1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fscrypt.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/prefetch.h>
20 #include <linux/buffer_head.h> /* for inode_has_buffers */
21 #include <linux/ratelimit.h>
22 #include <linux/list_lru.h>
23 #include <linux/iversion.h>
24 #include <linux/xpm.h>
25 #include <trace/events/writeback.h>
26 #include "internal.h"
27
28 /*
29 * Inode locking rules:
30 *
31 * inode->i_lock protects:
32 * inode->i_state, inode->i_hash, __iget()
33 * Inode LRU list locks protect:
34 * inode->i_sb->s_inode_lru, inode->i_lru
35 * inode->i_sb->s_inode_list_lock protects:
36 * inode->i_sb->s_inodes, inode->i_sb_list
37 * bdi->wb.list_lock protects:
38 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
39 * inode_hash_lock protects:
40 * inode_hashtable, inode->i_hash
41 *
42 * Lock ordering:
43 *
44 * inode->i_sb->s_inode_list_lock
45 * inode->i_lock
46 * Inode LRU list locks
47 *
48 * bdi->wb.list_lock
49 * inode->i_lock
50 *
51 * inode_hash_lock
52 * inode->i_sb->s_inode_list_lock
53 * inode->i_lock
54 *
55 * iunique_lock
56 * inode_hash_lock
57 */
58
59 static unsigned int i_hash_mask __read_mostly;
60 static unsigned int i_hash_shift __read_mostly;
61 static struct hlist_head *inode_hashtable __read_mostly;
62 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
63
64 /*
65 * Empty aops. Can be used for the cases where the user does not
66 * define any of the address_space operations.
67 */
68 const struct address_space_operations empty_aops = {
69 };
70 EXPORT_SYMBOL(empty_aops);
71
72 /*
73 * Statistics gathering..
74 */
75 struct inodes_stat_t inodes_stat;
76
77 static DEFINE_PER_CPU(unsigned long, nr_inodes);
78 static DEFINE_PER_CPU(unsigned long, nr_unused);
79
80 static struct kmem_cache *inode_cachep __read_mostly;
81
get_nr_inodes(void)82 static long get_nr_inodes(void)
83 {
84 int i;
85 long sum = 0;
86 for_each_possible_cpu(i)
87 sum += per_cpu(nr_inodes, i);
88 return sum < 0 ? 0 : sum;
89 }
90
get_nr_inodes_unused(void)91 static inline long get_nr_inodes_unused(void)
92 {
93 int i;
94 long sum = 0;
95 for_each_possible_cpu(i)
96 sum += per_cpu(nr_unused, i);
97 return sum < 0 ? 0 : sum;
98 }
99
get_nr_dirty_inodes(void)100 long get_nr_dirty_inodes(void)
101 {
102 /* not actually dirty inodes, but a wild approximation */
103 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
104 return nr_dirty > 0 ? nr_dirty : 0;
105 }
106
107 /*
108 * Handle nr_inode sysctl
109 */
110 #ifdef CONFIG_SYSCTL
proc_nr_inodes(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)111 int proc_nr_inodes(struct ctl_table *table, int write,
112 void *buffer, size_t *lenp, loff_t *ppos)
113 {
114 inodes_stat.nr_inodes = get_nr_inodes();
115 inodes_stat.nr_unused = get_nr_inodes_unused();
116 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
117 }
118 #endif
119
no_open(struct inode * inode,struct file * file)120 static int no_open(struct inode *inode, struct file *file)
121 {
122 return -ENXIO;
123 }
124
125 /**
126 * inode_init_always - perform inode structure initialisation
127 * @sb: superblock inode belongs to
128 * @inode: inode to initialise
129 *
130 * These are initializations that need to be done on every inode
131 * allocation as the fields are not initialised by slab allocation.
132 */
inode_init_always(struct super_block * sb,struct inode * inode)133 int inode_init_always(struct super_block *sb, struct inode *inode)
134 {
135 static const struct inode_operations empty_iops;
136 static const struct file_operations no_open_fops = {.open = no_open};
137 struct address_space *const mapping = &inode->i_data;
138
139 inode->i_sb = sb;
140 inode->i_blkbits = sb->s_blocksize_bits;
141 inode->i_flags = 0;
142 atomic64_set(&inode->i_sequence, 0);
143 atomic_set(&inode->i_count, 1);
144 inode->i_op = &empty_iops;
145 inode->i_fop = &no_open_fops;
146 inode->__i_nlink = 1;
147 inode->i_opflags = 0;
148 if (sb->s_xattr)
149 inode->i_opflags |= IOP_XATTR;
150 i_uid_write(inode, 0);
151 i_gid_write(inode, 0);
152 atomic_set(&inode->i_writecount, 0);
153 inode->i_size = 0;
154 inode->i_write_hint = WRITE_LIFE_NOT_SET;
155 inode->i_blocks = 0;
156 inode->i_bytes = 0;
157 inode->i_generation = 0;
158 inode->i_pipe = NULL;
159 inode->i_bdev = NULL;
160 inode->i_cdev = NULL;
161 inode->i_link = NULL;
162 inode->i_dir_seq = 0;
163 inode->i_rdev = 0;
164 inode->dirtied_when = 0;
165
166 #ifdef CONFIG_CGROUP_WRITEBACK
167 inode->i_wb_frn_winner = 0;
168 inode->i_wb_frn_avg_time = 0;
169 inode->i_wb_frn_history = 0;
170 #endif
171
172 spin_lock_init(&inode->i_lock);
173 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
174
175 init_rwsem(&inode->i_rwsem);
176 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
177
178 atomic_set(&inode->i_dio_count, 0);
179
180 mapping->a_ops = &empty_aops;
181 mapping->host = inode;
182 mapping->flags = 0;
183 if (sb->s_type->fs_flags & FS_THP_SUPPORT)
184 __set_bit(AS_THP_SUPPORT, &mapping->flags);
185 mapping->wb_err = 0;
186 atomic_set(&mapping->i_mmap_writable, 0);
187 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
188 atomic_set(&mapping->nr_thps, 0);
189 #endif
190 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
191 mapping->private_data = NULL;
192 mapping->writeback_index = 0;
193 inode->i_private = NULL;
194 inode->i_mapping = mapping;
195 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
196 #ifdef CONFIG_FS_POSIX_ACL
197 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
198 #endif
199
200 #ifdef CONFIG_FSNOTIFY
201 inode->i_fsnotify_mask = 0;
202 #endif
203 inode->i_flctx = NULL;
204
205 if (unlikely(security_inode_alloc(inode)))
206 return -ENOMEM;
207 this_cpu_inc(nr_inodes);
208
209 return 0;
210 }
211 EXPORT_SYMBOL(inode_init_always);
212
free_inode_nonrcu(struct inode * inode)213 void free_inode_nonrcu(struct inode *inode)
214 {
215 kmem_cache_free(inode_cachep, inode);
216 }
217 EXPORT_SYMBOL(free_inode_nonrcu);
218
i_callback(struct rcu_head * head)219 static void i_callback(struct rcu_head *head)
220 {
221 struct inode *inode = container_of(head, struct inode, i_rcu);
222 if (inode->free_inode)
223 inode->free_inode(inode);
224 else
225 free_inode_nonrcu(inode);
226 }
227
alloc_inode(struct super_block * sb)228 static struct inode *alloc_inode(struct super_block *sb)
229 {
230 const struct super_operations *ops = sb->s_op;
231 struct inode *inode;
232
233 if (ops->alloc_inode)
234 inode = ops->alloc_inode(sb);
235 else
236 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
237
238 if (!inode)
239 return NULL;
240
241 if (unlikely(inode_init_always(sb, inode))) {
242 if (ops->destroy_inode) {
243 ops->destroy_inode(inode);
244 if (!ops->free_inode)
245 return NULL;
246 }
247 inode->free_inode = ops->free_inode;
248 i_callback(&inode->i_rcu);
249 return NULL;
250 }
251
252 return inode;
253 }
254
__destroy_inode(struct inode * inode)255 void __destroy_inode(struct inode *inode)
256 {
257 BUG_ON(inode_has_buffers(inode));
258 inode_detach_wb(inode);
259 security_inode_free(inode);
260 fsnotify_inode_delete(inode);
261 locks_free_lock_context(inode);
262 xpm_delete_cache_node_hook(inode);
263 if (!inode->i_nlink) {
264 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
265 atomic_long_dec(&inode->i_sb->s_remove_count);
266 }
267
268 #ifdef CONFIG_FS_POSIX_ACL
269 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
270 posix_acl_release(inode->i_acl);
271 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
272 posix_acl_release(inode->i_default_acl);
273 #endif
274 this_cpu_dec(nr_inodes);
275 }
276 EXPORT_SYMBOL(__destroy_inode);
277
destroy_inode(struct inode * inode)278 static void destroy_inode(struct inode *inode)
279 {
280 const struct super_operations *ops = inode->i_sb->s_op;
281
282 BUG_ON(!list_empty(&inode->i_lru));
283 __destroy_inode(inode);
284 if (ops->destroy_inode) {
285 ops->destroy_inode(inode);
286 if (!ops->free_inode)
287 return;
288 }
289 inode->free_inode = ops->free_inode;
290 call_rcu(&inode->i_rcu, i_callback);
291 }
292
293 /**
294 * drop_nlink - directly drop an inode's link count
295 * @inode: inode
296 *
297 * This is a low-level filesystem helper to replace any
298 * direct filesystem manipulation of i_nlink. In cases
299 * where we are attempting to track writes to the
300 * filesystem, a decrement to zero means an imminent
301 * write when the file is truncated and actually unlinked
302 * on the filesystem.
