1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/lockdep.c
4 *
5 * Runtime locking correctness validator
6 *
7 * Started by Ingo Molnar:
8 *
9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11 *
12 * this code maps all the lock dependencies as they occur in a live kernel
13 * and will warn about the following classes of locking bugs:
14 *
15 * - lock inversion scenarios
16 * - circular lock dependencies
17 * - hardirq/softirq safe/unsafe locking bugs
18 *
19 * Bugs are reported even if the current locking scenario does not cause
20 * any deadlock at this point.
21 *
22 * I.e. if anytime in the past two locks were taken in a different order,
23 * even if it happened for another task, even if those were different
24 * locks (but of the same class as this lock), this code will detect it.
25 *
26 * Thanks to Arjan van de Ven for coming up with the initial idea of
27 * mapping lock dependencies runtime.
28 */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57
58 #include <asm/sections.h>
59
60 #include "lockdep_internals.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/lock.h>
64
65 #ifdef CONFIG_PROVE_LOCKING
66 int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71
72 #ifdef CONFIG_LOCK_STAT
73 int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78
79 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
80 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
81
lockdep_enabled(void)82 static __always_inline bool lockdep_enabled(void)
83 {
84 if (!debug_locks)
85 return false;
86
87 if (this_cpu_read(lockdep_recursion))
88 return false;
89
90 if (current->lockdep_recursion)
91 return false;
92
93 return true;
94 }
95
96 /*
97 * lockdep_lock: protects the lockdep graph, the hashes and the
98 * class/list/hash allocators.
99 *
100 * This is one of the rare exceptions where it's justified
101 * to use a raw spinlock - we really dont want the spinlock
102 * code to recurse back into the lockdep code...
103 */
104 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
105 static struct task_struct *__owner;
106
lockdep_lock(void)107 static inline void lockdep_lock(void)
108 {
109 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
110
111 __this_cpu_inc(lockdep_recursion);
112 arch_spin_lock(&__lock);
113 __owner = current;
114 }
115
lockdep_unlock(void)116 static inline void lockdep_unlock(void)
117 {
118 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
119
120 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
121 return;
122
123 __owner = NULL;
124 arch_spin_unlock(&__lock);
125 __this_cpu_dec(lockdep_recursion);
126 }
127
lockdep_assert_locked(void)128 static inline bool lockdep_assert_locked(void)
129 {
130 return DEBUG_LOCKS_WARN_ON(__owner != current);
131 }
132
133 static struct task_struct *lockdep_selftest_task_struct;
134
135
graph_lock(void)136 static int graph_lock(void)
137 {
138 lockdep_lock();
139 /*
140 * Make sure that if another CPU detected a bug while
141 * walking the graph we dont change it (while the other
142 * CPU is busy printing out stuff with the graph lock
143 * dropped already)
144 */
145 if (!debug_locks) {
146 lockdep_unlock();
147 return 0;
148 }
149 return 1;
150 }
151
graph_unlock(void)152 static inline void graph_unlock(void)
153 {
154 lockdep_unlock();
155 }
156
157 /*
158 * Turn lock debugging off and return with 0 if it was off already,
159 * and also release the graph lock:
160 */
debug_locks_off_graph_unlock(void)161 static inline int debug_locks_off_graph_unlock(void)
162 {
163 int ret = debug_locks_off();
164
165 lockdep_unlock();
166
167 return ret;
168 }
169
170 unsigned long nr_list_entries;
171 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
172 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
173
174 /*
175 * All data structures here are protected by the global debug_lock.
176 *
177 * nr_lock_classes is the number of elements of lock_classes[] that is
178 * in use.
179 */
180 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1)
181 #define KEYHASH_SIZE (1UL << KEYHASH_BITS)
182 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
183 unsigned long nr_lock_classes;
184 unsigned long nr_zapped_classes;
185 unsigned long max_lock_class_idx;
186 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
187 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
188
hlock_class(struct held_lock * hlock)189 static inline struct lock_class *hlock_class(struct held_lock *hlock)
190 {
191 unsigned int class_idx = hlock->class_idx;
192
193 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
194 barrier();
195
196 if (!test_bit(class_idx, lock_classes_in_use)) {
197 /*
198 * Someone passed in garbage, we give up.
199 */
200 DEBUG_LOCKS_WARN_ON(1);
201 return NULL;
202 }
203
204 /*
205 * At this point, if the passed hlock->class_idx is still garbage,
206 * we just have to live with it
207 */
208 return lock_classes + class_idx;
209 }
210
211 #ifdef CONFIG_LOCK_STAT
212 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
213
lockstat_clock(void)214 static inline u64 lockstat_clock(void)
215 {
216 return local_clock();
217 }
218
lock_point(unsigned long points[],unsigned long ip)219 static int lock_point(unsigned long points[], unsigned long ip)
220 {
221 int i;
222
223 for (i = 0; i < LOCKSTAT_POINTS; i++) {
224 if (points[i] == 0) {
225 points[i] = ip;
226 break;
227 }
228 if (points[i] == ip)
229 break;
230 }
231
232 return i;
233 }
234
lock_time_inc(struct lock_time * lt,u64 time)235 static void lock_time_inc(struct lock_time *lt, u64 time)
236 {
237 if (time > lt->max)
238 lt->max = time;
239
240 if (time < lt->min || !lt->nr)
241 lt->min = time;
242
243 lt->total += time;
244 lt->nr++;
245 }
246
lock_time_add(struct lock_time * src,struct lock_time * dst)247 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
248 {
249 if (!src->nr)
250 return;
251
252 if (src->max > dst->max)
253 dst->max = src->max;
254
255 if (src->min < dst->min || !dst->nr)
256 dst->min = src->min;
257
258 dst->total += src->total;
259 dst->nr += src->nr;
260 }
261
lock_stats(struct lock_class * class)262 struct lock_class_stats lock_stats(struct lock_class *class)
263 {
264 struct lock_class_stats stats;
265 int cpu, i;
266
267 memset(&stats, 0, sizeof(struct lock_class_stats));
268 for_each_possible_cpu(cpu) {
269 struct lock_class_stats *pcs =
270 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
271
272 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
273 stats.contention_point[i] += pcs->contention_point[i];
274
275 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
276 stats.contending_point[i] += pcs->contending_point[i];
277
278 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
279 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
280
281 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
282 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
283
284 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
285 stats.bounces[i] += pcs->bounces[i];
286 }
287
288 return stats;
289 }
290
clear_lock_stats(struct lock_class * class)291 void clear_lock_stats(struct lock_class *class)
292 {
293 int cpu;
294
295 for_each_possible_cpu(cpu) {
296 struct lock_class_stats *cpu_stats =
297 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
298
299 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
300 }
301 memset(class->contention_point, 0, sizeof(class->contention_point));
302 memset(class->contending_point, 0, sizeof(class->contending_point));
303 }
304
get_lock_stats(struct lock_class * class)305 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
306 {
307 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
308 }
309
lock_release_holdtime(struct held_lock * hlock)310 static void lock_release_holdtime(struct held_lock *hlock)
311 {
312 struct lock_class_stats *stats;
313 u64 holdtime;
314
315 if (!lock_stat)
316 return;
317
318 holdtime = lockstat_clock() - hlock->holdtime_stamp;
319
320 stats = get_lock_stats(hlock_class(hlock));
321 if (hlock->read)
322 lock_time_inc(&stats->read_holdtime, holdtime);
323 else
324 lock_time_inc(&stats->write_holdtime, holdtime);
325 }
326 #else
lock_release_holdtime(struct held_lock * hlock)327 static inline void lock_release_holdtime(struct held_lock *hlock)
328 {
329 }
330 #endif
331
332 /*
333 * We keep a global list of all lock classes. The list is only accessed with
334 * the lockdep spinlock lock held. free_lock_classes is a list with free
335 * elements. These elements are linked together by the lock_entry member in
336 * struct lock_class.
337 */
338 static LIST_HEAD(all_lock_classes);
339 static LIST_HEAD(free_lock_classes);
340
341 /**
342 * struct pending_free - information about data structures about to be freed
343 * @zapped: Head of a list with struct lock_class elements.
344 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
345 * are about to be freed.
346 */
347 struct pending_free {
348 struct list_head zapped;
349 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
350 };
351
352 /**
353 * struct delayed_free - data structures used for delayed freeing
354 *
355 * A data structure for delayed freeing of data structures that may be
356 * accessed by RCU readers at the time these were freed.
357 *
358 * @rcu_head: Used to schedule an RCU callback for freeing data structures.
359 * @index: Index of @pf to which freed data structures are added.
360 * @scheduled: Whether or not an RCU callback has been scheduled.
361 * @pf: Array with information about data structures about to be freed.
362 */
363 static struct delayed_free {
364 struct rcu_head rcu_head;
365 int index;
366 int scheduled;
367 struct pending_free pf[2];
368 } delayed_free;
369
370 /*
371 * The lockdep classes are in a hash-table as well, for fast lookup:
372 */
373 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1)
374 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS)
375 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS)
376 #define classhashentry(key) (classhash_table + __classhashfn((key)))
377
378 static struct hlist_head classhash_table[CLASSHASH_SIZE];
379
380 /*
381 * We put the lock dependency chains into a hash-table as well, to cache
382 * their existence:
383 */
384 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1)
385 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS)
386 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS)
387 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain)))
388
389 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
390
391 /*
392 * the id of held_lock
393 */
hlock_id(struct held_lock * hlock)394 static inline u16 hlock_id(struct held_lock *hlock)
395 {
396 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
397
398 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
399 }
400
chain_hlock_class_idx(u16 hlock_id)401 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
402 {
403 return hlock_id & (MAX_LOCKDEP_KEYS - 1);
404 }
405
406 /*
407 * The hash key of the lock dependency chains is a hash itself too:
408 * it's a hash of all locks taken up to that lock, including that lock.
409 * It's a 64-bit hash, because it's important for the keys to be
410 * unique.
411 */
iterate_chain_key(u64 key,u32 idx)412 static inline u64 iterate_chain_key(u64 key, u32 idx)
413 {
414 u32 k0 = key, k1 = key >> 32;
415
416 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
417
418 return k0 | (u64)k1 << 32;
419 }
420
lockdep_init_task(struct task_struct * task)421 void lockdep_init_task(struct task_struct *task)
422 {
423 task->lockdep_depth = 0; /* no locks held yet */
424 task->curr_chain_key = INITIAL_CHAIN_KEY;
425 task->lockdep_recursion = 0;
426 }
427
lockdep_recursion_inc(void)428 static __always_inline void lockdep_recursion_inc(void)
429 {
430 __this_cpu_inc(lockdep_recursion);
431 }
432
lockdep_recursion_finish(void)433 static __always_inline void lockdep_recursion_finish(void)
434 {
435 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
436 __this_cpu_write(lockdep_recursion, 0);
437 }
438
lockdep_set_selftest_task(struct task_struct * task)439 void lockdep_set_selftest_task(struct task_struct *task)
440 {
441 lockdep_selftest_task_struct = task;
442 }
443
444 /*
445 * Debugging switches:
446 */
447
448 #define VERBOSE 0
449 #define VERY_VERBOSE 0
450
451 #if VERBOSE
452 # define HARDIRQ_VERBOSE 1
453 # define SOFTIRQ_VERBOSE 1
454 #else
455 # define HARDIRQ_VERBOSE 0
456 # define SOFTIRQ_VERBOSE 0
457 #endif
458
459 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
460 /*
461 * Quick filtering for interesting events:
462 */
class_filter(struct lock_class * class)463 static int class_filter(struct lock_class *class)
464 {
465 #if 0
466 /* Example */
467 if (class->name_version == 1 &&
468 !strcmp(class->name, "lockname"))
469 return 1;
470 if (class->name_version == 1 &&
471 !strcmp(class->name, "&struct->lockfield"))
472 return 1;
473 #endif
474 /* Filter everything else. 1 would be to allow everything else */
475 return 0;
476 }
477 #endif
478
verbose(struct lock_class * class)479 static int verbose(struct lock_class *class)
480 {
481 #if VERBOSE
482 return class_filter(class);
483 #endif
484 return 0;
485 }
486
print_lockdep_off(const char * bug_msg)487 static void print_lockdep_off(const char *bug_msg)
488 {
489 printk(KERN_DEBUG "%s\n", bug_msg);
490 printk(KERN_DEBUG "turning off the locking correctness validator.\n");
491 #ifdef CONFIG_LOCK_STAT
492 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
493 #endif
494 }
495
496 unsigned long nr_stack_trace_entries;
497
498 #ifdef CONFIG_PROVE_LOCKING
499 /**
500 * struct lock_trace - single stack backtrace
501 * @hash_entry: Entry in a stack_trace_hash[] list.
502 * @hash: jhash() of @entries.
503 * @nr_entries: Number of entries in @entries.
504 * @entries: Actual stack backtrace.
505 */
506 struct lock_trace {
507 struct hlist_node hash_entry;
508 u32 hash;
509 u32 nr_entries;
510 unsigned long entries[] __aligned(sizeof(unsigned long));
511 };
512 #define LOCK_TRACE_SIZE_IN_LONGS \
513 (sizeof(struct lock_trace) / sizeof(unsigned long))
514 /*
515 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
516 */
517 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
518 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
519
traces_identical(struct lock_trace * t1,struct lock_trace * t2)520 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
521 {
522 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
523 memcmp(t1->entries, t2->entries,
524 t1->nr_entries * sizeof(t1->entries[0])) == 0;
525 }
526
save_trace(void)527 static struct lock_trace *save_trace(void)
528 {
529 struct lock_trace *trace, *t2;
530 struct hlist_head *hash_head;
531 u32 hash;
532 int max_entries;
533
534 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
535 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
536
537 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
538 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
539 LOCK_TRACE_SIZE_IN_LONGS;
540
541 if (max_entries <= 0) {
542 if (!debug_locks_off_graph_unlock())
543 return NULL;
544
545 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
546 dump_stack();
547
548 return NULL;
549 }
550 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
551
552 hash = jhash(trace->entries, trace->nr_entries *
553 sizeof(trace->entries[0]), 0);
554 trace->hash = hash;
555 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
556 hlist_for_each_entry(t2, hash_head, hash_entry) {
557 if (traces_identical(trace, t2))
558 return t2;
559 }
560 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
561 hlist_add_head(&trace->hash_entry, hash_head);
562
563 return trace;
564 }
565
566 /* Return the number of stack traces in the stack_trace[] array. */
lockdep_stack_trace_count(void)567 u64 lockdep_stack_trace_count(void)
568 {
569 struct lock_trace *trace;
570 u64 c = 0;
571 int i;
572
573 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
574 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
575 c++;
576 }
577 }
578
579 return c;
580 }
581
582 /* Return the number of stack hash chains that have at least one stack trace. */
lockdep_stack_hash_count(void)583 u64 lockdep_stack_hash_count(void)
584 {
585 u64 c = 0;
586 int i;
587
588 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
589 if (!hlist_empty(&stack_trace_hash[i]))
590 c++;
591
592 return c;
593 }
594 #endif
595
596 unsigned int nr_hardirq_chains;
597 unsigned int nr_softirq_chains;
598 unsigned int nr_process_chains;
599 unsigned int max_lockdep_depth;
600
601 #ifdef CONFIG_DEBUG_LOCKDEP
602 /*
603 * Various lockdep statistics:
604 */
605 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
606 #endif
607
608 #ifdef CONFIG_PROVE_LOCKING
609 /*
610 * Locking printouts:
611 */
612
613 #define __USAGE(__STATE) \
614 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \
615 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \
616 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
617 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
618
619 static const char *usage_str[] =
620 {
621 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
622 #include "lockdep_states.h"
623 #undef LOCKDEP_STATE
624 [LOCK_USED] = "INITIAL USE",
625 [LOCK_USED_READ] = "INITIAL READ USE",
626 /* abused as string storage for verify_lock_unused() */
627 [LOCK_USAGE_STATES] = "IN-NMI",
628 };
629 #endif
630
__get_key_name(const struct lockdep_subclass_key * key,char * str)631 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
632 {
633 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
634 }
635
lock_flag(enum lock_usage_bit bit)636 static inline unsigned long lock_flag(enum lock_usage_bit bit)
637 {
638 return 1UL << bit;
639 }
640
get_usage_char(struct lock_class * class,enum lock_usage_bit bit)641 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
642 {
643 /*
644 * The usage character defaults to '.' (i.e., irqs disabled and not in
645 * irq context), which is the safest usage category.
646 */
647 char c = '.';
648
649 /*
650 * The order of the following usage checks matters, which will
651 * result in the outcome character as follows:
652 *
653 * - '+': irq is enabled and not in irq context
654 * - '-': in irq context and irq is disabled
655 * - '?': in irq context and irq is enabled
656 */
657 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
658 c = '+';
659 if (class->usage_mask & lock_flag(bit))
660 c = '?';
661 } else if (class->usage_mask & lock_flag(bit))
662 c = '-';
663
664 return c;
665 }
666
get_usage_chars(struct lock_class * class,char usage[LOCK_USAGE_CHARS])667 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
668 {
669 int i = 0;
670
671 #define LOCKDEP_STATE(__STATE) \
672 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \
673 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
674 #include "lockdep_states.h"
675 #undef LOCKDEP_STATE
676
677 usage[i] = '\0';
678 }
679
__print_lock_name(struct lock_class * class)680 static void __print_lock_name(struct lock_class *class)
681 {
682 char str[KSYM_NAME_LEN];
683 const char *name;
684
685 name = class->name;
686 if (!name) {
687 name = __get_key_name(class->key, str);
688 printk(KERN_CONT "%s", name);
689 } else {
690 printk(KERN_CONT "%s", name);
691 if (class->name_version > 1)
692 printk(KERN_CONT "#%d", class->name_version);
693 if (class->subclass)
694 printk(KERN_CONT "/%d", class->subclass);
695 }
696 }
697
print_lock_name(struct lock_class * class)698 static void print_lock_name(struct lock_class *class)
699 {
700 char usage[LOCK_USAGE_CHARS];
701
702 get_usage_chars(class, usage);
703
704 printk(KERN_CONT " (");
705 __print_lock_name(class);
706 printk(KERN_CONT "){%s}-{%d:%d}", usage,
707 class->wait_type_outer ?: class->wait_type_inner,
708 class->wait_type_inner);
709 }
710
print_lockdep_cache(struct lockdep_map * lock)711 static void print_lockdep_cache(struct lockdep_map *lock)
712 {
713 const char *name;
714 char str[KSYM_NAME_LEN];
715
716 name = lock->name;
717 if (!name)
718 name = __get_key_name(lock->key->subkeys, str);
719
720 printk(KERN_CONT "%s", name);
721 }
722
print_lock(struct held_lock * hlock)723 static void print_lock(struct held_lock *hlock)
724 {
725 /*
726 * We can be called locklessly through debug_show_all_locks() so be
727 * extra careful, the hlock might have been released and cleared.
728 *
729 * If this indeed happens, lets pretend it does not hurt to continue
730 * to print the lock unless the hlock class_idx does not point to a
731 * registered class. The rationale here is: since we don't attempt
732 * to distinguish whether we are in this situation, if it just
733 * happened we can't count on class_idx to tell either.
734 */
735 struct lock_class *lock = hlock_class(hlock);
736
737 if (!lock) {
738 printk(KERN_CONT "<RELEASED>\n");
739 return;
740 }
741
742 printk(KERN_CONT "%px", hlock->instance);
743 print_lock_name(lock);
744 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
745 }
746
lockdep_print_held_locks(struct task_struct * p)747 static void lockdep_print_held_locks(struct task_struct *p)
748 {
749 int i, depth = READ_ONCE(p->lockdep_depth);
750
751 if (!depth)
752 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
753 else
754 printk("%d lock%s held by %s/%d:\n", depth,
755 depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
756 /*
757 * It's not reliable to print a task's held locks if it's not sleeping
758 * and it's not the current task.
759 */
760 if (p->state == TASK_RUNNING && p != current)
761 return;
762 for (i = 0; i < depth; i++) {
763 printk(" #%d: ", i);
764 print_lock(p->held_locks + i);
765 }
766 }
767
print_kernel_ident(void)768 static void print_kernel_ident(void)
769 {
770 printk("%s %.*s %s\n", init_utsname()->release,
771 (int)strcspn(init_utsname()->version, " "),
772 init_utsname()->version,
773 print_tainted());
774 }
775
very_verbose(struct lock_class * class)776 static int very_verbose(struct lock_class *class)
777 {
778 #if VERY_VERBOSE
779 return class_filter(class);
780 #endif
781 return 0;
782 }
783
784 /*
785 * Is this the address of a static object:
786 */
787 #ifdef __KERNEL__
static_obj(const void * obj)788 static int static_obj(const void *obj)
789 {
790 unsigned long start = (unsigned long) &_stext,
791 end = (unsigned long) &_end,
792 addr = (unsigned long) obj;
793
794 if (arch_is_kernel_initmem_freed(addr))
795 return 0;
796
797 /*
798 * static variable?
799 */
800 if ((addr >= start) && (addr < end))
801 return 1;
802
803 if (arch_is_kernel_data(addr))
804 return 1;
805
806 /*
807 * in-kernel percpu var?
808 */
809 if (is_kernel_percpu_address(addr))
810 return 1;
811
812 /*
813 * module static or percpu var?
814 */
815 return is_module_address(addr) || is_module_percpu_address(addr);
816 }
817 #endif
818
819 /*
820 * To make lock name printouts unique, we calculate a unique
821 * class->name_version generation counter. The caller must hold the graph
822 * lock.
823 */
count_matching_names(struct lock_class * new_class)824 static int count_matching_names(struct lock_class *new_class)
825 {
826 struct lock_class *class;
827 int count = 0;
828
829 if (!new_class->name)
830 return 0;
831
832 list_for_each_entry(class, &all_lock_classes, lock_entry) {
833 if (new_class->key - new_class->subclass == class->key)
834 return class->name_version;
835 if (class->name && !strcmp(class->name, new_class->name))
836 count = max(count, class->name_version);
837 }
838
839 return count + 1;
840 }
841
842 /* used from NMI context -- must be lockless */
843 static noinstr struct lock_class *
look_up_lock_class(const struct lockdep_map * lock,unsigned int subclass)844 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
845 {
846 struct lockdep_subclass_key *key;
847 struct hlist_head *hash_head;
848 struct lock_class *class;
849
850 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
851 instrumentation_begin();
852 debug_locks_off();
853 printk(KERN_ERR
854 "BUG: looking up invalid subclass: %u\n", subclass);
855 printk(KERN_ERR
856 "turning off the locking correctness validator.\n");
857 dump_stack();
858 instrumentation_end();
859 return NULL;
860 }
861
862 /*
863 * If it is not initialised then it has never been locked,
864 * so it won't be present in the hash table.
865 */
866 if (unlikely(!lock->key))
867 return NULL;
868
869 /*
870 * NOTE: the class-key must be unique. For dynamic locks, a static
871 * lock_class_key variable is passed in through the mutex_init()
872 * (or spin_lock_init()) call - which acts as the key. For static
873 * locks we use the lock object itself as the key.
874 */
875 BUILD_BUG_ON(sizeof(struct lock_class_key) >
876 sizeof(struct lockdep_map));
877
878 key = lock->key->subkeys + subclass;
879
880 hash_head = classhashentry(key);
881
882 /*
883 * We do an RCU walk of the hash, see lockdep_free_key_range().
884 */
885 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
886 return NULL;
887
888 hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
889 if (class->key == key) {
890 /*
891 * Huh! same key, different name? Did someone trample
892 * on some memory? We're most confused.
893 */
894 WARN_ON_ONCE(class->name != lock->name &&
895 lock->key != &__lockdep_no_validate__);
896 return class;
897 }
898 }
899
900 return NULL;
901 }
902
903 /*
904 * Static locks do not have their class-keys yet - for them the key is
905 * the lock object itself. If the lock is in the per cpu area, the
906 * canonical address of the lock (per cpu offset removed) is used.
907 */
assign_lock_key(struct lockdep_map * lock)908 static bool assign_lock_key(struct lockdep_map *lock)
909 {
910 unsigned long can_addr, addr = (unsigned long)lock;
911
912 #ifdef __KERNEL__
913 /*
914 * lockdep_free_key_range() assumes that struct lock_class_key
915 * objects do not overlap. Since we use the address of lock
916 * objects as class key for static objects, check whether the
917 * size of lock_class_key objects does not exceed the size of
918 * the smallest lock object.
