• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
17  *   accesses to the object_tree_root. The object_list is the main list
18  *   holding the metadata (struct kmemleak_object) for the allocated memory
19  *   blocks. The object_tree_root is a red black tree used to look-up
20  *   metadata based on a pointer to the corresponding memory block.  The
21  *   kmemleak_object structures are added to the object_list and
22  *   object_tree_root in the create_object() function called from the
23  *   kmemleak_alloc() callback and removed in delete_object() called from the
24  *   kmemleak_free() callback
25  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
26  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
27  *   that some members of this structure may be protected by other means
28  *   (atomic or kmemleak_lock). This lock is also held when scanning the
29  *   corresponding memory block to avoid the kernel freeing it via the
30  *   kmemleak_free() callback. This is less heavyweight than holding a global
31  *   lock like kmemleak_lock during scanning.
32  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
33  *   unreferenced objects at a time. The gray_list contains the objects which
34  *   are already referenced or marked as false positives and need to be
35  *   scanned. This list is only modified during a scanning episode when the
36  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
37  *   Note that the kmemleak_object.use_count is incremented when an object is
38  *   added to the gray_list and therefore cannot be freed. This mutex also
39  *   prevents multiple users of the "kmemleak" debugfs file together with
40  *   modifications to the memory scanning parameters including the scan_thread
41  *   pointer
42  *
43  * Locks and mutexes are acquired/nested in the following order:
44  *
45  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
46  *
47  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
48  * regions.
49  *
50  * The kmemleak_object structures have a use_count incremented or decremented
51  * using the get_object()/put_object() functions. When the use_count becomes
52  * 0, this count can no longer be incremented and put_object() schedules the
53  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
54  * function must be protected by rcu_read_lock() to avoid accessing a freed
55  * structure.
56  */
57 
58 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59 
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/sched/signal.h>
64 #include <linux/sched/task.h>
65 #include <linux/sched/task_stack.h>
66 #include <linux/jiffies.h>
67 #include <linux/delay.h>
68 #include <linux/export.h>
69 #include <linux/kthread.h>
70 #include <linux/rbtree.h>
71 #include <linux/fs.h>
72 #include <linux/debugfs.h>
73 #include <linux/seq_file.h>
74 #include <linux/cpumask.h>
75 #include <linux/spinlock.h>
76 #include <linux/module.h>
77 #include <linux/mutex.h>
78 #include <linux/rcupdate.h>
79 #include <linux/stacktrace.h>
80 #include <linux/cache.h>
81 #include <linux/percpu.h>
82 #include <linux/memblock.h>
83 #include <linux/pfn.h>
84 #include <linux/mmzone.h>
85 #include <linux/slab.h>
86 #include <linux/thread_info.h>
87 #include <linux/err.h>
88 #include <linux/uaccess.h>
89 #include <linux/string.h>
90 #include <linux/nodemask.h>
91 #include <linux/mm.h>
92 #include <linux/workqueue.h>
93 #include <linux/crc32.h>
94 
95 #include <asm/sections.h>
96 #include <asm/processor.h>
97 #include <linux/atomic.h>
98 
99 #include <linux/kasan.h>
100 #include <linux/kmemleak.h>
101 #include <linux/memory_hotplug.h>
102 
103 /*
104  * Kmemleak configuration and common defines.
105  */
106 #define MAX_TRACE		16	/* stack trace length */
107 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
108 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
109 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
110 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
111 
112 #define BYTES_PER_POINTER	sizeof(void *)
113 
114 /* GFP bitmask for kmemleak internal allocations */
115 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
116 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
117 				 __GFP_NOWARN)
118 
119 /* scanning area inside a memory block */
120 struct kmemleak_scan_area {
121 	struct hlist_node node;
122 	unsigned long start;
123 	size_t size;
124 };
125 
126 #define KMEMLEAK_GREY	0
127 #define KMEMLEAK_BLACK	-1
128 
129 /*
130  * Structure holding the metadata for each allocated memory block.
131  * Modifications to such objects should be made while holding the
132  * object->lock. Insertions or deletions from object_list, gray_list or
133  * rb_node are already protected by the corresponding locks or mutex (see
134  * the notes on locking above). These objects are reference-counted
135  * (use_count) and freed using the RCU mechanism.
