1 #ifdef CONFIG_SMP
2 #include "sched-pelt.h"
3
4 int __update_load_avg_blocked_se(u64 now, struct sched_entity *se);
5 int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se);
6 int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq);
7 int update_rt_rq_load_avg(u64 now, struct rq *rq, int running);
8 int update_dl_rq_load_avg(u64 now, struct rq *rq, int running);
9
10 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
11 int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity);
12
thermal_load_avg(struct rq * rq)13 static inline u64 thermal_load_avg(struct rq *rq)
14 {
15 return READ_ONCE(rq->avg_thermal.load_avg);
16 }
17 #else
18 static inline int
update_thermal_load_avg(u64 now,struct rq * rq,u64 capacity)19 update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
20 {
21 return 0;
22 }
23
thermal_load_avg(struct rq * rq)24 static inline u64 thermal_load_avg(struct rq *rq)
25 {
26 return 0;
27 }
28 #endif
29
30 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
31 int update_irq_load_avg(struct rq *rq, u64 running);
32 #else
33 static inline int
update_irq_load_avg(struct rq * rq,u64 running)34 update_irq_load_avg(struct rq *rq, u64 running)
35 {
36 return 0;
37 }
38 #endif
39
40 #define PELT_MIN_DIVIDER (LOAD_AVG_MAX - 1024)
41
get_pelt_divider(struct sched_avg * avg)42 static inline u32 get_pelt_divider(struct sched_avg *avg)
43 {
44 return PELT_MIN_DIVIDER + avg->period_contrib;
45 }
46
cfs_se_util_change(struct sched_avg * avg)47 static inline void cfs_se_util_change(struct sched_avg *avg)
48 {
49 unsigned int enqueued;
50
51 if (!sched_feat(UTIL_EST))
52 return;
53
54 /* Avoid store if the flag has been already reset */
55 enqueued = avg->util_est.enqueued;
56 if (!(enqueued & UTIL_AVG_UNCHANGED))
57 return;
58
59 /* Reset flag to report util_avg has been updated */
60 enqueued &= ~UTIL_AVG_UNCHANGED;
61 WRITE_ONCE(avg->util_est.enqueued, enqueued);
62 }
63
64 /*
65 * The clock_pelt scales the time to reflect the effective amount of
66 * computation done during the running delta time but then sync back to
67 * clock_task when rq is idle.
68 *
69 *
70 * absolute time | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16
71 * @ max capacity ------******---------------******---------------
72 * @ half capacity ------************---------************---------
73 * clock pelt | 1| 2| 3| 4| 7| 8| 9| 10| 11|14|15|16
74 *
75 */
update_rq_clock_pelt(struct rq * rq,s64 delta)76 static inline void update_rq_clock_pelt(struct rq *rq, s64 delta)
77 {
78 if (unlikely(is_idle_task(rq->curr))) {
79 /* The rq is idle, we can sync to clock_task */
80 rq->clock_pelt = rq_clock_task(rq);
81 return;
82 }
83
84 /*
85 * When a rq runs at a lower compute capacity, it will need
86 * more time to do the same amount of work than at max
87 * capacity. In order to be invariant, we scale the delta to
88 * reflect how much work has been really done.
89 * Running longer results in stealing idle time that will
90 * disturb the load signal compared to max capacity. This
91 * stolen idle time will be automatically reflected when the
92 * rq will be idle and the clock will be synced with
93 * rq_clock_task.
94 */
95
96 /*
97 * Scale the elapsed time to reflect the real amount of
98 * computation
99 */
100 delta = cap_scale(delta, arch_scale_cpu_capacity(cpu_of(rq)));
101 delta = cap_scale(delta, arch_scale_freq_capacity(cpu_of(rq)));
102
103 rq->clock_pelt += delta;
104 }
105
106 /*
107 * When rq becomes idle, we have to check if it has lost idle time
108 * because it was fully busy. A rq is fully used when the /Sum util_sum
109 * is greater or equal to:
110 * (LOAD_AVG_MAX - 1024 + rq->cfs.avg.period_contrib) << SCHED_CAPACITY_SHIFT;
111 * For optimization and computing rounding purpose, we don't take into account
112 * the position in the current window (period_contrib) and we use the higher
113 * bound of util_sum to decide.
114 */
update_idle_rq_clock_pelt(struct rq * rq)115 static inline void update_idle_rq_clock_pelt(struct rq *rq)
116 {
117 u32 divider = ((LOAD_AVG_MAX - 1024) << SCHED_CAPACITY_SHIFT) - LOAD_AVG_MAX;
118 u32 util_sum = rq->cfs.avg.util_sum;
119 util_sum += rq->avg_rt.util_sum;
120 util_sum += rq->avg_dl.util_sum;
121
122 /*
123 * Reflecting stolen time makes sense only if the idle
124 * phase would be present at max capacity. As soon as the
125 * utilization of a rq has reached the maximum value, it is
126 * considered as an always runnig rq without idle time to
127 * steal. This potential idle time is considered as lost in
128 * this case. We keep track of this lost idle time compare to
129 * rq's clock_task.
130 */
131 if (util_sum >= divider)
132 rq->lost_idle_time += rq_clock_task(rq) - rq->clock_pelt;
133 }
134
rq_clock_pelt(struct rq * rq)135 static inline u64 rq_clock_pelt(struct rq *rq)
136 {
137 lockdep_assert_held(&rq->lock);
138 assert_clock_updated(rq);
139
140 return rq->clock_pelt - rq->lost_idle_time;
141 }
142
143 #ifdef CONFIG_CFS_BANDWIDTH
144 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
cfs_rq_clock_pelt(struct cfs_rq * cfs_rq)145 static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
146 {
147 if (unlikely(cfs_rq->throttle_count))
148 return cfs_rq->throttled_clock_pelt - cfs_rq->throttled_clock_pelt_time;
149
150 return rq_clock_pelt(rq_of(cfs_rq)) - cfs_rq->throttled_clock_pelt_time;
151 }
152 #else
cfs_rq_clock_pelt(struct cfs_rq * cfs_rq)153 static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
154 {
155 return rq_clock_pelt(rq_of(cfs_rq));
156 }
157 #endif
158
159 #else
160
161 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)162 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
163 {
164 return 0;
165 }
166
167 static inline int
update_rt_rq_load_avg(u64 now,struct rq * rq,int running)168 update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
169 {
170 return 0;
171 }
172
173 static inline int
update_dl_rq_load_avg(u64 now,struct rq * rq,int running)174 update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
175 {
176 return 0;
177 }
178
179 static inline int
update_thermal_load_avg(u64 now,struct rq * rq,u64 capacity)180 update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
181 {
182 return 0;
183 }
184
thermal_load_avg(struct rq * rq)185 static inline u64 thermal_load_avg(struct rq *rq)
186 {
187 return 0;
188 }
189
190 static inline int
update_irq_load_avg(struct rq * rq,u64 running)191 update_irq_load_avg(struct rq *rq, u64 running)
192 {
193 return 0;
194 }
195
rq_clock_pelt(struct rq * rq)196 static inline u64 rq_clock_pelt(struct rq *rq)
197 {
198 return rq_clock_task(rq);
199 }
200
201 static inline void
update_rq_clock_pelt(struct rq * rq,s64 delta)202 update_rq_clock_pelt(struct rq *rq, s64 delta) { }
203
204 static inline void
update_idle_rq_clock_pelt(struct rq * rq)205 update_idle_rq_clock_pelt(struct rq *rq) { }
206
207 #endif
208
209
210