919 */
920 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
921 #endif
922
923 if (__is_kernel_percpu_address(addr, &can_addr))
924 lock->key = (void *)can_addr;
925 else if (__is_module_percpu_address(addr, &can_addr))
926 lock->key = (void *)can_addr;
927 else if (static_obj(lock))
928 lock->key = (void *)lock;
929 else {
930 /* Debug-check: all keys must be persistent! */
931 debug_locks_off();
932 pr_err("INFO: trying to register non-static key.\n");
933 pr_err("The code is fine but needs lockdep annotation, or maybe\n");
934 pr_err("you didn't initialize this object before use?\n");
935 pr_err("turning off the locking correctness validator.\n");
936 dump_stack();
937 return false;
938 }
939
940 return true;
941 }
942
943 #ifdef CONFIG_DEBUG_LOCKDEP
944
945 /* Check whether element @e occurs in list @h */
in_list(struct list_head * e,struct list_head * h)946 static bool in_list(struct list_head *e, struct list_head *h)
947 {
948 struct list_head *f;
949
950 list_for_each(f, h) {
951 if (e == f)
952 return true;
953 }
954
955 return false;
956 }
957
958 /*
959 * Check whether entry @e occurs in any of the locks_after or locks_before
960 * lists.
961 */
in_any_class_list(struct list_head * e)962 static bool in_any_class_list(struct list_head *e)
963 {
964 struct lock_class *class;
965 int i;
966
967 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
968 class = &lock_classes[i];
969 if (in_list(e, &class->locks_after) ||
970 in_list(e, &class->locks_before))
971 return true;
972 }
973 return false;
974 }
975
class_lock_list_valid(struct lock_class * c,struct list_head * h)976 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
977 {
978 struct lock_list *e;
979
980 list_for_each_entry(e, h, entry) {
981 if (e->links_to != c) {
982 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
983 c->name ? : "(?)",
984 (unsigned long)(e - list_entries),
985 e->links_to && e->links_to->name ?
986 e->links_to->name : "(?)",
987 e->class && e->class->name ? e->class->name :
988 "(?)");
989 return false;
990 }
991 }
992 return true;
993 }
994
995 #ifdef CONFIG_PROVE_LOCKING
996 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
997 #endif
998
check_lock_chain_key(struct lock_chain * chain)999 static bool check_lock_chain_key(struct lock_chain *chain)
1000 {
1001 #ifdef CONFIG_PROVE_LOCKING
1002 u64 chain_key = INITIAL_CHAIN_KEY;
1003 int i;
1004
1005 for (i = chain->base; i < chain->base + chain->depth; i++)
1006 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1007 /*
1008 * The 'unsigned long long' casts avoid that a compiler warning
1009 * is reported when building tools/lib/lockdep.
1010 */
1011 if (chain->chain_key != chain_key) {
1012 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1013 (unsigned long long)(chain - lock_chains),
1014 (unsigned long long)chain->chain_key,
1015 (unsigned long long)chain_key);
1016 return false;
1017 }
1018 #endif
1019 return true;
1020 }
1021
in_any_zapped_class_list(struct lock_class * class)1022 static bool in_any_zapped_class_list(struct lock_class *class)
1023 {
1024 struct pending_free *pf;
1025 int i;
1026
1027 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1028 if (in_list(&class->lock_entry, &pf->zapped))
1029 return true;
1030 }
1031
1032 return false;
1033 }
1034
__check_data_structures(void)1035 static bool __check_data_structures(void)
1036 {
1037 struct lock_class *class;
1038 struct lock_chain *chain;
1039 struct hlist_head *head;
1040 struct lock_list *e;
1041 int i;
1042
1043 /* Check whether all classes occur in a lock list. */
1044 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1045 class = &lock_classes[i];
1046 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1047 !in_list(&class->lock_entry, &free_lock_classes) &&
1048 !in_any_zapped_class_list(class)) {
1049 printk(KERN_INFO "class %px/%s is not in any class list\n",
1050 class, class->name ? : "(?)");
1051 return false;
1052 }
1053 }
1054
1055 /* Check whether all classes have valid lock lists. */
1056 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1057 class = &lock_classes[i];
1058 if (!class_lock_list_valid(class, &class->locks_before))
1059 return false;
1060 if (!class_lock_list_valid(class, &class->locks_after))
1061 return false;
1062 }
1063
1064 /* Check the chain_key of all lock chains. */
1065 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1066 head = chainhash_table + i;
1067 hlist_for_each_entry_rcu(chain, head, entry) {
1068 if (!check_lock_chain_key(chain))
1069 return false;
1070 }
1071 }
1072
1073 /*
1074 * Check whether all list entries that are in use occur in a class
1075 * lock list.
1076 */
1077 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1078 e = list_entries + i;
1079 if (!in_any_class_list(&e->entry)) {
1080 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1081 (unsigned int)(e - list_entries),
1082 e->class->name ? : "(?)",
1083 e->links_to->name ? : "(?)");
1084 return false;
1085 }
1086 }
1087
1088 /*
1089 * Check whether all list entries that are not in use do not occur in
1090 * a class lock list.
1091 */
1092 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1093 e = list_entries + i;
1094 if (in_any_class_list(&e->entry)) {
1095 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1096 (unsigned int)(e - list_entries),
1097 e->class && e->class->name ? e->class->name :
1098 "(?)",
1099 e->links_to && e->links_to->name ?
1100 e->links_to->name : "(?)");
1101 return false;
1102 }
1103 }
1104
1105 return true;
1106 }
1107
1108 int check_consistency = 0;
1109 module_param(check_consistency, int, 0644);
1110
check_data_structures(void)1111 static void check_data_structures(void)
1112 {
1113 static bool once = false;
1114
1115 if (check_consistency && !once) {
1116 if (!__check_data_structures()) {
1117 once = true;
1118 WARN_ON(once);
1119 }
1120 }
1121 }
1122
1123 #else /* CONFIG_DEBUG_LOCKDEP */
1124
check_data_structures(void)1125 static inline void check_data_structures(void) { }
1126
1127 #endif /* CONFIG_DEBUG_LOCKDEP */
1128
1129 static void init_chain_block_buckets(void);
1130
1131 /*
1132 * Initialize the lock_classes[] array elements, the free_lock_classes list
1133 * and also the delayed_free structure.
1134 */
init_data_structures_once(void)1135 static void init_data_structures_once(void)
1136 {
1137 static bool __read_mostly ds_initialized, rcu_head_initialized;
1138 int i;
1139
1140 if (likely(rcu_head_initialized))
1141 return;
1142
1143 if (system_state >= SYSTEM_SCHEDULING) {
1144 init_rcu_head(&delayed_free.rcu_head);
1145 rcu_head_initialized = true;
1146 }
1147
1148 if (ds_initialized)
1149 return;
1150
1151 ds_initialized = true;
1152
1153 INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1154 INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1155
1156 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1157 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1158 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1159 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1160 }
1161 init_chain_block_buckets();
1162 }
1163
keyhashentry(const struct lock_class_key * key)1164 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1165 {
1166 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1167
1168 return lock_keys_hash + hash;
1169 }
1170
1171 /* Register a dynamically allocated key. */
lockdep_register_key(struct lock_class_key * key)1172 void lockdep_register_key(struct lock_class_key *key)
1173 {
1174 struct hlist_head *hash_head;
1175 struct lock_class_key *k;
1176 unsigned long flags;
1177
1178 if (WARN_ON_ONCE(static_obj(key)))
1179 return;
1180 hash_head = keyhashentry(key);
1181
1182 raw_local_irq_save(flags);
1183 if (!graph_lock())
1184 goto restore_irqs;
1185 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1186 if (WARN_ON_ONCE(k == key))
1187 goto out_unlock;
1188 }
1189 hlist_add_head_rcu(&key->hash_entry, hash_head);
1190 out_unlock:
1191 graph_unlock();
1192 restore_irqs:
1193 raw_local_irq_restore(flags);
1194 }
1195 EXPORT_SYMBOL_GPL(lockdep_register_key);
1196
1197 /* Check whether a key has been registered as a dynamic key. */
is_dynamic_key(const struct lock_class_key * key)1198 static bool is_dynamic_key(const struct lock_class_key *key)
1199 {
1200 struct hlist_head *hash_head;
1201 struct lock_class_key *k;
1202 bool found = false;
1203
1204 if (WARN_ON_ONCE(static_obj(key)))
1205 return false;
1206
1207 /*
1208 * If lock debugging is disabled lock_keys_hash[] may contain
1209 * pointers to memory that has already been freed. Avoid triggering
1210 * a use-after-free in that case by returning early.
1211 */
1212 if (!debug_locks)
1213 return true;
1214
1215 hash_head = keyhashentry(key);
1216
1217 rcu_read_lock();
1218 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1219 if (k == key) {
1220 found = true;
1221 break;
1222 }
1223 }
1224 rcu_read_unlock();
1225
1226 return found;
1227 }
1228
1229 /*
1230 * Register a lock's class in the hash-table, if the class is not present
1231 * yet. Otherwise we look it up. We cache the result in the lock object
1232 * itself, so actual lookup of the hash should be once per lock object.
1233 */
1234 static struct lock_class *
register_lock_class(struct lockdep_map * lock,unsigned int subclass,int force)1235 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1236 {
1237 struct lockdep_subclass_key *key;
1238 struct hlist_head *hash_head;
1239 struct lock_class *class;
1240 int idx;
1241
1242 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1243
1244 class = look_up_lock_class(lock, subclass);
1245 if (likely(class))
1246 goto out_set_class_cache;
1247
1248 if (!lock->key) {
1249 if (!assign_lock_key(lock))
1250 return NULL;
1251 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1252 return NULL;
1253 }
1254
1255 key = lock->key->subkeys + subclass;
1256 hash_head = classhashentry(key);
1257
1258 if (!graph_lock()) {
1259 return NULL;
1260 }
1261 /*
1262 * We have to do the hash-walk again, to avoid races
1263 * with another CPU:
1264 */
1265 hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1266 if (class->key == key)
1267 goto out_unlock_set;
1268 }
1269
1270 init_data_structures_once();
1271
1272 /* Allocate a new lock class and add it to the hash. */
1273 class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1274 lock_entry);
1275 if (!class) {
1276 if (!debug_locks_off_graph_unlock()) {
1277 return NULL;
1278 }
1279
1280 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1281 dump_stack();
1282 return NULL;
1283 }
1284 nr_lock_classes++;
1285 __set_bit(class - lock_classes, lock_classes_in_use);
1286 debug_atomic_inc(nr_unused_locks);
1287 class->key = key;
1288 class->name = lock->name;
1289 class->subclass = subclass;
1290 WARN_ON_ONCE(!list_empty(&class->locks_before));
1291 WARN_ON_ONCE(!list_empty(&class->locks_after));
1292 class->name_version = count_matching_names(class);
1293 class->wait_type_inner = lock->wait_type_inner;
1294 class->wait_type_outer = lock->wait_type_outer;
1295 class->lock_type = lock->lock_type;
1296 /*
1297 * We use RCU's safe list-add method to make
1298 * parallel walking of the hash-list safe:
1299 */
1300 hlist_add_head_rcu(&class->hash_entry, hash_head);
1301 /*
1302 * Remove the class from the free list and add it to the global list
1303 * of classes.
1304 */
1305 list_move_tail(&class->lock_entry, &all_lock_classes);
1306 idx = class - lock_classes;
1307 if (idx > max_lock_class_idx)
1308 max_lock_class_idx = idx;
1309
1310 if (verbose(class)) {
1311 graph_unlock();
1312
1313 printk("\nnew class %px: %s", class->key, class->name);
1314 if (class->name_version > 1)
1315 printk(KERN_CONT "#%d", class->name_version);
1316 printk(KERN_CONT "\n");
1317 dump_stack();
1318
1319 if (!graph_lock()) {
1320 return NULL;
1321 }
1322 }
1323 out_unlock_set:
1324 graph_unlock();
1325
1326 out_set_class_cache:
1327 if (!subclass || force)
1328 lock->class_cache[0] = class;
1329 else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1330 lock->class_cache[subclass] = class;
1331
1332 /*
1333 * Hash collision, did we smoke some? We found a class with a matching
1334 * hash but the subclass -- which is hashed in -- didn't match.
1335 */
1336 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1337 return NULL;
1338
1339 return class;
1340 }
1341
1342 #ifdef CONFIG_PROVE_LOCKING
1343 /*
1344 * Allocate a lockdep entry. (assumes the graph_lock held, returns
1345 * with NULL on failure)
1346 */
alloc_list_entry(void)1347 static struct lock_list *alloc_list_entry(void)
1348 {
1349 int idx = find_first_zero_bit(list_entries_in_use,
1350 ARRAY_SIZE(list_entries));
1351
1352 if (idx >= ARRAY_SIZE(list_entries)) {
1353 if (!debug_locks_off_graph_unlock())
1354 return NULL;
1355
1356 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1357 dump_stack();
1358 return NULL;
1359 }
1360 nr_list_entries++;
1361 __set_bit(idx, list_entries_in_use);
1362 return list_entries + idx;
1363 }
1364
1365 /*
1366 * Add a new dependency to the head of the list:
1367 */
add_lock_to_list(struct lock_class * this,struct lock_class * links_to,struct list_head * head,unsigned long ip,u16 distance,u8 dep,const struct lock_trace * trace)1368 static int add_lock_to_list(struct lock_class *this,
1369 struct lock_class *links_to, struct list_head *head,
1370 unsigned long ip, u16 distance, u8 dep,
1371 const struct lock_trace *trace)
1372 {
1373 struct lock_list *entry;
1374 /*
1375 * Lock not present yet - get a new dependency struct and
1376 * add it to the list:
1377 */
1378 entry = alloc_list_entry();
1379 if (!entry)
1380 return 0;
1381
1382 entry->class = this;
1383 entry->links_to = links_to;
1384 entry->dep = dep;
1385 entry->distance = distance;
1386 entry->trace = trace;
1387 /*
1388 * Both allocation and removal are done under the graph lock; but
1389 * iteration is under RCU-sched; see look_up_lock_class() and
1390 * lockdep_free_key_range().
1391 */
1392 list_add_tail_rcu(&entry->entry, head);
1393
1394 return 1;
1395 }
1396
1397 /*
1398 * For good efficiency of modular, we use power of 2
1399 */
1400 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1401 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1)
1402
1403 /*
1404 * The circular_queue and helpers are used to implement graph
1405 * breadth-first search (BFS) algorithm, by which we can determine
1406 * whether there is a path from a lock to another. In deadlock checks,
1407 * a path from the next lock to be acquired to a previous held lock
1408 * indicates that adding the <prev> -> <next> lock dependency will
1409 * produce a circle in the graph. Breadth-first search instead of
1410 * depth-first search is used in order to find the shortest (circular)
1411 * path.
1412 */
1413 struct circular_queue {
1414 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1415 unsigned int front, rear;
1416 };
1417
1418 static struct circular_queue lock_cq;
1419
1420 unsigned int max_bfs_queue_depth;
1421
1422 static unsigned int lockdep_dependency_gen_id;
1423
__cq_init(struct circular_queue * cq)1424 static inline void __cq_init(struct circular_queue *cq)
1425 {
1426 cq->front = cq->rear = 0;
1427 lockdep_dependency_gen_id++;
1428 }
1429
__cq_empty(struct circular_queue * cq)1430 static inline int __cq_empty(struct circular_queue *cq)
1431 {
1432 return (cq->front == cq->rear);
1433 }
1434
__cq_full(struct circular_queue * cq)1435 static inline int __cq_full(struct circular_queue *cq)
1436 {
1437 return ((cq->rear + 1) & CQ_MASK) == cq->front;
1438 }
1439
__cq_enqueue(struct circular_queue * cq,struct lock_list * elem)1440 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1441 {
1442 if (__cq_full(cq))
1443 return -1;
1444
1445 cq->element[cq->rear] = elem;
1446 cq->rear = (cq->rear + 1) & CQ_MASK;
1447 return 0;
1448 }
1449
1450 /*
1451 * Dequeue an element from the circular_queue, return a lock_list if
1452 * the queue is not empty, or NULL if otherwise.
1453 */
__cq_dequeue(struct circular_queue * cq)1454 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1455 {
1456 struct lock_list * lock;
1457
1458 if (__cq_empty(cq))
1459 return NULL;
1460
1461 lock = cq->element[cq->front];
1462 cq->front = (cq->front + 1) & CQ_MASK;
1463
1464 return lock;
1465 }
1466
__cq_get_elem_count(struct circular_queue * cq)1467 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq)
1468 {
1469 return (cq->rear - cq->front) & CQ_MASK;
1470 }
1471
mark_lock_accessed(struct lock_list * lock)1472 static inline void mark_lock_accessed(struct lock_list *lock)
1473 {
1474 lock->class->dep_gen_id = lockdep_dependency_gen_id;
1475 }
1476
visit_lock_entry(struct lock_list * lock,struct lock_list * parent)1477 static inline void visit_lock_entry(struct lock_list *lock,
1478 struct lock_list *parent)
1479 {
1480 lock->parent = parent;
1481 }
1482
lock_accessed(struct lock_list * lock)1483 static inline unsigned long lock_accessed(struct lock_list *lock)
1484 {
1485 return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1486 }
1487
get_lock_parent(struct lock_list * child)1488 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1489 {
1490 return child->parent;
1491 }
1492
get_lock_depth(struct lock_list * child)1493 static inline int get_lock_depth(struct lock_list *child)
1494 {
1495 int depth = 0;
1496 struct lock_list *parent;
1497
1498 while ((parent = get_lock_parent(child))) {
1499 child = parent;
1500 depth++;
1501 }
1502 return depth;
1503 }
1504
1505 /*
1506 * Return the forward or backward dependency list.
1507 *
1508 * @lock: the lock_list to get its class's dependency list
1509 * @offset: the offset to struct lock_class to determine whether it is
1510 * locks_after or locks_before
1511 */
get_dep_list(struct lock_list * lock,int offset)1512 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1513 {
1514 void *lock_class = lock->class;
1515
1516 return lock_class + offset;
1517 }
1518 /*
1519 * Return values of a bfs search:
1520 *
1521 * BFS_E* indicates an error
1522 * BFS_R* indicates a result (match or not)
1523 *
1524 * BFS_EINVALIDNODE: Find a invalid node in the graph.
1525 *
1526 * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1527 *
1528 * BFS_RMATCH: Find the matched node in the graph, and put that node into
1529 * *@target_entry.
1530 *
1531 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1532 * _unchanged_.
1533 */
1534 enum bfs_result {
1535 BFS_EINVALIDNODE = -2,
1536 BFS_EQUEUEFULL = -1,
1537 BFS_RMATCH = 0,
1538 BFS_RNOMATCH = 1,
1539 };
1540
1541 /*
1542 * bfs_result < 0 means error
1543 */
bfs_error(enum bfs_result res)1544 static inline bool bfs_error(enum bfs_result res)
1545 {
1546 return res < 0;
1547 }
1548
1549 /*
1550 * DEP_*_BIT in lock_list::dep
1551 *
1552 * For dependency @prev -> @next:
1553 *
1554 * SR: @prev is shared reader (->read != 0) and @next is recursive reader
1555 * (->read == 2)
1556 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1557 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1558 * EN: @prev is exclusive locker and @next is non-recursive locker
1559 *
1560 * Note that we define the value of DEP_*_BITs so that:
1561 * bit0 is prev->read == 0
1562 * bit1 is next->read != 2
1563 */
1564 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1565 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1566 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1567 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1568
1569 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1570 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1571 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1572 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1573
1574 static inline unsigned int
__calc_dep_bit(struct held_lock * prev,struct held_lock * next)1575 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1576 {
1577 return (prev->read == 0) + ((next->read != 2) << 1);
1578 }
1579
calc_dep(struct held_lock * prev,struct held_lock * next)1580 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1581 {
1582 return 1U << __calc_dep_bit(prev, next);
1583 }
1584
1585 /*
1586 * calculate the dep_bit for backwards edges. We care about whether @prev is
1587 * shared and whether @next is recursive.
1588 */
1589 static inline unsigned int
__calc_dep_bitb(struct held_lock * prev,struct held_lock * next)1590 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1591 {
1592 return (next->read != 2) + ((prev->read == 0) << 1);
1593 }
1594
calc_depb(struct held_lock * prev,struct held_lock * next)1595 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1596 {
1597 return 1U << __calc_dep_bitb(prev, next);
1598 }
1599
1600 /*
1601 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1602 * search.
1603 */
__bfs_init_root(struct lock_list * lock,struct lock_class * class)1604 static inline void __bfs_init_root(struct lock_list *lock,
1605 struct lock_class *class)
1606 {
1607 lock->class = class;
1608 lock->parent = NULL;
1609 lock->only_xr = 0;
1610 }
1611
1612 /*
1613 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1614 * root for a BFS search.
1615 *
1616 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1617 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1618 * and -(S*)->.
1619 */
bfs_init_root(struct lock_list * lock,struct held_lock * hlock)1620 static inline void bfs_init_root(struct lock_list *lock,
1621 struct held_lock *hlock)
1622 {
1623 __bfs_init_root(lock, hlock_class(hlock));
1624 lock->only_xr = (hlock->read == 2);
1625 }
1626
1627 /*
1628 * Similar to bfs_init_root() but initialize the root for backwards BFS.
1629 *
1630 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1631 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1632 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1633 */
bfs_init_rootb(struct lock_list * lock,struct held_lock * hlock)1634 static inline void bfs_init_rootb(struct lock_list *lock,
1635 struct held_lock *hlock)
1636 {
1637 __bfs_init_root(lock, hlock_class(hlock));
1638 lock->only_xr = (hlock->read != 0);
1639 }
1640
__bfs_next(struct lock_list * lock,int offset)1641 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1642 {
1643 if (!lock || !lock->parent)
1644 return NULL;
1645
1646 return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1647 &lock->entry, struct lock_list, entry);
1648 }
1649
1650 /*
1651 * Breadth-First Search to find a strong path in the dependency graph.
1652 *
1653 * @source_entry: the source of the path we are searching for.
1654 * @data: data used for the second parameter of @match function
1655 * @match: match function for the search
1656 * @target_entry: pointer to the target of a matched path
1657 * @offset: the offset to struct lock_class to determine whether it is
1658 * locks_after or locks_before
1659 *
1660 * We may have multiple edges (considering different kinds of dependencies,
1661 * e.g. ER and SN) between two nodes in the dependency graph. But
1662 * only the strong dependency path in the graph is relevant to deadlocks. A
1663 * strong dependency path is a dependency path that doesn't have two adjacent
1664 * dependencies as -(*R)-> -(S*)->, please see:
1665 *
1666 * Documentation/locking/lockdep-design.rst
1667 *
1668 * for more explanation of the definition of strong dependency paths
1669 *
1670 * In __bfs(), we only traverse in the strong dependency path:
1671 *
1672 * In lock_list::only_xr, we record whether the previous dependency only
1673 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1674 * filter out any -(S*)-> in the current dependency and after that, the
1675 * ->only_xr is set according to whether we only have -(*R)-> left.
1676 */
__bfs(struct lock_list * source_entry,void * data,bool (* match)(struct lock_list * entry,void * data),struct lock_list ** target_entry,int offset)1677 static enum bfs_result __bfs(struct lock_list *source_entry,
1678 void *data,
1679 bool (*match)(struct lock_list *entry, void *data),
1680 struct lock_list **target_entry,
1681 int offset)
1682 {
1683 struct circular_queue *cq = &lock_cq;
1684 struct lock_list *lock = NULL;
1685 struct lock_list *entry;
1686 struct list_head *head;
1687 unsigned int cq_depth;
1688 bool first;
1689
1690 lockdep_assert_locked();
1691
1692 __cq_init(cq);
1693 __cq_enqueue(cq, source_entry);
1694
1695 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1696 if (!lock->class)
1697 return BFS_EINVALIDNODE;
1698
1699 /*
1700 * Step 1: check whether we already finish on this one.
1701 *
1702 * If we have visited all the dependencies from this @lock to
1703 * others (iow, if we have visited all lock_list entries in
1704 * @lock->class->locks_{after,before}) we skip, otherwise go
1705 * and visit all the dependencies in the list and mark this
1706 * list accessed.
1707 */
1708 if (lock_accessed(lock))
1709 continue;
1710 else
1711 mark_lock_accessed(lock);
1712
1713 /*
1714 * Step 2: check whether prev dependency and this form a strong
1715 * dependency path.
1716 */
1717 if (lock->parent) { /* Parent exists, check prev dependency */
1718 u8 dep = lock->dep;
1719 bool prev_only_xr = lock->parent->only_xr;
1720
1721 /*
1722 * Mask out all -(S*)-> if we only have *R in previous
1723 * step, because -(*R)-> -(S*)-> don't make up a strong
1724 * dependency.
1725 */
1726 if (prev_only_xr)
1727 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1728
1729 /* If nothing left, we skip */
1730 if (!dep)
1731 continue;
1732
1733 /* If there are only -(*R)-> left, set that for the next step */
1734 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1735 }
1736
1737 /*
1738 * Step 3: we haven't visited this and there is a strong
1739 * dependency path to this, so check with @match.
1740 */
1741 if (match(lock, data)) {
1742 *target_entry = lock;
1743 return BFS_RMATCH;
1744 }
1745
1746 /*
1747 * Step 4: if not match, expand the path by adding the
1748 * forward or backwards dependencis in the search
1749 *
1750 */
1751 first = true;
1752 head = get_dep_list(lock, offset);
1753 list_for_each_entry_rcu(entry, head, entry) {
1754 visit_lock_entry(entry, lock);
1755
1756 /*
1757 * Note we only enqueue the first of the list into the
1758 * queue, because we can always find a sibling
1759 * dependency from one (see __bfs_next()), as a result
1760 * the space of queue is saved.
