1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/segment.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10
11 /* constant macro */
12 #define NULL_SEGNO ((unsigned int)(~0))
13 #define NULL_SECNO ((unsigned int)(~0))
14
15 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
17
18 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */
20
21 /* L: Logical segment # in volume, R: Relative segment # in main area */
22 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno)
23 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno)
24
25 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA)
26 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27 #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA))
28
sanity_check_seg_type(struct f2fs_sb_info * sbi,unsigned short seg_type)29 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
30 unsigned short seg_type)
31 {
32 f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
33 }
34
35 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
36 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
37 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
38
39 #define IS_CURSEG(sbi, seg) \
40 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
41 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
42 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
43 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
44 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
45 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) || \
46 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) || \
47 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
48
49 #define IS_CURSEC(sbi, secno) \
50 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
51 (sbi)->segs_per_sec) || \
52 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
53 (sbi)->segs_per_sec) || \
54 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
55 (sbi)->segs_per_sec) || \
56 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
57 (sbi)->segs_per_sec) || \
58 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
59 (sbi)->segs_per_sec) || \
60 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
61 (sbi)->segs_per_sec) || \
62 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno / \
63 (sbi)->segs_per_sec) || \
64 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno / \
65 (sbi)->segs_per_sec))
66
67 #define MAIN_BLKADDR(sbi) \
68 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \
69 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
70 #define SEG0_BLKADDR(sbi) \
71 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \
72 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
73
74 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
75 #define MAIN_SECS(sbi) ((sbi)->total_sections)
76
77 #define TOTAL_SEGS(sbi) \
78 (SM_I(sbi) ? SM_I(sbi)->segment_count : \
79 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
80 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
81
82 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
83 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \
84 (sbi)->log_blocks_per_seg))
85
86 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
87 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
88
89 #define NEXT_FREE_BLKADDR(sbi, curseg) \
90 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
91
92 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
93 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
94 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
95 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
96 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
97
98 #define GET_SEGNO(sbi, blk_addr) \
99 ((!__is_valid_data_blkaddr(blk_addr)) ? \
100 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
101 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102 #define BLKS_PER_SEC(sbi) \
103 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
104 #define CAP_BLKS_PER_SEC(sbi) \
105 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg - \
106 (sbi)->unusable_blocks_per_sec)
107 #define CAP_SEGS_PER_SEC(sbi) \
108 ((sbi)->segs_per_sec - ((sbi)->unusable_blocks_per_sec >>\
109 (sbi)->log_blocks_per_seg))
110 #define GET_SEC_FROM_SEG(sbi, segno) \
111 (((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
112 #define GET_SEG_FROM_SEC(sbi, secno) \
113 ((secno) * (sbi)->segs_per_sec)
114 #define GET_ZONE_FROM_SEC(sbi, secno) \
115 (((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
116 #define GET_ZONE_FROM_SEG(sbi, segno) \
117 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
118
119 #define GET_SUM_BLOCK(sbi, segno) \
120 ((sbi)->sm_info->ssa_blkaddr + (segno))
121
122 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
123 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
124
125 #define SIT_ENTRY_OFFSET(sit_i, segno) \
126 ((segno) % (sit_i)->sents_per_block)
127 #define SIT_BLOCK_OFFSET(segno) \
128 ((segno) / SIT_ENTRY_PER_BLOCK)
129 #define START_SEGNO(segno) \
130 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
131 #define SIT_BLK_CNT(sbi) \
132 DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
133 #define f2fs_bitmap_size(nr) \
134 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
135
136 #define SECTOR_FROM_BLOCK(blk_addr) \
137 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
138 #define SECTOR_TO_BLOCK(sectors) \
139 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
140 #ifdef CONFIG_F2FS_GRADING_SSR
141 #define KBS_PER_SEGMENT 2048
142 #define SSR_MIN_BLKS_LIMIT (16 << 18) /* 16G */
143 #define SSR_CONTIG_DIRTY_NUMS 32 /* Dirty pages for LFS alloction in grading ssr. */
144 #define SSR_CONTIG_LARGE 256 /* Larege files */
145 #endif
146
147 enum {
148 SEQ_NONE,
149 SEQ_32BLKS,
150 SEQ_256BLKS
151 };
152 /*
153 * indicate a block allocation direction: RIGHT and LEFT.