303 */
drop_nlink(struct inode * inode)304 void drop_nlink(struct inode *inode)
305 {
306 WARN_ON(inode->i_nlink == 0);
307 inode->__i_nlink--;
308 if (!inode->i_nlink)
309 atomic_long_inc(&inode->i_sb->s_remove_count);
310 }
311 EXPORT_SYMBOL(drop_nlink);
312
313 /**
314 * clear_nlink - directly zero an inode's link count
315 * @inode: inode
316 *
317 * This is a low-level filesystem helper to replace any
318 * direct filesystem manipulation of i_nlink. See
319 * drop_nlink() for why we care about i_nlink hitting zero.
320 */
clear_nlink(struct inode * inode)321 void clear_nlink(struct inode *inode)
322 {
323 if (inode->i_nlink) {
324 inode->__i_nlink = 0;
325 atomic_long_inc(&inode->i_sb->s_remove_count);
326 }
327 }
328 EXPORT_SYMBOL(clear_nlink);
329
330 /**
331 * set_nlink - directly set an inode's link count
332 * @inode: inode
333 * @nlink: new nlink (should be non-zero)
334 *
335 * This is a low-level filesystem helper to replace any
336 * direct filesystem manipulation of i_nlink.
337 */
set_nlink(struct inode * inode,unsigned int nlink)338 void set_nlink(struct inode *inode, unsigned int nlink)
339 {
340 if (!nlink) {
341 clear_nlink(inode);
342 } else {
343 /* Yes, some filesystems do change nlink from zero to one */
344 if (inode->i_nlink == 0)
345 atomic_long_dec(&inode->i_sb->s_remove_count);
346
347 inode->__i_nlink = nlink;
348 }
349 }
350 EXPORT_SYMBOL(set_nlink);
351
352 /**
353 * inc_nlink - directly increment an inode's link count
354 * @inode: inode
355 *
356 * This is a low-level filesystem helper to replace any
357 * direct filesystem manipulation of i_nlink. Currently,
358 * it is only here for parity with dec_nlink().
359 */
inc_nlink(struct inode * inode)360 void inc_nlink(struct inode *inode)
361 {
362 if (unlikely(inode->i_nlink == 0)) {
363 WARN_ON(!(inode->i_state & I_LINKABLE));
364 atomic_long_dec(&inode->i_sb->s_remove_count);
365 }
366
367 inode->__i_nlink++;
368 }
369 EXPORT_SYMBOL(inc_nlink);
370
__address_space_init_once(struct address_space * mapping)371 static void __address_space_init_once(struct address_space *mapping)
372 {
373 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
374 init_rwsem(&mapping->i_mmap_rwsem);
375 INIT_LIST_HEAD(&mapping->private_list);
376 spin_lock_init(&mapping->private_lock);
377 mapping->i_mmap = RB_ROOT_CACHED;
378 }
379
address_space_init_once(struct address_space * mapping)380 void address_space_init_once(struct address_space *mapping)
381 {
382 memset(mapping, 0, sizeof(*mapping));
383 __address_space_init_once(mapping);
384 }
385 EXPORT_SYMBOL(address_space_init_once);
386
387 /*
388 * These are initializations that only need to be done
389 * once, because the fields are idempotent across use
390 * of the inode, so let the slab aware of that.
391 */
inode_init_once(struct inode * inode)392 void inode_init_once(struct inode *inode)
393 {
394 memset(inode, 0, sizeof(*inode));
395 INIT_HLIST_NODE(&inode->i_hash);
396 INIT_LIST_HEAD(&inode->i_devices);
397 INIT_LIST_HEAD(&inode->i_io_list);
398 INIT_LIST_HEAD(&inode->i_wb_list);
399 INIT_LIST_HEAD(&inode->i_lru);
400 __address_space_init_once(&inode->i_data);
401 i_size_ordered_init(inode);
402 }
403 EXPORT_SYMBOL(inode_init_once);
404
init_once(void * foo)405 static void init_once(void *foo)
406 {
407 struct inode *inode = (struct inode *) foo;
408
409 inode_init_once(inode);
410 }
411
412 /*
413 * inode->i_lock must be held
414 */
__iget(struct inode * inode)415 void __iget(struct inode *inode)
416 {
417 atomic_inc(&inode->i_count);
418 }
419
420 /*
421 * get additional reference to inode; caller must already hold one.
422 */
ihold(struct inode * inode)423 void ihold(struct inode *inode)
424 {
425 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
426 }
427 EXPORT_SYMBOL(ihold);
428
inode_lru_list_add(struct inode * inode)429 static void inode_lru_list_add(struct inode *inode)
430 {
431 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
432 this_cpu_inc(nr_unused);
433 else
434 inode->i_state |= I_REFERENCED;
435 }
436
437 /*
438 * Add inode to LRU if needed (inode is unused and clean).
439 *
440 * Needs inode->i_lock held.
441 */
inode_add_lru(struct inode * inode)442 void inode_add_lru(struct inode *inode)
443 {
444 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
445 I_FREEING | I_WILL_FREE)) &&
446 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
447 inode_lru_list_add(inode);
448 }
449
450
inode_lru_list_del(struct inode * inode)451 static void inode_lru_list_del(struct inode *inode)
452 {
453
454 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
455 this_cpu_dec(nr_unused);
456 }
457
458 /**
459 * inode_sb_list_add - add inode to the superblock list of inodes
460 * @inode: inode to add
461 */
inode_sb_list_add(struct inode * inode)462 void inode_sb_list_add(struct inode *inode)
463 {
464 spin_lock(&inode->i_sb->s_inode_list_lock);
465 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
466 spin_unlock(&inode->i_sb->s_inode_list_lock);
467 }
468 EXPORT_SYMBOL_GPL(inode_sb_list_add);
469
inode_sb_list_del(struct inode * inode)470 static inline void inode_sb_list_del(struct inode *inode)
471 {
472 if (!list_empty(&inode->i_sb_list)) {
473 spin_lock(&inode->i_sb->s_inode_list_lock);
474 list_del_init(&inode->i_sb_list);
475 spin_unlock(&inode->i_sb->s_inode_list_lock);
476 }
477 }
478
hash(struct super_block * sb,unsigned long hashval)479 static unsigned long hash(struct super_block *sb, unsigned long hashval)
480 {
481 unsigned long tmp;
482
483 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
484 L1_CACHE_BYTES;
485 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
486 return tmp & i_hash_mask;
487 }
488
489 /**
490 * __insert_inode_hash - hash an inode
491 * @inode: unhashed inode
492 * @hashval: unsigned long value used to locate this object in the
493 * inode_hashtable.
494 *
495 * Add an inode to the inode hash for this superblock.
496 */
__insert_inode_hash(struct inode * inode,unsigned long hashval)497 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
498 {
499 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
500
501 spin_lock(&inode_hash_lock);
502 spin_lock(&inode->i_lock);
503 hlist_add_head_rcu(&inode->i_hash, b);
504 spin_unlock(&inode->i_lock);
505 spin_unlock(&inode_hash_lock);
506 }
507 EXPORT_SYMBOL(__insert_inode_hash);
508
509 /**
510 * __remove_inode_hash - remove an inode from the hash
511 * @inode: inode to unhash
512 *
513 * Remove an inode from the superblock.
514 */
__remove_inode_hash(struct inode * inode)515 void __remove_inode_hash(struct inode *inode)
516 {
517 spin_lock(&inode_hash_lock);
518 spin_lock(&inode->i_lock);
519 hlist_del_init_rcu(&inode->i_hash);
520 spin_unlock(&inode->i_lock);
521 spin_unlock(&inode_hash_lock);
522 }
523 EXPORT_SYMBOL(__remove_inode_hash);
524
clear_inode(struct inode * inode)525 void clear_inode(struct inode *inode)
526 {
527 /*
528 * We have to cycle the i_pages lock here because reclaim can be in the
529 * process of removing the last page (in __delete_from_page_cache())
530 * and we must not free the mapping under it.
531 */
532 xa_lock_irq(&inode->i_data.i_pages);
533 BUG_ON(inode->i_data.nrpages);
534 BUG_ON(inode->i_data.nrexceptional);
535 xa_unlock_irq(&inode->i_data.i_pages);
536 BUG_ON(!list_empty(&inode->i_data.private_list));
537 BUG_ON(!(inode->i_state & I_FREEING));
538 BUG_ON(inode->i_state & I_CLEAR);
539 BUG_ON(!list_empty(&inode->i_wb_list));
540 /* don't need i_lock here, no concurrent mods to i_state */
541 inode->i_state = I_FREEING | I_CLEAR;
542 }
543 EXPORT_SYMBOL(clear_inode);
544
545 /*
546 * Free the inode passed in, removing it from the lists it is still connected
547 * to. We remove any pages still attached to the inode and wait for any IO that
548 * is still in progress before finally destroying the inode.
549 *
550 * An inode must already be marked I_FREEING so that we avoid the inode being
551 * moved back onto lists if we race with other code that manipulates the lists
552 * (e.g. writeback_single_inode). The caller is responsible for setting this.
553 *
554 * An inode must already be removed from the LRU list before being evicted from
555 * the cache. This should occur atomically with setting the I_FREEING state
556 * flag, so no inodes here should ever be on the LRU when being evicted.
557 */
evict(struct inode * inode)558 static void evict(struct inode *inode)
559 {
560 const struct super_operations *op = inode->i_sb->s_op;
561
562 BUG_ON(!(inode->i_state & I_FREEING));
563 BUG_ON(!list_empty(&inode->i_lru));
564
565 if (!list_empty(&inode->i_io_list))
566 inode_io_list_del(inode);
567
568 inode_sb_list_del(inode);
569
570 /*
571 * Wait for flusher thread to be done with the inode so that filesystem
572 * does not start destroying it while writeback is still running. Since
573 * the inode has I_FREEING set, flusher thread won't start new work on
574 * the inode. We just have to wait for running writeback to finish.