1761 */
1762 if (!first)
1763 continue;
1764
1765 first = false;
1766
1767 if (__cq_enqueue(cq, entry))
1768 return BFS_EQUEUEFULL;
1769
1770 cq_depth = __cq_get_elem_count(cq);
1771 if (max_bfs_queue_depth < cq_depth)
1772 max_bfs_queue_depth = cq_depth;
1773 }
1774 }
1775
1776 return BFS_RNOMATCH;
1777 }
1778
1779 static inline enum bfs_result
__bfs_forwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1780 __bfs_forwards(struct lock_list *src_entry,
1781 void *data,
1782 bool (*match)(struct lock_list *entry, void *data),
1783 struct lock_list **target_entry)
1784 {
1785 return __bfs(src_entry, data, match, target_entry,
1786 offsetof(struct lock_class, locks_after));
1787
1788 }
1789
1790 static inline enum bfs_result
__bfs_backwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1791 __bfs_backwards(struct lock_list *src_entry,
1792 void *data,
1793 bool (*match)(struct lock_list *entry, void *data),
1794 struct lock_list **target_entry)
1795 {
1796 return __bfs(src_entry, data, match, target_entry,
1797 offsetof(struct lock_class, locks_before));
1798
1799 }
1800
print_lock_trace(const struct lock_trace * trace,unsigned int spaces)1801 static void print_lock_trace(const struct lock_trace *trace,
1802 unsigned int spaces)
1803 {
1804 stack_trace_print(trace->entries, trace->nr_entries, spaces);
1805 }
1806
1807 /*
1808 * Print a dependency chain entry (this is only done when a deadlock
1809 * has been detected):
1810 */
1811 static noinline void
print_circular_bug_entry(struct lock_list * target,int depth)1812 print_circular_bug_entry(struct lock_list *target, int depth)
1813 {
1814 if (debug_locks_silent)
1815 return;
1816 printk("\n-> #%u", depth);
1817 print_lock_name(target->class);
1818 printk(KERN_CONT ":\n");
1819 print_lock_trace(target->trace, 6);
1820 }
1821
1822 static void
print_circular_lock_scenario(struct held_lock * src,struct held_lock * tgt,struct lock_list * prt)1823 print_circular_lock_scenario(struct held_lock *src,
1824 struct held_lock *tgt,
1825 struct lock_list *prt)
1826 {
1827 struct lock_class *source = hlock_class(src);
1828 struct lock_class *target = hlock_class(tgt);
1829 struct lock_class *parent = prt->class;
1830
1831 /*
1832 * A direct locking problem where unsafe_class lock is taken
1833 * directly by safe_class lock, then all we need to show
1834 * is the deadlock scenario, as it is obvious that the
1835 * unsafe lock is taken under the safe lock.
1836 *
1837 * But if there is a chain instead, where the safe lock takes
1838 * an intermediate lock (middle_class) where this lock is
1839 * not the same as the safe lock, then the lock chain is
1840 * used to describe the problem. Otherwise we would need
1841 * to show a different CPU case for each link in the chain
1842 * from the safe_class lock to the unsafe_class lock.
1843 */
1844 if (parent != source) {
1845 printk("Chain exists of:\n ");
1846 __print_lock_name(source);
1847 printk(KERN_CONT " --> ");
1848 __print_lock_name(parent);
1849 printk(KERN_CONT " --> ");
1850 __print_lock_name(target);
1851 printk(KERN_CONT "\n\n");
1852 }
1853
1854 printk(" Possible unsafe locking scenario:\n\n");
1855 printk(" CPU0 CPU1\n");
1856 printk(" ---- ----\n");
1857 printk(" lock(");
1858 __print_lock_name(target);
1859 printk(KERN_CONT ");\n");
1860 printk(" lock(");
1861 __print_lock_name(parent);
1862 printk(KERN_CONT ");\n");
1863 printk(" lock(");
1864 __print_lock_name(target);
1865 printk(KERN_CONT ");\n");
1866 printk(" lock(");
1867 __print_lock_name(source);
1868 printk(KERN_CONT ");\n");
1869 printk("\n *** DEADLOCK ***\n\n");
1870 }
1871
1872 /*
1873 * When a circular dependency is detected, print the
1874 * header first:
1875 */
1876 static noinline void
print_circular_bug_header(struct lock_list * entry,unsigned int depth,struct held_lock * check_src,struct held_lock * check_tgt)1877 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1878 struct held_lock *check_src,
1879 struct held_lock *check_tgt)
1880 {
1881 struct task_struct *curr = current;
1882
1883 if (debug_locks_silent)
1884 return;
1885
1886 pr_warn("\n");
1887 pr_warn("======================================================\n");
1888 pr_warn("WARNING: possible circular locking dependency detected\n");
1889 print_kernel_ident();
1890 pr_warn("------------------------------------------------------\n");
1891 pr_warn("%s/%d is trying to acquire lock:\n",
1892 curr->comm, task_pid_nr(curr));
1893 print_lock(check_src);
1894
1895 pr_warn("\nbut task is already holding lock:\n");
1896
1897 print_lock(check_tgt);
1898 pr_warn("\nwhich lock already depends on the new lock.\n\n");
1899 pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1900
1901 print_circular_bug_entry(entry, depth);
1902 }
1903
1904 /*
1905 * We are about to add A -> B into the dependency graph, and in __bfs() a
1906 * strong dependency path A -> .. -> B is found: hlock_class equals
1907 * entry->class.
1908 *
1909 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1910 * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1911 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1912 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1913 * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1914 * having dependency A -> B, we could already get a equivalent path ..-> A ->
1915 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is reduntant.
1916 *
1917 * We need to make sure both the start and the end of A -> .. -> B is not
1918 * weaker than A -> B. For the start part, please see the comment in
1919 * check_redundant(). For the end part, we need:
1920 *
1921 * Either
1922 *
1923 * a) A -> B is -(*R)-> (everything is not weaker than that)
1924 *
1925 * or
1926 *
1927 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1928 *
1929 */
hlock_equal(struct lock_list * entry,void * data)1930 static inline bool hlock_equal(struct lock_list *entry, void *data)
1931 {
1932 struct held_lock *hlock = (struct held_lock *)data;
1933
1934 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1935 (hlock->read == 2 || /* A -> B is -(*R)-> */
1936 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1937 }
1938
1939 /*
1940 * We are about to add B -> A into the dependency graph, and in __bfs() a
1941 * strong dependency path A -> .. -> B is found: hlock_class equals
1942 * entry->class.
1943 *
1944 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1945 * dependency cycle, that means:
1946 *
1947 * Either
1948 *
1949 * a) B -> A is -(E*)->
1950 *
1951 * or
1952 *
1953 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1954 *
1955 * as then we don't have -(*R)-> -(S*)-> in the cycle.
1956 */
hlock_conflict(struct lock_list * entry,void * data)1957 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1958 {
1959 struct held_lock *hlock = (struct held_lock *)data;
1960
1961 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1962 (hlock->read == 0 || /* B -> A is -(E*)-> */
1963 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1964 }
1965
print_circular_bug(struct lock_list * this,struct lock_list * target,struct held_lock * check_src,struct held_lock * check_tgt)1966 static noinline void print_circular_bug(struct lock_list *this,
1967 struct lock_list *target,
1968 struct held_lock *check_src,
1969 struct held_lock *check_tgt)
1970 {
1971 struct task_struct *curr = current;
1972 struct lock_list *parent;
1973 struct lock_list *first_parent;
1974 int depth;
1975
1976 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1977 return;
1978
1979 this->trace = save_trace();
1980 if (!this->trace)
1981 return;
1982
1983 depth = get_lock_depth(target);
1984
1985 print_circular_bug_header(target, depth, check_src, check_tgt);
1986
1987 parent = get_lock_parent(target);
1988 first_parent = parent;
1989
1990 while (parent) {
1991 print_circular_bug_entry(parent, --depth);
1992 parent = get_lock_parent(parent);
1993 }
1994
1995 printk("\nother info that might help us debug this:\n\n");
1996 print_circular_lock_scenario(check_src, check_tgt,
1997 first_parent);
1998
1999 lockdep_print_held_locks(curr);
2000
2001 printk("\nstack backtrace:\n");
2002 dump_stack();
2003 }
2004
print_bfs_bug(int ret)2005 static noinline void print_bfs_bug(int ret)
2006 {
2007 if (!debug_locks_off_graph_unlock())
2008 return;
2009
2010 /*
2011 * Breadth-first-search failed, graph got corrupted?
2012 */
2013 WARN(1, "lockdep bfs error:%d\n", ret);
2014 }
2015
noop_count(struct lock_list * entry,void * data)2016 static bool noop_count(struct lock_list *entry, void *data)
2017 {
2018 (*(unsigned long *)data)++;
2019 return false;
2020 }
2021
__lockdep_count_forward_deps(struct lock_list * this)2022 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2023 {
2024 unsigned long count = 0;
2025 struct lock_list *target_entry;
2026
2027 __bfs_forwards(this, (void *)&count, noop_count, &target_entry);
2028
2029 return count;
2030 }
lockdep_count_forward_deps(struct lock_class * class)2031 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2032 {
2033 unsigned long ret, flags;
2034 struct lock_list this;
2035
2036 __bfs_init_root(&this, class);
2037
2038 raw_local_irq_save(flags);
2039 lockdep_lock();
2040 ret = __lockdep_count_forward_deps(&this);
2041 lockdep_unlock();
2042 raw_local_irq_restore(flags);
2043
2044 return ret;
2045 }
2046
__lockdep_count_backward_deps(struct lock_list * this)2047 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2048 {
2049 unsigned long count = 0;
2050 struct lock_list *target_entry;
2051
2052 __bfs_backwards(this, (void *)&count, noop_count, &target_entry);
2053
2054 return count;
2055 }
2056
lockdep_count_backward_deps(struct lock_class * class)2057 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2058 {
2059 unsigned long ret, flags;
2060 struct lock_list this;
2061
2062 __bfs_init_root(&this, class);
2063
2064 raw_local_irq_save(flags);
2065 lockdep_lock();
2066 ret = __lockdep_count_backward_deps(&this);
2067 lockdep_unlock();
2068 raw_local_irq_restore(flags);
2069
2070 return ret;
2071 }
2072
2073 /*
2074 * Check that the dependency graph starting at <src> can lead to
2075 * <target> or not.
2076 */
2077 static noinline enum bfs_result
check_path(struct held_lock * target,struct lock_list * src_entry,bool (* match)(struct lock_list * entry,void * data),struct lock_list ** target_entry)2078 check_path(struct held_lock *target, struct lock_list *src_entry,
2079 bool (*match)(struct lock_list *entry, void *data),
2080 struct lock_list **target_entry)
2081 {
2082 enum bfs_result ret;
2083
2084 ret = __bfs_forwards(src_entry, target, match, target_entry);
2085
2086 if (unlikely(bfs_error(ret)))
2087 print_bfs_bug(ret);
2088
2089 return ret;
2090 }
2091
2092 /*
2093 * Prove that the dependency graph starting at <src> can not
2094 * lead to <target>. If it can, there is a circle when adding
2095 * <target> -> <src> dependency.
2096 *
2097 * Print an error and return BFS_RMATCH if it does.
2098 */
2099 static noinline enum bfs_result
check_noncircular(struct held_lock * src,struct held_lock * target,struct lock_trace ** const trace)2100 check_noncircular(struct held_lock *src, struct held_lock *target,
2101 struct lock_trace **const trace)
2102 {
2103 enum bfs_result ret;
2104 struct lock_list *target_entry;
2105 struct lock_list src_entry;
2106
2107 bfs_init_root(&src_entry, src);
2108
2109 debug_atomic_inc(nr_cyclic_checks);
2110
2111 ret = check_path(target, &src_entry, hlock_conflict, &target_entry);
2112
2113 if (unlikely(ret == BFS_RMATCH)) {
2114 if (!*trace) {
2115 /*
2116 * If save_trace fails here, the printing might
2117 * trigger a WARN but because of the !nr_entries it
2118 * should not do bad things.
2119 */
2120 *trace = save_trace();
2121 }
2122
2123 print_circular_bug(&src_entry, target_entry, src, target);
2124 }
2125
2126 return ret;
2127 }
2128
2129 #ifdef CONFIG_LOCKDEP_SMALL
2130 /*
2131 * Check that the dependency graph starting at <src> can lead to
2132 * <target> or not. If it can, <src> -> <target> dependency is already
2133 * in the graph.
2134 *
2135 * Return BFS_RMATCH if it does, or BFS_RMATCH if it does not, return BFS_E* if
2136 * any error appears in the bfs search.
2137 */
2138 static noinline enum bfs_result
check_redundant(struct held_lock * src,struct held_lock * target)2139 check_redundant(struct held_lock *src, struct held_lock *target)
2140 {
2141 enum bfs_result ret;
2142 struct lock_list *target_entry;
2143 struct lock_list src_entry;
2144
2145 bfs_init_root(&src_entry, src);
2146 /*
2147 * Special setup for check_redundant().
2148 *
2149 * To report redundant, we need to find a strong dependency path that
2150 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2151 * we need to let __bfs() only search for a path starting at a -(E*)->,
2152 * we achieve this by setting the initial node's ->only_xr to true in
2153 * that case. And if <prev> is S, we set initial ->only_xr to false
2154 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2155 */
2156 src_entry.only_xr = src->read == 0;
2157
2158 debug_atomic_inc(nr_redundant_checks);
2159
2160 ret = check_path(target, &src_entry, hlock_equal, &target_entry);
2161
2162 if (ret == BFS_RMATCH)
2163 debug_atomic_inc(nr_redundant);
2164
2165 return ret;
2166 }
2167 #endif
2168
2169 #ifdef CONFIG_TRACE_IRQFLAGS
2170
2171 /*
2172 * Forwards and backwards subgraph searching, for the purposes of
2173 * proving that two subgraphs can be connected by a new dependency
2174 * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2175 *
2176 * A irq safe->unsafe deadlock happens with the following conditions:
2177 *
2178 * 1) We have a strong dependency path A -> ... -> B
2179 *
2180 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2181 * irq can create a new dependency B -> A (consider the case that a holder
2182 * of B gets interrupted by an irq whose handler will try to acquire A).
2183 *
2184 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2185 * strong circle:
2186 *
2187 * For the usage bits of B:
2188 * a) if A -> B is -(*N)->, then B -> A could be any type, so any
2189 * ENABLED_IRQ usage suffices.
2190 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2191 * ENABLED_IRQ_*_READ usage suffices.
2192 *
2193 * For the usage bits of A:
2194 * c) if A -> B is -(E*)->, then B -> A could be any type, so any
2195 * USED_IN_IRQ usage suffices.
2196 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2197 * USED_IN_IRQ_*_READ usage suffices.
2198 */
2199
2200 /*
2201 * There is a strong dependency path in the dependency graph: A -> B, and now
2202 * we need to decide which usage bit of A should be accumulated to detect
2203 * safe->unsafe bugs.
2204 *
2205 * Note that usage_accumulate() is used in backwards search, so ->only_xr
2206 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2207 *
2208 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2209 * path, any usage of A should be considered. Otherwise, we should only
2210 * consider _READ usage.
2211 */
usage_accumulate(struct lock_list * entry,void * mask)2212 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2213 {
2214 if (!entry->only_xr)
2215 *(unsigned long *)mask |= entry->class->usage_mask;
2216 else /* Mask out _READ usage bits */
2217 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2218
2219 return false;
2220 }
2221
2222 /*
2223 * There is a strong dependency path in the dependency graph: A -> B, and now
2224 * we need to decide which usage bit of B conflicts with the usage bits of A,
2225 * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2226 *
2227 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2228 * path, any usage of B should be considered. Otherwise, we should only
2229 * consider _READ usage.
2230 */
usage_match(struct lock_list * entry,void * mask)2231 static inline bool usage_match(struct lock_list *entry, void *mask)
2232 {
2233 if (!entry->only_xr)
2234 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2235 else /* Mask out _READ usage bits */
2236 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2237 }
2238
2239 /*
2240 * Find a node in the forwards-direction dependency sub-graph starting
2241 * at @root->class that matches @bit.
2242 *
2243 * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2244 * into *@target_entry.
2245 */
2246 static enum bfs_result
find_usage_forwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2247 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2248 struct lock_list **target_entry)
2249 {
2250 enum bfs_result result;
2251
2252 debug_atomic_inc(nr_find_usage_forwards_checks);
2253
2254 result = __bfs_forwards(root, &usage_mask, usage_match, target_entry);
2255
2256 return result;
2257 }
2258
2259 /*
2260 * Find a node in the backwards-direction dependency sub-graph starting
2261 * at @root->class that matches @bit.
2262 */
2263 static enum bfs_result
find_usage_backwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2264 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2265 struct lock_list **target_entry)
2266 {
2267 enum bfs_result result;
2268
2269 debug_atomic_inc(nr_find_usage_backwards_checks);
2270
2271 result = __bfs_backwards(root, &usage_mask, usage_match, target_entry);
2272
2273 return result;
2274 }
2275
print_lock_class_header(struct lock_class * class,int depth)2276 static void print_lock_class_header(struct lock_class *class, int depth)
2277 {
2278 int bit;
2279
2280 printk("%*s->", depth, "");
2281 print_lock_name(class);
2282 #ifdef CONFIG_DEBUG_LOCKDEP
2283 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2284 #endif
2285 printk(KERN_CONT " {\n");
2286
2287 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2288 if (class->usage_mask & (1 << bit)) {
2289 int len = depth;
2290
2291 len += printk("%*s %s", depth, "", usage_str[bit]);
2292 len += printk(KERN_CONT " at:\n");
2293 print_lock_trace(class->usage_traces[bit], len);
2294 }
2295 }
2296 printk("%*s }\n", depth, "");
2297
2298 printk("%*s ... key at: [<%px>] %pS\n",
2299 depth, "", class->key, class->key);
2300 }
2301
2302 /*
2303 * Dependency path printing:
2304 *
2305 * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2306 * printing out each lock in the dependency path will help on understanding how
2307 * the deadlock could happen. Here are some details about dependency path
2308 * printing:
2309 *
2310 * 1) A lock_list can be either forwards or backwards for a lock dependency,
2311 * for a lock dependency A -> B, there are two lock_lists:
2312 *
2313 * a) lock_list in the ->locks_after list of A, whose ->class is B and
2314 * ->links_to is A. In this case, we can say the lock_list is
2315 * "A -> B" (forwards case).
2316 *
2317 * b) lock_list in the ->locks_before list of B, whose ->class is A
2318 * and ->links_to is B. In this case, we can say the lock_list is
2319 * "B <- A" (bacwards case).
2320 *
2321 * The ->trace of both a) and b) point to the call trace where B was
2322 * acquired with A held.
2323 *
2324 * 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't
2325 * represent a certain lock dependency, it only provides an initial entry
2326 * for BFS. For example, BFS may introduce a "helper" lock_list whose
2327 * ->class is A, as a result BFS will search all dependencies starting with
2328 * A, e.g. A -> B or A -> C.
2329 *
2330 * The notation of a forwards helper lock_list is like "-> A", which means
2331 * we should search the forwards dependencies starting with "A", e.g A -> B
2332 * or A -> C.
2333 *
2334 * The notation of a bacwards helper lock_list is like "<- B", which means
2335 * we should search the backwards dependencies ending with "B", e.g.
2336 * B <- A or B <- C.
2337 */
2338
2339 /*
2340 * printk the shortest lock dependencies from @root to @leaf in reverse order.
2341 *
2342 * We have a lock dependency path as follow:
2343 *
2344 * @root @leaf
2345 * | |
2346 * V V
2347 * ->parent ->parent
2348 * | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list |
2349 * | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln|
2350 *
2351 * , so it's natural that we start from @leaf and print every ->class and
2352 * ->trace until we reach the @root.
2353 */
2354 static void __used
print_shortest_lock_dependencies(struct lock_list * leaf,struct lock_list * root)2355 print_shortest_lock_dependencies(struct lock_list *leaf,
2356 struct lock_list *root)
2357 {
2358 struct lock_list *entry = leaf;
2359 int depth;
2360
2361 /*compute depth from generated tree by BFS*/
2362 depth = get_lock_depth(leaf);
2363
2364 do {
2365 print_lock_class_header(entry->class, depth);
2366 printk("%*s ... acquired at:\n", depth, "");
2367 print_lock_trace(entry->trace, 2);
2368 printk("\n");
2369
2370 if (depth == 0 && (entry != root)) {
2371 printk("lockdep:%s bad path found in chain graph\n", __func__);
2372 break;
2373 }
2374
2375 entry = get_lock_parent(entry);
2376 depth--;
2377 } while (entry && (depth >= 0));
2378 }
2379
2380 /*
2381 * printk the shortest lock dependencies from @leaf to @root.
2382 *
2383 * We have a lock dependency path (from a backwards search) as follow:
2384 *
2385 * @leaf @root
2386 * | |
2387 * V V
2388 * ->parent ->parent
2389 * | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list |
2390 * | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln |
2391 *
2392 * , so when we iterate from @leaf to @root, we actually print the lock
2393 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2394 *
2395 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2396 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2397 * trace of L1 in the dependency path, which is alright, because most of the
2398 * time we can figure out where L1 is held from the call trace of L2.
2399 */
2400 static void __used
print_shortest_lock_dependencies_backwards(struct lock_list * leaf,struct lock_list * root)2401 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2402 struct lock_list *root)
2403 {
2404 struct lock_list *entry = leaf;
2405 const struct lock_trace *trace = NULL;
2406 int depth;
2407
2408 /*compute depth from generated tree by BFS*/
2409 depth = get_lock_depth(leaf);
2410
2411 do {
2412 print_lock_class_header(entry->class, depth);
2413 if (trace) {
2414 printk("%*s ... acquired at:\n", depth, "");
2415 print_lock_trace(trace, 2);
2416 printk("\n");
2417 }
2418
2419 /*
2420 * Record the pointer to the trace for the next lock_list
2421 * entry, see the comments for the function.
2422 */
2423 trace = entry->trace;
2424
2425 if (depth == 0 && (entry != root)) {
2426 printk("lockdep:%s bad path found in chain graph\n", __func__);
2427 break;
2428 }
2429
2430 entry = get_lock_parent(entry);
2431 depth--;
2432 } while (entry && (depth >= 0));
2433 }
2434
2435 static void
print_irq_lock_scenario(struct lock_list * safe_entry,struct lock_list * unsafe_entry,struct lock_class * prev_class,struct lock_class * next_class)2436 print_irq_lock_scenario(struct lock_list *safe_entry,
2437 struct lock_list *unsafe_entry,
2438 struct lock_class *prev_class,
2439 struct lock_class *next_class)
2440 {
2441 struct lock_class *safe_class = safe_entry->class;
2442 struct lock_class *unsafe_class = unsafe_entry->class;
2443 struct lock_class *middle_class = prev_class;
2444
2445 if (middle_class == safe_class)
2446 middle_class = next_class;
2447
2448 /*
2449 * A direct locking problem where unsafe_class lock is taken
2450 * directly by safe_class lock, then all we need to show
2451 * is the deadlock scenario, as it is obvious that the
2452 * unsafe lock is taken under the safe lock.
2453 *
2454 * But if there is a chain instead, where the safe lock takes
2455 * an intermediate lock (middle_class) where this lock is
2456 * not the same as the safe lock, then the lock chain is
2457 * used to describe the problem. Otherwise we would need
2458 * to show a different CPU case for each link in the chain
2459 * from the safe_class lock to the unsafe_class lock.
