!base_time) {
847 		diff = sit_i->mounted_time - now;
848 		if (sit_i->elapsed_time >= diff)
849 			return sit_i->elapsed_time - diff;
850 		return 0;
851 	}
852 	return sit_i->elapsed_time;
853 }
854 
set_summary(struct f2fs_summary * sum,nid_t nid,unsigned int ofs_in_node,unsigned char version)855 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
856 			unsigned int ofs_in_node, unsigned char version)
857 {
858 	sum->nid = cpu_to_le32(nid);
859 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
860 	sum->version = version;
861 }
862 
start_sum_block(struct f2fs_sb_info * sbi)863 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
864 {
865 	return __start_cp_addr(sbi) +
866 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
867 }
868 
sum_blk_addr(struct f2fs_sb_info * sbi,int base,int type)869 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
870 {
871 	return __start_cp_addr(sbi) +
872 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
873 				- (base + 1) + type;
874 }
875 
sec_usage_check(struct f2fs_sb_info * sbi,unsigned int secno)876 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
877 {
878 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
879 		return true;
880 	return false;
881 }
882 
883 /*
884  * It is very important to gather dirty pages and write at once, so that we can
885  * submit a big bio without interfering other data writes.
886  * By default, 512 pages for directory data,
887  * 512 pages (2MB) * 8 for nodes, and
888  * 256 pages * 8 for meta are set.
889  */
nr_pages_to_skip(struct f2fs_sb_info * sbi,int type)890 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
891 {
892 	if (sbi->sb->s_bdi->wb.dirty_exceeded)
893 		return 0;
894 
895 	if (type == DATA)
896 		return sbi->blocks_per_seg;
897 	else if (type == NODE)
898 		return 8 * sbi->blocks_per_seg;
899 	else if (type == META)
900 		return 8 * BIO_MAX_PAGES;
901 	else
902 		return 0;
903 }
904 
905 /*
906  * When writing pages, it'd better align nr_to_write for segment size.
907  */
nr_pages_to_write(struct f2fs_sb_info * sbi,int type,struct writeback_control * wbc)908 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
909 					struct writeback_control *wbc)
910 {
911 	long nr_to_write, desired;
912 
913 	if (wbc->sync_mode != WB_SYNC_NONE)
914 		return 0;
915 
916 	nr_to_write = wbc->nr_to_write;
917 	desired = BIO_MAX_PAGES;
918 	if (type == NODE)
919 		desired <<= 1;
920 
921 	wbc->nr_to_write = desired;
922 	return desired - nr_to_write;
923 }
924 
wake_up_discard_thread(struct f2fs_sb_info * sbi,bool force)925 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
926 {
927 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
928 	bool wakeup = false;
929 	int i;
930 
931 	if (force)
932 		goto wake_up;
933 
934 	mutex_lock(&dcc->cmd_lock);
935 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
936 		if (i + 1 < dcc->discard_granularity)
937 			break;
938 		if (!list_empty(&dcc->pend_list[i])) {
939 			wakeup = true;
940 			break;
941 		}
942 	}
943 	mutex_unlock(&dcc->cmd_lock);
944 	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
945 		return;
946 wake_up:
947 	dcc->discard_wake = 1;
948 	wake_up_interruptible_all(&dcc->discard_wait_queue);
949 }
950 
951 #ifdef CONFIG_F2FS_GRADING_SSR
check_io_seq(int blks)952 static inline int check_io_seq(int blks)
953 {
954 	if (blks >= SSR_CONTIG_LARGE)
955 		return SEQ_256BLKS;
956 	if (blks >= SSR_CONTIG_DIRTY_NUMS)
957 		return SEQ_32BLKS;
958 	return SEQ_NONE;
959 }
960 #endif
961