154 * RIGHT means allocating new sections towards the end of volume.
155 * LEFT means the opposite direction.
156 */
157 enum {
158 ALLOC_RIGHT = 0,
159 ALLOC_LEFT
160 };
161
162 /*
163 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
164 * LFS writes data sequentially with cleaning operations.
165 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
166 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
167 * fragmented segment which has similar aging degree.
168 */
169 enum {
170 LFS = 0,
171 SSR,
172 AT_SSR,
173 };
174
175 /*
176 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
177 * GC_CB is based on cost-benefit algorithm.
178 * GC_GREEDY is based on greedy algorithm.
179 * GC_AT is based on age-threshold algorithm.
180 */
181 enum {
182 GC_CB = 0,
183 GC_GREEDY,
184 GC_AT,
185 ALLOC_NEXT,
186 FLUSH_DEVICE,
187 MAX_GC_POLICY,
188 };
189
190 /*
191 * BG_GC means the background cleaning job.
192 * FG_GC means the on-demand cleaning job.
193 * FORCE_FG_GC means on-demand cleaning job in background.
194 */
195 enum {
196 BG_GC = 0,
197 FG_GC,
198 FORCE_FG_GC,
199 };
200
201 #ifdef CONFIG_F2FS_GRADING_SSR
202 enum {
203 GRADING_SSR_OFF = 0,
204 GRADING_SSR_ON
205 };
206 #endif
207
208 /* for a function parameter to select a victim segment */
209 struct victim_sel_policy {
210 int alloc_mode; /* LFS or SSR */
211 int gc_mode; /* GC_CB or GC_GREEDY */
212 unsigned long *dirty_bitmap; /* dirty segment/section bitmap */
213 unsigned int max_search; /*
214 * maximum # of segments/sections
215 * to search
216 */
217 unsigned int offset; /* last scanned bitmap offset */
218 unsigned int ofs_unit; /* bitmap search unit */
219 unsigned int min_cost; /* minimum cost */
220 unsigned long long oldest_age; /* oldest age of segments having the same min cost */
221 unsigned int min_segno; /* segment # having min. cost */
222 unsigned long long age; /* mtime of GCed section*/
223 unsigned long long age_threshold;/* age threshold */
224 };
225
226 struct seg_entry {
227 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
228 unsigned int valid_blocks:10; /* # of valid blocks */
229 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
230 unsigned int padding:6; /* padding */
231 unsigned char *cur_valid_map; /* validity bitmap of blocks */
232 #ifdef CONFIG_F2FS_CHECK_FS
233 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */
234 #endif
235 /*
236 * # of valid blocks and the validity bitmap stored in the last
237 * checkpoint pack. This information is used by the SSR mode.