575 */
576 inode_wait_for_writeback(inode);
577
578 if (op->evict_inode) {
579 op->evict_inode(inode);
580 } else {
581 truncate_inode_pages_final(&inode->i_data);
582 clear_inode(inode);
583 }
584 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
585 bd_forget(inode);
586 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
587 cd_forget(inode);
588
589 remove_inode_hash(inode);
590
591 spin_lock(&inode->i_lock);
592 wake_up_bit(&inode->i_state, __I_NEW);
593 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
594 spin_unlock(&inode->i_lock);
595
596 destroy_inode(inode);
597 }
598
599 /*
600 * dispose_list - dispose of the contents of a local list
601 * @head: the head of the list to free
602 *
603 * Dispose-list gets a local list with local inodes in it, so it doesn't
604 * need to worry about list corruption and SMP locks.
605 */
dispose_list(struct list_head * head)606 static void dispose_list(struct list_head *head)
607 {
608 while (!list_empty(head)) {
609 struct inode *inode;
610
611 inode = list_first_entry(head, struct inode, i_lru);
612 list_del_init(&inode->i_lru);
613
614 evict(inode);
615 cond_resched();
616 }
617 }
618
619 /**
620 * evict_inodes - evict all evictable inodes for a superblock
621 * @sb: superblock to operate on
622 *
623 * Make sure that no inodes with zero refcount are retained. This is
624 * called by superblock shutdown after having SB_ACTIVE flag removed,
625 * so any inode reaching zero refcount during or after that call will
626 * be immediately evicted.
627 */
evict_inodes(struct super_block * sb)628 void evict_inodes(struct super_block *sb)
629 {
630 struct inode *inode, *next;
631 LIST_HEAD(dispose);
632
633 again:
634 spin_lock(&sb->s_inode_list_lock);
635 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
636 if (atomic_read(&inode->i_count))
637 continue;
638
639 spin_lock(&inode->i_lock);
640 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
641 spin_unlock(&inode->i_lock);
642 continue;
643 }
644
645 inode->i_state |= I_FREEING;
646 inode_lru_list_del(inode);
647 spin_unlock(&inode->i_lock);
648 list_add(&inode->i_lru, &dispose);
649
650 /*
651 * We can have a ton of inodes to evict at unmount time given
652 * enough memory, check to see if we need to go to sleep for a
653 * bit so we don't livelock.
654 */
655 if (need_resched()) {
656 spin_unlock(&sb->s_inode_list_lock);
657 cond_resched();
658 dispose_list(&dispose);
659 goto again;
660 }
661 }
662 spin_unlock(&sb->s_inode_list_lock);
663
664 dispose_list(&dispose);
665 }
666 EXPORT_SYMBOL_GPL(evict_inodes);
667
668 /**
669 * invalidate_inodes - attempt to free all inodes on a superblock
670 * @sb: superblock to operate on
671 * @kill_dirty: flag to guide handling of dirty inodes
672 *
673 * Attempts to free all inodes for a given superblock. If there were any
674 * busy inodes return a non-zero value, else zero.
675 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
676 * them as busy.
677 */
invalidate_inodes(struct super_block * sb,bool kill_dirty)678 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
679 {
680 int busy = 0;
681 struct inode *inode, *next;
682 LIST_HEAD(dispose);
683
684 again:
685 spin_lock(&sb->s_inode_list_lock);
686 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
687 spin_lock(&inode->i_lock);
688 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
689 spin_unlock(&inode->i_lock);
690 continue;
691 }
692 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
693 spin_unlock(&inode->i_lock);
694 busy = 1;
695 continue;
696 }
697 if (atomic_read(&inode->i_count)) {
698 spin_unlock(&inode->i_lock);
699 busy = 1;
700 continue;
701 }
702
703 inode->i_state |= I_FREEING;
704 inode_lru_list_del(inode);
705 spin_unlock(&inode->i_lock);
706 list_add(&inode->i_lru, &dispose);
707 if (need_resched()) {
708 spin_unlock(&sb->s_inode_list_lock);
709 cond_resched();
710 dispose_list(&dispose);
711 goto again;
712 }
713 }
714 spin_unlock(&sb->s_inode_list_lock);
715
716 dispose_list(&dispose);
717
718 return busy;
719 }
720
721 /*
722 * Isolate the inode from the LRU in preparation for freeing it.
723 *
724 * Any inodes which are pinned purely because of attached pagecache have their
725 * pagecache removed. If the inode has metadata buffers attached to
726 * mapping->private_list then try to remove them.
727 *
728 * If the inode has the I_REFERENCED flag set, then it means that it has been
729 * used recently - the flag is set in iput_final(). When we encounter such an
730 * inode, clear the flag and move it to the back of the LRU so it gets another
731 * pass through the LRU before it gets reclaimed. This is necessary because of
732 * the fact we are doing lazy LRU updates to minimise lock contention so the
733 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
734 * with this flag set because they are the inodes that are out of order.
735 */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)736 static enum lru_status inode_lru_isolate(struct list_head *item,
737 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
738 {
739 struct list_head *freeable = arg;
740 struct inode *inode = container_of(item, struct inode, i_lru);
741
742 /*
743 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
744 * If we fail to get the lock, just skip it.
745 */
746 if (!spin_trylock(&inode->i_lock))
747 return LRU_SKIP;
748
749 /*
750 * Referenced or dirty inodes are still in use. Give them another pass
751 * through the LRU as we canot reclaim them now.
752 */
753 if (atomic_read(&inode->i_count) ||
754 (inode->i_state & ~I_REFERENCED)) {
755 list_lru_isolate(lru, &inode->i_lru);
756 spin_unlock(&inode->i_lock);
757 this_cpu_dec(nr_unused);
758 return LRU_REMOVED;
759 }
760
761 /* recently referenced inodes get one more pass */
762 if (inode->i_state & I_REFERENCED) {
763 inode->i_state &= ~I_REFERENCED;
764 spin_unlock(&inode->i_lock);
765 return LRU_ROTATE;
766 }
767
768 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
769 __iget(inode);
770 spin_unlock(&inode->i_lock);
771 spin_unlock(lru_lock);
772 if (remove_inode_buffers(inode)) {
773 unsigned long reap;
774 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
775 if (current_is_kswapd())
776 __count_vm_events(KSWAPD_INODESTEAL, reap);
777 else
778 __count_vm_events(PGINODESTEAL, reap);
779 if (current->reclaim_state)
780 current->reclaim_state->reclaimed_slab += reap;
781 }
782 iput(inode);
783 spin_lock(lru_lock);
784 return LRU_RETRY;
785 }
786
787 WARN_ON(inode->i_state & I_NEW);
788 inode->i_state |= I_FREEING;
789 list_lru_isolate_move(lru, &inode->i_lru, freeable);
790 spin_unlock(&inode->i_lock);
791
792 this_cpu_dec(nr_unused);
793 return LRU_REMOVED;
794 }
795
796 /*
797 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
798 * This is called from the superblock shrinker function with a number of inodes
799 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
800 * then are freed outside inode_lock by dispose_list().
801 */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)802 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
803 {
804 LIST_HEAD(freeable);
805 long freed;
806
807 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
808 inode_lru_isolate, &freeable);
809 dispose_list(&freeable);
810 return freed;
811 }
812
813 static void __wait_on_freeing_inode(struct inode *inode);
814 /*
815 * Called with the inode lock held.
816 */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)817 static struct inode *find_inode(struct super_block *sb,
818 struct hlist_head *head,
819 int (*test)(struct inode *, void *),
820 void *data)
821 {
822 struct inode *inode = NULL;
823
824 repeat:
825 hlist_for_each_entry(inode, head, i_hash) {
826 if (inode->i_sb != sb)
827 continue;
828 if (!test(inode, data))
829 continue;
830 spin_lock(&inode->i_lock);
831 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
832 __wait_on_freeing_inode(inode);
833 goto repeat;
834 }
835 if (unlikely(inode->i_state & I_CREATING)) {
836 spin_unlock(&inode->i_lock);
837 return ERR_PTR(-ESTALE);
838 }
839 __iget(inode);
840 spin_unlock(&inode->i_lock);
841 return inode;
842 }
843 return NULL;
844 }
845
846 /*
847 * find_inode_fast is the fast path version of find_inode, see the comment at
848 * iget_locked for details.
849 */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)850 static struct inode *find_inode_fast(struct super_block *sb,
851 struct hlist_head *head, unsigned long ino)
852 {
853 struct inode *inode = NULL;
854
855 repeat:
856 hlist_for_each_entry(inode, head, i_hash) {
857 if (inode->i_ino != ino)
858 continue;
859 if (inode->i_sb != sb)
860 continue;
861 spin_lock(&inode->i_lock);
862 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
863 __wait_on_freeing_inode(inode);
864 goto repeat;
865 }
866 if (unlikely(inode->i_state & I_CREATING)) {
867 spin_unlock(&inode->i_lock);
868 return ERR_PTR(-ESTALE);
869 }
870 __iget(inode);
871 spin_unlock(&inode->i_lock);
872 return inode;
873 }
874 return NULL;
875 }
876
877 /*
878 * Each cpu owns a range of LAST_INO_BATCH numbers.
879 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
880 * to renew the exhausted range.
881 *
882 * This does not significantly increase overflow rate because every CPU can
883 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
884 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
885 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
886 * overflow rate by 2x, which does not seem too significant.
887 *
888 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
889 * error if st_ino won't fit in target struct field. Use 32bit counter
890 * here to attempt to avoid that.
891 */
892 #define LAST_INO_BATCH 1024
893 static DEFINE_PER_CPU(unsigned int, last_ino);
894
get_next_ino(void)895 unsigned int get_next_ino(void)
896 {
897 unsigned int *p = &get_cpu_var(last_ino);
898 unsigned int res = *p;
899
900 #ifdef CONFIG_SMP
901 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
902 static atomic_t shared_last_ino;
903 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
904
905 res = next - LAST_INO_BATCH;
906 }
907 #endif
908
909 res++;
910 /* get_next_ino should not provide a 0 inode number */
911 if (unlikely(!res))
912 res++;
913 *p = res;
914 put_cpu_var(last_ino);
915 return res;
916 }
917 EXPORT_SYMBOL(get_next_ino);
918
919 /**
920 * new_inode_pseudo - obtain an inode
921 * @sb: superblock
922 *
923 * Allocates a new inode for given superblock.