2460 */
2461 if (middle_class != unsafe_class) {
2462 printk("Chain exists of:\n ");
2463 __print_lock_name(safe_class);
2464 printk(KERN_CONT " --> ");
2465 __print_lock_name(middle_class);
2466 printk(KERN_CONT " --> ");
2467 __print_lock_name(unsafe_class);
2468 printk(KERN_CONT "\n\n");
2469 }
2470
2471 printk(" Possible interrupt unsafe locking scenario:\n\n");
2472 printk(" CPU0 CPU1\n");
2473 printk(" ---- ----\n");
2474 printk(" lock(");
2475 __print_lock_name(unsafe_class);
2476 printk(KERN_CONT ");\n");
2477 printk(" local_irq_disable();\n");
2478 printk(" lock(");
2479 __print_lock_name(safe_class);
2480 printk(KERN_CONT ");\n");
2481 printk(" lock(");
2482 __print_lock_name(middle_class);
2483 printk(KERN_CONT ");\n");
2484 printk(" <Interrupt>\n");
2485 printk(" lock(");
2486 __print_lock_name(safe_class);
2487 printk(KERN_CONT ");\n");
2488 printk("\n *** DEADLOCK ***\n\n");
2489 }
2490
2491 static void
print_bad_irq_dependency(struct task_struct * curr,struct lock_list * prev_root,struct lock_list * next_root,struct lock_list * backwards_entry,struct lock_list * forwards_entry,struct held_lock * prev,struct held_lock * next,enum lock_usage_bit bit1,enum lock_usage_bit bit2,const char * irqclass)2492 print_bad_irq_dependency(struct task_struct *curr,
2493 struct lock_list *prev_root,
2494 struct lock_list *next_root,
2495 struct lock_list *backwards_entry,
2496 struct lock_list *forwards_entry,
2497 struct held_lock *prev,
2498 struct held_lock *next,
2499 enum lock_usage_bit bit1,
2500 enum lock_usage_bit bit2,
2501 const char *irqclass)
2502 {
2503 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2504 return;
2505
2506 pr_warn("\n");
2507 pr_warn("=====================================================\n");
2508 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2509 irqclass, irqclass);
2510 print_kernel_ident();
2511 pr_warn("-----------------------------------------------------\n");
2512 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2513 curr->comm, task_pid_nr(curr),
2514 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2515 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2516 lockdep_hardirqs_enabled(),
2517 curr->softirqs_enabled);
2518 print_lock(next);
2519
2520 pr_warn("\nand this task is already holding:\n");
2521 print_lock(prev);
2522 pr_warn("which would create a new lock dependency:\n");
2523 print_lock_name(hlock_class(prev));
2524 pr_cont(" ->");
2525 print_lock_name(hlock_class(next));
2526 pr_cont("\n");
2527
2528 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2529 irqclass);
2530 print_lock_name(backwards_entry->class);
2531 pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2532
2533 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2534
2535 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2536 print_lock_name(forwards_entry->class);
2537 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2538 pr_warn("...");
2539
2540 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2541
2542 pr_warn("\nother info that might help us debug this:\n\n");
2543 print_irq_lock_scenario(backwards_entry, forwards_entry,
2544 hlock_class(prev), hlock_class(next));
2545
2546 lockdep_print_held_locks(curr);
2547
2548 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2549 prev_root->trace = save_trace();
2550 if (!prev_root->trace)
2551 return;
2552 print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2553
2554 pr_warn("\nthe dependencies between the lock to be acquired");
2555 pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2556 next_root->trace = save_trace();
2557 if (!next_root->trace)
2558 return;
2559 print_shortest_lock_dependencies(forwards_entry, next_root);
2560
2561 pr_warn("\nstack backtrace:\n");
2562 dump_stack();
2563 }
2564
2565 static const char *state_names[] = {
2566 #define LOCKDEP_STATE(__STATE) \
2567 __stringify(__STATE),
2568 #include "lockdep_states.h"
2569 #undef LOCKDEP_STATE
2570 };
2571
2572 static const char *state_rnames[] = {
2573 #define LOCKDEP_STATE(__STATE) \
2574 __stringify(__STATE)"-READ",
2575 #include "lockdep_states.h"
2576 #undef LOCKDEP_STATE
2577 };
2578
state_name(enum lock_usage_bit bit)2579 static inline const char *state_name(enum lock_usage_bit bit)
2580 {
2581 if (bit & LOCK_USAGE_READ_MASK)
2582 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2583 else
2584 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2585 }
2586
2587 /*
2588 * The bit number is encoded like:
2589 *
2590 * bit0: 0 exclusive, 1 read lock
2591 * bit1: 0 used in irq, 1 irq enabled
2592 * bit2-n: state
2593 */
exclusive_bit(int new_bit)2594 static int exclusive_bit(int new_bit)
2595 {
2596 int state = new_bit & LOCK_USAGE_STATE_MASK;
2597 int dir = new_bit & LOCK_USAGE_DIR_MASK;
2598
2599 /*
2600 * keep state, bit flip the direction and strip read.
2601 */
2602 return state | (dir ^ LOCK_USAGE_DIR_MASK);
2603 }
2604
2605 /*
2606 * Observe that when given a bitmask where each bitnr is encoded as above, a
2607 * right shift of the mask transforms the individual bitnrs as -1 and
2608 * conversely, a left shift transforms into +1 for the individual bitnrs.
2609 *
2610 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2611 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2612 * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2613 *
2614 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2615 *
2616 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2617 * all bits set) and recompose with bitnr1 flipped.
2618 */
invert_dir_mask(unsigned long mask)2619 static unsigned long invert_dir_mask(unsigned long mask)
2620 {
2621 unsigned long excl = 0;
2622
2623 /* Invert dir */
2624 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2625 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2626
2627 return excl;
2628 }
2629
2630 /*
2631 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2632 * usage may cause deadlock too, for example:
2633 *
2634 * P1 P2
2635 * <irq disabled>
2636 * write_lock(l1); <irq enabled>
2637 * read_lock(l2);
2638 * write_lock(l2);
2639 * <in irq>
2640 * read_lock(l1);
2641 *
2642 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2643 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2644 * deadlock.
2645 *
2646 * In fact, all of the following cases may cause deadlocks:
2647 *
2648 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2649 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2650 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2651 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2652 *
2653 * As a result, to calculate the "exclusive mask", first we invert the
2654 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2655 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2656 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2657 */
exclusive_mask(unsigned long mask)2658 static unsigned long exclusive_mask(unsigned long mask)
2659 {
2660 unsigned long excl = invert_dir_mask(mask);
2661
2662 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2663 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2664
2665 return excl;
2666 }
2667
2668 /*
2669 * Retrieve the _possible_ original mask to which @mask is
2670 * exclusive. Ie: this is the opposite of exclusive_mask().
2671 * Note that 2 possible original bits can match an exclusive
2672 * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2673 * cleared. So both are returned for each exclusive bit.
2674 */
original_mask(unsigned long mask)2675 static unsigned long original_mask(unsigned long mask)
2676 {
2677 unsigned long excl = invert_dir_mask(mask);
2678
2679 /* Include read in existing usages */
2680 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2681 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2682
2683 return excl;
2684 }
2685
2686 /*
2687 * Find the first pair of bit match between an original
2688 * usage mask and an exclusive usage mask.
2689 */
find_exclusive_match(unsigned long mask,unsigned long excl_mask,enum lock_usage_bit * bitp,enum lock_usage_bit * excl_bitp)2690 static int find_exclusive_match(unsigned long mask,
2691 unsigned long excl_mask,
2692 enum lock_usage_bit *bitp,
2693 enum lock_usage_bit *excl_bitp)
2694 {
2695 int bit, excl, excl_read;
2696
2697 for_each_set_bit(bit, &mask, LOCK_USED) {
2698 /*
2699 * exclusive_bit() strips the read bit, however,
2700 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2701 * to search excl | LOCK_USAGE_READ_MASK as well.
2702 */
2703 excl = exclusive_bit(bit);
2704 excl_read = excl | LOCK_USAGE_READ_MASK;
2705 if (excl_mask & lock_flag(excl)) {
2706 *bitp = bit;
2707 *excl_bitp = excl;
2708 return 0;
2709 } else if (excl_mask & lock_flag(excl_read)) {
2710 *bitp = bit;
2711 *excl_bitp = excl_read;
2712 return 0;
2713 }
2714 }
2715 return -1;
2716 }
2717
2718 /*
2719 * Prove that the new dependency does not connect a hardirq-safe(-read)
2720 * lock with a hardirq-unsafe lock - to achieve this we search
2721 * the backwards-subgraph starting at <prev>, and the
2722 * forwards-subgraph starting at <next>:
2723 */
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2724 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2725 struct held_lock *next)
2726 {
2727 unsigned long usage_mask = 0, forward_mask, backward_mask;
2728 enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2729 struct lock_list *target_entry1;
2730 struct lock_list *target_entry;
2731 struct lock_list this, that;
2732 enum bfs_result ret;
2733
2734 /*
2735 * Step 1: gather all hard/soft IRQs usages backward in an
2736 * accumulated usage mask.
2737 */
2738 bfs_init_rootb(&this, prev);
2739
2740 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, NULL);
2741 if (bfs_error(ret)) {
2742 print_bfs_bug(ret);
2743 return 0;
2744 }
2745
2746 usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2747 if (!usage_mask)
2748 return 1;
2749
2750 /*
2751 * Step 2: find exclusive uses forward that match the previous
2752 * backward accumulated mask.
2753 */
2754 forward_mask = exclusive_mask(usage_mask);
2755
2756 bfs_init_root(&that, next);
2757
2758 ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2759 if (bfs_error(ret)) {
2760 print_bfs_bug(ret);
2761 return 0;
2762 }
2763 if (ret == BFS_RNOMATCH)
2764 return 1;
2765
2766 /*
2767 * Step 3: we found a bad match! Now retrieve a lock from the backward
2768 * list whose usage mask matches the exclusive usage mask from the
2769 * lock found on the forward list.
2770 *
2771 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2772 * the follow case:
2773 *
2774 * When trying to add A -> B to the graph, we find that there is a
2775 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2776 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2777 * invert bits of M's usage_mask, we will find another lock N that is
2778 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2779 * cause a inversion deadlock.
2780 */
2781 backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2782
2783 ret = find_usage_backwards(&this, backward_mask, &target_entry);
2784 if (bfs_error(ret)) {
2785 print_bfs_bug(ret);
2786 return 0;
2787 }
2788 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2789 return 1;
2790
2791 /*
2792 * Step 4: narrow down to a pair of incompatible usage bits
2793 * and report it.
2794 */
2795 ret = find_exclusive_match(target_entry->class->usage_mask,
2796 target_entry1->class->usage_mask,
2797 &backward_bit, &forward_bit);
2798 if (DEBUG_LOCKS_WARN_ON(ret == -1))
2799 return 1;
2800
2801 print_bad_irq_dependency(curr, &this, &that,
2802 target_entry, target_entry1,
2803 prev, next,
2804 backward_bit, forward_bit,
2805 state_name(backward_bit));
2806
2807 return 0;
2808 }
2809
2810 #else
2811
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2812 static inline int check_irq_usage(struct task_struct *curr,
2813 struct held_lock *prev, struct held_lock *next)
2814 {
2815 return 1;
2816 }
2817 #endif /* CONFIG_TRACE_IRQFLAGS */
2818
inc_chains(int irq_context)2819 static void inc_chains(int irq_context)
2820 {
2821 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2822 nr_hardirq_chains++;
2823 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2824 nr_softirq_chains++;
2825 else
2826 nr_process_chains++;
2827 }
2828
dec_chains(int irq_context)2829 static void dec_chains(int irq_context)
2830 {
2831 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2832 nr_hardirq_chains--;
2833 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2834 nr_softirq_chains--;
2835 else
2836 nr_process_chains--;
2837 }
2838
2839 static void
print_deadlock_scenario(struct held_lock * nxt,struct held_lock * prv)2840 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2841 {
2842 struct lock_class *next = hlock_class(nxt);
2843 struct lock_class *prev = hlock_class(prv);
2844
2845 printk(" Possible unsafe locking scenario:\n\n");
2846 printk(" CPU0\n");
2847 printk(" ----\n");
2848 printk(" lock(");
2849 __print_lock_name(prev);
2850 printk(KERN_CONT ");\n");
2851 printk(" lock(");
2852 __print_lock_name(next);
2853 printk(KERN_CONT ");\n");
2854 printk("\n *** DEADLOCK ***\n\n");
2855 printk(" May be due to missing lock nesting notation\n\n");
2856 }
2857
2858 static void
print_deadlock_bug(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2859 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2860 struct held_lock *next)
2861 {
2862 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2863 return;
2864
2865 pr_warn("\n");
2866 pr_warn("============================================\n");
2867 pr_warn("WARNING: possible recursive locking detected\n");
2868 print_kernel_ident();
2869 pr_warn("--------------------------------------------\n");
2870 pr_warn("%s/%d is trying to acquire lock:\n",
2871 curr->comm, task_pid_nr(curr));
2872 print_lock(next);
2873 pr_warn("\nbut task is already holding lock:\n");
2874 print_lock(prev);
2875
2876 pr_warn("\nother info that might help us debug this:\n");
2877 print_deadlock_scenario(next, prev);
2878 lockdep_print_held_locks(curr);
2879
2880 pr_warn("\nstack backtrace:\n");
2881 dump_stack();
2882 }
2883
2884 /*
2885 * Check whether we are holding such a class already.
2886 *
2887 * (Note that this has to be done separately, because the graph cannot
2888 * detect such classes of deadlocks.)
2889 *
2890 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2891 * lock class is held but nest_lock is also held, i.e. we rely on the
2892 * nest_lock to avoid the deadlock.
2893 */
2894 static int
check_deadlock(struct task_struct * curr,struct held_lock * next)2895 check_deadlock(struct task_struct *curr, struct held_lock *next)
2896 {
2897 struct held_lock *prev;
2898 struct held_lock *nest = NULL;
2899 int i;
2900
2901 for (i = 0; i < curr->lockdep_depth; i++) {
2902 prev = curr->held_locks + i;
2903
2904 if (prev->instance == next->nest_lock)
2905 nest = prev;
2906
2907 if (hlock_class(prev) != hlock_class(next))
2908 continue;
2909
2910 /*
2911 * Allow read-after-read recursion of the same
2912 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2913 */
2914 if ((next->read == 2) && prev->read)
2915 continue;
2916
2917 /*
2918 * We're holding the nest_lock, which serializes this lock's
2919 * nesting behaviour.
2920 */
2921 if (nest)
2922 return 2;
2923
2924 print_deadlock_bug(curr, prev, next);
2925 return 0;
2926 }
2927 return 1;
2928 }
2929
2930 /*
2931 * There was a chain-cache miss, and we are about to add a new dependency
2932 * to a previous lock. We validate the following rules:
2933 *
2934 * - would the adding of the <prev> -> <next> dependency create a
2935 * circular dependency in the graph? [== circular deadlock]
2936 *
2937 * - does the new prev->next dependency connect any hardirq-safe lock
2938 * (in the full backwards-subgraph starting at <prev>) with any
2939 * hardirq-unsafe lock (in the full forwards-subgraph starting at
2940 * <next>)? [== illegal lock inversion with hardirq contexts]
2941 *
2942 * - does the new prev->next dependency connect any softirq-safe lock
2943 * (in the full backwards-subgraph starting at <prev>) with any
2944 * softirq-unsafe lock (in the full forwards-subgraph starting at
2945 * <next>)? [== illegal lock inversion with softirq contexts]
2946 *
2947 * any of these scenarios could lead to a deadlock.
2948 *
2949 * Then if all the validations pass, we add the forwards and backwards
2950 * dependency.
2951 */
2952 static int
check_prev_add(struct task_struct * curr,struct held_lock * prev,struct held_lock * next,u16 distance,struct lock_trace ** const trace)2953 check_prev_add(struct task_struct *curr, struct held_lock *prev,
2954 struct held_lock *next, u16 distance,
2955 struct lock_trace **const trace)
2956 {
2957 struct lock_list *entry;
2958 enum bfs_result ret;
2959
2960 if (!hlock_class(prev)->key || !hlock_class(next)->key) {
2961 /*
2962 * The warning statements below may trigger a use-after-free
2963 * of the class name. It is better to trigger a use-after free
2964 * and to have the class name most of the time instead of not
2965 * having the class name available.
2966 */
2967 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
2968 "Detected use-after-free of lock class %px/%s\n",
2969 hlock_class(prev),
2970 hlock_class(prev)->name);
2971 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
2972 "Detected use-after-free of lock class %px/%s\n",
2973 hlock_class(next),
2974 hlock_class(next)->name);
2975 return 2;
2976 }
2977
2978 /*
2979 * Prove that the new <prev> -> <next> dependency would not
2980 * create a circular dependency in the graph. (We do this by
2981 * a breadth-first search into the graph starting at <next>,
2982 * and check whether we can reach <prev>.)
2983 *
2984 * The search is limited by the size of the circular queue (i.e.,
2985 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
2986 * in the graph whose neighbours are to be checked.
2987 */
2988 ret = check_noncircular(next, prev, trace);
2989 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
2990 return 0;
2991
2992 if (!check_irq_usage(curr, prev, next))
2993 return 0;
2994
2995 /*
2996 * Is the <prev> -> <next> dependency already present?
2997 *
2998 * (this may occur even though this is a new chain: consider
2999 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3000 * chains - the second one will be new, but L1 already has
3001 * L2 added to its dependency list, due to the first chain.)
3002 */
3003 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3004 if (entry->class == hlock_class(next)) {
3005 if (distance == 1)
3006 entry->distance = 1;
3007 entry->dep |= calc_dep(prev, next);
3008
3009 /*
3010 * Also, update the reverse dependency in @next's
3011 * ->locks_before list.
3012 *
3013 * Here we reuse @entry as the cursor, which is fine
3014 * because we won't go to the next iteration of the
3015 * outer loop:
3016 *
3017 * For normal cases, we return in the inner loop.
3018 *
3019 * If we fail to return, we have inconsistency, i.e.
3020 * <prev>::locks_after contains <next> while
3021 * <next>::locks_before doesn't contain <prev>. In
3022 * that case, we return after the inner and indicate
3023 * something is wrong.
3024 */
3025 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3026 if (entry->class == hlock_class(prev)) {
3027 if (distance == 1)
3028 entry->distance = 1;
3029 entry->dep |= calc_depb(prev, next);
3030 return 1;
3031 }
3032 }
3033
3034 /* <prev> is not found in <next>::locks_before */
3035 return 0;
3036 }
3037 }
3038
3039 #ifdef CONFIG_LOCKDEP_SMALL
3040 /*
3041 * Is the <prev> -> <next> link redundant?
3042 */
3043 ret = check_redundant(prev, next);
3044 if (bfs_error(ret))
3045 return 0;
3046 else if (ret == BFS_RMATCH)
3047 return 2;
3048 #endif
3049
3050 if (!*trace) {
3051 *trace = save_trace();
3052 if (!*trace)
3053 return 0;
3054 }
3055
3056 /*
3057 * Ok, all validations passed, add the new lock
3058 * to the previous lock's dependency list:
3059 */
3060 ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3061 &hlock_class(prev)->locks_after,
3062 next->acquire_ip, distance,
3063 calc_dep(prev, next),
3064 *trace);
3065
3066 if (!ret)
3067 return 0;
3068
3069 ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3070 &hlock_class(next)->locks_before,
3071 next->acquire_ip, distance,
3072 calc_depb(prev, next),
3073 *trace);
3074 if (!ret)
3075 return 0;
3076
3077 return 2;
3078 }
3079
3080 /*
3081 * Add the dependency to all directly-previous locks that are 'relevant'.
3082 * The ones that are relevant are (in increasing distance from curr):
3083 * all consecutive trylock entries and the final non-trylock entry - or
3084 * the end of this context's lock-chain - whichever comes first.
3085 */
3086 static int
check_prevs_add(struct task_struct * curr,struct held_lock * next)3087 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3088 {
3089 struct lock_trace *trace = NULL;
3090 int depth = curr->lockdep_depth;
3091 struct held_lock *hlock;
3092
3093 /*
3094 * Debugging checks.
3095 *
3096 * Depth must not be zero for a non-head lock:
3097 */
3098 if (!depth)
3099 goto out_bug;
3100 /*
3101 * At least two relevant locks must exist for this
3102 * to be a head:
3103 */
3104 if (curr->held_locks[depth].irq_context !=
3105 curr->held_locks[depth-1].irq_context)
3106 goto out_bug;
3107
3108 for (;;) {
3109 u16 distance = curr->lockdep_depth - depth + 1;
3110 hlock = curr->held_locks + depth - 1;
3111
3112 if (hlock->check) {
3113 int ret = check_prev_add(curr, hlock, next, distance, &trace);
3114 if (!ret)
3115 return 0;
3116
3117 /*
3118 * Stop after the first non-trylock entry,
3119 * as non-trylock entries have added their
3120 * own direct dependencies already, so this
3121 * lock is connected to them indirectly:
3122 */
3123 if (!hlock->trylock)
3124 break;
3125 }
3126
3127 depth--;
3128 /*
3129 * End of lock-stack?
3130 */
3131 if (!depth)
3132 break;
3133 /*
3134 * Stop the search if we cross into another context:
3135 */
3136 if (curr->held_locks[depth].irq_context !=
3137 curr->held_locks[depth-1].irq_context)
3138 break;
3139 }
3140 return 1;
3141 out_bug:
3142 if (!debug_locks_off_graph_unlock())
3143 return 0;
3144
3145 /*
3146 * Clearly we all shouldn't be here, but since we made it we
3147 * can reliable say we messed up our state. See the above two
3148 * gotos for reasons why we could possibly end up here.
3149 */
3150 WARN_ON(1);
3151
3152 return 0;
3153 }
3154
3155 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3156 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3157 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3158 unsigned long nr_zapped_lock_chains;
3159 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */
3160 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */
3161 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */
3162
3163 /*
3164 * The first 2 chain_hlocks entries in the chain block in the bucket
3165 * list contains the following meta data:
3166 *
3167 * entry[0]:
3168 * Bit 15 - always set to 1 (it is not a class index)
3169 * Bits 0-14 - upper 15 bits of the next block index
3170 * entry[1] - lower 16 bits of next block index
3171 *
3172 * A next block index of all 1 bits means it is the end of the list.
3173 *
3174 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3175 * the chain block size:
3176 *
3177 * entry[2] - upper 16 bits of the chain block size
3178 * entry[3] - lower 16 bits of the chain block size
3179 */
3180 #define MAX_CHAIN_BUCKETS 16
3181 #define CHAIN_BLK_FLAG (1U << 15)
3182 #define CHAIN_BLK_LIST_END 0xFFFFU
3183
3184 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3185
size_to_bucket(int size)3186 static inline int size_to_bucket(int size)
3187 {
3188 if (size > MAX_CHAIN_BUCKETS)
3189 return 0;
3190
3191 return size - 1;
3192 }
3193
3194 /*
3195 * Iterate all the chain blocks in a bucket.
3196 */
3197 #define for_each_chain_block(bucket, prev, curr) \
3198 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3199 (curr) >= 0; \
3200 (prev) = (curr), (curr) = chain_block_next(curr))
3201
3202 /*
3203 * next block or -1
3204 */
chain_block_next(int offset)3205 static inline int chain_block_next(int offset)
3206 {
3207 int next = chain_hlocks[offset];
3208
3209 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3210
3211 if (next == CHAIN_BLK_LIST_END)
3212 return -1;
3213
3214 next &= ~CHAIN_BLK_FLAG;
3215 next <<= 16;
3216 next |= chain_hlocks[offset + 1];
3217
3218 return next;
3219 }
3220
3221 /*
3222 * bucket-0 only
3223 */
chain_block_size(int offset)3224 static inline int chain_block_size(int offset)
3225 {
3226 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3227 }
3228
init_chain_block(int offset,int next,int bucket,int size)3229 static inline void init_chain_block(int offset, int next, int bucket, int size)
3230 {
3231 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3232 chain_hlocks[offset + 1] = (u16)next;
3233
3234 if (size && !bucket) {
3235 chain_hlocks[offset + 2] = size >> 16;
3236 chain_hlocks[offset + 3] = (u16)size;
3237 }
3238 }
3239
add_chain_block(int offset,int size)3240 static inline void add_chain_block(int offset, int size)
3241 {
3242 int bucket = size_to_bucket(size);
3243 int next = chain_block_buckets[bucket];
3244 int prev, curr;
3245
3246 if (unlikely(size < 2)) {
3247 /*
3248 * We can't store single entries on the freelist. Leak them.
3249 *
3250 * One possible way out would be to uniquely mark them, other
3251 * than with CHAIN_BLK_FLAG, such that we can recover them when
3252 * the block before it is re-added.
3253 */
3254 if (size)
3255 nr_lost_chain_hlocks++;
3256 return;
3257 }
3258
3259 nr_free_chain_hlocks += size;
3260 if (!bucket) {
3261 nr_large_chain_blocks++;
3262
3263 /*
3264 * Variable sized, sort large to small.
3265 */
3266 for_each_chain_block(0, prev, curr) {
3267 if (size >= chain_block_size(curr))
3268 break;
3269 }
3270 init_chain_block(offset, curr, 0, size);
3271 if (prev < 0)
3272 chain_block_buckets[0] = offset;
3273 else
3274 init_chain_block(prev, offset, 0, 0);
3275 return;
3276 }
3277 /*
3278 * Fixed size, add to head.
3279 */
3280 init_chain_block(offset, next, bucket, size);
3281 chain_block_buckets[bucket] = offset;
3282 }
3283
3284 /*
3285 * Only the first block in the list can be deleted.
3286 *
3287 * For the variable size bucket[0], the first block (the largest one) is
3288 * returned, broken up and put back into the pool. So if a chain block of
3289 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3290 * queued up after the primordial chain block and never be used until the
3291 * hlock entries in the primordial chain block is almost used up. That
3292 * causes fragmentation and reduce allocation efficiency. That can be
3293 * monitored by looking at the "large chain blocks" number in lockdep_stats.