136  */
137 struct kmemleak_object {
138 	raw_spinlock_t lock;
139 	unsigned int flags;		/* object status flags */
140 	struct list_head object_list;
141 	struct list_head gray_list;
142 	struct rb_node rb_node;
143 	struct rcu_head rcu;		/* object_list lockless traversal */
144 	/* object usage count; object freed when use_count == 0 */
145 	atomic_t use_count;
146 	unsigned long pointer;
147 	size_t size;
148 	/* pass surplus references to this pointer */
149 	unsigned long excess_ref;
150 	/* minimum number of a pointers found before it is considered leak */
151 	int min_count;
152 	/* the total number of pointers found pointing to this object */
153 	int count;
154 	/* checksum for detecting modified objects */
155 	u32 checksum;
156 	/* memory ranges to be scanned inside an object (empty for all) */
157 	struct hlist_head area_list;
158 	unsigned long trace[MAX_TRACE];
159 	unsigned int trace_len;
160 	unsigned long jiffies;		/* creation timestamp */
161 	pid_t pid;			/* pid of the current task */
162 	char comm[TASK_COMM_LEN];	/* executable name */
163 };
164 
165 /* flag representing the memory block allocation status */
166 #define OBJECT_ALLOCATED	(1 << 0)
167 /* flag set after the first reporting of an unreference object */
168 #define OBJECT_REPORTED		(1 << 1)
169 /* flag set to not scan the object */
170 #define OBJECT_NO_SCAN		(1 << 2)
171 /* flag set to fully scan the object when scan_area allocation failed */
172 #define OBJECT_FULL_SCAN	(1 << 3)
173 
174 #define HEX_PREFIX		"    "
175 /* number of bytes to print per line; must be 16 or 32 */
176 #define HEX_ROW_SIZE		16
177 /* number of bytes to print at a time (1, 2, 4, 8) */
178 #define HEX_GROUP_SIZE		1
179 /* include ASCII after the hex output */
180 #define HEX_ASCII		1
181 /* max number of lines to be printed */
182 #define HEX_MAX_LINES		2
183 
184 /* the list of all allocated objects */
185 static LIST_HEAD(object_list);
186 /* the list of gray-colored objects (see color_gray comment below) */
187 static LIST_HEAD(gray_list);
188 /* memory pool allocation */
189 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
190 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
191 static LIST_HEAD(mem_pool_free_list);
192 /* search tree for object boundaries */
193 static struct rb_root object_tree_root = RB_ROOT;
194 /* protecting the access to object_list and object_tree_root */
195 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
196 
197 /* allocation caches for kmemleak internal data */
198 static struct kmem_cache *object_cache;
199 static struct kmem_cache *scan_area_cache;
200 
201 /* set if tracing memory operations is enabled */
202 static int kmemleak_enabled = 1;
203 /* same as above but only for the kmemleak_free() callback */
204 static int kmemleak_free_enabled = 1;
205 /* set in the late_initcall if there were no errors */
206 static int kmemleak_initialized;
207 /* set if a kmemleak warning was issued */
208 static int kmemleak_warning;
209 /* set if a fatal kmemleak error has occurred */
210 static int kmemleak_error;
211 
212 /* minimum and maximum address that may be valid pointers */
213 static unsigned long min_addr = ULONG_MAX;
214 static unsigned long max_addr;
215 
216 static struct task_struct *scan_thread;
217 /* used to avoid reporting of recently allocated objects */
218 static unsigned long jiffies_min_age;
219 static unsigned long jiffies_last_scan;
220 /* delay between automatic memory scannings */
221 static signed long jiffies_scan_wait;
222 /* enables or disables the task stacks scanning */
223 static int kmemleak_stack_scan = 1;
224 /* protects the memory scanning, parameters and debug/kmemleak file access */
225 static DEFINE_MUTEX(scan_mutex);
226 /* setting kmemleak=on, will set this var, skipping the disable */
227 static int kmemleak_skip_disable;
228 /* If there are leaks that can be reported */
229 static bool kmemleak_found_leaks;
230 
231 static bool kmemleak_verbose;
232 module_param_named(verbose, kmemleak_verbose, bool, 0600);
233 
234 static void kmemleak_disable(void);
235 
236 /*
237  * Print a warning and dump the stack trace.
238  */
239 #define kmemleak_warn(x...)	do {		\
240 	pr_warn(x);				\
241 	dump_stack();				\
242 	kmemleak_warning = 1;			\
243 } while (0)
244 
245 /*
246  * Macro invoked when a serious kmemleak condition occurred and cannot be
247  * recovered from. Kmemleak will be disabled and further allocation/freeing
248  * tracing no longer available.
249  */
250 #define kmemleak_stop(x...)	do {	\
251 	kmemleak_warn(x);		\
252 	kmemleak_disable();		\
253 } while (0)
254 
255 #define warn_or_seq_printf(seq, fmt, ...)	do {	\
256 	if (seq)					\
257 		seq_printf(seq, fmt, ##__VA_ARGS__);	\
258 	else						\
259 		pr_warn(fmt, ##__VA_ARGS__);		\
260 } while (0)
261 
warn_or_seq_hex_dump(struct seq_file * seq,int prefix_type,int rowsize,int groupsize,const void * buf,size_t len,bool ascii)262 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
263 				 int rowsize, int groupsize, const void *buf,
264 				 size_t len, bool ascii)
265 {
266 	if (seq)
267 		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
268 			     buf, len, ascii);
269 	else
270 		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
271 			       rowsize, groupsize, buf, len, ascii);
272 }
273 
274 /*
275  * Printing of the objects hex dump to the seq file. The number of lines to be
276  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
277  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
278  * with the object->lock held.
279  */
hex_dump_object(struct seq_file * seq,struct kmemleak_object * object)280 static void hex_dump_object(struct seq_file *seq,
281 			    struct kmemleak_object *object)
282 {
283 	const u8 *ptr = (const u8 *)object->pointer;
284 	size_t len;
285 
286 	/* limit the number of lines to HEX_MAX_LINES */
287 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
288 
289 	warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
290 	kasan_disable_current();
291 	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
292 			     HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
293 	kasan_enable_current();
294 }
295 
296 /*
297  * Object colors, encoded with count and min_count:
298  * - white - orphan object, not enough references to it (count < min_count)
299  * - gray  - not orphan, not marked as false positive (min_count == 0) or
300  *		sufficient references to it (count >= min_count)
301  * - black - ignore, it doesn't contain references (e.g. text section)
302  *		(min_count == -1). No function defined for this color.
303  * Newly created objects don't have any color assigned (object->count == -1)
304  * before the next memory scan when they become white.
305  */
color_white(const struct kmemleak_object * object)306 static bool color_white(const struct kmemleak_object *object)
307 {
308 	return object->count != KMEMLEAK_BLACK &&
309 		object->count < object->min_count;
310 }
311 
color_gray(const struct kmemleak_object * object)312 static bool color_gray(const struct kmemleak_object *object)
313 {
314 	return object->min_count != KMEMLEAK_BLACK &&
315 		object->count >= object->min_count;
316 }
317 
318 /*
319  * Objects are considered unreferenced only if their color is white, they have
320  * not be deleted and have a minimum age to avoid false positives caused by
321  * pointers temporarily stored in CPU registers.