924 * Inode wont be chained in superblock s_inodes list
925 * This means :
926 * - fs can't be unmount
927 * - quotas, fsnotify, writeback can't work
928 */
new_inode_pseudo(struct super_block * sb)929 struct inode *new_inode_pseudo(struct super_block *sb)
930 {
931 struct inode *inode = alloc_inode(sb);
932
933 if (inode) {
934 spin_lock(&inode->i_lock);
935 inode->i_state = 0;
936 spin_unlock(&inode->i_lock);
937 INIT_LIST_HEAD(&inode->i_sb_list);
938 }
939 return inode;
940 }
941
942 /**
943 * new_inode - obtain an inode
944 * @sb: superblock
945 *
946 * Allocates a new inode for given superblock. The default gfp_mask
947 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
948 * If HIGHMEM pages are unsuitable or it is known that pages allocated
949 * for the page cache are not reclaimable or migratable,
950 * mapping_set_gfp_mask() must be called with suitable flags on the
951 * newly created inode's mapping
952 *
953 */
new_inode(struct super_block * sb)954 struct inode *new_inode(struct super_block *sb)
955 {
956 struct inode *inode;
957
958 spin_lock_prefetch(&sb->s_inode_list_lock);
959
960 inode = new_inode_pseudo(sb);
961 if (inode)
962 inode_sb_list_add(inode);
963 return inode;
964 }
965 EXPORT_SYMBOL(new_inode);
966
967 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)968 void lockdep_annotate_inode_mutex_key(struct inode *inode)
969 {
970 if (S_ISDIR(inode->i_mode)) {
971 struct file_system_type *type = inode->i_sb->s_type;
972
973 /* Set new key only if filesystem hasn't already changed it */
974 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
975 /*
976 * ensure nobody is actually holding i_mutex
977 */
978 // mutex_destroy(&inode->i_mutex);
979 init_rwsem(&inode->i_rwsem);
980 lockdep_set_class(&inode->i_rwsem,
981 &type->i_mutex_dir_key);
982 }
983 }
984 }
985 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
986 #endif
987
988 /**
989 * unlock_new_inode - clear the I_NEW state and wake up any waiters
990 * @inode: new inode to unlock
991 *
992 * Called when the inode is fully initialised to clear the new state of the
993 * inode and wake up anyone waiting for the inode to finish initialisation.
994 */
unlock_new_inode(struct inode * inode)995 void unlock_new_inode(struct inode *inode)
996 {
997 lockdep_annotate_inode_mutex_key(inode);
998 spin_lock(&inode->i_lock);
999 WARN_ON(!(inode->i_state & I_NEW));
1000 inode->i_state &= ~I_NEW & ~I_CREATING;
1001 smp_mb();
1002 wake_up_bit(&inode->i_state, __I_NEW);
1003 spin_unlock(&inode->i_lock);
1004 }
1005 EXPORT_SYMBOL(unlock_new_inode);
1006
discard_new_inode(struct inode * inode)1007 void discard_new_inode(struct inode *inode)
1008 {
1009 lockdep_annotate_inode_mutex_key(inode);
1010 spin_lock(&inode->i_lock);
1011 WARN_ON(!(inode->i_state & I_NEW));
1012 inode->i_state &= ~I_NEW;
1013 smp_mb();
1014 wake_up_bit(&inode->i_state, __I_NEW);
1015 spin_unlock(&inode->i_lock);
1016 iput(inode);
1017 }
1018 EXPORT_SYMBOL(discard_new_inode);
1019
1020 /**
1021 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1022 *
1023 * Lock any non-NULL argument that is not a directory.
1024 * Zero, one or two objects may be locked by this function.
1025 *
1026 * @inode1: first inode to lock
1027 * @inode2: second inode to lock
1028 */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1029 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1030 {
1031 if (inode1 > inode2)
1032 swap(inode1, inode2);
1033
1034 if (inode1 && !S_ISDIR(inode1->i_mode))
1035 inode_lock(inode1);
1036 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1037 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1038 }
1039 EXPORT_SYMBOL(lock_two_nondirectories);
1040
1041 /**
1042 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1043 * @inode1: first inode to unlock
1044 * @inode2: second inode to unlock
1045 */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1046 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1047 {
1048 if (inode1 && !S_ISDIR(inode1->i_mode))
1049 inode_unlock(inode1);
1050 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1051 inode_unlock(inode2);
1052 }
1053 EXPORT_SYMBOL(unlock_two_nondirectories);
1054
1055 /**
1056 * inode_insert5 - obtain an inode from a mounted file system
1057 * @inode: pre-allocated inode to use for insert to cache
1058 * @hashval: hash value (usually inode number) to get
1059 * @test: callback used for comparisons between inodes
1060 * @set: callback used to initialize a new struct inode
1061 * @data: opaque data pointer to pass to @test and @set
1062 *
1063 * Search for the inode specified by @hashval and @data in the inode cache,
1064 * and if present it is return it with an increased reference count. This is
1065 * a variant of iget5_locked() for callers that don't want to fail on memory
1066 * allocation of inode.
1067 *
1068 * If the inode is not in cache, insert the pre-allocated inode to cache and
1069 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1070 * to fill it in before unlocking it via unlock_new_inode().
1071 *
1072 * Note both @test and @set are called with the inode_hash_lock held, so can't
1073 * sleep.
1074 */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1075 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1076 int (*test)(struct inode *, void *),
1077 int (*set)(struct inode *, void *), void *data)
1078 {
1079 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1080 struct inode *old;
1081 bool creating = inode->i_state & I_CREATING;
1082
1083 again:
1084 spin_lock(&inode_hash_lock);
1085 old = find_inode(inode->i_sb, head, test, data);
1086 if (unlikely(old)) {
1087 /*
1088 * Uhhuh, somebody else created the same inode under us.
1089 * Use the old inode instead of the preallocated one.
1090 */
1091 spin_unlock(&inode_hash_lock);
1092 if (IS_ERR(old))
1093 return NULL;
1094 wait_on_inode(old);
1095 if (unlikely(inode_unhashed(old))) {
1096 iput(old);
1097 goto again;
1098 }
1099 return old;
1100 }
1101
1102 if (set && unlikely(set(inode, data))) {
1103 inode = NULL;
1104 goto unlock;
1105 }
1106
1107 /*
1108 * Return the locked inode with I_NEW set, the
1109 * caller is responsible for filling in the contents
1110 */
1111 spin_lock(&inode->i_lock);
1112 inode->i_state |= I_NEW;
1113 hlist_add_head_rcu(&inode->i_hash, head);
1114 spin_unlock(&inode->i_lock);
1115 if (!creating)
1116 inode_sb_list_add(inode);
1117 unlock:
1118 spin_unlock(&inode_hash_lock);
1119
1120 return inode;
1121 }
1122 EXPORT_SYMBOL(inode_insert5);
1123
1124 /**
1125 * iget5_locked - obtain an inode from a mounted file system
1126 * @sb: super block of file system
1127 * @hashval: hash value (usually inode number) to get
1128 * @test: callback used for comparisons between inodes
1129 * @set: callback used to initialize a new struct inode
1130 * @data: opaque data pointer to pass to @test and @set
1131 *
1132 * Search for the inode specified by @hashval and @data in the inode cache,
1133 * and if present it is return it with an increased reference count. This is
1134 * a generalized version of iget_locked() for file systems where the inode
1135 * number is not sufficient for unique identification of an inode.
1136 *
1137 * If the inode is not in cache, allocate a new inode and return it locked,
1138 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1139 * before unlocking it via unlock_new_inode().
1140 *
1141 * Note both @test and @set are called with the inode_hash_lock held, so can't
1142 * sleep.
1143 */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1144 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1145 int (*test)(struct inode *, void *),
1146 int (*set)(struct inode *, void *), void *data)
1147 {
1148 struct inode *inode = ilookup5(sb, hashval, test, data);
1149
1150 if (!inode) {
1151 struct inode *new = alloc_inode(sb);
1152
1153 if (new) {
1154 new->i_state = 0;
1155 inode = inode_insert5(new, hashval, test, set, data);
1156 if (unlikely(inode != new))
1157 destroy_inode(new);
1158 }
1159 }
1160 return inode;
1161 }
1162 EXPORT_SYMBOL(iget5_locked);
1163
1164 /**
1165 * iget_locked - obtain an inode from a mounted file system
1166 * @sb: super block of file system
1167 * @ino: inode number to get
1168 *
1169 * Search for the inode specified by @ino in the inode cache and if present
1170 * return it with an increased reference count. This is for file systems
1171 * where the inode number is sufficient for unique identification of an inode.
1172 *
1173 * If the inode is not in cache, allocate a new inode and return it locked,
1174 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1175 * before unlocking it via unlock_new_inode().
1176 */
iget_locked(struct super_block * sb,unsigned long ino)1177 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1178 {
1179 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1180 struct inode *inode;
1181 again:
1182 spin_lock(&inode_hash_lock);
1183 inode = find_inode_fast(sb, head, ino);
1184 spin_unlock(&inode_hash_lock);
1185 if (inode) {
1186 if (IS_ERR(inode))
1187 return NULL;
1188 wait_on_inode(inode);
1189 if (unlikely(inode_unhashed(inode))) {
1190 iput(inode);
1191 goto again;
1192 }
1193 return inode;
1194 }
1195
1196 inode = alloc_inode(sb);
1197 if (inode) {
1198 struct inode *old;
1199
1200 spin_lock(&inode_hash_lock);
1201 /* We released the lock, so.. */
1202 old = find_inode_fast(sb, head, ino);
1203 if (!old) {
1204 inode->i_ino = ino;
1205 spin_lock(&inode->i_lock);
1206 inode->i_state = I_NEW;
1207 hlist_add_head_rcu(&inode->i_hash, head);
1208 spin_unlock(&inode->i_lock);
1209 inode_sb_list_add(inode);
1210 spin_unlock(&inode_hash_lock);
1211
1212 /* Return the locked inode with I_NEW set, the
1213 * caller is responsible for filling in the contents
1214 */
1215 return inode;
1216 }
1217
1218 /*
1219 * Uhhuh, somebody else created the same inode under
1220 * us. Use the old inode instead of the one we just
1221 * allocated.