3294 */
del_chain_block(int bucket,int size,int next)3295 static inline void del_chain_block(int bucket, int size, int next)
3296 {
3297 nr_free_chain_hlocks -= size;
3298 chain_block_buckets[bucket] = next;
3299
3300 if (!bucket)
3301 nr_large_chain_blocks--;
3302 }
3303
init_chain_block_buckets(void)3304 static void init_chain_block_buckets(void)
3305 {
3306 int i;
3307
3308 for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3309 chain_block_buckets[i] = -1;
3310
3311 add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3312 }
3313
3314 /*
3315 * Return offset of a chain block of the right size or -1 if not found.
3316 *
3317 * Fairly simple worst-fit allocator with the addition of a number of size
3318 * specific free lists.
3319 */
alloc_chain_hlocks(int req)3320 static int alloc_chain_hlocks(int req)
3321 {
3322 int bucket, curr, size;
3323
3324 /*
3325 * We rely on the MSB to act as an escape bit to denote freelist
3326 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3327 */
3328 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3329
3330 init_data_structures_once();
3331
3332 if (nr_free_chain_hlocks < req)
3333 return -1;
3334
3335 /*
3336 * We require a minimum of 2 (u16) entries to encode a freelist
3337 * 'pointer'.
3338 */
3339 req = max(req, 2);
3340 bucket = size_to_bucket(req);
3341 curr = chain_block_buckets[bucket];
3342
3343 if (bucket) {
3344 if (curr >= 0) {
3345 del_chain_block(bucket, req, chain_block_next(curr));
3346 return curr;
3347 }
3348 /* Try bucket 0 */
3349 curr = chain_block_buckets[0];
3350 }
3351
3352 /*
3353 * The variable sized freelist is sorted by size; the first entry is
3354 * the largest. Use it if it fits.
3355 */
3356 if (curr >= 0) {
3357 size = chain_block_size(curr);
3358 if (likely(size >= req)) {
3359 del_chain_block(0, size, chain_block_next(curr));
3360 add_chain_block(curr + req, size - req);
3361 return curr;
3362 }
3363 }
3364
3365 /*
3366 * Last resort, split a block in a larger sized bucket.
3367 */
3368 for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3369 bucket = size_to_bucket(size);
3370 curr = chain_block_buckets[bucket];
3371 if (curr < 0)
3372 continue;
3373
3374 del_chain_block(bucket, size, chain_block_next(curr));
3375 add_chain_block(curr + req, size - req);
3376 return curr;
3377 }
3378
3379 return -1;
3380 }
3381
free_chain_hlocks(int base,int size)3382 static inline void free_chain_hlocks(int base, int size)
3383 {
3384 add_chain_block(base, max(size, 2));
3385 }
3386
lock_chain_get_class(struct lock_chain * chain,int i)3387 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3388 {
3389 u16 chain_hlock = chain_hlocks[chain->base + i];
3390 unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3391
3392 return lock_classes + class_idx;
3393 }
3394
3395 /*
3396 * Returns the index of the first held_lock of the current chain
3397 */
get_first_held_lock(struct task_struct * curr,struct held_lock * hlock)3398 static inline int get_first_held_lock(struct task_struct *curr,
3399 struct held_lock *hlock)
3400 {
3401 int i;
3402 struct held_lock *hlock_curr;
3403
3404 for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3405 hlock_curr = curr->held_locks + i;
3406 if (hlock_curr->irq_context != hlock->irq_context)
3407 break;
3408
3409 }
3410
3411 return ++i;
3412 }
3413
3414 #ifdef CONFIG_DEBUG_LOCKDEP
3415 /*
3416 * Returns the next chain_key iteration
3417 */
print_chain_key_iteration(u16 hlock_id,u64 chain_key)3418 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3419 {
3420 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3421
3422 printk(" hlock_id:%d -> chain_key:%016Lx",
3423 (unsigned int)hlock_id,
3424 (unsigned long long)new_chain_key);
3425 return new_chain_key;
3426 }
3427
3428 static void
print_chain_keys_held_locks(struct task_struct * curr,struct held_lock * hlock_next)3429 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3430 {
3431 struct held_lock *hlock;
3432 u64 chain_key = INITIAL_CHAIN_KEY;
3433 int depth = curr->lockdep_depth;
3434 int i = get_first_held_lock(curr, hlock_next);
3435
3436 printk("depth: %u (irq_context %u)\n", depth - i + 1,
3437 hlock_next->irq_context);
3438 for (; i < depth; i++) {
3439 hlock = curr->held_locks + i;
3440 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3441
3442 print_lock(hlock);
3443 }
3444
3445 print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3446 print_lock(hlock_next);
3447 }
3448
print_chain_keys_chain(struct lock_chain * chain)3449 static void print_chain_keys_chain(struct lock_chain *chain)
3450 {
3451 int i;
3452 u64 chain_key = INITIAL_CHAIN_KEY;
3453 u16 hlock_id;
3454
3455 printk("depth: %u\n", chain->depth);
3456 for (i = 0; i < chain->depth; i++) {
3457 hlock_id = chain_hlocks[chain->base + i];
3458 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3459
3460 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id));
3461 printk("\n");
3462 }
3463 }
3464
print_collision(struct task_struct * curr,struct held_lock * hlock_next,struct lock_chain * chain)3465 static void print_collision(struct task_struct *curr,
3466 struct held_lock *hlock_next,
3467 struct lock_chain *chain)
3468 {
3469 pr_warn("\n");
3470 pr_warn("============================\n");
3471 pr_warn("WARNING: chain_key collision\n");
3472 print_kernel_ident();
3473 pr_warn("----------------------------\n");
3474 pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3475 pr_warn("Hash chain already cached but the contents don't match!\n");
3476
3477 pr_warn("Held locks:");
3478 print_chain_keys_held_locks(curr, hlock_next);
3479
3480 pr_warn("Locks in cached chain:");
3481 print_chain_keys_chain(chain);
3482
3483 pr_warn("\nstack backtrace:\n");
3484 dump_stack();
3485 }
3486 #endif
3487
3488 /*
3489 * Checks whether the chain and the current held locks are consistent
3490 * in depth and also in content. If they are not it most likely means
3491 * that there was a collision during the calculation of the chain_key.
3492 * Returns: 0 not passed, 1 passed
3493 */
check_no_collision(struct task_struct * curr,struct held_lock * hlock,struct lock_chain * chain)3494 static int check_no_collision(struct task_struct *curr,
3495 struct held_lock *hlock,
3496 struct lock_chain *chain)
3497 {
3498 #ifdef CONFIG_DEBUG_LOCKDEP
3499 int i, j, id;
3500
3501 i = get_first_held_lock(curr, hlock);
3502
3503 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3504 print_collision(curr, hlock, chain);
3505 return 0;
3506 }
3507
3508 for (j = 0; j < chain->depth - 1; j++, i++) {
3509 id = hlock_id(&curr->held_locks[i]);
3510
3511 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3512 print_collision(curr, hlock, chain);
3513 return 0;
3514 }
3515 }
3516 #endif
3517 return 1;
3518 }
3519
3520 /*
3521 * Given an index that is >= -1, return the index of the next lock chain.
3522 * Return -2 if there is no next lock chain.
3523 */
lockdep_next_lockchain(long i)3524 long lockdep_next_lockchain(long i)
3525 {
3526 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3527 return i < ARRAY_SIZE(lock_chains) ? i : -2;
3528 }
3529
lock_chain_count(void)3530 unsigned long lock_chain_count(void)
3531 {
3532 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3533 }
3534
3535 /* Must be called with the graph lock held. */
alloc_lock_chain(void)3536 static struct lock_chain *alloc_lock_chain(void)
3537 {
3538 int idx = find_first_zero_bit(lock_chains_in_use,
3539 ARRAY_SIZE(lock_chains));
3540
3541 if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3542 return NULL;
3543 __set_bit(idx, lock_chains_in_use);
3544 return lock_chains + idx;
3545 }
3546
3547 /*
3548 * Adds a dependency chain into chain hashtable. And must be called with
3549 * graph_lock held.
3550 *
3551 * Return 0 if fail, and graph_lock is released.
3552 * Return 1 if succeed, with graph_lock held.
3553 */
add_chain_cache(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3554 static inline int add_chain_cache(struct task_struct *curr,
3555 struct held_lock *hlock,
3556 u64 chain_key)
3557 {
3558 struct hlist_head *hash_head = chainhashentry(chain_key);
3559 struct lock_chain *chain;
3560 int i, j;
3561
3562 /*
3563 * The caller must hold the graph lock, ensure we've got IRQs
3564 * disabled to make this an IRQ-safe lock.. for recursion reasons
3565 * lockdep won't complain about its own locking errors.
3566 */
3567 if (lockdep_assert_locked())
3568 return 0;
3569
3570 chain = alloc_lock_chain();
3571 if (!chain) {
3572 if (!debug_locks_off_graph_unlock())
3573 return 0;
3574
3575 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3576 dump_stack();
3577 return 0;
3578 }
3579 chain->chain_key = chain_key;
3580 chain->irq_context = hlock->irq_context;
3581 i = get_first_held_lock(curr, hlock);
3582 chain->depth = curr->lockdep_depth + 1 - i;
3583
3584 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3585 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks));
3586 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3587
3588 j = alloc_chain_hlocks(chain->depth);
3589 if (j < 0) {
3590 if (!debug_locks_off_graph_unlock())
3591 return 0;
3592
3593 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3594 dump_stack();
3595 return 0;
3596 }
3597
3598 chain->base = j;
3599 for (j = 0; j < chain->depth - 1; j++, i++) {
3600 int lock_id = hlock_id(curr->held_locks + i);
3601
3602 chain_hlocks[chain->base + j] = lock_id;
3603 }
3604 chain_hlocks[chain->base + j] = hlock_id(hlock);
3605 hlist_add_head_rcu(&chain->entry, hash_head);
3606 debug_atomic_inc(chain_lookup_misses);
3607 inc_chains(chain->irq_context);
3608
3609 return 1;
3610 }
3611
3612 /*
3613 * Look up a dependency chain. Must be called with either the graph lock or
3614 * the RCU read lock held.
3615 */
lookup_chain_cache(u64 chain_key)3616 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3617 {
3618 struct hlist_head *hash_head = chainhashentry(chain_key);
3619 struct lock_chain *chain;
3620
3621 hlist_for_each_entry_rcu(chain, hash_head, entry) {
3622 if (READ_ONCE(chain->chain_key) == chain_key) {
3623 debug_atomic_inc(chain_lookup_hits);
3624 return chain;
3625 }
3626 }
3627 return NULL;
3628 }
3629
3630 /*
3631 * If the key is not present yet in dependency chain cache then
3632 * add it and return 1 - in this case the new dependency chain is
3633 * validated. If the key is already hashed, return 0.
3634 * (On return with 1 graph_lock is held.)
3635 */
lookup_chain_cache_add(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3636 static inline int lookup_chain_cache_add(struct task_struct *curr,
3637 struct held_lock *hlock,
3638 u64 chain_key)
3639 {
3640 struct lock_class *class = hlock_class(hlock);
3641 struct lock_chain *chain = lookup_chain_cache(chain_key);
3642
3643 if (chain) {
3644 cache_hit:
3645 if (!check_no_collision(curr, hlock, chain))
3646 return 0;
3647
3648 if (very_verbose(class)) {
3649 printk("\nhash chain already cached, key: "
3650 "%016Lx tail class: [%px] %s\n",
3651 (unsigned long long)chain_key,
3652 class->key, class->name);
3653 }
3654
3655 return 0;
3656 }
3657
3658 if (very_verbose(class)) {
3659 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3660 (unsigned long long)chain_key, class->key, class->name);
3661 }
3662
3663 if (!graph_lock())
3664 return 0;
3665
3666 /*
3667 * We have to walk the chain again locked - to avoid duplicates:
3668 */
3669 chain = lookup_chain_cache(chain_key);
3670 if (chain) {
3671 graph_unlock();
3672 goto cache_hit;
3673 }
3674
3675 if (!add_chain_cache(curr, hlock, chain_key))
3676 return 0;
3677
3678 return 1;
3679 }
3680
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3681 static int validate_chain(struct task_struct *curr,
3682 struct held_lock *hlock,
3683 int chain_head, u64 chain_key)
3684 {
3685 /*
3686 * Trylock needs to maintain the stack of held locks, but it
3687 * does not add new dependencies, because trylock can be done
3688 * in any order.
3689 *
3690 * We look up the chain_key and do the O(N^2) check and update of
3691 * the dependencies only if this is a new dependency chain.
3692 * (If lookup_chain_cache_add() return with 1 it acquires
3693 * graph_lock for us)
3694 */
3695 if (!hlock->trylock && hlock->check &&
3696 lookup_chain_cache_add(curr, hlock, chain_key)) {
3697 /*
3698 * Check whether last held lock:
3699 *
3700 * - is irq-safe, if this lock is irq-unsafe
3701 * - is softirq-safe, if this lock is hardirq-unsafe
3702 *
3703 * And check whether the new lock's dependency graph
3704 * could lead back to the previous lock:
3705 *
3706 * - within the current held-lock stack
3707 * - across our accumulated lock dependency records
3708 *
3709 * any of these scenarios could lead to a deadlock.
3710 */
3711 /*
3712 * The simple case: does the current hold the same lock
3713 * already?
3714 */
3715 int ret = check_deadlock(curr, hlock);
3716
3717 if (!ret)
3718 return 0;
3719 /*
3720 * Add dependency only if this lock is not the head
3721 * of the chain, and if the new lock introduces no more
3722 * lock dependency (because we already hold a lock with the
3723 * same lock class) nor deadlock (because the nest_lock
3724 * serializes nesting locks), see the comments for
3725 * check_deadlock().
3726 */
3727 if (!chain_head && ret != 2) {
3728 if (!check_prevs_add(curr, hlock))
3729 return 0;
3730 }
3731
3732 graph_unlock();
3733 } else {
3734 /* after lookup_chain_cache_add(): */
3735 if (unlikely(!debug_locks))
3736 return 0;
3737 }
3738
3739 return 1;
3740 }
3741 #else
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3742 static inline int validate_chain(struct task_struct *curr,
3743 struct held_lock *hlock,
3744 int chain_head, u64 chain_key)
3745 {
3746 return 1;
3747 }
3748
init_chain_block_buckets(void)3749 static void init_chain_block_buckets(void) { }
3750 #endif /* CONFIG_PROVE_LOCKING */
3751
3752 /*
3753 * We are building curr_chain_key incrementally, so double-check
3754 * it from scratch, to make sure that it's done correctly:
3755 */
check_chain_key(struct task_struct * curr)3756 static void check_chain_key(struct task_struct *curr)
3757 {
3758 #ifdef CONFIG_DEBUG_LOCKDEP
3759 struct held_lock *hlock, *prev_hlock = NULL;
3760 unsigned int i;
3761 u64 chain_key = INITIAL_CHAIN_KEY;
3762
3763 for (i = 0; i < curr->lockdep_depth; i++) {
3764 hlock = curr->held_locks + i;
3765 if (chain_key != hlock->prev_chain_key) {
3766 debug_locks_off();
3767 /*
3768 * We got mighty confused, our chain keys don't match
3769 * with what we expect, someone trample on our task state?
3770 */
3771 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3772 curr->lockdep_depth, i,
3773 (unsigned long long)chain_key,
3774 (unsigned long long)hlock->prev_chain_key);
3775 return;
3776 }
3777
3778 /*
3779 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3780 * it registered lock class index?
3781 */
3782 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3783 return;
3784
3785 if (prev_hlock && (prev_hlock->irq_context !=
3786 hlock->irq_context))
3787 chain_key = INITIAL_CHAIN_KEY;
3788 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3789 prev_hlock = hlock;
3790 }
3791 if (chain_key != curr->curr_chain_key) {
3792 debug_locks_off();
3793 /*
3794 * More smoking hash instead of calculating it, damn see these
3795 * numbers float.. I bet that a pink elephant stepped on my memory.
3796 */
3797 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3798 curr->lockdep_depth, i,
3799 (unsigned long long)chain_key,
3800 (unsigned long long)curr->curr_chain_key);
3801 }
3802 #endif
3803 }
3804
3805 #ifdef CONFIG_PROVE_LOCKING
3806 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3807 enum lock_usage_bit new_bit);
3808
print_usage_bug_scenario(struct held_lock * lock)3809 static void print_usage_bug_scenario(struct held_lock *lock)
3810 {
3811 struct lock_class *class = hlock_class(lock);
3812
3813 printk(" Possible unsafe locking scenario:\n\n");
3814 printk(" CPU0\n");
3815 printk(" ----\n");
3816 printk(" lock(");
3817 __print_lock_name(class);
3818 printk(KERN_CONT ");\n");
3819 printk(" <Interrupt>\n");
3820 printk(" lock(");
3821 __print_lock_name(class);
3822 printk(KERN_CONT ");\n");
3823 printk("\n *** DEADLOCK ***\n\n");
3824 }
3825
3826 static void
print_usage_bug(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit prev_bit,enum lock_usage_bit new_bit)3827 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3828 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3829 {
3830 if (!debug_locks_off() || debug_locks_silent)
3831 return;
3832
3833 pr_warn("\n");
3834 pr_warn("================================\n");
3835 pr_warn("WARNING: inconsistent lock state\n");
3836 print_kernel_ident();
3837 pr_warn("--------------------------------\n");
3838
3839 pr_warn("inconsistent {%s} -> {%s} usage.\n",
3840 usage_str[prev_bit], usage_str[new_bit]);
3841
3842 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3843 curr->comm, task_pid_nr(curr),
3844 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3845 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3846 lockdep_hardirqs_enabled(),
3847 lockdep_softirqs_enabled(curr));
3848 print_lock(this);
3849
3850 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3851 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3852
3853 print_irqtrace_events(curr);
3854 pr_warn("\nother info that might help us debug this:\n");
3855 print_usage_bug_scenario(this);
3856
3857 lockdep_print_held_locks(curr);
3858
3859 pr_warn("\nstack backtrace:\n");
3860 dump_stack();
3861 }
3862
3863 /*
3864 * Print out an error if an invalid bit is set:
3865 */
3866 static inline int
valid_state(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit,enum lock_usage_bit bad_bit)3867 valid_state(struct task_struct *curr, struct held_lock *this,
3868 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3869 {
3870 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3871 graph_unlock();
3872 print_usage_bug(curr, this, bad_bit, new_bit);
3873 return 0;
3874 }
3875 return 1;
3876 }
3877
3878
3879 /*
3880 * print irq inversion bug:
3881 */
3882 static void
print_irq_inversion_bug(struct task_struct * curr,struct lock_list * root,struct lock_list * other,struct held_lock * this,int forwards,const char * irqclass)3883 print_irq_inversion_bug(struct task_struct *curr,
3884 struct lock_list *root, struct lock_list *other,
3885 struct held_lock *this, int forwards,
3886 const char *irqclass)
3887 {
3888 struct lock_list *entry = other;
3889 struct lock_list *middle = NULL;
3890 int depth;
3891
3892 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3893 return;
3894
3895 pr_warn("\n");
3896 pr_warn("========================================================\n");
3897 pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3898 print_kernel_ident();
3899 pr_warn("--------------------------------------------------------\n");
3900 pr_warn("%s/%d just changed the state of lock:\n",
3901 curr->comm, task_pid_nr(curr));
3902 print_lock(this);
3903 if (forwards)
3904 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3905 else
3906 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3907 print_lock_name(other->class);
3908 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3909
3910 pr_warn("\nother info that might help us debug this:\n");
3911
3912 /* Find a middle lock (if one exists) */
3913 depth = get_lock_depth(other);
3914 do {
3915 if (depth == 0 && (entry != root)) {
3916 pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3917 break;
3918 }
3919 middle = entry;
3920 entry = get_lock_parent(entry);
3921 depth--;
3922 } while (entry && entry != root && (depth >= 0));
3923 if (forwards)
3924 print_irq_lock_scenario(root, other,
3925 middle ? middle->class : root->class, other->class);
3926 else
3927 print_irq_lock_scenario(other, root,
3928 middle ? middle->class : other->class, root->class);
3929
3930 lockdep_print_held_locks(curr);
3931
3932 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3933 root->trace = save_trace();
3934 if (!root->trace)
3935 return;
3936 print_shortest_lock_dependencies(other, root);
3937
3938 pr_warn("\nstack backtrace:\n");
3939 dump_stack();
3940 }
3941
3942 /*
3943 * Prove that in the forwards-direction subgraph starting at <this>
3944 * there is no lock matching <mask>:
3945 */
3946 static int
check_usage_forwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)3947 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
3948 enum lock_usage_bit bit)
3949 {
3950 enum bfs_result ret;
3951 struct lock_list root;
3952 struct lock_list *target_entry;
3953 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3954 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3955
3956 bfs_init_root(&root, this);
3957 ret = find_usage_forwards(&root, usage_mask, &target_entry);
3958 if (bfs_error(ret)) {
3959 print_bfs_bug(ret);
3960 return 0;
3961 }
3962 if (ret == BFS_RNOMATCH)
3963 return 1;
3964
3965 /* Check whether write or read usage is the match */
3966 if (target_entry->class->usage_mask & lock_flag(bit)) {
3967 print_irq_inversion_bug(curr, &root, target_entry,
3968 this, 1, state_name(bit));
3969 } else {
3970 print_irq_inversion_bug(curr, &root, target_entry,
3971 this, 1, state_name(read_bit));
3972 }
3973
3974 return 0;
3975 }
3976
3977 /*
3978 * Prove that in the backwards-direction subgraph starting at <this>
3979 * there is no lock matching <mask>:
3980 */
3981 static int
check_usage_backwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)3982 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
3983 enum lock_usage_bit bit)
3984 {
3985 enum bfs_result ret;
3986 struct lock_list root;
3987 struct lock_list *target_entry;
3988 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3989 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3990
3991 bfs_init_rootb(&root, this);
3992 ret = find_usage_backwards(&root, usage_mask, &target_entry);
3993 if (bfs_error(ret)) {
3994 print_bfs_bug(ret);
3995 return 0;
3996 }
3997 if (ret == BFS_RNOMATCH)
3998 return 1;
3999
4000 /* Check whether write or read usage is the match */
4001 if (target_entry->class->usage_mask & lock_flag(bit)) {
4002 print_irq_inversion_bug(curr, &root, target_entry,
4003 this, 0, state_name(bit));
4004 } else {
4005 print_irq_inversion_bug(curr, &root, target_entry,
4006 this, 0, state_name(read_bit));
4007 }
4008
4009 return 0;
4010 }
4011
print_irqtrace_events(struct task_struct * curr)4012 void print_irqtrace_events(struct task_struct *curr)
4013 {
4014 const struct irqtrace_events *trace = &curr->irqtrace;
4015
4016 printk("irq event stamp: %u\n", trace->irq_events);
4017 printk("hardirqs last enabled at (%u): [<%px>] %pS\n",
4018 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4019 (void *)trace->hardirq_enable_ip);
4020 printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4021 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4022 (void *)trace->hardirq_disable_ip);
4023 printk("softirqs last enabled at (%u): [<%px>] %pS\n",
4024 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4025 (void *)trace->softirq_enable_ip);
4026 printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4027 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4028 (void *)trace->softirq_disable_ip);
4029 }
4030
HARDIRQ_verbose(struct lock_class * class)4031 static int HARDIRQ_verbose(struct lock_class *class)
4032 {
4033 #if HARDIRQ_VERBOSE
4034 return class_filter(class);
4035 #endif
4036 return 0;
4037 }
4038
SOFTIRQ_verbose(struct lock_class * class)4039 static int SOFTIRQ_verbose(struct lock_class *class)
4040 {
4041 #if SOFTIRQ_VERBOSE
4042 return class_filter(class);
4043 #endif
4044 return 0;
4045 }
4046
4047 static int (*state_verbose_f[])(struct lock_class *class) = {
4048 #define LOCKDEP_STATE(__STATE) \
4049 __STATE##_verbose,
4050 #include "lockdep_states.h"
4051 #undef LOCKDEP_STATE
4052 };
4053
state_verbose(enum lock_usage_bit bit,struct lock_class * class)4054 static inline int state_verbose(enum lock_usage_bit bit,
4055 struct lock_class *class)
4056 {
4057 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4058 }
4059
4060 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4061 enum lock_usage_bit bit, const char *name);
4062
4063 static int
mark_lock_irq(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4064 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4065 enum lock_usage_bit new_bit)
4066 {
4067 int excl_bit = exclusive_bit(new_bit);
4068 int read = new_bit & LOCK_USAGE_READ_MASK;
4069 int dir = new_bit & LOCK_USAGE_DIR_MASK;
4070
4071 /*
4072 * Validate that this particular lock does not have conflicting
4073 * usage states.
4074 */
4075 if (!valid_state(curr, this, new_bit, excl_bit))
4076 return 0;
4077
4078 /*
4079 * Check for read in write conflicts
4080 */
4081 if (!read && !valid_state(curr, this, new_bit,
4082 excl_bit + LOCK_USAGE_READ_MASK))
4083 return 0;
4084
4085
4086 /*
4087 * Validate that the lock dependencies don't have conflicting usage
4088 * states.