322  */
unreferenced_object(struct kmemleak_object * object)323 static bool unreferenced_object(struct kmemleak_object *object)
324 {
325 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
326 		time_before_eq(object->jiffies + jiffies_min_age,
327 			       jiffies_last_scan);
328 }
329 
330 /*
331  * Printing of the unreferenced objects information to the seq file. The
332  * print_unreferenced function must be called with the object->lock held.
333  */
print_unreferenced(struct seq_file * seq,struct kmemleak_object * object)334 static void print_unreferenced(struct seq_file *seq,
335 			       struct kmemleak_object *object)
336 {
337 	int i;
338 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
339 
340 	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
341 		   object->pointer, object->size);
342 	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
343 		   object->comm, object->pid, object->jiffies,
344 		   msecs_age / 1000, msecs_age % 1000);
345 	hex_dump_object(seq, object);
346 	warn_or_seq_printf(seq, "  backtrace:\n");
347 
348 	for (i = 0; i < object->trace_len; i++) {
349 		void *ptr = (void *)object->trace[i];
350 		warn_or_seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
351 	}
352 }
353 
354 /*
355  * Print the kmemleak_object information. This function is used mainly for
356  * debugging special cases when kmemleak operations. It must be called with
357  * the object->lock held.
358  */
dump_object_info(struct kmemleak_object * object)359 static void dump_object_info(struct kmemleak_object *object)
360 {
361 	pr_notice("Object 0x%08lx (size %zu):\n",
362 		  object->pointer, object->size);
363 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
364 		  object->comm, object->pid, object->jiffies);
365 	pr_notice("  min_count = %d\n", object->min_count);
366 	pr_notice("  count = %d\n", object->count);
367 	pr_notice("  flags = 0x%x\n", object->flags);
368 	pr_notice("  checksum = %u\n", object->checksum);
369 	pr_notice("  backtrace:\n");
370 	stack_trace_print(object->trace, object->trace_len, 4);
371 }
372 
373 /*
374  * Look-up a memory block metadata (kmemleak_object) in the object search
375  * tree based on a pointer value. If alias is 0, only values pointing to the
376  * beginning of the memory block are allowed. The kmemleak_lock must be held
377  * when calling this function.
378  */
lookup_object(unsigned long ptr,int alias)379 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
380 {
381 	struct rb_node *rb = object_tree_root.rb_node;
382 
383 	while (rb) {
384 		struct kmemleak_object *object =
385 			rb_entry(rb, struct kmemleak_object, rb_node);
386 		if (ptr < object->pointer)
387 			rb = object->rb_node.rb_left;
388 		else if (object->pointer + object->size <= ptr)
389 			rb = object->rb_node.rb_right;
390 		else if (object->pointer == ptr || alias)
391 			return object;
392 		else {
393 			kmemleak_warn("Found object by alias at 0x%08lx\n",
394 				      ptr);
395 			dump_object_info(object);
396 			break;
397 		}
398 	}
399 	return NULL;
400 }
401 
402 /*
403  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
404  * that once an object's use_count reached 0, the RCU freeing was already
405  * registered and the object should no longer be used. This function must be
406  * called under the protection of rcu_read_lock().
407  */
get_object(struct kmemleak_object * object)408 static int get_object(struct kmemleak_object *object)
409 {
410 	return atomic_inc_not_zero(&object->use_count);
411 }
412 
413 /*
414  * Memory pool allocation and freeing. kmemleak_lock must not be held.
415  */
mem_pool_alloc(gfp_t gfp)416 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
417 {
418 	unsigned long flags;
419 	struct kmemleak_object *object;
420 
421 	/* try the slab allocator first */
422 	if (object_cache) {
423 		object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
424 		if (object)
425 			return object;
426 	}
427 
428 	/* slab allocation failed, try the memory pool */
429 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
430 	object = list_first_entry_or_null(&mem_pool_free_list,
431 					  typeof(*object), object_list);
432 	if (object)
433 		list_del(&object->object_list);
434 	else if (mem_pool_free_count)
435 		object = &mem_pool[--mem_pool_free_count];
436 	else
437 		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
438 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
439 
440 	return object;
441 }
442 
443 /*
444  * Return the object to either the slab allocator or the memory pool.
445  */
mem_pool_free(struct kmemleak_object * object)446 static void mem_pool_free(struct kmemleak_object *object)
447 {
448 	unsigned long flags;
449 
450 	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
451 		kmem_cache_free(object_cache, object);
452 		return;
453 	}
454 
455 	/* add the object to the memory pool free list */
456 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
457 	list_add(&object->object_list, &mem_pool_free_list);
458 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
459 }
460 
461 /*
462  * RCU callback to free a kmemleak_object.
463  */
free_object_rcu(struct rcu_head * rcu)464 static void free_object_rcu(struct rcu_head *rcu)
465 {
466 	struct hlist_node *tmp;
467 	struct kmemleak_scan_area *area;
468 	struct kmemleak_object *object =
469 		container_of(rcu, struct kmemleak_object, rcu);
470 
471 	/*
472 	 * Once use_count is 0 (guaranteed by put_object), there is no other
473 	 * code accessing this object, hence no need for locking.
474 	 */
475 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
476 		hlist_del(&area->node);
477 		kmem_cache_free(scan_area_cache, area);
478 	}
479 	mem_pool_free(object);
480 }
481 
482 /*
483  * Decrement the object use_count. Once the count is 0, free the object using
484  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
485  * delete_object() path, the delayed RCU freeing ensures that there is no
486  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
487  * is also possible.