1222 */
1223 spin_unlock(&inode_hash_lock);
1224 destroy_inode(inode);
1225 if (IS_ERR(old))
1226 return NULL;
1227 inode = old;
1228 wait_on_inode(inode);
1229 if (unlikely(inode_unhashed(inode))) {
1230 iput(inode);
1231 goto again;
1232 }
1233 }
1234 return inode;
1235 }
1236 EXPORT_SYMBOL(iget_locked);
1237
1238 /*
1239 * search the inode cache for a matching inode number.
1240 * If we find one, then the inode number we are trying to
1241 * allocate is not unique and so we should not use it.
1242 *
1243 * Returns 1 if the inode number is unique, 0 if it is not.
1244 */
test_inode_iunique(struct super_block * sb,unsigned long ino)1245 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1246 {
1247 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1248 struct inode *inode;
1249
1250 hlist_for_each_entry_rcu(inode, b, i_hash) {
1251 if (inode->i_ino == ino && inode->i_sb == sb)
1252 return 0;
1253 }
1254 return 1;
1255 }
1256
1257 /**
1258 * iunique - get a unique inode number
1259 * @sb: superblock
1260 * @max_reserved: highest reserved inode number
1261 *
1262 * Obtain an inode number that is unique on the system for a given
1263 * superblock. This is used by file systems that have no natural
1264 * permanent inode numbering system. An inode number is returned that
1265 * is higher than the reserved limit but unique.
1266 *
1267 * BUGS:
1268 * With a large number of inodes live on the file system this function
1269 * currently becomes quite slow.
1270 */
iunique(struct super_block * sb,ino_t max_reserved)1271 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1272 {
1273 /*
1274 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1275 * error if st_ino won't fit in target struct field. Use 32bit counter
1276 * here to attempt to avoid that.
1277 */
1278 static DEFINE_SPINLOCK(iunique_lock);
1279 static unsigned int counter;
1280 ino_t res;
1281
1282 rcu_read_lock();
1283 spin_lock(&iunique_lock);
1284 do {
1285 if (counter <= max_reserved)
1286 counter = max_reserved + 1;
1287 res = counter++;
1288 } while (!test_inode_iunique(sb, res));
1289 spin_unlock(&iunique_lock);
1290 rcu_read_unlock();
1291
1292 return res;
1293 }
1294 EXPORT_SYMBOL(iunique);
1295
igrab(struct inode * inode)1296 struct inode *igrab(struct inode *inode)
1297 {
1298 spin_lock(&inode->i_lock);
1299 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1300 __iget(inode);
1301 spin_unlock(&inode->i_lock);
1302 } else {
1303 spin_unlock(&inode->i_lock);
1304 /*
1305 * Handle the case where s_op->clear_inode is not been
1306 * called yet, and somebody is calling igrab
1307 * while the inode is getting freed.
1308 */
1309 inode = NULL;
1310 }
1311 return inode;
1312 }
1313 EXPORT_SYMBOL(igrab);
1314
1315 /**
1316 * ilookup5_nowait - search for an inode in the inode cache
1317 * @sb: super block of file system to search
1318 * @hashval: hash value (usually inode number) to search for
1319 * @test: callback used for comparisons between inodes
1320 * @data: opaque data pointer to pass to @test
1321 *
1322 * Search for the inode specified by @hashval and @data in the inode cache.
1323 * If the inode is in the cache, the inode is returned with an incremented
1324 * reference count.
1325 *
1326 * Note: I_NEW is not waited upon so you have to be very careful what you do
1327 * with the returned inode. You probably should be using ilookup5() instead.
1328 *
1329 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1330 */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1331 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1332 int (*test)(struct inode *, void *), void *data)
1333 {
1334 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1335 struct inode *inode;
1336
1337 spin_lock(&inode_hash_lock);
1338 inode = find_inode(sb, head, test, data);
1339 spin_unlock(&inode_hash_lock);
1340
1341 return IS_ERR(inode) ? NULL : inode;
1342 }
1343 EXPORT_SYMBOL(ilookup5_nowait);
1344
1345 /**
1346 * ilookup5 - search for an inode in the inode cache
1347 * @sb: super block of file system to search
1348 * @hashval: hash value (usually inode number) to search for
1349 * @test: callback used for comparisons between inodes
1350 * @data: opaque data pointer to pass to @test
1351 *
1352 * Search for the inode specified by @hashval and @data in the inode cache,
1353 * and if the inode is in the cache, return the inode with an incremented
1354 * reference count. Waits on I_NEW before returning the inode.
1355 * returned with an incremented reference count.
1356 *
1357 * This is a generalized version of ilookup() for file systems where the
1358 * inode number is not sufficient for unique identification of an inode.
1359 *
1360 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1361 */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1362 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1363 int (*test)(struct inode *, void *), void *data)
1364 {
1365 struct inode *inode;
1366 again:
1367 inode = ilookup5_nowait(sb, hashval, test, data);
1368 if (inode) {
1369 wait_on_inode(inode);
1370 if (unlikely(inode_unhashed(inode))) {
1371 iput(inode);
1372 goto again;
1373 }
1374 }
1375 return inode;
1376 }
1377 EXPORT_SYMBOL(ilookup5);
1378
1379 /**
1380 * ilookup - search for an inode in the inode cache
1381 * @sb: super block of file system to search
1382 * @ino: inode number to search for
1383 *
1384 * Search for the inode @ino in the inode cache, and if the inode is in the
1385 * cache, the inode is returned with an incremented reference count.
1386 */
ilookup(struct super_block * sb,unsigned long ino)1387 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1388 {
1389 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1390 struct inode *inode;
1391 again:
1392 spin_lock(&inode_hash_lock);
1393 inode = find_inode_fast(sb, head, ino);
1394 spin_unlock(&inode_hash_lock);
1395
1396 if (inode) {
1397 if (IS_ERR(inode))
1398 return NULL;
1399 wait_on_inode(inode);
1400 if (unlikely(inode_unhashed(inode))) {
1401 iput(inode);
1402 goto again;
1403 }
1404 }
1405 return inode;
1406 }
1407 EXPORT_SYMBOL(ilookup);
1408
1409 /**
1410 * find_inode_nowait - find an inode in the inode cache
1411 * @sb: super block of file system to search
1412 * @hashval: hash value (usually inode number) to search for
1413 * @match: callback used for comparisons between inodes
1414 * @data: opaque data pointer to pass to @match
1415 *
1416 * Search for the inode specified by @hashval and @data in the inode
1417 * cache, where the helper function @match will return 0 if the inode
1418 * does not match, 1 if the inode does match, and -1 if the search
1419 * should be stopped. The @match function must be responsible for
1420 * taking the i_lock spin_lock and checking i_state for an inode being
1421 * freed or being initialized, and incrementing the reference count
1422 * before returning 1. It also must not sleep, since it is called with
1423 * the inode_hash_lock spinlock held.
1424 *
1425 * This is a even more generalized version of ilookup5() when the
1426 * function must never block --- find_inode() can block in
1427 * __wait_on_freeing_inode() --- or when the caller can not increment
1428 * the reference count because the resulting iput() might cause an
1429 * inode eviction. The tradeoff is that the @match funtion must be
1430 * very carefully implemented.
1431 */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1432 struct inode *find_inode_nowait(struct super_block *sb,
1433 unsigned long hashval,
1434 int (*match)(struct inode *, unsigned long,
1435 void *),
1436 void *data)
1437 {
1438 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1439 struct inode *inode, *ret_inode = NULL;
1440 int mval;
1441
1442 spin_lock(&inode_hash_lock);
1443 hlist_for_each_entry(inode, head, i_hash) {
1444 if (inode->i_sb != sb)
1445 continue;
1446 mval = match(inode, hashval, data);
1447 if (mval == 0)
1448 continue;
1449 if (mval == 1)
1450 ret_inode = inode;
1451 goto out;
1452 }
1453 out:
1454 spin_unlock(&inode_hash_lock);
1455 return ret_inode;
1456 }
1457 EXPORT_SYMBOL(find_inode_nowait);
1458
1459 /**
1460 * find_inode_rcu - find an inode in the inode cache
1461 * @sb: Super block of file system to search
1462 * @hashval: Key to hash
1463 * @test: Function to test match on an inode
1464 * @data: Data for test function
1465 *
1466 * Search for the inode specified by @hashval and @data in the inode cache,
1467 * where the helper function @test will return 0 if the inode does not match
1468 * and 1 if it does. The @test function must be responsible for taking the
1469 * i_lock spin_lock and checking i_state for an inode being freed or being
1470 * initialized.
1471 *
1472 * If successful, this will return the inode for which the @test function
1473 * returned 1 and NULL otherwise.
1474 *
1475 * The @test function is not permitted to take a ref on any inode presented.
1476 * It is also not permitted to sleep.
1477 *
1478 * The caller must hold the RCU read lock.