4089 */
4090 if (dir) {
4091 /*
4092 * mark ENABLED has to look backwards -- to ensure no dependee
4093 * has USED_IN state, which, again, would allow recursion deadlocks.
4094 */
4095 if (!check_usage_backwards(curr, this, excl_bit))
4096 return 0;
4097 } else {
4098 /*
4099 * mark USED_IN has to look forwards -- to ensure no dependency
4100 * has ENABLED state, which would allow recursion deadlocks.
4101 */
4102 if (!check_usage_forwards(curr, this, excl_bit))
4103 return 0;
4104 }
4105
4106 if (state_verbose(new_bit, hlock_class(this)))
4107 return 2;
4108
4109 return 1;
4110 }
4111
4112 /*
4113 * Mark all held locks with a usage bit:
4114 */
4115 static int
mark_held_locks(struct task_struct * curr,enum lock_usage_bit base_bit)4116 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4117 {
4118 struct held_lock *hlock;
4119 int i;
4120
4121 for (i = 0; i < curr->lockdep_depth; i++) {
4122 enum lock_usage_bit hlock_bit = base_bit;
4123 hlock = curr->held_locks + i;
4124
4125 if (hlock->read)
4126 hlock_bit += LOCK_USAGE_READ_MASK;
4127
4128 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4129
4130 if (!hlock->check)
4131 continue;
4132
4133 if (!mark_lock(curr, hlock, hlock_bit))
4134 return 0;
4135 }
4136
4137 return 1;
4138 }
4139
4140 /*
4141 * Hardirqs will be enabled:
4142 */
__trace_hardirqs_on_caller(void)4143 static void __trace_hardirqs_on_caller(void)
4144 {
4145 struct task_struct *curr = current;
4146
4147 /*
4148 * We are going to turn hardirqs on, so set the
4149 * usage bit for all held locks:
4150 */
4151 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4152 return;
4153 /*
4154 * If we have softirqs enabled, then set the usage
4155 * bit for all held locks. (disabled hardirqs prevented
4156 * this bit from being set before)
4157 */
4158 if (curr->softirqs_enabled)
4159 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4160 }
4161
4162 /**
4163 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4164 * @ip: Caller address
4165 *
4166 * Invoked before a possible transition to RCU idle from exit to user or
4167 * guest mode. This ensures that all RCU operations are done before RCU
4168 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4169 * invoked to set the final state.
4170 */
lockdep_hardirqs_on_prepare(unsigned long ip)4171 void lockdep_hardirqs_on_prepare(unsigned long ip)
4172 {
4173 if (unlikely(!debug_locks))
4174 return;
4175
4176 /*
4177 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4178 */
4179 if (unlikely(in_nmi()))
4180 return;
4181
4182 if (unlikely(this_cpu_read(lockdep_recursion)))
4183 return;
4184
4185 if (unlikely(lockdep_hardirqs_enabled())) {
4186 /*
4187 * Neither irq nor preemption are disabled here
4188 * so this is racy by nature but losing one hit
4189 * in a stat is not a big deal.
4190 */
4191 __debug_atomic_inc(redundant_hardirqs_on);
4192 return;
4193 }
4194
4195 /*
4196 * We're enabling irqs and according to our state above irqs weren't
4197 * already enabled, yet we find the hardware thinks they are in fact
4198 * enabled.. someone messed up their IRQ state tracing.
4199 */
4200 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4201 return;
4202
4203 /*
4204 * See the fine text that goes along with this variable definition.
4205 */
4206 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4207 return;
4208
4209 /*
4210 * Can't allow enabling interrupts while in an interrupt handler,
4211 * that's general bad form and such. Recursion, limited stack etc..
4212 */
4213 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4214 return;
4215
4216 current->hardirq_chain_key = current->curr_chain_key;
4217
4218 lockdep_recursion_inc();
4219 __trace_hardirqs_on_caller();
4220 lockdep_recursion_finish();
4221 }
4222 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4223
lockdep_hardirqs_on(unsigned long ip)4224 void noinstr lockdep_hardirqs_on(unsigned long ip)
4225 {
4226 struct irqtrace_events *trace = ¤t->irqtrace;
4227
4228 if (unlikely(!debug_locks))
4229 return;
4230
4231 /*
4232 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4233 * tracking state and hardware state are out of sync.
4234 *
4235 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4236 * and not rely on hardware state like normal interrupts.
4237 */
4238 if (unlikely(in_nmi())) {
4239 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4240 return;
4241
4242 /*
4243 * Skip:
4244 * - recursion check, because NMI can hit lockdep;
4245 * - hardware state check, because above;
4246 * - chain_key check, see lockdep_hardirqs_on_prepare().
4247 */
4248 goto skip_checks;
4249 }
4250
4251 if (unlikely(this_cpu_read(lockdep_recursion)))
4252 return;
4253
4254 if (lockdep_hardirqs_enabled()) {
4255 /*
4256 * Neither irq nor preemption are disabled here
4257 * so this is racy by nature but losing one hit
4258 * in a stat is not a big deal.
4259 */
4260 __debug_atomic_inc(redundant_hardirqs_on);
4261 return;
4262 }
4263
4264 /*
4265 * We're enabling irqs and according to our state above irqs weren't
4266 * already enabled, yet we find the hardware thinks they are in fact
4267 * enabled.. someone messed up their IRQ state tracing.
4268 */
4269 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4270 return;
4271
4272 /*
4273 * Ensure the lock stack remained unchanged between
4274 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4275 */
4276 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4277 current->curr_chain_key);
4278
4279 skip_checks:
4280 /* we'll do an OFF -> ON transition: */
4281 __this_cpu_write(hardirqs_enabled, 1);
4282 trace->hardirq_enable_ip = ip;
4283 trace->hardirq_enable_event = ++trace->irq_events;
4284 debug_atomic_inc(hardirqs_on_events);
4285 }
4286 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4287
4288 /*
4289 * Hardirqs were disabled:
4290 */
lockdep_hardirqs_off(unsigned long ip)4291 void noinstr lockdep_hardirqs_off(unsigned long ip)
4292 {
4293 if (unlikely(!debug_locks))
4294 return;
4295
4296 /*
4297 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4298 * they will restore the software state. This ensures the software
4299 * state is consistent inside NMIs as well.
4300 */
4301 if (in_nmi()) {
4302 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4303 return;
4304 } else if (__this_cpu_read(lockdep_recursion))
4305 return;
4306
4307 /*
4308 * So we're supposed to get called after you mask local IRQs, but for
4309 * some reason the hardware doesn't quite think you did a proper job.
4310 */
4311 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4312 return;
4313
4314 if (lockdep_hardirqs_enabled()) {
4315 struct irqtrace_events *trace = ¤t->irqtrace;
4316
4317 /*
4318 * We have done an ON -> OFF transition:
4319 */
4320 __this_cpu_write(hardirqs_enabled, 0);
4321 trace->hardirq_disable_ip = ip;
4322 trace->hardirq_disable_event = ++trace->irq_events;
4323 debug_atomic_inc(hardirqs_off_events);
4324 } else {
4325 debug_atomic_inc(redundant_hardirqs_off);
4326 }
4327 }
4328 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4329
4330 /*
4331 * Softirqs will be enabled:
4332 */
lockdep_softirqs_on(unsigned long ip)4333 void lockdep_softirqs_on(unsigned long ip)
4334 {
4335 struct irqtrace_events *trace = ¤t->irqtrace;
4336
4337 if (unlikely(!lockdep_enabled()))
4338 return;
4339
4340 /*
4341 * We fancy IRQs being disabled here, see softirq.c, avoids
4342 * funny state and nesting things.
4343 */
4344 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4345 return;
4346
4347 if (current->softirqs_enabled) {
4348 debug_atomic_inc(redundant_softirqs_on);
4349 return;
4350 }
4351
4352 lockdep_recursion_inc();
4353 /*
4354 * We'll do an OFF -> ON transition:
4355 */
4356 current->softirqs_enabled = 1;
4357 trace->softirq_enable_ip = ip;
4358 trace->softirq_enable_event = ++trace->irq_events;
4359 debug_atomic_inc(softirqs_on_events);
4360 /*
4361 * We are going to turn softirqs on, so set the
4362 * usage bit for all held locks, if hardirqs are
4363 * enabled too:
4364 */
4365 if (lockdep_hardirqs_enabled())
4366 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4367 lockdep_recursion_finish();
4368 }
4369
4370 /*
4371 * Softirqs were disabled:
4372 */
lockdep_softirqs_off(unsigned long ip)4373 void lockdep_softirqs_off(unsigned long ip)
4374 {
4375 if (unlikely(!lockdep_enabled()))
4376 return;
4377
4378 /*
4379 * We fancy IRQs being disabled here, see softirq.c
4380 */
4381 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4382 return;
4383
4384 if (current->softirqs_enabled) {
4385 struct irqtrace_events *trace = ¤t->irqtrace;
4386
4387 /*
4388 * We have done an ON -> OFF transition:
4389 */
4390 current->softirqs_enabled = 0;
4391 trace->softirq_disable_ip = ip;
4392 trace->softirq_disable_event = ++trace->irq_events;
4393 debug_atomic_inc(softirqs_off_events);
4394 /*
4395 * Whoops, we wanted softirqs off, so why aren't they?
4396 */
4397 DEBUG_LOCKS_WARN_ON(!softirq_count());
4398 } else
4399 debug_atomic_inc(redundant_softirqs_off);
4400 }
4401
4402 static int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4403 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4404 {
4405 if (!check)
4406 goto lock_used;
4407
4408 /*
4409 * If non-trylock use in a hardirq or softirq context, then
4410 * mark the lock as used in these contexts:
4411 */
4412 if (!hlock->trylock) {
4413 if (hlock->read) {
4414 if (lockdep_hardirq_context())
4415 if (!mark_lock(curr, hlock,
4416 LOCK_USED_IN_HARDIRQ_READ))
4417 return 0;
4418 if (curr->softirq_context)
4419 if (!mark_lock(curr, hlock,
4420 LOCK_USED_IN_SOFTIRQ_READ))
4421 return 0;
4422 } else {
4423 if (lockdep_hardirq_context())
4424 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4425 return 0;
4426 if (curr->softirq_context)
4427 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4428 return 0;
4429 }
4430 }
4431 if (!hlock->hardirqs_off) {
4432 if (hlock->read) {
4433 if (!mark_lock(curr, hlock,
4434 LOCK_ENABLED_HARDIRQ_READ))
4435 return 0;
4436 if (curr->softirqs_enabled)
4437 if (!mark_lock(curr, hlock,
4438 LOCK_ENABLED_SOFTIRQ_READ))
4439 return 0;
4440 } else {
4441 if (!mark_lock(curr, hlock,
4442 LOCK_ENABLED_HARDIRQ))
4443 return 0;
4444 if (curr->softirqs_enabled)
4445 if (!mark_lock(curr, hlock,
4446 LOCK_ENABLED_SOFTIRQ))
4447 return 0;
4448 }
4449 }
4450
4451 lock_used:
4452 /* mark it as used: */
4453 if (!mark_lock(curr, hlock, LOCK_USED))
4454 return 0;
4455
4456 return 1;
4457 }
4458
task_irq_context(struct task_struct * task)4459 static inline unsigned int task_irq_context(struct task_struct *task)
4460 {
4461 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4462 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4463 }
4464
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4465 static int separate_irq_context(struct task_struct *curr,
4466 struct held_lock *hlock)
4467 {
4468 unsigned int depth = curr->lockdep_depth;
4469
4470 /*
4471 * Keep track of points where we cross into an interrupt context:
4472 */
4473 if (depth) {
4474 struct held_lock *prev_hlock;
4475
4476 prev_hlock = curr->held_locks + depth-1;
4477 /*
4478 * If we cross into another context, reset the
4479 * hash key (this also prevents the checking and the
4480 * adding of the dependency to 'prev'):
4481 */
4482 if (prev_hlock->irq_context != hlock->irq_context)
4483 return 1;
4484 }
4485 return 0;
4486 }
4487
4488 /*
4489 * Mark a lock with a usage bit, and validate the state transition:
4490 */
mark_lock(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4491 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4492 enum lock_usage_bit new_bit)
4493 {
4494 unsigned int new_mask, ret = 1;
4495
4496 if (new_bit >= LOCK_USAGE_STATES) {
4497 DEBUG_LOCKS_WARN_ON(1);
4498 return 0;
4499 }
4500
4501 if (new_bit == LOCK_USED && this->read)
4502 new_bit = LOCK_USED_READ;
4503
4504 new_mask = 1 << new_bit;
4505
4506 /*
4507 * If already set then do not dirty the cacheline,
4508 * nor do any checks:
4509 */
4510 if (likely(hlock_class(this)->usage_mask & new_mask))
4511 return 1;
4512
4513 if (!graph_lock())
4514 return 0;
4515 /*
4516 * Make sure we didn't race:
4517 */
4518 if (unlikely(hlock_class(this)->usage_mask & new_mask))
4519 goto unlock;
4520
4521 if (!hlock_class(this)->usage_mask)
4522 debug_atomic_dec(nr_unused_locks);
4523
4524 hlock_class(this)->usage_mask |= new_mask;
4525
4526 if (new_bit < LOCK_TRACE_STATES) {
4527 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4528 return 0;
4529 }
4530
4531 if (new_bit < LOCK_USED) {
4532 ret = mark_lock_irq(curr, this, new_bit);
4533 if (!ret)
4534 return 0;
4535 }
4536
4537 unlock:
4538 graph_unlock();
4539
4540 /*
4541 * We must printk outside of the graph_lock:
4542 */
4543 if (ret == 2) {
4544 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4545 print_lock(this);
4546 print_irqtrace_events(curr);
4547 dump_stack();
4548 }
4549
4550 return ret;
4551 }
4552
task_wait_context(struct task_struct * curr)4553 static inline short task_wait_context(struct task_struct *curr)
4554 {
4555 /*
4556 * Set appropriate wait type for the context; for IRQs we have to take
4557 * into account force_irqthread as that is implied by PREEMPT_RT.
4558 */
4559 if (lockdep_hardirq_context()) {
4560 /*
4561 * Check if force_irqthreads will run us threaded.
4562 */
4563 if (curr->hardirq_threaded || curr->irq_config)
4564 return LD_WAIT_CONFIG;
4565
4566 return LD_WAIT_SPIN;
4567 } else if (curr->softirq_context) {
4568 /*
4569 * Softirqs are always threaded.
4570 */
4571 return LD_WAIT_CONFIG;
4572 }
4573
4574 return LD_WAIT_MAX;
4575 }
4576
4577 static int
print_lock_invalid_wait_context(struct task_struct * curr,struct held_lock * hlock)4578 print_lock_invalid_wait_context(struct task_struct *curr,
4579 struct held_lock *hlock)
4580 {
4581 short curr_inner;
4582
4583 if (!debug_locks_off())
4584 return 0;
4585 if (debug_locks_silent)
4586 return 0;
4587
4588 pr_warn("\n");
4589 pr_warn("=============================\n");
4590 pr_warn("[ BUG: Invalid wait context ]\n");
4591 print_kernel_ident();
4592 pr_warn("-----------------------------\n");
4593
4594 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4595 print_lock(hlock);
4596
4597 pr_warn("other info that might help us debug this:\n");
4598
4599 curr_inner = task_wait_context(curr);
4600 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4601
4602 lockdep_print_held_locks(curr);
4603
4604 pr_warn("stack backtrace:\n");
4605 dump_stack();
4606
4607 return 0;
4608 }
4609
4610 /*
4611 * Verify the wait_type context.
4612 *
4613 * This check validates we takes locks in the right wait-type order; that is it
4614 * ensures that we do not take mutexes inside spinlocks and do not attempt to
4615 * acquire spinlocks inside raw_spinlocks and the sort.
4616 *
4617 * The entire thing is slightly more complex because of RCU, RCU is a lock that
4618 * can be taken from (pretty much) any context but also has constraints.
4619 * However when taken in a stricter environment the RCU lock does not loosen
4620 * the constraints.
4621 *
4622 * Therefore we must look for the strictest environment in the lock stack and
4623 * compare that to the lock we're trying to acquire.
4624 */
check_wait_context(struct task_struct * curr,struct held_lock * next)4625 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4626 {
4627 u8 next_inner = hlock_class(next)->wait_type_inner;
4628 u8 next_outer = hlock_class(next)->wait_type_outer;
4629 u8 curr_inner;
4630 int depth;
4631
4632 if (!next_inner || next->trylock)
4633 return 0;
4634
4635 if (!next_outer)
4636 next_outer = next_inner;
4637
4638 /*
4639 * Find start of current irq_context..
4640 */
4641 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4642 struct held_lock *prev = curr->held_locks + depth;
4643 if (prev->irq_context != next->irq_context)
4644 break;
4645 }
4646 depth++;
4647
4648 curr_inner = task_wait_context(curr);
4649
4650 for (; depth < curr->lockdep_depth; depth++) {
4651 struct held_lock *prev = curr->held_locks + depth;
4652 u8 prev_inner = hlock_class(prev)->wait_type_inner;
4653
4654 if (prev_inner) {
4655 /*
4656 * We can have a bigger inner than a previous one
4657 * when outer is smaller than inner, as with RCU.
4658 *
4659 * Also due to trylocks.
4660 */
4661 curr_inner = min(curr_inner, prev_inner);
4662 }
4663 }
4664
4665 if (next_outer > curr_inner)
4666 return print_lock_invalid_wait_context(curr, next);
4667
4668 return 0;
4669 }
4670
4671 #else /* CONFIG_PROVE_LOCKING */
4672
4673 static inline int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4674 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4675 {
4676 return 1;
4677 }
4678
task_irq_context(struct task_struct * task)4679 static inline unsigned int task_irq_context(struct task_struct *task)
4680 {
4681 return 0;
4682 }
4683
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4684 static inline int separate_irq_context(struct task_struct *curr,
4685 struct held_lock *hlock)
4686 {
4687 return 0;
4688 }
4689
check_wait_context(struct task_struct * curr,struct held_lock * next)4690 static inline int check_wait_context(struct task_struct *curr,
4691 struct held_lock *next)
4692 {
4693 return 0;
4694 }
4695
4696 #endif /* CONFIG_PROVE_LOCKING */
4697
4698 /*
4699 * Initialize a lock instance's lock-class mapping info:
4700 */
lockdep_init_map_type(struct lockdep_map * lock,const char * name,struct lock_class_key * key,int subclass,u8 inner,u8 outer,u8 lock_type)4701 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4702 struct lock_class_key *key, int subclass,
4703 u8 inner, u8 outer, u8 lock_type)
4704 {
4705 int i;
4706
4707 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4708 lock->class_cache[i] = NULL;
4709
4710 #ifdef CONFIG_LOCK_STAT
4711 lock->cpu = raw_smp_processor_id();
4712 #endif
4713
4714 /*
4715 * Can't be having no nameless bastards around this place!
4716 */
4717 if (DEBUG_LOCKS_WARN_ON(!name)) {
4718 lock->name = "NULL";
4719 return;
4720 }
4721
4722 lock->name = name;
4723
4724 lock->wait_type_outer = outer;
4725 lock->wait_type_inner = inner;
4726 lock->lock_type = lock_type;
4727
4728 /*
4729 * No key, no joy, we need to hash something.
4730 */
4731 if (DEBUG_LOCKS_WARN_ON(!key))
4732 return;
4733 /*
4734 * Sanity check, the lock-class key must either have been allocated
4735 * statically or must have been registered as a dynamic key.
4736 */
4737 if (!static_obj(key) && !is_dynamic_key(key)) {
4738 if (debug_locks)
4739 printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4740 DEBUG_LOCKS_WARN_ON(1);
4741 return;
4742 }
4743 lock->key = key;
4744
4745 if (unlikely(!debug_locks))
4746 return;
4747
4748 if (subclass) {
4749 unsigned long flags;
4750
4751 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4752 return;
4753
4754 raw_local_irq_save(flags);
4755 lockdep_recursion_inc();
4756 register_lock_class(lock, subclass, 1);
4757 lockdep_recursion_finish();
4758 raw_local_irq_restore(flags);
4759 }
4760 }
4761 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4762
4763 struct lock_class_key __lockdep_no_validate__;
4764 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4765
4766 static void
print_lock_nested_lock_not_held(struct task_struct * curr,struct held_lock * hlock,unsigned long ip)4767 print_lock_nested_lock_not_held(struct task_struct *curr,
4768 struct held_lock *hlock,
4769 unsigned long ip)
4770 {
4771 if (!debug_locks_off())
4772 return;
4773 if (debug_locks_silent)
4774 return;
4775
4776 pr_warn("\n");
4777 pr_warn("==================================\n");
4778 pr_warn("WARNING: Nested lock was not taken\n");
4779 print_kernel_ident();
4780 pr_warn("----------------------------------\n");
4781
4782 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4783 print_lock(hlock);
4784
4785 pr_warn("\nbut this task is not holding:\n");
4786 pr_warn("%s\n", hlock->nest_lock->name);
4787
4788 pr_warn("\nstack backtrace:\n");
4789 dump_stack();
4790
4791 pr_warn("\nother info that might help us debug this:\n");
4792 lockdep_print_held_locks(curr);
4793
4794 pr_warn("\nstack backtrace:\n");
4795 dump_stack();
4796 }
4797
4798 static int __lock_is_held(const struct lockdep_map *lock, int read);
4799
4800 /*
4801 * This gets called for every mutex_lock*()/spin_lock*() operation.
4802 * We maintain the dependency maps and validate the locking attempt:
4803 *
4804 * The callers must make sure that IRQs are disabled before calling it,
4805 * otherwise we could get an interrupt which would want to take locks,
4806 * which would end up in lockdep again.
4807 */
__lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,int hardirqs_off,struct lockdep_map * nest_lock,unsigned long ip,int references,int pin_count)4808 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4809 int trylock, int read, int check, int hardirqs_off,
4810 struct lockdep_map *nest_lock, unsigned long ip,
4811 int references, int pin_count)
4812 {
4813 struct task_struct *curr = current;
4814 struct lock_class *class = NULL;
4815 struct held_lock *hlock;
4816 unsigned int depth;
4817 int chain_head = 0;
4818 int class_idx;
4819 u64 chain_key;
4820
4821 if (unlikely(!debug_locks))
4822 return 0;
4823
4824 if (!prove_locking || lock->key == &__lockdep_no_validate__)
4825 check = 0;
4826
4827 if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4828 class = lock->class_cache[subclass];
4829 /*
4830 * Not cached?
4831 */
4832 if (unlikely(!class)) {
4833 class = register_lock_class(lock, subclass, 0);
4834 if (!class)
4835 return 0;
4836 }
4837
4838 debug_class_ops_inc(class);
4839
4840 if (very_verbose(class)) {
4841 printk("\nacquire class [%px] %s", class->key, class->name);
4842 if (class->name_version > 1)
4843 printk(KERN_CONT "#%d", class->name_version);
4844 printk(KERN_CONT "\n");
4845 dump_stack();
4846 }
4847
4848 /*
4849 * Add the lock to the list of currently held locks.
4850 * (we dont increase the depth just yet, up until the
4851 * dependency checks are done)
4852 */
4853 depth = curr->lockdep_depth;
4854 /*
4855 * Ran out of static storage for our per-task lock stack again have we?
4856 */
4857 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4858 return 0;
4859
4860 class_idx = class - lock_classes;
4861
4862 if (depth) { /* we're holding locks */
4863 hlock = curr->held_locks + depth - 1;
4864 if (hlock->class_idx == class_idx && nest_lock) {
4865 if (!references)
4866 references++;
4867
4868 if (!hlock->references)
4869 hlock->references++;
4870
4871 hlock->references += references;
4872
4873 /* Overflow */
4874 if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4875 return 0;
4876
4877 return 2;
4878 }
4879 }
4880
4881 hlock = curr->held_locks + depth;
4882 /*
4883 * Plain impossible, we just registered it and checked it weren't no
4884 * NULL like.. I bet this mushroom I ate was good!
4885 */
4886 if (DEBUG_LOCKS_WARN_ON(!class))
4887 return 0;
4888 hlock->class_idx = class_idx;
4889 hlock->acquire_ip = ip;
4890 hlock->instance = lock;
4891 hlock->nest_lock = nest_lock;
4892 hlock->irq_context = task_irq_context(curr);
4893 hlock->trylock = trylock;
4894 hlock->read = read;
4895 hlock->check = check;
4896 hlock->hardirqs_off = !!hardirqs_off;
4897 hlock->references = references;
4898 #ifdef CONFIG_LOCK_STAT
4899 hlock->waittime_stamp = 0;
4900 hlock->holdtime_stamp = lockstat_clock();
4901 #endif
4902 hlock->pin_count = pin_count;
4903
4904 if (check_wait_context(curr, hlock))
4905 return 0;
4906
4907 /* Initialize the lock usage bit */
4908 if (!mark_usage(curr, hlock, check))
4909 return 0;
4910
4911 /*
4912 * Calculate the chain hash: it's the combined hash of all the
4913 * lock keys along the dependency chain. We save the hash value
4914 * at every step so that we can get the current hash easily
4915 * after unlock. The chain hash is then used to cache dependency
4916 * results.