488  */
put_object(struct kmemleak_object * object)489 static void put_object(struct kmemleak_object *object)
490 {
491 	if (!atomic_dec_and_test(&object->use_count))
492 		return;
493 
494 	/* should only get here after delete_object was called */
495 	WARN_ON(object->flags & OBJECT_ALLOCATED);
496 
497 	/*
498 	 * It may be too early for the RCU callbacks, however, there is no
499 	 * concurrent object_list traversal when !object_cache and all objects
500 	 * came from the memory pool. Free the object directly.
501 	 */
502 	if (object_cache)
503 		call_rcu(&object->rcu, free_object_rcu);
504 	else
505 		free_object_rcu(&object->rcu);
506 }
507 
508 /*
509  * Look up an object in the object search tree and increase its use_count.
510  */
find_and_get_object(unsigned long ptr,int alias)511 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
512 {
513 	unsigned long flags;
514 	struct kmemleak_object *object;
515 
516 	rcu_read_lock();
517 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
518 	object = lookup_object(ptr, alias);
519 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
520 
521 	/* check whether the object is still available */
522 	if (object && !get_object(object))
523 		object = NULL;
524 	rcu_read_unlock();
525 
526 	return object;
527 }
528 
529 /*
530  * Remove an object from the object_tree_root and object_list. Must be called
531  * with the kmemleak_lock held _if_ kmemleak is still enabled.
532  */
__remove_object(struct kmemleak_object * object)533 static void __remove_object(struct kmemleak_object *object)
534 {
535 	rb_erase(&object->rb_node, &object_tree_root);
536 	list_del_rcu(&object->object_list);
537 }
538 
539 /*
540  * Look up an object in the object search tree and remove it from both
541  * object_tree_root and object_list. The returned object's use_count should be
542  * at least 1, as initially set by create_object().
543  */
find_and_remove_object(unsigned long ptr,int alias)544 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
545 {
546 	unsigned long flags;
547 	struct kmemleak_object *object;
548 
549 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
550 	object = lookup_object(ptr, alias);
551 	if (object)
552 		__remove_object(object);
553 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
554 
555 	return object;
556 }
557 
558 /*
559  * Save stack trace to the given array of MAX_TRACE size.
560  */
__save_stack_trace(unsigned long * trace)561 static int __save_stack_trace(unsigned long *trace)
562 {
563 	return stack_trace_save(trace, MAX_TRACE, 2);
564 }
565 
566 /*
567  * Create the metadata (struct kmemleak_object) corresponding to an allocated
568  * memory block and add it to the object_list and object_tree_root.
569  */
create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp)570 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
571 					     int min_count, gfp_t gfp)
572 {
573 	unsigned long flags;
574 	struct kmemleak_object *object, *parent;
575 	struct rb_node **link, *rb_parent;
576 	unsigned long untagged_ptr;
577 
578 	object = mem_pool_alloc(gfp);
579 	if (!object) {
580 		pr_warn("Cannot allocate a kmemleak_object structure\n");
581 		kmemleak_disable();
582 		return NULL;
583 	}
584 
585 	INIT_LIST_HEAD(&object->object_list);
586 	INIT_LIST_HEAD(&object->gray_list);
587 	INIT_HLIST_HEAD(&object->area_list);
588 	raw_spin_lock_init(&object->lock);
589 	atomic_set(&object->use_count, 1);
590 	object->flags = OBJECT_ALLOCATED;
591 	object->pointer = ptr;
592 	object->size = size;
593 	object->excess_ref = 0;
594 	object->min_count = min_count;
595 	object->count = 0;			/* white color initially */
596 	object->jiffies = jiffies;
597 	object->checksum = 0;
598 
599 	/* task information */
600 	if (in_irq()) {
601 		object->pid = 0;
602 		strncpy(object->comm, "hardirq", sizeof(object->comm));
603 	} else if (in_serving_softirq()) {
604 		object->pid = 0;
605 		strncpy(object->comm, "softirq", sizeof(object->comm));
606 	} else {
607 		object->pid = current->pid;
608 		/*
609 		 * There is a small chance of a race with set_task_comm(),
610 		 * however using get_task_comm() here may cause locking
611 		 * dependency issues with current->alloc_lock. In the worst
612 		 * case, the command line is not correct.
613 		 */
614 		strncpy(object->comm, current->comm, sizeof(object->comm));
615 	}
616 
617 	/* kernel backtrace */
618 	object->trace_len = __save_stack_trace(object->trace);
619 
620 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
621 
622 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
623 	min_addr = min(min_addr, untagged_ptr);
624 	max_addr = max(max_addr, untagged_ptr + size);
625 	link = &object_tree_root.rb_node;
626 	rb_parent = NULL;
627 	while (*link) {
628 		rb_parent = *link;
629 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
630 		if (ptr + size <= parent->pointer)
631 			link = &parent->rb_node.rb_left;
632 		else if (parent->pointer + parent->size <= ptr)
633 			link = &parent->rb_node.rb_right;
634 		else {
635 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
636 				      ptr);
637 			/*
638 			 * No need for parent->lock here since "parent" cannot
639 			 * be freed while the kmemleak_lock is held.
640 			 */
641 			dump_object_info(parent);
642 			kmem_cache_free(object_cache, object);
643 			object = NULL;
644 			goto out;
645 		}
646 	}
647 	rb_link_node(&object->rb_node, rb_parent, link);
648 	rb_insert_color(&object->rb_node, &object_tree_root);
649 
650 	list_add_tail_rcu(&object->object_list, &object_list);
651 out:
652 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
653 	return object;
654 }
655 
656 /*
657  * Mark the object as not allocated and schedule RCU freeing via put_object().