1479 */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1480 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1481 int (*test)(struct inode *, void *), void *data)
1482 {
1483 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1484 struct inode *inode;
1485
1486 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1487 "suspicious find_inode_rcu() usage");
1488
1489 hlist_for_each_entry_rcu(inode, head, i_hash) {
1490 if (inode->i_sb == sb &&
1491 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1492 test(inode, data))
1493 return inode;
1494 }
1495 return NULL;
1496 }
1497 EXPORT_SYMBOL(find_inode_rcu);
1498
1499 /**
1500 * find_inode_by_rcu - Find an inode in the inode cache
1501 * @sb: Super block of file system to search
1502 * @ino: The inode number to match
1503 *
1504 * Search for the inode specified by @hashval and @data in the inode cache,
1505 * where the helper function @test will return 0 if the inode does not match
1506 * and 1 if it does. The @test function must be responsible for taking the
1507 * i_lock spin_lock and checking i_state for an inode being freed or being
1508 * initialized.
1509 *
1510 * If successful, this will return the inode for which the @test function
1511 * returned 1 and NULL otherwise.
1512 *
1513 * The @test function is not permitted to take a ref on any inode presented.
1514 * It is also not permitted to sleep.
1515 *
1516 * The caller must hold the RCU read lock.
1517 */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1518 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1519 unsigned long ino)
1520 {
1521 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1522 struct inode *inode;
1523
1524 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1525 "suspicious find_inode_by_ino_rcu() usage");
1526
1527 hlist_for_each_entry_rcu(inode, head, i_hash) {
1528 if (inode->i_ino == ino &&
1529 inode->i_sb == sb &&
1530 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1531 return inode;
1532 }
1533 return NULL;
1534 }
1535 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1536
insert_inode_locked(struct inode * inode)1537 int insert_inode_locked(struct inode *inode)
1538 {
1539 struct super_block *sb = inode->i_sb;
1540 ino_t ino = inode->i_ino;
1541 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1542
1543 while (1) {
1544 struct inode *old = NULL;
1545 spin_lock(&inode_hash_lock);
1546 hlist_for_each_entry(old, head, i_hash) {
1547 if (old->i_ino != ino)
1548 continue;
1549 if (old->i_sb != sb)
1550 continue;
1551 spin_lock(&old->i_lock);
1552 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1553 spin_unlock(&old->i_lock);
1554 continue;
1555 }
1556 break;
1557 }
1558 if (likely(!old)) {
1559 spin_lock(&inode->i_lock);
1560 inode->i_state |= I_NEW | I_CREATING;
1561 hlist_add_head_rcu(&inode->i_hash, head);
1562 spin_unlock(&inode->i_lock);
1563 spin_unlock(&inode_hash_lock);
1564 return 0;
1565 }
1566 if (unlikely(old->i_state & I_CREATING)) {
1567 spin_unlock(&old->i_lock);
1568 spin_unlock(&inode_hash_lock);
1569 return -EBUSY;
1570 }
1571 __iget(old);
1572 spin_unlock(&old->i_lock);
1573 spin_unlock(&inode_hash_lock);
1574 wait_on_inode(old);
1575 if (unlikely(!inode_unhashed(old))) {
1576 iput(old);
1577 return -EBUSY;
1578 }
1579 iput(old);
1580 }
1581 }
1582 EXPORT_SYMBOL(insert_inode_locked);
1583
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1584 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1585 int (*test)(struct inode *, void *), void *data)
1586 {
1587 struct inode *old;
1588
1589 inode->i_state |= I_CREATING;
1590 old = inode_insert5(inode, hashval, test, NULL, data);
1591
1592 if (old != inode) {
1593 iput(old);
1594 return -EBUSY;
1595 }
1596 return 0;
1597 }
1598 EXPORT_SYMBOL(insert_inode_locked4);
1599
1600
generic_delete_inode(struct inode * inode)1601 int generic_delete_inode(struct inode *inode)
1602 {
1603 return 1;
1604 }
1605 EXPORT_SYMBOL(generic_delete_inode);
1606
1607 /*
1608 * Called when we're dropping the last reference
1609 * to an inode.
1610 *
1611 * Call the FS "drop_inode()" function, defaulting to
1612 * the legacy UNIX filesystem behaviour. If it tells
1613 * us to evict inode, do so. Otherwise, retain inode
1614 * in cache if fs is alive, sync and evict if fs is
1615 * shutting down.
1616 */
iput_final(struct inode * inode)1617 static void iput_final(struct inode *inode)
1618 {
1619 struct super_block *sb = inode->i_sb;
1620 const struct super_operations *op = inode->i_sb->s_op;
1621 unsigned long state;
1622 int drop;
1623
1624 WARN_ON(inode->i_state & I_NEW);
1625
1626 if (op->drop_inode)
1627 drop = op->drop_inode(inode);
1628 else
1629 drop = generic_drop_inode(inode);
1630
1631 if (!drop &&
1632 !(inode->i_state & I_DONTCACHE) &&
1633 (sb->s_flags & SB_ACTIVE)) {
1634 inode_add_lru(inode);
1635 spin_unlock(&inode->i_lock);
1636 return;
1637 }
1638
1639 state = inode->i_state;
1640 if (!drop) {
1641 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1642 spin_unlock(&inode->i_lock);
1643
1644 write_inode_now(inode, 1);
1645
1646 spin_lock(&inode->i_lock);
1647 state = inode->i_state;
1648 WARN_ON(state & I_NEW);
1649 state &= ~I_WILL_FREE;
1650 }
1651
1652 WRITE_ONCE(inode->i_state, state | I_FREEING);
1653 if (!list_empty(&inode->i_lru))
1654 inode_lru_list_del(inode);
1655 spin_unlock(&inode->i_lock);
1656
1657 evict(inode);
1658 }
1659
1660 /**
1661 * iput - put an inode
1662 * @inode: inode to put
1663 *
1664 * Puts an inode, dropping its usage count. If the inode use count hits
1665 * zero, the inode is then freed and may also be destroyed.
1666 *
1667 * Consequently, iput() can sleep.
1668 */
iput(struct inode * inode)1669 void iput(struct inode *inode)
1670 {
1671 if (!inode)
1672 return;
1673 BUG_ON(inode->i_state & I_CLEAR);
1674 retry:
1675 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1676 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1677 atomic_inc(&inode->i_count);
1678 spin_unlock(&inode->i_lock);
1679 trace_writeback_lazytime_iput(inode);
1680 mark_inode_dirty_sync(inode);
1681 goto retry;
1682 }
1683 iput_final(inode);
1684 }
1685 }
1686 EXPORT_SYMBOL(iput);
1687
1688 #ifdef CONFIG_BLOCK
1689 /**
1690 * bmap - find a block number in a file
1691 * @inode: inode owning the block number being requested
1692 * @block: pointer containing the block to find
1693 *
1694 * Replaces the value in ``*block`` with the block number on the device holding
1695 * corresponding to the requested block number in the file.
1696 * That is, asked for block 4 of inode 1 the function will replace the
1697 * 4 in ``*block``, with disk block relative to the disk start that holds that
1698 * block of the file.
1699 *
1700 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1701 * hole, returns 0 and ``*block`` is also set to 0.
1702 */
bmap(struct inode * inode,sector_t * block)1703 int bmap(struct inode *inode, sector_t *block)
1704 {
1705 if (!inode->i_mapping->a_ops->bmap)
1706 return -EINVAL;
1707
1708 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1709 return 0;
1710 }
1711 EXPORT_SYMBOL(bmap);
1712 #endif
1713
1714 /*
1715 * With relative atime, only update atime if the previous atime is
1716 * earlier than either the ctime or mtime or if at least a day has
1717 * passed since the last atime update.
1718 */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)1719 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1720 struct timespec64 now)
1721 {
1722
1723 if (!(mnt->mnt_flags & MNT_RELATIME))
1724 return 1;
1725 /*
1726 * Is mtime younger than atime? If yes, update atime:
1727 */
1728 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1729 return 1;
1730 /*
1731 * Is ctime younger than atime? If yes, update atime:
1732 */
1733 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1734 return 1;
1735
1736 /*
1737 * Is the previous atime value older than a day? If yes,
1738 * update atime:
1739 */
1740 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1741 return 1;
1742 /*
1743 * Good, we can skip the atime update:
1744 */
1745 return 0;
1746 }
1747
generic_update_time(struct inode * inode,struct timespec64 * time,int flags)1748 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1749 {
1750 int iflags = I_DIRTY_TIME;
1751 bool dirty = false;
1752
1753 if (flags & S_ATIME)
1754 inode->i_atime = *time;
1755 if (flags & S_VERSION)
1756 dirty = inode_maybe_inc_iversion(inode, false);
1757 if (flags & S_CTIME)
1758 inode->i_ctime = *time;
1759 if (flags & S_MTIME)
1760 inode->i_mtime = *time;
1761 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1762 !(inode->i_sb->s_flags & SB_LAZYTIME))
1763 dirty = true;
1764
1765 if (dirty)
1766 iflags |= I_DIRTY_SYNC;
1767 __mark_inode_dirty(inode, iflags);
1768 return 0;
1769 }
1770 EXPORT_SYMBOL(generic_update_time);
1771
1772 /*
1773 * This does the actual work of updating an inodes time or version. Must have
1774 * had called mnt_want_write() before calling this.
1775 */
inode_update_time(struct inode * inode,struct timespec64 * time,int flags)1776 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1777 {
1778 if (inode->i_op->update_time)
1779 return inode->i_op->update_time(inode, time, flags);
1780 return generic_update_time(inode, time, flags);
1781 }
1782 EXPORT_SYMBOL(inode_update_time);
1783
1784 /**
1785 * touch_atime - update the access time
1786 * @path: the &struct path to update
1787 * @inode: inode to update
1788 *
1789 * Update the accessed time on an inode and mark it for writeback.
1790 * This function automatically handles read only file systems and media,
1791 * as well as the "noatime" flag and inode specific "noatime" markers.
1792 */
atime_needs_update(const struct path * path,struct inode * inode)1793 bool atime_needs_update(const struct path *path, struct inode *inode)
1794 {
1795 struct vfsmount *mnt = path->mnt;
1796 struct timespec64 now;
1797
1798 if (inode->i_flags & S_NOATIME)
1799 return false;
1800
1801 /* Atime updates will likely cause i_uid and i_gid to be written
1802 * back improprely if their true value is unknown to the vfs.