4917 *
4918 * The 'key ID' is what is the most compact key value to drive
4919 * the hash, not class->key.
4920 */
4921 /*
4922 * Whoops, we did it again.. class_idx is invalid.
4923 */
4924 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4925 return 0;
4926
4927 chain_key = curr->curr_chain_key;
4928 if (!depth) {
4929 /*
4930 * How can we have a chain hash when we ain't got no keys?!
4931 */
4932 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4933 return 0;
4934 chain_head = 1;
4935 }
4936
4937 hlock->prev_chain_key = chain_key;
4938 if (separate_irq_context(curr, hlock)) {
4939 chain_key = INITIAL_CHAIN_KEY;
4940 chain_head = 1;
4941 }
4942 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
4943
4944 if (nest_lock && !__lock_is_held(nest_lock, -1)) {
4945 print_lock_nested_lock_not_held(curr, hlock, ip);
4946 return 0;
4947 }
4948
4949 if (!debug_locks_silent) {
4950 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
4951 WARN_ON_ONCE(!hlock_class(hlock)->key);
4952 }
4953
4954 if (!validate_chain(curr, hlock, chain_head, chain_key))
4955 return 0;
4956
4957 curr->curr_chain_key = chain_key;
4958 curr->lockdep_depth++;
4959 check_chain_key(curr);
4960 #ifdef CONFIG_DEBUG_LOCKDEP
4961 if (unlikely(!debug_locks))
4962 return 0;
4963 #endif
4964 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
4965 debug_locks_off();
4966 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
4967 printk(KERN_DEBUG "depth: %i max: %lu!\n",
4968 curr->lockdep_depth, MAX_LOCK_DEPTH);
4969
4970 lockdep_print_held_locks(current);
4971 debug_show_all_locks();
4972 dump_stack();
4973
4974 return 0;
4975 }
4976
4977 if (unlikely(curr->lockdep_depth > max_lockdep_depth))
4978 max_lockdep_depth = curr->lockdep_depth;
4979
4980 return 1;
4981 }
4982
print_unlock_imbalance_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)4983 static void print_unlock_imbalance_bug(struct task_struct *curr,
4984 struct lockdep_map *lock,
4985 unsigned long ip)
4986 {
4987 if (!debug_locks_off())
4988 return;
4989 if (debug_locks_silent)
4990 return;
4991
4992 pr_warn("\n");
4993 pr_warn("=====================================\n");
4994 pr_warn("WARNING: bad unlock balance detected!\n");
4995 print_kernel_ident();
4996 pr_warn("-------------------------------------\n");
4997 pr_warn("%s/%d is trying to release lock (",
4998 curr->comm, task_pid_nr(curr));
4999 print_lockdep_cache(lock);
5000 pr_cont(") at:\n");
5001 print_ip_sym(KERN_WARNING, ip);
5002 pr_warn("but there are no more locks to release!\n");
5003 pr_warn("\nother info that might help us debug this:\n");
5004 lockdep_print_held_locks(curr);
5005
5006 pr_warn("\nstack backtrace:\n");
5007 dump_stack();
5008 }
5009
match_held_lock(const struct held_lock * hlock,const struct lockdep_map * lock)5010 static noinstr int match_held_lock(const struct held_lock *hlock,
5011 const struct lockdep_map *lock)
5012 {
5013 if (hlock->instance == lock)
5014 return 1;
5015
5016 if (hlock->references) {
5017 const struct lock_class *class = lock->class_cache[0];
5018
5019 if (!class)
5020 class = look_up_lock_class(lock, 0);
5021
5022 /*
5023 * If look_up_lock_class() failed to find a class, we're trying
5024 * to test if we hold a lock that has never yet been acquired.
5025 * Clearly if the lock hasn't been acquired _ever_, we're not
5026 * holding it either, so report failure.
5027 */
5028 if (!class)
5029 return 0;
5030
5031 /*
5032 * References, but not a lock we're actually ref-counting?
5033 * State got messed up, follow the sites that change ->references
5034 * and try to make sense of it.
5035 */
5036 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5037 return 0;
5038
5039 if (hlock->class_idx == class - lock_classes)
5040 return 1;
5041 }
5042
5043 return 0;
5044 }
5045
5046 /* @depth must not be zero */
find_held_lock(struct task_struct * curr,struct lockdep_map * lock,unsigned int depth,int * idx)5047 static struct held_lock *find_held_lock(struct task_struct *curr,
5048 struct lockdep_map *lock,
5049 unsigned int depth, int *idx)
5050 {
5051 struct held_lock *ret, *hlock, *prev_hlock;
5052 int i;
5053
5054 i = depth - 1;
5055 hlock = curr->held_locks + i;
5056 ret = hlock;
5057 if (match_held_lock(hlock, lock))
5058 goto out;
5059
5060 ret = NULL;
5061 for (i--, prev_hlock = hlock--;
5062 i >= 0;
5063 i--, prev_hlock = hlock--) {
5064 /*
5065 * We must not cross into another context:
5066 */
5067 if (prev_hlock->irq_context != hlock->irq_context) {
5068 ret = NULL;
5069 break;
5070 }
5071 if (match_held_lock(hlock, lock)) {
5072 ret = hlock;
5073 break;
5074 }
5075 }
5076
5077 out:
5078 *idx = i;
5079 return ret;
5080 }
5081
reacquire_held_locks(struct task_struct * curr,unsigned int depth,int idx,unsigned int * merged)5082 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5083 int idx, unsigned int *merged)
5084 {
5085 struct held_lock *hlock;
5086 int first_idx = idx;
5087
5088 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5089 return 0;
5090
5091 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5092 switch (__lock_acquire(hlock->instance,
5093 hlock_class(hlock)->subclass,
5094 hlock->trylock,
5095 hlock->read, hlock->check,
5096 hlock->hardirqs_off,
5097 hlock->nest_lock, hlock->acquire_ip,
5098 hlock->references, hlock->pin_count)) {
5099 case 0:
5100 return 1;
5101 case 1:
5102 break;
5103 case 2:
5104 *merged += (idx == first_idx);
5105 break;
5106 default:
5107 WARN_ON(1);
5108 return 0;
5109 }
5110 }
5111 return 0;
5112 }
5113
5114 static int
__lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5115 __lock_set_class(struct lockdep_map *lock, const char *name,
5116 struct lock_class_key *key, unsigned int subclass,
5117 unsigned long ip)
5118 {
5119 struct task_struct *curr = current;
5120 unsigned int depth, merged = 0;
5121 struct held_lock *hlock;
5122 struct lock_class *class;
5123 int i;
5124
5125 if (unlikely(!debug_locks))
5126 return 0;
5127
5128 depth = curr->lockdep_depth;
5129 /*
5130 * This function is about (re)setting the class of a held lock,
5131 * yet we're not actually holding any locks. Naughty user!
5132 */
5133 if (DEBUG_LOCKS_WARN_ON(!depth))
5134 return 0;
5135
5136 hlock = find_held_lock(curr, lock, depth, &i);
5137 if (!hlock) {
5138 print_unlock_imbalance_bug(curr, lock, ip);
5139 return 0;
5140 }
5141
5142 lockdep_init_map_type(lock, name, key, 0,
5143 lock->wait_type_inner,
5144 lock->wait_type_outer,
5145 lock->lock_type);
5146 class = register_lock_class(lock, subclass, 0);
5147 hlock->class_idx = class - lock_classes;
5148
5149 curr->lockdep_depth = i;
5150 curr->curr_chain_key = hlock->prev_chain_key;
5151
5152 if (reacquire_held_locks(curr, depth, i, &merged))
5153 return 0;
5154
5155 /*
5156 * I took it apart and put it back together again, except now I have
5157 * these 'spare' parts.. where shall I put them.
5158 */
5159 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5160 return 0;
5161 return 1;
5162 }
5163
__lock_downgrade(struct lockdep_map * lock,unsigned long ip)5164 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5165 {
5166 struct task_struct *curr = current;
5167 unsigned int depth, merged = 0;
5168 struct held_lock *hlock;
5169 int i;
5170
5171 if (unlikely(!debug_locks))
5172 return 0;
5173
5174 depth = curr->lockdep_depth;
5175 /*
5176 * This function is about (re)setting the class of a held lock,
5177 * yet we're not actually holding any locks. Naughty user!
5178 */
5179 if (DEBUG_LOCKS_WARN_ON(!depth))
5180 return 0;
5181
5182 hlock = find_held_lock(curr, lock, depth, &i);
5183 if (!hlock) {
5184 print_unlock_imbalance_bug(curr, lock, ip);
5185 return 0;
5186 }
5187
5188 curr->lockdep_depth = i;
5189 curr->curr_chain_key = hlock->prev_chain_key;
5190
5191 WARN(hlock->read, "downgrading a read lock");
5192 hlock->read = 1;
5193 hlock->acquire_ip = ip;
5194
5195 if (reacquire_held_locks(curr, depth, i, &merged))
5196 return 0;
5197
5198 /* Merging can't happen with unchanged classes.. */
5199 if (DEBUG_LOCKS_WARN_ON(merged))
5200 return 0;
5201
5202 /*
5203 * I took it apart and put it back together again, except now I have
5204 * these 'spare' parts.. where shall I put them.
5205 */
5206 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5207 return 0;
5208
5209 return 1;
5210 }
5211
5212 /*
5213 * Remove the lock from the list of currently held locks - this gets
5214 * called on mutex_unlock()/spin_unlock*() (or on a failed
5215 * mutex_lock_interruptible()).
5216 */
5217 static int
__lock_release(struct lockdep_map * lock,unsigned long ip)5218 __lock_release(struct lockdep_map *lock, unsigned long ip)
5219 {
5220 struct task_struct *curr = current;
5221 unsigned int depth, merged = 1;
5222 struct held_lock *hlock;
5223 int i;
5224
5225 if (unlikely(!debug_locks))
5226 return 0;
5227
5228 depth = curr->lockdep_depth;
5229 /*
5230 * So we're all set to release this lock.. wait what lock? We don't
5231 * own any locks, you've been drinking again?
5232 */
5233 if (depth <= 0) {
5234 print_unlock_imbalance_bug(curr, lock, ip);
5235 return 0;
5236 }
5237
5238 /*
5239 * Check whether the lock exists in the current stack
5240 * of held locks:
5241 */
5242 hlock = find_held_lock(curr, lock, depth, &i);
5243 if (!hlock) {
5244 print_unlock_imbalance_bug(curr, lock, ip);
5245 return 0;
5246 }
5247
5248 if (hlock->instance == lock)
5249 lock_release_holdtime(hlock);
5250
5251 WARN(hlock->pin_count, "releasing a pinned lock\n");
5252
5253 if (hlock->references) {
5254 hlock->references--;
5255 if (hlock->references) {
5256 /*
5257 * We had, and after removing one, still have
5258 * references, the current lock stack is still
5259 * valid. We're done!
5260 */
5261 return 1;
5262 }
5263 }
5264
5265 /*
5266 * We have the right lock to unlock, 'hlock' points to it.
5267 * Now we remove it from the stack, and add back the other
5268 * entries (if any), recalculating the hash along the way:
5269 */
5270
5271 curr->lockdep_depth = i;
5272 curr->curr_chain_key = hlock->prev_chain_key;
5273
5274 /*
5275 * The most likely case is when the unlock is on the innermost
5276 * lock. In this case, we are done!
5277 */
5278 if (i == depth-1)
5279 return 1;
5280
5281 if (reacquire_held_locks(curr, depth, i + 1, &merged))
5282 return 0;
5283
5284 /*
5285 * We had N bottles of beer on the wall, we drank one, but now
5286 * there's not N-1 bottles of beer left on the wall...
5287 * Pouring two of the bottles together is acceptable.
5288 */
5289 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5290
5291 /*
5292 * Since reacquire_held_locks() would have called check_chain_key()
5293 * indirectly via __lock_acquire(), we don't need to do it again
5294 * on return.
5295 */
5296 return 0;
5297 }
5298
5299 static __always_inline
__lock_is_held(const struct lockdep_map * lock,int read)5300 int __lock_is_held(const struct lockdep_map *lock, int read)
5301 {
5302 struct task_struct *curr = current;
5303 int i;
5304
5305 for (i = 0; i < curr->lockdep_depth; i++) {
5306 struct held_lock *hlock = curr->held_locks + i;
5307
5308 if (match_held_lock(hlock, lock)) {
5309 if (read == -1 || !!hlock->read == read)
5310 return 1;
5311
5312 return 0;
5313 }
5314 }
5315
5316 return 0;
5317 }
5318
__lock_pin_lock(struct lockdep_map * lock)5319 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5320 {
5321 struct pin_cookie cookie = NIL_COOKIE;
5322 struct task_struct *curr = current;
5323 int i;
5324
5325 if (unlikely(!debug_locks))
5326 return cookie;
5327
5328 for (i = 0; i < curr->lockdep_depth; i++) {
5329 struct held_lock *hlock = curr->held_locks + i;
5330
5331 if (match_held_lock(hlock, lock)) {
5332 /*
5333 * Grab 16bits of randomness; this is sufficient to not
5334 * be guessable and still allows some pin nesting in
5335 * our u32 pin_count.
5336 */
5337 cookie.val = 1 + (prandom_u32() >> 16);
5338 hlock->pin_count += cookie.val;
5339 return cookie;
5340 }
5341 }
5342
5343 WARN(1, "pinning an unheld lock\n");
5344 return cookie;
5345 }
5346
__lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5347 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5348 {
5349 struct task_struct *curr = current;
5350 int i;
5351
5352 if (unlikely(!debug_locks))
5353 return;
5354
5355 for (i = 0; i < curr->lockdep_depth; i++) {
5356 struct held_lock *hlock = curr->held_locks + i;
5357
5358 if (match_held_lock(hlock, lock)) {
5359 hlock->pin_count += cookie.val;
5360 return;
5361 }
5362 }
5363
5364 WARN(1, "pinning an unheld lock\n");
5365 }
5366
__lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5367 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5368 {
5369 struct task_struct *curr = current;
5370 int i;
5371
5372 if (unlikely(!debug_locks))
5373 return;
5374
5375 for (i = 0; i < curr->lockdep_depth; i++) {
5376 struct held_lock *hlock = curr->held_locks + i;
5377
5378 if (match_held_lock(hlock, lock)) {
5379 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5380 return;
5381
5382 hlock->pin_count -= cookie.val;
5383
5384 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5385 hlock->pin_count = 0;
5386
5387 return;
5388 }
5389 }
5390
5391 WARN(1, "unpinning an unheld lock\n");
5392 }
5393
5394 /*
5395 * Check whether we follow the irq-flags state precisely:
5396 */
check_flags(unsigned long flags)5397 static noinstr void check_flags(unsigned long flags)
5398 {
5399 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5400 if (!debug_locks)
5401 return;
5402
5403 /* Get the warning out.. */
5404 instrumentation_begin();
5405
5406 if (irqs_disabled_flags(flags)) {
5407 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5408 printk("possible reason: unannotated irqs-off.\n");
5409 }
5410 } else {
5411 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5412 printk("possible reason: unannotated irqs-on.\n");
5413 }
5414 }
5415
5416 /*
5417 * We dont accurately track softirq state in e.g.
5418 * hardirq contexts (such as on 4KSTACKS), so only
5419 * check if not in hardirq contexts:
5420 */
5421 if (!hardirq_count()) {
5422 if (softirq_count()) {
5423 /* like the above, but with softirqs */
5424 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5425 } else {
5426 /* lick the above, does it taste good? */
5427 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5428 }
5429 }
5430
5431 if (!debug_locks)
5432 print_irqtrace_events(current);
5433
5434 instrumentation_end();
5435 #endif
5436 }
5437
lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5438 void lock_set_class(struct lockdep_map *lock, const char *name,
5439 struct lock_class_key *key, unsigned int subclass,
5440 unsigned long ip)
5441 {
5442 unsigned long flags;
5443
5444 if (unlikely(!lockdep_enabled()))
5445 return;
5446
5447 raw_local_irq_save(flags);
5448 lockdep_recursion_inc();
5449 check_flags(flags);
5450 if (__lock_set_class(lock, name, key, subclass, ip))
5451 check_chain_key(current);
5452 lockdep_recursion_finish();
5453 raw_local_irq_restore(flags);
5454 }
5455 EXPORT_SYMBOL_GPL(lock_set_class);
5456
lock_downgrade(struct lockdep_map * lock,unsigned long ip)5457 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5458 {
5459 unsigned long flags;
5460
5461 if (unlikely(!lockdep_enabled()))
5462 return;
5463
5464 raw_local_irq_save(flags);
5465 lockdep_recursion_inc();
5466 check_flags(flags);
5467 if (__lock_downgrade(lock, ip))
5468 check_chain_key(current);
5469 lockdep_recursion_finish();
5470 raw_local_irq_restore(flags);
5471 }
5472 EXPORT_SYMBOL_GPL(lock_downgrade);
5473
5474 /* NMI context !!! */
verify_lock_unused(struct lockdep_map * lock,struct held_lock * hlock,int subclass)5475 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5476 {
5477 #ifdef CONFIG_PROVE_LOCKING
5478 struct lock_class *class = look_up_lock_class(lock, subclass);
5479 unsigned long mask = LOCKF_USED;
5480
5481 /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5482 if (!class)
5483 return;
5484
5485 /*
5486 * READ locks only conflict with USED, such that if we only ever use
5487 * READ locks, there is no deadlock possible -- RCU.
5488 */
5489 if (!hlock->read)
5490 mask |= LOCKF_USED_READ;
5491
5492 if (!(class->usage_mask & mask))
5493 return;
5494
5495 hlock->class_idx = class - lock_classes;
5496
5497 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5498 #endif
5499 }
5500
lockdep_nmi(void)5501 static bool lockdep_nmi(void)
5502 {
5503 if (raw_cpu_read(lockdep_recursion))
5504 return false;
5505
5506 if (!in_nmi())
5507 return false;
5508
5509 return true;
5510 }
5511
5512 /*
5513 * read_lock() is recursive if:
5514 * 1. We force lockdep think this way in selftests or
5515 * 2. The implementation is not queued read/write lock or
5516 * 3. The locker is at an in_interrupt() context.
5517 */
read_lock_is_recursive(void)5518 bool read_lock_is_recursive(void)
5519 {
5520 return force_read_lock_recursive ||
5521 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5522 in_interrupt();
5523 }
5524 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5525
5526 /*
5527 * We are not always called with irqs disabled - do that here,
5528 * and also avoid lockdep recursion:
5529 */
lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,struct lockdep_map * nest_lock,unsigned long ip)5530 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5531 int trylock, int read, int check,
5532 struct lockdep_map *nest_lock, unsigned long ip)
5533 {
5534 unsigned long flags;
5535
5536 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5537
5538 if (!debug_locks)
5539 return;
5540
5541 if (unlikely(!lockdep_enabled())) {
5542 /* XXX allow trylock from NMI ?!? */
5543 if (lockdep_nmi() && !trylock) {
5544 struct held_lock hlock;
5545
5546 hlock.acquire_ip = ip;
5547 hlock.instance = lock;
5548 hlock.nest_lock = nest_lock;
5549 hlock.irq_context = 2; // XXX
5550 hlock.trylock = trylock;
5551 hlock.read = read;
5552 hlock.check = check;
5553 hlock.hardirqs_off = true;
5554 hlock.references = 0;
5555
5556 verify_lock_unused(lock, &hlock, subclass);
5557 }
5558 return;
5559 }
5560
5561 raw_local_irq_save(flags);
5562 check_flags(flags);
5563
5564 lockdep_recursion_inc();
5565 __lock_acquire(lock, subclass, trylock, read, check,
5566 irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5567 lockdep_recursion_finish();
5568 raw_local_irq_restore(flags);
5569 }
5570 EXPORT_SYMBOL_GPL(lock_acquire);
5571
lock_release(struct lockdep_map * lock,unsigned long ip)5572 void lock_release(struct lockdep_map *lock, unsigned long ip)
5573 {
5574 unsigned long flags;
5575
5576 trace_lock_release(lock, ip);
5577
5578 if (unlikely(!lockdep_enabled()))
5579 return;
5580
5581 raw_local_irq_save(flags);
5582 check_flags(flags);
5583
5584 lockdep_recursion_inc();
5585 if (__lock_release(lock, ip))
5586 check_chain_key(current);
5587 lockdep_recursion_finish();
5588 raw_local_irq_restore(flags);
5589 }
5590 EXPORT_SYMBOL_GPL(lock_release);
5591
lock_is_held_type(const struct lockdep_map * lock,int read)5592 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5593 {
5594 unsigned long flags;
5595 int ret = 0;
5596
5597 if (unlikely(!lockdep_enabled()))
5598 return 1; /* avoid false negative lockdep_assert_held() */
5599
5600 raw_local_irq_save(flags);
5601 check_flags(flags);
5602
5603 lockdep_recursion_inc();
5604 ret = __lock_is_held(lock, read);
5605 lockdep_recursion_finish();
5606 raw_local_irq_restore(flags);
5607
5608 return ret;
5609 }
5610 EXPORT_SYMBOL_GPL(lock_is_held_type);
5611 NOKPROBE_SYMBOL(lock_is_held_type);
5612
lock_pin_lock(struct lockdep_map * lock)5613 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5614 {
5615 struct pin_cookie cookie = NIL_COOKIE;
5616 unsigned long flags;
5617
5618 if (unlikely(!lockdep_enabled()))
5619 return cookie;
5620
5621 raw_local_irq_save(flags);
5622 check_flags(flags);
5623
5624 lockdep_recursion_inc();
5625 cookie = __lock_pin_lock(lock);
5626 lockdep_recursion_finish();
5627 raw_local_irq_restore(flags);
5628
5629 return cookie;
5630 }
5631 EXPORT_SYMBOL_GPL(lock_pin_lock);
5632
lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5633 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5634 {
5635 unsigned long flags;
5636
5637 if (unlikely(!lockdep_enabled()))
5638 return;
5639
5640 raw_local_irq_save(flags);
5641 check_flags(flags);
5642
5643 lockdep_recursion_inc();
5644 __lock_repin_lock(lock, cookie);
5645 lockdep_recursion_finish();
5646 raw_local_irq_restore(flags);
5647 }
5648 EXPORT_SYMBOL_GPL(lock_repin_lock);
5649
lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5650 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5651 {
5652 unsigned long flags;
5653
5654 if (unlikely(!lockdep_enabled()))
5655 return;
5656
5657 raw_local_irq_save(flags);
5658 check_flags(flags);
5659
5660 lockdep_recursion_inc();
5661 __lock_unpin_lock(lock, cookie);
5662 lockdep_recursion_finish();
5663 raw_local_irq_restore(flags);
5664 }
5665 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5666
5667 #ifdef CONFIG_LOCK_STAT
print_lock_contention_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)5668 static void print_lock_contention_bug(struct task_struct *curr,
5669 struct lockdep_map *lock,
5670 unsigned long ip)
5671 {
5672 if (!debug_locks_off())
5673 return;
5674 if (debug_locks_silent)
5675 return;
5676
5677 pr_warn("\n");
5678 pr_warn("=================================\n");
5679 pr_warn("WARNING: bad contention detected!\n");
5680 print_kernel_ident();
5681 pr_warn("---------------------------------\n");
5682 pr_warn("%s/%d is trying to contend lock (",
5683 curr->comm, task_pid_nr(curr));
5684 print_lockdep_cache(lock);
5685 pr_cont(") at:\n");
5686 print_ip_sym(KERN_WARNING, ip);
5687 pr_warn("but there are no locks held!\n");
5688 pr_warn("\nother info that might help us debug this:\n");
5689 lockdep_print_held_locks(curr);
5690
5691 pr_warn("\nstack backtrace:\n");
5692 dump_stack();
5693 }
5694
5695 static void
__lock_contended(struct lockdep_map * lock,unsigned long ip)5696 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5697 {
5698 struct task_struct *curr = current;
5699 struct held_lock *hlock;
5700 struct lock_class_stats *stats;
5701 unsigned int depth;
5702 int i, contention_point, contending_point;
5703
5704 depth = curr->lockdep_depth;
5705 /*
5706 * Whee, we contended on this lock, except it seems we're not
5707 * actually trying to acquire anything much at all..
5708 */
5709 if (DEBUG_LOCKS_WARN_ON(!depth))
5710 return;
5711
5712 hlock = find_held_lock(curr, lock, depth, &i);
5713 if (!hlock) {
5714 print_lock_contention_bug(curr, lock, ip);
5715 return;
5716 }
5717
5718 if (hlock->instance != lock)
5719 return;
5720
5721 hlock->waittime_stamp = lockstat_clock();
5722
5723 contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5724 contending_point = lock_point(hlock_class(hlock)->contending_point,
5725 lock->ip);
5726
5727 stats = get_lock_stats(hlock_class(hlock));
5728 if (contention_point < LOCKSTAT_POINTS)
5729 stats->contention_point[contention_point]++;
5730 if (contending_point < LOCKSTAT_POINTS)
5731 stats->contending_point[contending_point]++;
5732 if (lock->cpu != smp_processor_id())
5733 stats->bounces[bounce_contended + !!hlock->read]++;
5734 }
5735
5736 static void
__lock_acquired(struct lockdep_map * lock,unsigned long ip)5737 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5738 {
5739 struct task_struct *curr = current;
5740 struct held_lock *hlock;
5741 struct lock_class_stats *stats;
5742 unsigned int depth;
5743 u64 now, waittime = 0;
5744 int i, cpu;
5745
5746 depth = curr->lockdep_depth;
5747 /*
5748 * Yay, we acquired ownership of this lock we didn't try to
5749 * acquire, how the heck did that happen?