658  */
__delete_object(struct kmemleak_object * object)659 static void __delete_object(struct kmemleak_object *object)
660 {
661 	unsigned long flags;
662 
663 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
664 	WARN_ON(atomic_read(&object->use_count) < 1);
665 
666 	/*
667 	 * Locking here also ensures that the corresponding memory block
668 	 * cannot be freed when it is being scanned.
669 	 */
670 	raw_spin_lock_irqsave(&object->lock, flags);
671 	object->flags &= ~OBJECT_ALLOCATED;
672 	raw_spin_unlock_irqrestore(&object->lock, flags);
673 	put_object(object);
674 }
675 
676 /*
677  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
678  * delete it.
679  */
delete_object_full(unsigned long ptr)680 static void delete_object_full(unsigned long ptr)
681 {
682 	struct kmemleak_object *object;
683 
684 	object = find_and_remove_object(ptr, 0);
685 	if (!object) {
686 #ifdef DEBUG
687 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
688 			      ptr);
689 #endif
690 		return;
691 	}
692 	__delete_object(object);
693 }
694 
695 /*
696  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
697  * delete it. If the memory block is partially freed, the function may create
698  * additional metadata for the remaining parts of the block.
699  */
delete_object_part(unsigned long ptr,size_t size)700 static void delete_object_part(unsigned long ptr, size_t size)
701 {
702 	struct kmemleak_object *object;
703 	unsigned long start, end;
704 
705 	object = find_and_remove_object(ptr, 1);
706 	if (!object) {
707 #ifdef DEBUG
708 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
709 			      ptr, size);
710 #endif
711 		return;
712 	}
713 
714 	/*
715 	 * Create one or two objects that may result from the memory block
716 	 * split. Note that partial freeing is only done by free_bootmem() and
717 	 * this happens before kmemleak_init() is called.
718 	 */
719 	start = object->pointer;
720 	end = object->pointer + object->size;
721 	if (ptr > start)
722 		create_object(start, ptr - start, object->min_count,
723 			      GFP_KERNEL);
724 	if (ptr + size < end)
725 		create_object(ptr + size, end - ptr - size, object->min_count,
726 			      GFP_KERNEL);
727 
728 	__delete_object(object);
729 }
730 
__paint_it(struct kmemleak_object * object,int color)731 static void __paint_it(struct kmemleak_object *object, int color)
732 {
733 	object->min_count = color;
734 	if (color == KMEMLEAK_BLACK)
735 		object->flags |= OBJECT_NO_SCAN;
736 }
737 
paint_it(struct kmemleak_object * object,int color)738 static void paint_it(struct kmemleak_object *object, int color)
739 {
740 	unsigned long flags;
741 
742 	raw_spin_lock_irqsave(&object->lock, flags);
743 	__paint_it(object, color);
744 	raw_spin_unlock_irqrestore(&object->lock, flags);
745 }
746 
paint_ptr(unsigned long ptr,int color)747 static void paint_ptr(unsigned long ptr, int color)
748 {
749 	struct kmemleak_object *object;
750 
751 	object = find_and_get_object(ptr, 0);
752 	if (!object) {
753 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
754 			      ptr,
755 			      (color == KMEMLEAK_GREY) ? "Grey" :
756 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
757 		return;
758 	}
759 	paint_it(object, color);
760 	put_object(object);
761 }
762 
763 /*
764  * Mark an object permanently as gray-colored so that it can no longer be
765  * reported as a leak. This is used in general to mark a false positive.
766  */
make_gray_object(unsigned long ptr)767 static void make_gray_object(unsigned long ptr)
768 {
769 	paint_ptr(ptr, KMEMLEAK_GREY);
770 }
771 
772 /*
773  * Mark the object as black-colored so that it is ignored from scans and
774  * reporting.
775  */
make_black_object(unsigned long ptr)776 static void make_black_object(unsigned long ptr)
777 {
778 	paint_ptr(ptr, KMEMLEAK_BLACK);
779 }
780 
781 /*
782  * Add a scanning area to the object. If at least one such area is added,
783  * kmemleak will only scan these ranges rather than the whole memory block.
784  */
add_scan_area(unsigned long ptr,size_t size,gfp_t gfp)785 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
786 {
787 	unsigned long flags;
788 	struct kmemleak_object *object;
789 	struct kmemleak_scan_area *area = NULL;
790 	unsigned long untagged_ptr;
791 	unsigned long untagged_objp;
792 
793 	object = find_and_get_object(ptr, 1);
794 	if (!object) {
795 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
796 			      ptr);
797 		return;
798 	}
799 
800 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
801 	untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
802 
803 	if (scan_area_cache)
804 		area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
805 
806 	raw_spin_lock_irqsave(&object->lock, flags);
807 	if (!area) {
808 		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
809 		/* mark the object for full scan to avoid false positives */
810 		object->flags |= OBJECT_FULL_SCAN;
811 		goto out_unlock;
812 	}
813 	if (size == SIZE_MAX) {
814 		size = untagged_objp + object->size - untagged_ptr;
815 	} else if (untagged_ptr + size > untagged_objp + object->size) {
816 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
817 		dump_object_info(object);
818 		kmem_cache_free(scan_area_cache, area);
819 		goto out_unlock;
820 	}
821 
822 	INIT_HLIST_NODE(&area->node);
823 	area->start = ptr;
824 	area->size = size;
825 
826 	hlist_add_head(&area->node, &object->area_list);
827 out_unlock:
828 	raw_spin_unlock_irqrestore(&object->lock, flags);
829 	put_object(object);
830 }
831 
832 /*
833  * Any surplus references (object already gray) to 'ptr' are passed to
834  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
835  * vm_struct may be used as an alternative reference to the vmalloc'ed object
836  * (see free_thread_stack()).