238 */
239 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
240 unsigned char *discard_map;
241 unsigned long long mtime; /* modification time of the segment */
242 };
243
244 struct sec_entry {
245 unsigned int valid_blocks; /* # of valid blocks in a section */
246 };
247
248 struct segment_allocation {
249 void (*allocate_segment)(struct f2fs_sb_info *, int, bool, int);
250 };
251
252 #define MAX_SKIP_GC_COUNT 16
253
254 struct inmem_pages {
255 struct list_head list;
256 struct page *page;
257 block_t old_addr; /* for revoking when fail to commit */
258 };
259
260 struct sit_info {
261 const struct segment_allocation *s_ops;
262
263 block_t sit_base_addr; /* start block address of SIT area */
264 block_t sit_blocks; /* # of blocks used by SIT area */
265 block_t written_valid_blocks; /* # of valid blocks in main area */
266 char *bitmap; /* all bitmaps pointer */
267 char *sit_bitmap; /* SIT bitmap pointer */
268 #ifdef CONFIG_F2FS_CHECK_FS
269 char *sit_bitmap_mir; /* SIT bitmap mirror */
270
271 /* bitmap of segments to be ignored by GC in case of errors */
272 unsigned long *invalid_segmap;
273 #endif
274 unsigned int bitmap_size; /* SIT bitmap size */
275
276 unsigned long *tmp_map; /* bitmap for temporal use */
277 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
278 unsigned int dirty_sentries; /* # of dirty sentries */
279 unsigned int sents_per_block; /* # of SIT entries per block */
280 struct rw_semaphore sentry_lock; /* to protect SIT cache */
281 struct seg_entry *sentries; /* SIT segment-level cache */
282 struct sec_entry *sec_entries; /* SIT section-level cache */
283
284 /* for cost-benefit algorithm in cleaning procedure */
285 unsigned long long elapsed_time; /* elapsed time after mount */
286 unsigned long long mounted_time; /* mount time */
287 unsigned long long min_mtime; /* min. modification time */
288 unsigned long long max_mtime; /* max. modification time */
289 unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */
290 unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */
291
292 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
293 };
294
295 struct free_segmap_info {
296 unsigned int start_segno; /* start segment number logically */
297 unsigned int free_segments; /* # of free segments */
298 unsigned int free_sections; /* # of free sections */
299 spinlock_t segmap_lock; /* free segmap lock */
300 unsigned long *free_segmap; /* free segment bitmap */
301 unsigned long *free_secmap; /* free section bitmap */
302 };
303
304 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
305 enum dirty_type {
306 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
307 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
308 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
309 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
310 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
311 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
312 DIRTY, /* to count # of dirty segments */
313 PRE, /* to count # of entirely obsolete segments */
314 NR_DIRTY_TYPE
315 };
316
317 struct dirty_seglist_info {
318 const struct victim_selection *v_ops; /* victim selction operation */
319 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
320 unsigned long *dirty_secmap;
321 struct mutex seglist_lock; /* lock for segment bitmaps */
322 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
323 unsigned long *victim_secmap; /* background GC victims */
324 };
325
326 /* victim selection function for cleaning and SSR */
327 struct victim_selection {
328 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
329 int, int, char, unsigned long long);
330 };
331
332 /* for active log information */
333 struct curseg_info {
334 struct mutex curseg_mutex; /* lock for consistency */
335 struct f2fs_summary_block *sum_blk; /* cached summary block */
336 struct rw_semaphore journal_rwsem; /* protect journal area */
337 struct f2fs_journal *journal; /* cached journal info */
338 unsigned char alloc_type; /* current allocation type */
339 unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */
340 unsigned int segno; /* current segment number */
341 unsigned short next_blkoff; /* next block offset to write */
342 unsigned int zone; /* current zone number */
343 unsigned int next_segno; /* preallocated segment */
344 bool inited; /* indicate inmem log is inited */
345 };
346
347 struct sit_entry_set {
348 struct list_head set_list; /* link with all sit sets */
349 unsigned int start_segno; /* start segno of sits in set */
350 unsigned int entry_cnt; /* the # of sit entries in set */
351 };
352
353 /*
354 * inline functions
355 */
CURSEG_I(struct f2fs_sb_info * sbi,int type)356 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
357 {
358 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
359 }
360
get_seg_entry(struct f2fs_sb_info * sbi,unsigned int segno)361 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
362 unsigned int segno)
363 {
364 struct sit_info *sit_i = SIT_I(sbi);
365 return &sit_i->sentries[segno];
366 }
367
get_sec_entry(struct f2fs_sb_info * sbi,unsigned int segno)368 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
369 unsigned int segno)
370 {
371 struct sit_info *sit_i = SIT_I(sbi);
372 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
373 }
374
get_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)375 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
376 unsigned int segno, bool use_section)
377 {
378 /*
379 * In order to get # of valid blocks in a section instantly from many
380 * segments, f2fs manages two counting structures separately.