5750 */
5751 if (DEBUG_LOCKS_WARN_ON(!depth))
5752 return;
5753
5754 hlock = find_held_lock(curr, lock, depth, &i);
5755 if (!hlock) {
5756 print_lock_contention_bug(curr, lock, _RET_IP_);
5757 return;
5758 }
5759
5760 if (hlock->instance != lock)
5761 return;
5762
5763 cpu = smp_processor_id();
5764 if (hlock->waittime_stamp) {
5765 now = lockstat_clock();
5766 waittime = now - hlock->waittime_stamp;
5767 hlock->holdtime_stamp = now;
5768 }
5769
5770 stats = get_lock_stats(hlock_class(hlock));
5771 if (waittime) {
5772 if (hlock->read)
5773 lock_time_inc(&stats->read_waittime, waittime);
5774 else
5775 lock_time_inc(&stats->write_waittime, waittime);
5776 }
5777 if (lock->cpu != cpu)
5778 stats->bounces[bounce_acquired + !!hlock->read]++;
5779
5780 lock->cpu = cpu;
5781 lock->ip = ip;
5782 }
5783
lock_contended(struct lockdep_map * lock,unsigned long ip)5784 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5785 {
5786 unsigned long flags;
5787
5788 trace_lock_contended(lock, ip);
5789
5790 if (unlikely(!lock_stat || !lockdep_enabled()))
5791 return;
5792
5793 raw_local_irq_save(flags);
5794 check_flags(flags);
5795 lockdep_recursion_inc();
5796 __lock_contended(lock, ip);
5797 lockdep_recursion_finish();
5798 raw_local_irq_restore(flags);
5799 }
5800 EXPORT_SYMBOL_GPL(lock_contended);
5801
lock_acquired(struct lockdep_map * lock,unsigned long ip)5802 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5803 {
5804 unsigned long flags;
5805
5806 trace_lock_acquired(lock, ip);
5807
5808 if (unlikely(!lock_stat || !lockdep_enabled()))
5809 return;
5810
5811 raw_local_irq_save(flags);
5812 check_flags(flags);
5813 lockdep_recursion_inc();
5814 __lock_acquired(lock, ip);
5815 lockdep_recursion_finish();
5816 raw_local_irq_restore(flags);
5817 }
5818 EXPORT_SYMBOL_GPL(lock_acquired);
5819 #endif
5820
5821 /*
5822 * Used by the testsuite, sanitize the validator state
5823 * after a simulated failure:
5824 */
5825
lockdep_reset(void)5826 void lockdep_reset(void)
5827 {
5828 unsigned long flags;
5829 int i;
5830
5831 raw_local_irq_save(flags);
5832 lockdep_init_task(current);
5833 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5834 nr_hardirq_chains = 0;
5835 nr_softirq_chains = 0;
5836 nr_process_chains = 0;
5837 debug_locks = 1;
5838 for (i = 0; i < CHAINHASH_SIZE; i++)
5839 INIT_HLIST_HEAD(chainhash_table + i);
5840 raw_local_irq_restore(flags);
5841 }
5842
5843 /* Remove a class from a lock chain. Must be called with the graph lock held. */
remove_class_from_lock_chain(struct pending_free * pf,struct lock_chain * chain,struct lock_class * class)5844 static void remove_class_from_lock_chain(struct pending_free *pf,
5845 struct lock_chain *chain,
5846 struct lock_class *class)
5847 {
5848 #ifdef CONFIG_PROVE_LOCKING
5849 int i;
5850
5851 for (i = chain->base; i < chain->base + chain->depth; i++) {
5852 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5853 continue;
5854 /*
5855 * Each lock class occurs at most once in a lock chain so once
5856 * we found a match we can break out of this loop.
5857 */
5858 goto free_lock_chain;
5859 }
5860 /* Since the chain has not been modified, return. */
5861 return;
5862
5863 free_lock_chain:
5864 free_chain_hlocks(chain->base, chain->depth);
5865 /* Overwrite the chain key for concurrent RCU readers. */
5866 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5867 dec_chains(chain->irq_context);
5868
5869 /*
5870 * Note: calling hlist_del_rcu() from inside a
5871 * hlist_for_each_entry_rcu() loop is safe.
5872 */
5873 hlist_del_rcu(&chain->entry);
5874 __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5875 nr_zapped_lock_chains++;
5876 #endif
5877 }
5878
5879 /* Must be called with the graph lock held. */
remove_class_from_lock_chains(struct pending_free * pf,struct lock_class * class)5880 static void remove_class_from_lock_chains(struct pending_free *pf,
5881 struct lock_class *class)
5882 {
5883 struct lock_chain *chain;
5884 struct hlist_head *head;
5885 int i;
5886
5887 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5888 head = chainhash_table + i;
5889 hlist_for_each_entry_rcu(chain, head, entry) {
5890 remove_class_from_lock_chain(pf, chain, class);
5891 }
5892 }
5893 }
5894
5895 /*
5896 * Remove all references to a lock class. The caller must hold the graph lock.
5897 */
zap_class(struct pending_free * pf,struct lock_class * class)5898 static void zap_class(struct pending_free *pf, struct lock_class *class)
5899 {
5900 struct lock_list *entry;
5901 int i;
5902
5903 WARN_ON_ONCE(!class->key);
5904
5905 /*
5906 * Remove all dependencies this lock is
5907 * involved in:
5908 */
5909 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5910 entry = list_entries + i;
5911 if (entry->class != class && entry->links_to != class)
5912 continue;
5913 __clear_bit(i, list_entries_in_use);
5914 nr_list_entries--;
5915 list_del_rcu(&entry->entry);
5916 }
5917 if (list_empty(&class->locks_after) &&
5918 list_empty(&class->locks_before)) {
5919 list_move_tail(&class->lock_entry, &pf->zapped);
5920 hlist_del_rcu(&class->hash_entry);
5921 WRITE_ONCE(class->key, NULL);
5922 WRITE_ONCE(class->name, NULL);
5923 nr_lock_classes--;
5924 __clear_bit(class - lock_classes, lock_classes_in_use);
5925 if (class - lock_classes == max_lock_class_idx)
5926 max_lock_class_idx--;
5927 } else {
5928 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5929 class->name);
5930 }
5931
5932 remove_class_from_lock_chains(pf, class);
5933 nr_zapped_classes++;
5934 }
5935
reinit_class(struct lock_class * class)5936 static void reinit_class(struct lock_class *class)
5937 {
5938 void *const p = class;
5939 const unsigned int offset = offsetof(struct lock_class, key);
5940
5941 WARN_ON_ONCE(!class->lock_entry.next);
5942 WARN_ON_ONCE(!list_empty(&class->locks_after));
5943 WARN_ON_ONCE(!list_empty(&class->locks_before));
5944 memset(p + offset, 0, sizeof(*class) - offset);
5945 WARN_ON_ONCE(!class->lock_entry.next);
5946 WARN_ON_ONCE(!list_empty(&class->locks_after));
5947 WARN_ON_ONCE(!list_empty(&class->locks_before));
5948 }
5949
within(const void * addr,void * start,unsigned long size)5950 static inline int within(const void *addr, void *start, unsigned long size)
5951 {
5952 return addr >= start && addr < start + size;
5953 }
5954
inside_selftest(void)5955 static bool inside_selftest(void)
5956 {
5957 return current == lockdep_selftest_task_struct;
5958 }
5959
5960 /* The caller must hold the graph lock. */
get_pending_free(void)5961 static struct pending_free *get_pending_free(void)
5962 {
5963 return delayed_free.pf + delayed_free.index;
5964 }
5965
5966 static void free_zapped_rcu(struct rcu_head *cb);
5967
5968 /*
5969 * Schedule an RCU callback if no RCU callback is pending. Must be called with
5970 * the graph lock held.
5971 */
call_rcu_zapped(struct pending_free * pf)5972 static void call_rcu_zapped(struct pending_free *pf)
5973 {
5974 WARN_ON_ONCE(inside_selftest());
5975
5976 if (list_empty(&pf->zapped))
5977 return;
5978
5979 if (delayed_free.scheduled)
5980 return;
5981
5982 delayed_free.scheduled = true;
5983
5984 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
5985 delayed_free.index ^= 1;
5986
5987 call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
5988 }
5989
5990 /* The caller must hold the graph lock. May be called from RCU context. */
__free_zapped_classes(struct pending_free * pf)5991 static void __free_zapped_classes(struct pending_free *pf)
5992 {
5993 struct lock_class *class;
5994
5995 check_data_structures();
5996
5997 list_for_each_entry(class, &pf->zapped, lock_entry)
5998 reinit_class(class);
5999
6000 list_splice_init(&pf->zapped, &free_lock_classes);
6001
6002 #ifdef CONFIG_PROVE_LOCKING
6003 bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6004 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6005 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6006 #endif
6007 }
6008
free_zapped_rcu(struct rcu_head * ch)6009 static void free_zapped_rcu(struct rcu_head *ch)
6010 {
6011 struct pending_free *pf;
6012 unsigned long flags;
6013
6014 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6015 return;
6016
6017 raw_local_irq_save(flags);
6018 lockdep_lock();
6019
6020 /* closed head */
6021 pf = delayed_free.pf + (delayed_free.index ^ 1);
6022 __free_zapped_classes(pf);
6023 delayed_free.scheduled = false;
6024
6025 /*
6026 * If there's anything on the open list, close and start a new callback.
6027 */
6028 call_rcu_zapped(delayed_free.pf + delayed_free.index);
6029
6030 lockdep_unlock();
6031 raw_local_irq_restore(flags);
6032 }
6033
6034 /*
6035 * Remove all lock classes from the class hash table and from the
6036 * all_lock_classes list whose key or name is in the address range [start,
6037 * start + size). Move these lock classes to the zapped_classes list. Must
6038 * be called with the graph lock held.
6039 */
__lockdep_free_key_range(struct pending_free * pf,void * start,unsigned long size)6040 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6041 unsigned long size)
6042 {
6043 struct lock_class *class;
6044 struct hlist_head *head;
6045 int i;
6046
6047 /* Unhash all classes that were created by a module. */
6048 for (i = 0; i < CLASSHASH_SIZE; i++) {
6049 head = classhash_table + i;
6050 hlist_for_each_entry_rcu(class, head, hash_entry) {
6051 if (!within(class->key, start, size) &&
6052 !within(class->name, start, size))
6053 continue;
6054 zap_class(pf, class);
6055 }
6056 }
6057 }
6058
6059 /*
6060 * Used in module.c to remove lock classes from memory that is going to be
6061 * freed; and possibly re-used by other modules.
6062 *
6063 * We will have had one synchronize_rcu() before getting here, so we're
6064 * guaranteed nobody will look up these exact classes -- they're properly dead
6065 * but still allocated.
6066 */
lockdep_free_key_range_reg(void * start,unsigned long size)6067 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6068 {
6069 struct pending_free *pf;
6070 unsigned long flags;
6071
6072 init_data_structures_once();
6073
6074 raw_local_irq_save(flags);
6075 lockdep_lock();
6076 pf = get_pending_free();
6077 __lockdep_free_key_range(pf, start, size);
6078 call_rcu_zapped(pf);
6079 lockdep_unlock();
6080 raw_local_irq_restore(flags);
6081
6082 /*
6083 * Wait for any possible iterators from look_up_lock_class() to pass
6084 * before continuing to free the memory they refer to.
6085 */
6086 synchronize_rcu();
6087 }
6088
6089 /*
6090 * Free all lockdep keys in the range [start, start+size). Does not sleep.
6091 * Ignores debug_locks. Must only be used by the lockdep selftests.
6092 */
lockdep_free_key_range_imm(void * start,unsigned long size)6093 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6094 {
6095 struct pending_free *pf = delayed_free.pf;
6096 unsigned long flags;
6097
6098 init_data_structures_once();
6099
6100 raw_local_irq_save(flags);
6101 lockdep_lock();
6102 __lockdep_free_key_range(pf, start, size);
6103 __free_zapped_classes(pf);
6104 lockdep_unlock();
6105 raw_local_irq_restore(flags);
6106 }
6107
lockdep_free_key_range(void * start,unsigned long size)6108 void lockdep_free_key_range(void *start, unsigned long size)
6109 {
6110 init_data_structures_once();
6111
6112 if (inside_selftest())
6113 lockdep_free_key_range_imm(start, size);
6114 else
6115 lockdep_free_key_range_reg(start, size);
6116 }
6117
6118 /*
6119 * Check whether any element of the @lock->class_cache[] array refers to a
6120 * registered lock class. The caller must hold either the graph lock or the
6121 * RCU read lock.
6122 */
lock_class_cache_is_registered(struct lockdep_map * lock)6123 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6124 {
6125 struct lock_class *class;
6126 struct hlist_head *head;
6127 int i, j;
6128
6129 for (i = 0; i < CLASSHASH_SIZE; i++) {
6130 head = classhash_table + i;
6131 hlist_for_each_entry_rcu(class, head, hash_entry) {
6132 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6133 if (lock->class_cache[j] == class)
6134 return true;
6135 }
6136 }
6137 return false;
6138 }
6139
6140 /* The caller must hold the graph lock. Does not sleep. */
__lockdep_reset_lock(struct pending_free * pf,struct lockdep_map * lock)6141 static void __lockdep_reset_lock(struct pending_free *pf,
6142 struct lockdep_map *lock)
6143 {
6144 struct lock_class *class;
6145 int j;
6146
6147 /*
6148 * Remove all classes this lock might have:
6149 */
6150 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6151 /*
6152 * If the class exists we look it up and zap it:
6153 */
6154 class = look_up_lock_class(lock, j);
6155 if (class)
6156 zap_class(pf, class);
6157 }
6158 /*
6159 * Debug check: in the end all mapped classes should
6160 * be gone.
6161 */
6162 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6163 debug_locks_off();
6164 }
6165
6166 /*
6167 * Remove all information lockdep has about a lock if debug_locks == 1. Free
6168 * released data structures from RCU context.
6169 */
lockdep_reset_lock_reg(struct lockdep_map * lock)6170 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6171 {
6172 struct pending_free *pf;
6173 unsigned long flags;
6174 int locked;
6175
6176 raw_local_irq_save(flags);
6177 locked = graph_lock();
6178 if (!locked)
6179 goto out_irq;
6180
6181 pf = get_pending_free();
6182 __lockdep_reset_lock(pf, lock);
6183 call_rcu_zapped(pf);
6184
6185 graph_unlock();
6186 out_irq:
6187 raw_local_irq_restore(flags);
6188 }
6189
6190 /*
6191 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6192 * lockdep selftests.
6193 */
lockdep_reset_lock_imm(struct lockdep_map * lock)6194 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6195 {
6196 struct pending_free *pf = delayed_free.pf;
6197 unsigned long flags;
6198
6199 raw_local_irq_save(flags);
6200 lockdep_lock();
6201 __lockdep_reset_lock(pf, lock);
6202 __free_zapped_classes(pf);
6203 lockdep_unlock();
6204 raw_local_irq_restore(flags);
6205 }
6206
lockdep_reset_lock(struct lockdep_map * lock)6207 void lockdep_reset_lock(struct lockdep_map *lock)
6208 {
6209 init_data_structures_once();
6210
6211 if (inside_selftest())
6212 lockdep_reset_lock_imm(lock);
6213 else
6214 lockdep_reset_lock_reg(lock);
6215 }
6216
6217 /*
6218 * Unregister a dynamically allocated key.
6219 *
6220 * Unlike lockdep_register_key(), a search is always done to find a matching
6221 * key irrespective of debug_locks to avoid potential invalid access to freed
6222 * memory in lock_class entry.
6223 */
lockdep_unregister_key(struct lock_class_key * key)6224 void lockdep_unregister_key(struct lock_class_key *key)
6225 {
6226 struct hlist_head *hash_head = keyhashentry(key);
6227 struct lock_class_key *k;
6228 struct pending_free *pf;
6229 unsigned long flags;
6230 bool found = false;
6231
6232 might_sleep();
6233
6234 if (WARN_ON_ONCE(static_obj(key)))
6235 return;
6236
6237 raw_local_irq_save(flags);
6238 lockdep_lock();
6239
6240 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6241 if (k == key) {
6242 hlist_del_rcu(&k->hash_entry);
6243 found = true;
6244 break;
6245 }
6246 }
6247 WARN_ON_ONCE(!found && debug_locks);
6248 if (found) {
6249 pf = get_pending_free();
6250 __lockdep_free_key_range(pf, key, 1);
6251 call_rcu_zapped(pf);
6252 }
6253 lockdep_unlock();
6254 raw_local_irq_restore(flags);
6255
6256 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6257 synchronize_rcu();
6258 }
6259 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6260
lockdep_init(void)6261 void __init lockdep_init(void)
6262 {
6263 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6264
6265 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES);
6266 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH);
6267 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS);
6268 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE);
6269 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES);
6270 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS);
6271 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE);
6272
6273 printk(" memory used by lock dependency info: %zu kB\n",
6274 (sizeof(lock_classes) +
6275 sizeof(lock_classes_in_use) +
6276 sizeof(classhash_table) +
6277 sizeof(list_entries) +
6278 sizeof(list_entries_in_use) +
6279 sizeof(chainhash_table) +
6280 sizeof(delayed_free)
6281 #ifdef CONFIG_PROVE_LOCKING
6282 + sizeof(lock_cq)
6283 + sizeof(lock_chains)
6284 + sizeof(lock_chains_in_use)
6285 + sizeof(chain_hlocks)
6286 #endif
6287 ) / 1024
6288 );
6289
6290 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6291 printk(" memory used for stack traces: %zu kB\n",
6292 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6293 );
6294 #endif
6295
6296 printk(" per task-struct memory footprint: %zu bytes\n",
6297 sizeof(((struct task_struct *)NULL)->held_locks));
6298 }
6299
6300 static void
print_freed_lock_bug(struct task_struct * curr,const void * mem_from,const void * mem_to,struct held_lock * hlock)6301 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6302 const void *mem_to, struct held_lock *hlock)
6303 {
6304 if (!debug_locks_off())
6305 return;
6306 if (debug_locks_silent)
6307 return;
6308
6309 pr_warn("\n");
6310 pr_warn("=========================\n");
6311 pr_warn("WARNING: held lock freed!\n");
6312 print_kernel_ident();
6313 pr_warn("-------------------------\n");
6314 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6315 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6316 print_lock(hlock);
6317 lockdep_print_held_locks(curr);
6318
6319 pr_warn("\nstack backtrace:\n");
6320 dump_stack();
6321 }
6322
not_in_range(const void * mem_from,unsigned long mem_len,const void * lock_from,unsigned long lock_len)6323 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6324 const void* lock_from, unsigned long lock_len)
6325 {
6326 return lock_from + lock_len <= mem_from ||
6327 mem_from + mem_len <= lock_from;
6328 }
6329
6330 /*
6331 * Called when kernel memory is freed (or unmapped), or if a lock
6332 * is destroyed or reinitialized - this code checks whether there is
6333 * any held lock in the memory range of <from> to <to>:
6334 */
debug_check_no_locks_freed(const void * mem_from,unsigned long mem_len)6335 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6336 {
6337 struct task_struct *curr = current;
6338 struct held_lock *hlock;
6339 unsigned long flags;
6340 int i;
6341
6342 if (unlikely(!debug_locks))
6343 return;
6344
6345 raw_local_irq_save(flags);
6346 for (i = 0; i < curr->lockdep_depth; i++) {
6347 hlock = curr->held_locks + i;
6348
6349 if (not_in_range(mem_from, mem_len, hlock->instance,
6350 sizeof(*hlock->instance)))
6351 continue;
6352
6353 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6354 break;
6355 }
6356 raw_local_irq_restore(flags);
6357 }
6358 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6359
print_held_locks_bug(void)6360 static void print_held_locks_bug(void)
6361 {
6362 if (!debug_locks_off())
6363 return;
6364 if (debug_locks_silent)
6365 return;
6366
6367 pr_warn("\n");
6368 pr_warn("====================================\n");
6369 pr_warn("WARNING: %s/%d still has locks held!\n",
6370 current->comm, task_pid_nr(current));
6371 print_kernel_ident();
6372 pr_warn("------------------------------------\n");
6373 lockdep_print_held_locks(current);
6374 pr_warn("\nstack backtrace:\n");
6375 dump_stack();
6376 }
6377
debug_check_no_locks_held(void)6378 void debug_check_no_locks_held(void)
6379 {
6380 if (unlikely(current->lockdep_depth > 0))
6381 print_held_locks_bug();
6382 }
6383 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6384
6385 #ifdef __KERNEL__
debug_show_all_locks(void)6386 void debug_show_all_locks(void)
6387 {
6388 struct task_struct *g, *p;
6389
6390 if (unlikely(!debug_locks)) {
6391 pr_warn("INFO: lockdep is turned off.\n");
6392 return;
6393 }
6394 pr_warn("\nShowing all locks held in the system:\n");
6395
6396 rcu_read_lock();
6397 for_each_process_thread(g, p) {
6398 if (!p->lockdep_depth)
6399 continue;
6400 lockdep_print_held_locks(p);
6401 touch_nmi_watchdog();
6402 touch_all_softlockup_watchdogs();
6403 }
6404 rcu_read_unlock();
6405
6406 pr_warn("\n");
6407 pr_warn("=============================================\n\n");
6408 }
6409 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6410 #endif
6411
6412 /*
6413 * Careful: only use this function if you are sure that
6414 * the task cannot run in parallel!
6415 */
debug_show_held_locks(struct task_struct * task)6416 void debug_show_held_locks(struct task_struct *task)
6417 {
6418 if (unlikely(!debug_locks)) {
6419 printk("INFO: lockdep is turned off.\n");
6420 return;
6421 }
6422 lockdep_print_held_locks(task);
6423 }
6424 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6425
lockdep_sys_exit(void)6426 asmlinkage __visible void lockdep_sys_exit(void)
6427 {
6428 struct task_struct *curr = current;
6429
6430 if (unlikely(curr->lockdep_depth)) {
6431 if (!debug_locks_off())
6432 return;
6433 pr_warn("\n");
6434 pr_warn("================================================\n");
6435 pr_warn("WARNING: lock held when returning to user space!\n");
6436 print_kernel_ident();
6437 pr_warn("------------------------------------------------\n");
6438 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6439 curr->comm, curr->pid);
6440 lockdep_print_held_locks(curr);
6441 }
6442
6443 /*
6444 * The lock history for each syscall should be independent. So wipe the
6445 * slate clean on return to userspace.
6446 */
6447 lockdep_invariant_state(false);
6448 }
6449
lockdep_rcu_suspicious(const char * file,const int line,const char * s)6450 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6451 {
6452 struct task_struct *curr = current;
6453
6454 /* Note: the following can be executed concurrently, so be careful. */
6455 pr_warn("\n");
6456 pr_warn("=============================\n");
6457 pr_warn("WARNING: suspicious RCU usage\n");
6458 print_kernel_ident();
6459 pr_warn("-----------------------------\n");
6460 pr_warn("%s:%d %s!\n", file, line, s);
6461 pr_warn("\nother info that might help us debug this:\n\n");
6462 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
6463 !rcu_lockdep_current_cpu_online()
6464 ? "RCU used illegally from offline CPU!\n"
6465 : "",
6466 rcu_scheduler_active, debug_locks);
6467
6468 /*
6469 * If a CPU is in the RCU-free window in idle (ie: in the section
6470 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6471 * considers that CPU to be in an "extended quiescent state",
6472 * which means that RCU will be completely ignoring that CPU.
6473 * Therefore, rcu_read_lock() and friends have absolutely no
6474 * effect on a CPU running in that state. In other words, even if
6475 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6476 * delete data structures out from under it. RCU really has no
6477 * choice here: we need to keep an RCU-free window in idle where
6478 * the CPU may possibly enter into low power mode. This way we can
6479 * notice an extended quiescent state to other CPUs that started a grace
6480 * period. Otherwise we would delay any grace period as long as we run
6481 * in the idle task.
6482 *
6483 * So complain bitterly if someone does call rcu_read_lock(),
6484 * rcu_read_lock_bh() and so on from extended quiescent states.
6485 */
6486 if (!rcu_is_watching())
6487 pr_warn("RCU used illegally from extended quiescent state!\n");
6488
6489 lockdep_print_held_locks(curr);
6490 pr_warn("\nstack backtrace:\n");
6491 dump_stack();
6492 }
6493 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6494