837  */
object_set_excess_ref(unsigned long ptr,unsigned long excess_ref)838 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
839 {
840 	unsigned long flags;
841 	struct kmemleak_object *object;
842 
843 	object = find_and_get_object(ptr, 0);
844 	if (!object) {
845 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
846 			      ptr);
847 		return;
848 	}
849 
850 	raw_spin_lock_irqsave(&object->lock, flags);
851 	object->excess_ref = excess_ref;
852 	raw_spin_unlock_irqrestore(&object->lock, flags);
853 	put_object(object);
854 }
855 
856 /*
857  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
858  * pointer. Such object will not be scanned by kmemleak but references to it
859  * are searched.
860  */
object_no_scan(unsigned long ptr)861 static void object_no_scan(unsigned long ptr)
862 {
863 	unsigned long flags;
864 	struct kmemleak_object *object;
865 
866 	object = find_and_get_object(ptr, 0);
867 	if (!object) {
868 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
869 		return;
870 	}
871 
872 	raw_spin_lock_irqsave(&object->lock, flags);
873 	object->flags |= OBJECT_NO_SCAN;
874 	raw_spin_unlock_irqrestore(&object->lock, flags);
875 	put_object(object);
876 }
877 
878 /**
879  * kmemleak_alloc - register a newly allocated object
880  * @ptr:	pointer to beginning of the object
881  * @size:	size of the object
882  * @min_count:	minimum number of references to this object. If during memory
883  *		scanning a number of references less than @min_count is found,
884  *		the object is reported as a memory leak. If @min_count is 0,
885  *		the object is never reported as a leak. If @min_count is -1,
886  *		the object is ignored (not scanned and not reported as a leak)
887  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
888  *
889  * This function is called from the kernel allocators when a new object
890  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
891  */
kmemleak_alloc(const void * ptr,size_t size,int min_count,gfp_t gfp)892 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
893 			  gfp_t gfp)
894 {
895 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
896 
897 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
898 		create_object((unsigned long)ptr, size, min_count, gfp);
899 }
900 EXPORT_SYMBOL_GPL(kmemleak_alloc);
901 
902 /**
903  * kmemleak_alloc_percpu - register a newly allocated __percpu object
904  * @ptr:	__percpu pointer to beginning of the object
905  * @size:	size of the object
906  * @gfp:	flags used for kmemleak internal memory allocations
907  *
908  * This function is called from the kernel percpu allocator when a new object
909  * (memory block) is allocated (alloc_percpu).
910  */
kmemleak_alloc_percpu(const void __percpu * ptr,size_t size,gfp_t gfp)911 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
912 				 gfp_t gfp)
913 {
914 	unsigned int cpu;
915 
916 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
917 
918 	/*
919 	 * Percpu allocations are only scanned and not reported as leaks
920 	 * (min_count is set to 0).
921 	 */
922 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
923 		for_each_possible_cpu(cpu)
924 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
925 				      size, 0, gfp);
926 }
927 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
928 
929 /**
930  * kmemleak_vmalloc - register a newly vmalloc'ed object
931  * @area:	pointer to vm_struct
932  * @size:	size of the object
933  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
934  *
935  * This function is called from the vmalloc() kernel allocator when a new
936  * object (memory block) is allocated.
937  */
kmemleak_vmalloc(const struct vm_struct * area,size_t size,gfp_t gfp)938 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
939 {
940 	pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
941 
942 	/*
943 	 * A min_count = 2 is needed because vm_struct contains a reference to
944 	 * the virtual address of the vmalloc'ed block.
945 	 */
946 	if (kmemleak_enabled) {
947 		create_object((unsigned long)area->addr, size, 2, gfp);
948 		object_set_excess_ref((unsigned long)area,
949 				      (unsigned long)area->addr);
950 	}
951 }
952 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
953 
954 /**
955  * kmemleak_free - unregister a previously registered object
956  * @ptr:	pointer to beginning of the object
957  *
958  * This function is called from the kernel allocators when an object (memory
959  * block) is freed (kmem_cache_free, kfree, vfree etc.).
960  */
kmemleak_free(const void * ptr)961 void __ref kmemleak_free(const void *ptr)
962 {
963 	pr_debug("%s(0x%p)\n", __func__, ptr);
964 
965 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
966 		delete_object_full((unsigned long)ptr);
967 }
968 EXPORT_SYMBOL_GPL(kmemleak_free);
969 
970 /**
971  * kmemleak_free_part - partially unregister a previously registered object
972  * @ptr:	pointer to the beginning or inside the object. This also
973  *		represents the start of the range to be freed
974  * @size:	size to be unregistered
975  *
976  * This function is called when only a part of a memory block is freed
977  * (usually from the bootmem allocator).
978  */
kmemleak_free_part(const void * ptr,size_t size)979 void __ref kmemleak_free_part(const void *ptr, size_t size)
980 {
981 	pr_debug("%s(0x%p)\n", __func__, ptr);
982 
983 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
984 		delete_object_part((unsigned long)ptr, size);
985 }
986 EXPORT_SYMBOL_GPL(kmemleak_free_part);
987 
988 /**
989  * kmemleak_free_percpu - unregister a previously registered __percpu object
990  * @ptr:	__percpu pointer to beginning of the object
991  *
992  * This function is called from the kernel percpu allocator when an object
993  * (memory block) is freed (free_percpu).
994  */
kmemleak_free_percpu(const void __percpu * ptr)995 void __ref kmemleak_free_percpu(const void __percpu *ptr)
996 {
997 	unsigned int cpu;
998 
999 	pr_debug("%s(0x%p)\n", __func__, ptr);
1000 
1001 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1002 		for_each_possible_cpu(cpu)
1003 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1004 								      cpu));
1005 }
1006 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1007 
1008 /**
1009  * kmemleak_update_trace - update object allocation stack trace
1010  * @ptr:	pointer to beginning of the object
1011  *
1012  * Override the object allocation stack trace for cases where the actual
1013  * allocation place is not always useful.