381 */
382 if (use_section && __is_large_section(sbi))
383 return get_sec_entry(sbi, segno)->valid_blocks;
384 else
385 return get_seg_entry(sbi, segno)->valid_blocks;
386 }
387
get_ckpt_valid_blocks(struct f2fs_sb_info * sbi,unsigned int segno,bool use_section)388 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
389 unsigned int segno, bool use_section)
390 {
391 if (use_section && __is_large_section(sbi)) {
392 unsigned int start_segno = START_SEGNO(segno);
393 unsigned int blocks = 0;
394 int i;
395
396 for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
397 struct seg_entry *se = get_seg_entry(sbi, start_segno);
398
399 blocks += se->ckpt_valid_blocks;
400 }
401 return blocks;
402 }
403 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
404 }
405
seg_info_from_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)406 static inline void seg_info_from_raw_sit(struct seg_entry *se,
407 struct f2fs_sit_entry *rs)
408 {
409 se->valid_blocks = GET_SIT_VBLOCKS(rs);
410 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
411 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
412 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
413 #ifdef CONFIG_F2FS_CHECK_FS
414 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
415 #endif
416 se->type = GET_SIT_TYPE(rs);
417 se->mtime = le64_to_cpu(rs->mtime);
418 }
419
__seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)420 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
421 struct f2fs_sit_entry *rs)
422 {
423 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
424 se->valid_blocks;
425 rs->vblocks = cpu_to_le16(raw_vblocks);
426 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
427 rs->mtime = cpu_to_le64(se->mtime);
428 }
429
seg_info_to_sit_page(struct f2fs_sb_info * sbi,struct page * page,unsigned int start)430 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
431 struct page *page, unsigned int start)
432 {
433 struct f2fs_sit_block *raw_sit;
434 struct seg_entry *se;
435 struct f2fs_sit_entry *rs;
436 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
437 (unsigned long)MAIN_SEGS(sbi));
438 int i;
439
440 raw_sit = (struct f2fs_sit_block *)page_address(page);
441 memset(raw_sit, 0, PAGE_SIZE);
442 for (i = 0; i < end - start; i++) {
443 rs = &raw_sit->entries[i];
444 se = get_seg_entry(sbi, start + i);
445 __seg_info_to_raw_sit(se, rs);
446 }
447 }
448
seg_info_to_raw_sit(struct seg_entry * se,struct f2fs_sit_entry * rs)449 static inline void seg_info_to_raw_sit(struct seg_entry *se,
450 struct f2fs_sit_entry *rs)
451 {
452 __seg_info_to_raw_sit(se, rs);
453
454 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
455 se->ckpt_valid_blocks = se->valid_blocks;
456 }
457
find_next_inuse(struct free_segmap_info * free_i,unsigned int max,unsigned int segno)458 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
459 unsigned int max, unsigned int segno)
460 {
461 unsigned int ret;
462 spin_lock(&free_i->segmap_lock);
463 ret = find_next_bit(free_i->free_segmap, max, segno);
464 spin_unlock(&free_i->segmap_lock);
465 return ret;
466 }
467
__set_free(struct f2fs_sb_info * sbi,unsigned int segno)468 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
469 {
470 struct free_segmap_info *free_i = FREE_I(sbi);
471 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
472 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
473 unsigned int next;
474 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
475
476 spin_lock(&free_i->segmap_lock);
477 clear_bit(segno, free_i->free_segmap);
478 free_i->free_segments++;
479
480 next = find_next_bit(free_i->free_segmap,
481 start_segno + sbi->segs_per_sec, start_segno);
482 if (next >= start_segno + usable_segs) {