1803 */
1804 if (HAS_UNMAPPED_ID(inode))
1805 return false;
1806
1807 if (IS_NOATIME(inode))
1808 return false;
1809 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1810 return false;
1811
1812 if (mnt->mnt_flags & MNT_NOATIME)
1813 return false;
1814 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1815 return false;
1816
1817 now = current_time(inode);
1818
1819 if (!relatime_need_update(mnt, inode, now))
1820 return false;
1821
1822 if (timespec64_equal(&inode->i_atime, &now))
1823 return false;
1824
1825 return true;
1826 }
1827
touch_atime(const struct path * path)1828 void touch_atime(const struct path *path)
1829 {
1830 struct vfsmount *mnt = path->mnt;
1831 struct inode *inode = d_inode(path->dentry);
1832 struct timespec64 now;
1833
1834 if (!atime_needs_update(path, inode))
1835 return;
1836
1837 if (!sb_start_write_trylock(inode->i_sb))
1838 return;
1839
1840 if (__mnt_want_write(mnt) != 0)
1841 goto skip_update;
1842 /*
1843 * File systems can error out when updating inodes if they need to
1844 * allocate new space to modify an inode (such is the case for
1845 * Btrfs), but since we touch atime while walking down the path we
1846 * really don't care if we failed to update the atime of the file,
1847 * so just ignore the return value.
1848 * We may also fail on filesystems that have the ability to make parts
1849 * of the fs read only, e.g. subvolumes in Btrfs.
1850 */
1851 now = current_time(inode);
1852 inode_update_time(inode, &now, S_ATIME);
1853 __mnt_drop_write(mnt);
1854 skip_update:
1855 sb_end_write(inode->i_sb);
1856 }
1857 EXPORT_SYMBOL(touch_atime);
1858
1859 /*
1860 * Return mask of changes for notify_change() that need to be done as a
1861 * response to write or truncate. Return 0 if nothing has to be changed.
1862 * Negative value on error (change should be denied).
1863 */
dentry_needs_remove_privs(struct dentry * dentry)1864 int dentry_needs_remove_privs(struct dentry *dentry)
1865 {
1866 struct inode *inode = d_inode(dentry);
1867 int mask = 0;
1868 int ret;
1869
1870 if (IS_NOSEC(inode))
1871 return 0;
1872
1873 mask = setattr_should_drop_suidgid(inode);
1874 ret = security_inode_need_killpriv(dentry);
1875 if (ret < 0)
1876 return ret;
1877 if (ret)
1878 mask |= ATTR_KILL_PRIV;
1879 return mask;
1880 }
1881
__remove_privs(struct dentry * dentry,int kill)1882 static int __remove_privs(struct dentry *dentry, int kill)
1883 {
1884 struct iattr newattrs;
1885
1886 newattrs.ia_valid = ATTR_FORCE | kill;
1887 /*
1888 * Note we call this on write, so notify_change will not
1889 * encounter any conflicting delegations:
1890 */
1891 return notify_change(dentry, &newattrs, NULL);
1892 }
1893
1894 /*
1895 * Remove special file priviledges (suid, capabilities) when file is written
1896 * to or truncated.
1897 */
file_remove_privs(struct file * file)1898 int file_remove_privs(struct file *file)
1899 {
1900 struct dentry *dentry = file_dentry(file);
1901 struct inode *inode = file_inode(file);
1902 int kill;
1903 int error = 0;
1904
1905 /*
1906 * Fast path for nothing security related.
1907 * As well for non-regular files, e.g. blkdev inodes.
1908 * For example, blkdev_write_iter() might get here
1909 * trying to remove privs which it is not allowed to.
1910 */
1911 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1912 return 0;
1913
1914 kill = dentry_needs_remove_privs(dentry);
1915 if (kill < 0)
1916 return kill;
1917 if (kill)
1918 error = __remove_privs(dentry, kill);
1919 if (!error)
1920 inode_has_no_xattr(inode);
1921
1922 return error;
1923 }
1924 EXPORT_SYMBOL(file_remove_privs);
1925
1926 /**
1927 * file_update_time - update mtime and ctime time
1928 * @file: file accessed
1929 *
1930 * Update the mtime and ctime members of an inode and mark the inode
1931 * for writeback. Note that this function is meant exclusively for
1932 * usage in the file write path of filesystems, and filesystems may
1933 * choose to explicitly ignore update via this function with the
1934 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1935 * timestamps are handled by the server. This can return an error for
1936 * file systems who need to allocate space in order to update an inode.
1937 */
1938
file_update_time(struct file * file)1939 int file_update_time(struct file *file)
1940 {
1941 struct inode *inode = file_inode(file);
1942 struct timespec64 now;
1943 int sync_it = 0;
1944 int ret;
1945
1946 /* First try to exhaust all avenues to not sync */
1947 if (IS_NOCMTIME(inode))
1948 return 0;
1949
1950 now = current_time(inode);
1951 if (!timespec64_equal(&inode->i_mtime, &now))
1952 sync_it = S_MTIME;
1953
1954 if (!timespec64_equal(&inode->i_ctime, &now))
1955 sync_it |= S_CTIME;
1956
1957 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1958 sync_it |= S_VERSION;
1959
1960 if (!sync_it)
1961 return 0;
1962
1963 /* Finally allowed to write? Takes lock. */
1964 if (__mnt_want_write_file(file))
1965 return 0;
1966
1967 ret = inode_update_time(inode, &now, sync_it);
1968 __mnt_drop_write_file(file);
1969
1970 return ret;
1971 }
1972 EXPORT_SYMBOL(file_update_time);
1973
1974 /* Caller must hold the file's inode lock */
file_modified(struct file * file)1975 int file_modified(struct file *file)
1976 {
1977 int err;
1978
1979 /*
1980 * Clear the security bits if the process is not being run by root.
1981 * This keeps people from modifying setuid and setgid binaries.
1982 */
1983 err = file_remove_privs(file);
1984 if (err)
1985 return err;
1986
1987 if (unlikely(file->f_mode & FMODE_NOCMTIME))
1988 return 0;
1989
1990 return file_update_time(file);
1991 }
1992 EXPORT_SYMBOL(file_modified);
1993
inode_needs_sync(struct inode * inode)1994 int inode_needs_sync(struct inode *inode)
1995 {
1996 if (IS_SYNC(inode))
1997 return 1;
1998 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1999 return 1;
2000 return 0;
2001 }
2002 EXPORT_SYMBOL(inode_needs_sync);
2003
2004 /*
2005 * If we try to find an inode in the inode hash while it is being
2006 * deleted, we have to wait until the filesystem completes its
2007 * deletion before reporting that it isn't found. This function waits
2008 * until the deletion _might_ have completed. Callers are responsible
2009 * to recheck inode state.
2010 *
2011 * It doesn't matter if I_NEW is not set initially, a call to
2012 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2013 * will DTRT.
2014 */
__wait_on_freeing_inode(struct inode * inode)2015 static void __wait_on_freeing_inode(struct inode *inode)
2016 {
2017 wait_queue_head_t *wq;
2018 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2019 wq = bit_waitqueue(&inode->i_state, __I_NEW);
2020 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2021 spin_unlock(&inode->i_lock);
2022 spin_unlock(&inode_hash_lock);
2023 schedule();
2024 finish_wait(wq, &wait.wq_entry);
2025 spin_lock(&inode_hash_lock);
2026 }
2027
2028 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2029 static int __init set_ihash_entries(char *str)
2030 {
2031 if (!str)
2032 return 0;
2033 ihash_entries = simple_strtoul(str, &str, 0);
2034 return 1;
2035 }
2036 __setup("ihash_entries=", set_ihash_entries);
2037
2038 /*
2039 * Initialize the waitqueues and inode hash table.
2040 */
inode_init_early(void)2041 void __init inode_init_early(void)
2042 {
2043 /* If hashes are distributed across NUMA nodes, defer
2044 * hash allocation until vmalloc space is available.
2045 */
2046 if (hashdist)
2047 return;
2048
2049 inode_hashtable =
2050 alloc_large_system_hash("Inode-cache",
2051 sizeof(struct hlist_head),
2052 ihash_entries,
2053 14,
2054 HASH_EARLY | HASH_ZERO,
2055 &i_hash_shift,
2056 &i_hash_mask,
2057 0,
2058 0);
2059 }
2060
inode_init(void)2061 void __init inode_init(void)
2062 {
2063 /* inode slab cache */
2064 inode_cachep = kmem_cache_create("inode_cache",
2065 sizeof(struct inode),
2066 0,
2067 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2068 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2069 init_once);
2070
2071 /* Hash may have been set up in inode_init_early */
2072 if (!hashdist)
2073 return;
2074
2075 inode_hashtable =
2076 alloc_large_system_hash("Inode-cache",
2077 sizeof(struct hlist_head),
2078 ihash_entries,
2079 14,
2080 HASH_ZERO,
2081 &i_hash_shift,
2082 &i_hash_mask,
2083 0,
2084 0);
2085 }
2086
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2087 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2088 {
2089 inode->i_mode = mode;
2090 if (S_ISCHR(mode)) {
2091 inode->i_fop = &def_chr_fops;
2092 inode->i_rdev = rdev;
2093 } else if (S_ISBLK(mode)) {
2094 inode->i_fop = &def_blk_fops;
2095 inode->i_rdev = rdev;
2096 } else if (S_ISFIFO(mode))
2097 inode->i_fop = &pipefifo_fops;
2098 else if (S_ISSOCK(mode))
2099 ; /* leave it no_open_fops */
2100 else
2101 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2102 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2103 inode->i_ino);
2104 }
2105 EXPORT_SYMBOL(init_special_inode);
2106
2107 /**
2108 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2109 * @inode: New inode
2110 * @dir: Directory inode
2111 * @mode: mode of the new inode
2112 */
inode_init_owner(struct inode * inode,const struct inode * dir,umode_t mode)2113 void inode_init_owner(struct inode *inode, const struct inode *dir,
2114 umode_t mode)
2115 {
2116 inode->i_uid = current_fsuid();
2117 if (dir && dir->i_mode & S_ISGID) {
2118 inode->i_gid = dir->i_gid;
2119
2120 /* Directories are special, and always inherit S_ISGID */
2121 if (S_ISDIR(mode))
2122 mode |= S_ISGID;
2123 } else
2124 inode->i_gid = current_fsgid();
2125 inode->i_mode = mode;
2126 }
2127 EXPORT_SYMBOL(inode_init_owner);
2128
2129 /**
2130 * inode_owner_or_capable - check current task permissions to inode
2131 * @inode: inode being checked
2132 *
2133 * Return true if current either has CAP_FOWNER in a namespace with the
2134 * inode owner uid mapped, or owns the file.