1014  */
kmemleak_update_trace(const void * ptr)1015 void __ref kmemleak_update_trace(const void *ptr)
1016 {
1017 	struct kmemleak_object *object;
1018 	unsigned long flags;
1019 
1020 	pr_debug("%s(0x%p)\n", __func__, ptr);
1021 
1022 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1023 		return;
1024 
1025 	object = find_and_get_object((unsigned long)ptr, 1);
1026 	if (!object) {
1027 #ifdef DEBUG
1028 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1029 			      ptr);
1030 #endif
1031 		return;
1032 	}
1033 
1034 	raw_spin_lock_irqsave(&object->lock, flags);
1035 	object->trace_len = __save_stack_trace(object->trace);
1036 	raw_spin_unlock_irqrestore(&object->lock, flags);
1037 
1038 	put_object(object);
1039 }
1040 EXPORT_SYMBOL(kmemleak_update_trace);
1041 
1042 /**
1043  * kmemleak_not_leak - mark an allocated object as false positive
1044  * @ptr:	pointer to beginning of the object
1045  *
1046  * Calling this function on an object will cause the memory block to no longer
1047  * be reported as leak and always be scanned.
1048  */
kmemleak_not_leak(const void * ptr)1049 void __ref kmemleak_not_leak(const void *ptr)
1050 {
1051 	pr_debug("%s(0x%p)\n", __func__, ptr);
1052 
1053 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1054 		make_gray_object((unsigned long)ptr);
1055 }
1056 EXPORT_SYMBOL(kmemleak_not_leak);
1057 
1058 /**
1059  * kmemleak_ignore - ignore an allocated object
1060  * @ptr:	pointer to beginning of the object
1061  *
1062  * Calling this function on an object will cause the memory block to be
1063  * ignored (not scanned and not reported as a leak). This is usually done when
1064  * it is known that the corresponding block is not a leak and does not contain
1065  * any references to other allocated memory blocks.
1066  */
kmemleak_ignore(const void * ptr)1067 void __ref kmemleak_ignore(const void *ptr)
1068 {
1069 	pr_debug("%s(0x%p)\n", __func__, ptr);
1070 
1071 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1072 		make_black_object((unsigned long)ptr);
1073 }
1074 EXPORT_SYMBOL(kmemleak_ignore);
1075 
1076 /**
1077  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1078  * @ptr:	pointer to beginning or inside the object. This also
1079  *		represents the start of the scan area
1080  * @size:	size of the scan area
1081  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1082  *
1083  * This function is used when it is known that only certain parts of an object
1084  * contain references to other objects. Kmemleak will only scan these areas
1085  * reducing the number false negatives.
1086  */
kmemleak_scan_area(const void * ptr,size_t size,gfp_t gfp)1087 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1088 {
1089 	pr_debug("%s(0x%p)\n", __func__, ptr);
1090 
1091 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1092 		add_scan_area((unsigned long)ptr, size, gfp);
1093 }
1094 EXPORT_SYMBOL(kmemleak_scan_area);
1095 
1096 /**
1097  * kmemleak_no_scan - do not scan an allocated object
1098  * @ptr:	pointer to beginning of the object
1099  *
1100  * This function notifies kmemleak not to scan the given memory block. Useful
1101  * in situations where it is known that the given object does not contain any
1102  * references to other objects. Kmemleak will not scan such objects reducing
1103  * the number of false negatives.
1104  */
kmemleak_no_scan(const void * ptr)1105 void __ref kmemleak_no_scan(const void *ptr)
1106 {
1107 	pr_debug("%s(0x%p)\n", __func__, ptr);
1108 
1109 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1110 		object_no_scan((unsigned long)ptr);
1111 }
1112 EXPORT_SYMBOL(kmemleak_no_scan);
1113 
1114 /**
1115  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1116  *			 address argument
1117  * @phys:	physical address of the object
1118  * @size:	size of the object
1119  * @min_count:	minimum number of references to this object.
1120  *              See kmemleak_alloc()
1121  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1122  */
kmemleak_alloc_phys(phys_addr_t phys,size_t size,int min_count,gfp_t gfp)1123 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1124 			       gfp_t gfp)
1125 {
1126 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1127 		kmemleak_alloc(__va(phys), size, min_count, gfp);
1128 }
1129 EXPORT_SYMBOL(kmemleak_alloc_phys);
1130 
1131 /**
1132  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1133  *			     physical address argument
1134  * @phys:	physical address if the beginning or inside an object. This
1135  *		also represents the start of the range to be freed
1136  * @size:	size to be unregistered
1137  */
kmemleak_free_part_phys(phys_addr_t phys,size_t size)1138 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1139 {
1140 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1141 		kmemleak_free_part(__va(phys), size);
1142 }
1143 EXPORT_SYMBOL(kmemleak_free_part_phys);
1144 
1145 /**
1146  * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1147  *			    address argument
1148  * @phys:	physical address of the object
1149  */
kmemleak_not_leak_phys(phys_addr_t phys)1150 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1151 {
1152 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1153 		kmemleak_not_leak(__va(phys));
1154 }
1155 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1156 
1157 /**
1158  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1159  *			  address argument
1160  * @phys:	physical address of the object
1161  */
kmemleak_ignore_phys(phys_addr_t phys)1162 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1163 {
1164 	if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1165 		kmemleak_ignore(__va(phys));
1166 }
1167 EXPORT_SYMBOL(kmemleak_ignore_phys);
1168 
1169 /*
1170  * Update an object's checksum and return true if it was modified.