483 clear_bit(secno, free_i->free_secmap);
484 free_i->free_sections++;
485 }
486 spin_unlock(&free_i->segmap_lock);
487 }
488
__set_inuse(struct f2fs_sb_info * sbi,unsigned int segno)489 static inline void __set_inuse(struct f2fs_sb_info *sbi,
490 unsigned int segno)
491 {
492 struct free_segmap_info *free_i = FREE_I(sbi);
493 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
494
495 set_bit(segno, free_i->free_segmap);
496 free_i->free_segments--;
497 if (!test_and_set_bit(secno, free_i->free_secmap))
498 free_i->free_sections--;
499 }
500
__set_test_and_free(struct f2fs_sb_info * sbi,unsigned int segno,bool inmem)501 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
502 unsigned int segno, bool inmem)
503 {
504 struct free_segmap_info *free_i = FREE_I(sbi);
505 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
506 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
507 unsigned int next;
508 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
509
510 spin_lock(&free_i->segmap_lock);
511 if (test_and_clear_bit(segno, free_i->free_segmap)) {
512 free_i->free_segments++;
513
514 if (!inmem && IS_CURSEC(sbi, secno))
515 goto skip_free;
516 next = find_next_bit(free_i->free_segmap,
517 start_segno + sbi->segs_per_sec, start_segno);
518 if (next >= start_segno + usable_segs) {
519 if (test_and_clear_bit(secno, free_i->free_secmap))
520 free_i->free_sections++;
521 }
522 }
523 skip_free:
524 spin_unlock(&free_i->segmap_lock);
525 }
526
__set_test_and_inuse(struct f2fs_sb_info * sbi,unsigned int segno)527 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
528 unsigned int segno)
529 {
530 struct free_segmap_info *free_i = FREE_I(sbi);
531 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
532
533 spin_lock(&free_i->segmap_lock);
534 if (!test_and_set_bit(segno, free_i->free_segmap)) {
535 free_i->free_segments--;
536 if (!test_and_set_bit(secno, free_i->free_secmap))
537 free_i->free_sections--;
538 }
539 spin_unlock(&free_i->segmap_lock);
540 }
541
get_sit_bitmap(struct f2fs_sb_info * sbi,void * dst_addr)542 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
543 void *dst_addr)
544 {
545 struct sit_info *sit_i = SIT_I(sbi);
546
547 #ifdef CONFIG_F2FS_CHECK_FS
548 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
549 sit_i->bitmap_size))
550 f2fs_bug_on(sbi, 1);
551 #endif
552 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
553 }
554
written_block_count(struct f2fs_sb_info * sbi)555 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
556 {
557 return SIT_I(sbi)->written_valid_blocks;
558 }
559
free_segments(struct f2fs_sb_info * sbi)560 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
561 {
562 return FREE_I(sbi)->free_segments;
563 }
564
reserved_segments(struct f2fs_sb_info * sbi)565 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
566 {
567 return SM_I(sbi)->reserved_segments +
568 SM_I(sbi)->additional_reserved_segments;
569 }
570
free_sections(struct f2fs_sb_info * sbi)571 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
572 {
573 return FREE_I(sbi)->free_sections;
574 }
575
prefree_segments(struct f2fs_sb_info * sbi)576 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
577 {
578 return DIRTY_I(sbi)->nr_dirty[PRE];
579 }
580
dirty_segments(struct f2fs_sb_info * sbi)581 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
582 {
583 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
584 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
585 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
586 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
587 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
588 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
589 }
590