2135 */
inode_owner_or_capable(const struct inode * inode)2136 bool inode_owner_or_capable(const struct inode *inode)
2137 {
2138 struct user_namespace *ns;
2139
2140 if (uid_eq(current_fsuid(), inode->i_uid))
2141 return true;
2142
2143 ns = current_user_ns();
2144 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2145 return true;
2146 return false;
2147 }
2148 EXPORT_SYMBOL(inode_owner_or_capable);
2149
2150 /*
2151 * Direct i/o helper functions
2152 */
__inode_dio_wait(struct inode * inode)2153 static void __inode_dio_wait(struct inode *inode)
2154 {
2155 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2156 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2157
2158 do {
2159 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2160 if (atomic_read(&inode->i_dio_count))
2161 schedule();
2162 } while (atomic_read(&inode->i_dio_count));
2163 finish_wait(wq, &q.wq_entry);
2164 }
2165
2166 /**
2167 * inode_dio_wait - wait for outstanding DIO requests to finish
2168 * @inode: inode to wait for
2169 *
2170 * Waits for all pending direct I/O requests to finish so that we can
2171 * proceed with a truncate or equivalent operation.
2172 *
2173 * Must be called under a lock that serializes taking new references
2174 * to i_dio_count, usually by inode->i_mutex.
2175 */
inode_dio_wait(struct inode * inode)2176 void inode_dio_wait(struct inode *inode)
2177 {
2178 if (atomic_read(&inode->i_dio_count))
2179 __inode_dio_wait(inode);
2180 }
2181 EXPORT_SYMBOL(inode_dio_wait);
2182
2183 /*
2184 * inode_set_flags - atomically set some inode flags
2185 *
2186 * Note: the caller should be holding i_mutex, or else be sure that
2187 * they have exclusive access to the inode structure (i.e., while the
2188 * inode is being instantiated). The reason for the cmpxchg() loop
2189 * --- which wouldn't be necessary if all code paths which modify
2190 * i_flags actually followed this rule, is that there is at least one
2191 * code path which doesn't today so we use cmpxchg() out of an abundance
2192 * of caution.
2193 *
2194 * In the long run, i_mutex is overkill, and we should probably look
2195 * at using the i_lock spinlock to protect i_flags, and then make sure
2196 * it is so documented in include/linux/fs.h and that all code follows
2197 * the locking convention!!
2198 */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2199 void inode_set_flags(struct inode *inode, unsigned int flags,
2200 unsigned int mask)
2201 {
2202 WARN_ON_ONCE(flags & ~mask);
2203 set_mask_bits(&inode->i_flags, mask, flags);
2204 }
2205 EXPORT_SYMBOL(inode_set_flags);
2206
inode_nohighmem(struct inode * inode)2207 void inode_nohighmem(struct inode *inode)
2208 {
2209 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2210 }
2211 EXPORT_SYMBOL(inode_nohighmem);
2212
2213 /**
2214 * timestamp_truncate - Truncate timespec to a granularity
2215 * @t: Timespec
2216 * @inode: inode being updated
2217 *
2218 * Truncate a timespec to the granularity supported by the fs
2219 * containing the inode. Always rounds down. gran must
2220 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2221 */
timestamp_truncate(struct timespec64 t,struct inode * inode)2222 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2223 {
2224 struct super_block *sb = inode->i_sb;
2225 unsigned int gran = sb->s_time_gran;
2226
2227 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2228 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2229 t.tv_nsec = 0;
2230
2231 /* Avoid division in the common cases 1 ns and 1 s. */
2232 if (gran == 1)
2233 ; /* nothing */
2234 else if (gran == NSEC_PER_SEC)
2235 t.tv_nsec = 0;
2236 else if (gran > 1 && gran < NSEC_PER_SEC)
2237 t.tv_nsec -= t.tv_nsec % gran;
2238 else
2239 WARN(1, "invalid file time granularity: %u", gran);
2240 return t;
2241 }
2242 EXPORT_SYMBOL(timestamp_truncate);
2243
2244 /**
2245 * current_time - Return FS time
2246 * @inode: inode.
2247 *
2248 * Return the current time truncated to the time granularity supported by
2249 * the fs.
2250 *
2251 * Note that inode and inode->sb cannot be NULL.
2252 * Otherwise, the function warns and returns time without truncation.
2253 */
current_time(struct inode * inode)2254 struct timespec64 current_time(struct inode *inode)
2255 {
2256 struct timespec64 now;
2257
2258 ktime_get_coarse_real_ts64(&now);
2259
2260 if (unlikely(!inode->i_sb)) {
2261 WARN(1, "current_time() called with uninitialized super_block in the inode");
2262 return now;
2263 }
2264
2265 return timestamp_truncate(now, inode);
2266 }
2267 EXPORT_SYMBOL(current_time);
2268
2269 /*
2270 * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2271 * configurations.
2272 *
2273 * Note: the caller should be holding i_mutex, or else be sure that they have
2274 * exclusive access to the inode structure.
2275 */
vfs_ioc_setflags_prepare(struct inode * inode,unsigned int oldflags,unsigned int flags)2276 int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2277 unsigned int flags)
2278 {
2279 /*
2280 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2281 * the relevant capability.
2282 *
2283 * This test looks nicer. Thanks to Pauline Middelink
2284 */
2285 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2286 !capable(CAP_LINUX_IMMUTABLE))
2287 return -EPERM;
2288
2289 return fscrypt_prepare_setflags(inode, oldflags, flags);
2290 }
2291 EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2292
2293 /*
2294 * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2295 * configurations.
2296 *
2297 * Note: the caller should be holding i_mutex, or else be sure that they have
2298 * exclusive access to the inode structure.
2299 */
vfs_ioc_fssetxattr_check(struct inode * inode,const struct fsxattr * old_fa,struct fsxattr * fa)2300 int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2301 struct fsxattr *fa)
2302 {
2303 /*
2304 * Can't modify an immutable/append-only file unless we have
2305 * appropriate permission.
2306 */
2307 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2308 (FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2309 !capable(CAP_LINUX_IMMUTABLE))
2310 return -EPERM;
2311
2312 /*
2313 * Project Quota ID state is only allowed to change from within the init
2314 * namespace. Enforce that restriction only if we are trying to change
2315 * the quota ID state. Everything else is allowed in user namespaces.
2316 */
2317 if (current_user_ns() != &init_user_ns) {
2318 if (old_fa->fsx_projid != fa->fsx_projid)
2319 return -EINVAL;
2320 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2321 FS_XFLAG_PROJINHERIT)
2322 return -EINVAL;
2323 }
2324
2325 /* Check extent size hints. */
2326 if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2327 return -EINVAL;
2328
2329 if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2330 !S_ISDIR(inode->i_mode))
2331 return -EINVAL;
2332
2333 if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2334 !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2335 return -EINVAL;
2336
2337 /*
2338 * It is only valid to set the DAX flag on regular files and
2339 * directories on filesystems.
2340 */
2341 if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2342 !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2343 return -EINVAL;
2344
2345 /* Extent size hints of zero turn off the flags. */
2346 if (fa->fsx_extsize == 0)
2347 fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2348 if (fa->fsx_cowextsize == 0)
2349 fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2350
2351 return 0;
2352 }
2353 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
2354
2355 /**
2356 * in_group_or_capable - check whether caller is CAP_FSETID privileged
2357 * @inode: inode to check
2358 * @gid: the new/current gid of @inode
2359 *
2360 * Check wether @gid is in the caller's group list or if the caller is
2361 * privileged with CAP_FSETID over @inode. This can be used to determine
2362 * whether the setgid bit can be kept or must be dropped.
2363 *
2364 * Return: true if the caller is sufficiently privileged, false if not.
2365 */
in_group_or_capable(const struct inode * inode,kgid_t gid)2366 bool in_group_or_capable(const struct inode *inode, kgid_t gid)
2367 {
2368 if (in_group_p(gid))
2369 return true;
2370 if (capable_wrt_inode_uidgid(inode, CAP_FSETID))
2371 return true;
2372 return false;
2373 }
2374
2375 /**
2376 * mode_strip_sgid - handle the sgid bit for non-directories
2377 * @dir: parent directory inode
2378 * @mode: mode of the file to be created in @dir
2379 *
2380 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2381 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2382 * either in the group of the parent directory or they have CAP_FSETID
2383 * in their user namespace and are privileged over the parent directory.
2384 * In all other cases, strip the S_ISGID bit from @mode.
2385 *
2386 * Return: the new mode to use for the file
2387 */
mode_strip_sgid(const struct inode * dir,umode_t mode)2388 umode_t mode_strip_sgid(const struct inode *dir, umode_t mode)
2389 {
2390 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2391 return mode;
2392 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2393 return mode;
2394 if (in_group_or_capable(dir, dir->i_gid))
2395 return mode;
2396 return mode & ~S_ISGID;
2397 }
2398 EXPORT_SYMBOL(mode_strip_sgid);
2399