overprovision_segments(struct f2fs_sb_info * sbi)591 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
592 {
593 return SM_I(sbi)->ovp_segments;
594 }
595
reserved_sections(struct f2fs_sb_info * sbi)596 static inline int reserved_sections(struct f2fs_sb_info *sbi)
597 {
598 return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
599 }
600
has_curseg_enough_space(struct f2fs_sb_info * sbi,unsigned int node_blocks,unsigned int dent_blocks)601 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
602 unsigned int node_blocks, unsigned int dent_blocks)
603 {
604
605 unsigned int segno, left_blocks;
606 int i;
607
608 /* check current node segment */
609 for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
610 segno = CURSEG_I(sbi, i)->segno;
611 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
612 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
613
614 if (node_blocks > left_blocks)
615 return false;
616 }
617
618 /* check current data segment */
619 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
620 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
621 get_seg_entry(sbi, segno)->ckpt_valid_blocks;
622 if (dent_blocks > left_blocks)
623 return false;
624 return true;
625 }
626
has_not_enough_free_secs(struct f2fs_sb_info * sbi,int freed,int needed)627 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
628 int freed, int needed)
629 {
630 unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
631 get_pages(sbi, F2FS_DIRTY_DENTS) +
632 get_pages(sbi, F2FS_DIRTY_IMETA);
633 unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
634 unsigned int node_secs = total_node_blocks / BLKS_PER_SEC(sbi);
635 unsigned int dent_secs = total_dent_blocks / BLKS_PER_SEC(sbi);
636 unsigned int node_blocks = total_node_blocks % BLKS_PER_SEC(sbi);
637 unsigned int dent_blocks = total_dent_blocks % BLKS_PER_SEC(sbi);
638 unsigned int free, need_lower, need_upper;
639
640 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
641 return false;
642
643 free = free_sections(sbi) + freed;
644 need_lower = node_secs + dent_secs + reserved_sections(sbi) + needed;
645 need_upper = need_lower + (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
646
647 if (free > need_upper)
648 return false;
649 else if (free <= need_lower)
650 return true;
651 return !has_curseg_enough_space(sbi, node_blocks, dent_blocks);
652 }
653
f2fs_is_checkpoint_ready(struct f2fs_sb_info * sbi)654 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
655 {
656 if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
657 return true;
658 if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
659 return true;
660 return false;
661 }
662
excess_prefree_segs(struct f2fs_sb_info * sbi)663 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
664 {
665 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
666 }
667
utilization(struct f2fs_sb_info * sbi)668 static inline int utilization(struct f2fs_sb_info *sbi)
669 {
670 return div_u64((u64)valid_user_blocks(sbi) * 100,
671 sbi->user_block_count);
672 }
673
674 /*
675 * Sometimes f2fs may be better to drop out-of-place update policy.
676 * And, users can control the policy through sysfs entries.
677 * There are five policies with triggering conditions as follows.
678 * F2FS_IPU_FORCE - all the time,
679 * F2FS_IPU_SSR - if SSR mode is activated,
680 * F2FS_IPU_UTIL - if FS utilization is over threashold,
681 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
682 * threashold,
683 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
684 * storages. IPU will be triggered only if the # of dirty
685 * pages over min_fsync_blocks. (=default option)
686 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
687 * F2FS_IPU_NOCACHE - disable IPU bio cache.
688 * F2FS_IPUT_DISABLE - disable IPU. (=default option in LFS mode)
689 */
690 #define DEF_MIN_IPU_UTIL 70
691 #define DEF_MIN_FSYNC_BLOCKS 8
692 #define DEF_MIN_HOT_BLOCKS 16
693
694 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */
695
696 enum {
697 F2FS_IPU_FORCE,
698 F2FS_IPU_SSR,
699 F2FS_IPU_UTIL,
700 F2FS_IPU_SSR_UTIL,
701 F2FS_IPU_FSYNC,
702 F2FS_IPU_ASYNC,
703 F2FS_IPU_NOCACHE,
704 };
705
curseg_segno(struct f2fs_sb_info * sbi,int type)706 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
707 int type)
708 {
709 struct curseg_info *curseg = CURSEG_I(sbi, type);
710 return curseg->segno;
711 }
712
curseg_alloc_type(struct f2fs_sb_info * sbi,int type)713 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
714 int type)
715 {
716 struct curseg_info *curseg = CURSEG_I(sbi, type);
717 return curseg->alloc_type;
718 }
719
curseg_blkoff(struct f2fs_sb_info * sbi,int type)720 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
721 {
722 struct curseg_info *curseg = CURSEG_I(sbi, type);
723 return curseg->next_blkoff;
724 }
725
check_seg_range(struct f2fs_sb_info * sbi,unsigned int segno)726 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
727 {
728 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
729 }
730
verify_fio_blkaddr(struct f2fs_io_info * fio)731 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
732 {
733 struct f2fs_sb_info *sbi = fio->sbi;
734
735 if (__is_valid_data_blkaddr(fio->old_blkaddr))
736 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
737 META_GENERIC : DATA_GENERIC);
738 verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
739 META_GENERIC : DATA_GENERIC_ENHANCE);
740 }
741
742 /*
743 * Summary block is always treated as an invalid block
744 */
check_block_count(struct f2fs_sb_info * sbi,int segno,struct f2fs_sit_entry * raw_sit)745 static inline int check_block_count(struct f2fs_sb_info *sbi,
746 int segno, struct f2fs_sit_entry *raw_sit)
747 {
748 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
749 int valid_blocks = 0;
750 int cur_pos = 0, next_pos;
751 unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
752
753 /* check bitmap with valid block count */
754 do {
755 if (is_valid) {
756 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
757 usable_blks_per_seg,
758 cur_pos);
759 valid_blocks += next_pos - cur_pos;
760 } else
761 next_pos = find_next_bit_le(&raw_sit->valid_map,
762 usable_blks_per_seg,
763 cur_pos);
764 cur_pos = next_pos;
765 is_valid = !is_valid;
766 } while (cur_pos < usable_blks_per_seg);
767
768 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
769 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
770 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
771 set_sbi_flag(sbi, SBI_NEED_FSCK);
772 return -EFSCORRUPTED;
773 }
774
775 if (usable_blks_per_seg < sbi->blocks_per_seg)
776 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
777 sbi->blocks_per_seg,
778 usable_blks_per_seg) != sbi->blocks_per_seg);
779
780 /* check segment usage, and check boundary of a given segment number */
781 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
782 || segno > TOTAL_SEGS(sbi) - 1)) {
783 f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
784 GET_SIT_VBLOCKS(raw_sit), segno);
785 set_sbi_flag(sbi, SBI_NEED_FSCK);
786 return -EFSCORRUPTED;
787 }
788 return 0;
789 }
790
current_sit_addr(struct f2fs_sb_info * sbi,unsigned int start)791 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
792 unsigned int start)
793 {
794 struct sit_info *sit_i = SIT_I(sbi);
795 unsigned int offset = SIT_BLOCK_OFFSET(start);
796 block_t blk_addr = sit_i->sit_base_addr + offset;
797
798 check_seg_range(sbi, start);
799
800 #ifdef CONFIG_F2FS_CHECK_FS
801 if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
802 f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
803 f2fs_bug_on(sbi, 1);
804 #endif
805
806 /* calculate sit block address */
807 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
808 blk_addr += sit_i->sit_blocks;
809
810 return blk_addr;
811 }
812
next_sit_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)813 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
814 pgoff_t block_addr)
815 {
816 struct sit_info *sit_i = SIT_I(sbi);
817 block_addr -= sit_i->sit_base_addr;
818 if (block_addr < sit_i->sit_blocks)
819 block_addr += sit_i->sit_blocks;
820 else
821 block_addr -= sit_i->sit_blocks;
822
823 return block_addr + sit_i->sit_base_addr;
824 }
825
set_to_next_sit(struct sit_info * sit_i,unsigned int start)826 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
827 {
828 unsigned int block_off = SIT_BLOCK_OFFSET(start);
829
830 f2fs_change_bit(block_off, sit_i->sit_bitmap);
831 #ifdef CONFIG_F2FS_CHECK_FS
832 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
833 #endif
834 }
835
get_mtime(struct f2fs_sb_info * sbi,bool base_time)836 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
837 bool base_time)
838 {
839 struct sit_info *sit_i = SIT_I(sbi);
840 time64_t diff, now = ktime_get_boottime_seconds();
841
842 if (now >= sit_i->mounted_time)
843 return sit_i->elapsed_time + now - sit_i->mounted_time;
844
845 /* system time is set to the past */
846 if (!base_time) {
847 diff = sit_i->mounted_time - now;
848 if (sit_i->elapsed_time >= diff)
849 return sit_i->elapsed_time - diff;
850 return 0;
851 }
852 return sit_i->elapsed_time;
853 }
854
set_summary(struct f2fs_summary * sum,nid_t nid,unsigned int ofs_in_node,unsigned char version)855 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
856 unsigned int ofs_in_node, unsigned char version)
857 {
858 sum->nid = cpu_to_le32(nid);
859 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
860 sum->version = version;
861 }
862
start_sum_block(struct f2fs_sb_info * sbi)863 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
864 {
865 return __start_cp_addr(sbi) +
866 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
867 }
868
sum_blk_addr(struct f2fs_sb_info * sbi,int base,int type)869 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
870 {
871 return __start_cp_addr(sbi) +
872 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
873 - (base + 1) + type;
874 }
875
sec_usage_check(struct f2fs_sb_info * sbi,unsigned int secno)876 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
877 {
878 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
879 return true;
880 return false;
881 }
882
883 /*
884 * It is very important to gather dirty pages and write at once, so that we can
885 * submit a big bio without interfering other data writes.
886 * By default, 512 pages for directory data,
887 * 512 pages (2MB) * 8 for nodes, and
888 * 256 pages * 8 for meta are set.
889 */
nr_pages_to_skip(struct f2fs_sb_info * sbi,int type)890 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
891 {
892 if (sbi->sb->s_bdi->wb.dirty_exceeded)
893 return 0;
894
895 if (type == DATA)
896 return sbi->blocks_per_seg;
897 else if (type == NODE)
898 return 8 * sbi->blocks_per_seg;
899 else if (type == META)
900 return 8 * BIO_MAX_PAGES;
901 else
902 return 0;
903 }
904
905 /*
906 * When writing pages, it'd better align nr_to_write for segment size.
907 */
nr_pages_to_write(struct f2fs_sb_info * sbi,int type,struct writeback_control * wbc)908 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
909 struct writeback_control *wbc)
910 {
911 long nr_to_write, desired;
912
913 if (wbc->sync_mode != WB_SYNC_NONE)
914 return 0;
915
916 nr_to_write = wbc->nr_to_write;
917 desired = BIO_MAX_PAGES;
918 if (type == NODE)
919 desired <<= 1;
920
921 wbc->nr_to_write = desired;
922 return desired - nr_to_write;
923 }
924
wake_up_discard_thread(struct f2fs_sb_info * sbi,bool force)925 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
926 {
927 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
928 bool wakeup = false;
929 int i;
930
931 if (force)
932 goto wake_up;
933
934 mutex_lock(&dcc->cmd_lock);
935 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
936 if (i + 1 < dcc->discard_granularity)
937 break;
938 if (!list_empty(&dcc->pend_list[i])) {
939 wakeup = true;
940 break;
941 }
942 }
943 mutex_unlock(&dcc->cmd_lock);
944 if (!wakeup || !is_idle(sbi, DISCARD_TIME))
945 return;
946 wake_up:
947 dcc->discard_wake = 1;
948 wake_up_interruptible_all(&dcc->discard_wait_queue);
949 }
950
951 #ifdef CONFIG_F2FS_GRADING_SSR
check_io_seq(int blks)952 static inline int check_io_seq(int blks)
953 {
954 if (blks >= SSR_CONTIG_LARGE)
955 return SEQ_256BLKS;
956 if (blks >= SSR_CONTIG_DIRTY_NUMS)
957 return SEQ_32BLKS;
958 return SEQ_NONE;
959 }
960 #endif
961