1171  */
update_checksum(struct kmemleak_object * object)1172 static bool update_checksum(struct kmemleak_object *object)
1173 {
1174 	u32 old_csum = object->checksum;
1175 
1176 	kasan_disable_current();
1177 	kcsan_disable_current();
1178 	object->checksum = crc32(0, (void *)object->pointer, object->size);
1179 	kasan_enable_current();
1180 	kcsan_enable_current();
1181 
1182 	return object->checksum != old_csum;
1183 }
1184 
1185 /*
1186  * Update an object's references. object->lock must be held by the caller.
1187  */
update_refs(struct kmemleak_object * object)1188 static void update_refs(struct kmemleak_object *object)
1189 {
1190 	if (!color_white(object)) {
1191 		/* non-orphan, ignored or new */
1192 		return;
1193 	}
1194 
1195 	/*
1196 	 * Increase the object's reference count (number of pointers to the
1197 	 * memory block). If this count reaches the required minimum, the
1198 	 * object's color will become gray and it will be added to the
1199 	 * gray_list.
1200 	 */
1201 	object->count++;
1202 	if (color_gray(object)) {
1203 		/* put_object() called when removing from gray_list */
1204 		WARN_ON(!get_object(object));
1205 		list_add_tail(&object->gray_list, &gray_list);
1206 	}
1207 }
1208 
1209 /*
1210  * Memory scanning is a long process and it needs to be interruptable. This
1211  * function checks whether such interrupt condition occurred.
1212  */
scan_should_stop(void)1213 static int scan_should_stop(void)
1214 {
1215 	if (!kmemleak_enabled)
1216 		return 1;
1217 
1218 	/*
1219 	 * This function may be called from either process or kthread context,
1220 	 * hence the need to check for both stop conditions.
1221 	 */
1222 	if (current->mm)
1223 		return signal_pending(current);
1224 	else
1225 		return kthread_should_stop();
1226 
1227 	return 0;
1228 }
1229 
1230 /*
1231  * Scan a memory block (exclusive range) for valid pointers and add those
1232  * found to the gray list.
1233  */
scan_block(void * _start,void * _end,struct kmemleak_object * scanned)1234 static void scan_block(void *_start, void *_end,
1235 		       struct kmemleak_object *scanned)
1236 {
1237 	unsigned long *ptr;
1238 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1239 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1240 	unsigned long flags;
1241 	unsigned long untagged_ptr;
1242 
1243 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
1244 	for (ptr = start; ptr < end; ptr++) {
1245 		struct kmemleak_object *object;
1246 		unsigned long pointer;
1247 		unsigned long excess_ref;
1248 
1249 		if (scan_should_stop())
1250 			break;
1251 
1252 		kasan_disable_current();
1253 		pointer = *ptr;
1254 		kasan_enable_current();
1255 
1256 		untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1257 		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1258 			continue;
1259 
1260 		/*
1261 		 * No need for get_object() here since we hold kmemleak_lock.
1262 		 * object->use_count cannot be dropped to 0 while the object
1263 		 * is still present in object_tree_root and object_list
1264 		 * (with updates protected by kmemleak_lock).
1265 		 */
1266 		object = lookup_object(pointer, 1);
1267 		if (!object)
1268 			continue;
1269 		if (object == scanned)
1270 			/* self referenced, ignore */
1271 			continue;
1272 
1273 		/*
1274 		 * Avoid the lockdep recursive warning on object->lock being
1275 		 * previously acquired in scan_object(). These locks are
1276 		 * enclosed by scan_mutex.
1277 		 */
1278 		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1279 		/* only pass surplus references (object already gray) */
1280 		if (color_gray(object)) {
1281 			excess_ref = object->excess_ref;
1282 			/* no need for update_refs() if object already gray */
1283 		} else {
1284 			excess_ref = 0;
1285 			update_refs(object);
1286 		}
1287 		raw_spin_unlock(&object->lock);
1288 
1289 		if (excess_ref) {
1290 			object = lookup_object(excess_ref, 0);
1291 			if (!object)
1292 				continue;
1293 			if (object == scanned)
1294 				/* circular reference, ignore */
1295 				continue;
1296 			raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1297 			update_refs(object);
1298 			raw_spin_unlock(&object->lock);
1299 		}
1300 	}
1301 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1302 }
1303 
1304 /*
1305  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1306  */
1307 #ifdef CONFIG_SMP
scan_large_block(void * start,void * end)1308 static void scan_large_block(void *start, void *end)
1309 {
1310 	void *next;
1311 
1312 	while (start < end) {
1313 		next = min(start + MAX_SCAN_SIZE, end);
1314 		scan_block(start, next, NULL);
1315 		start = next;
1316 		cond_resched();
1317 	}
1318 }
1319 #endif
1320 
1321 /*
1322  * Scan a memory block corresponding to a kmemleak_object. A condition is
1323  * that object->use_count >= 1.
1324  */
scan_object(struct kmemleak_object * object)1325 static void scan_object(struct kmemleak_object *object)
1326 {
1327 	struct kmemleak_scan_area *area;
1328 	unsigned long flags;
1329 
1330 	/*
1331 	 * Once the object->lock is acquired, the corresponding memory block
1332 	 * cannot be freed (the same lock is acquired in delete_object).
1333 	 */
1334 	raw_spin_lock_irqsave(&object->lock, flags);
1335 	if (object->flags & OBJECT_NO_SCAN)
1336 		goto out;
1337 	if (!(object->flags & OBJECT_ALLOCATED))
1338 		/* already freed object */
1339 		goto out;
1340 	if (hlist_empty(&object->area_list) ||
1341 	    object->flags & OBJECT_FULL_SCAN) {
1342 		void *start = (void *)object->pointer;
1343 		void *end = (void *)(object->pointer + object->size);
1344 		void *next;
1345 
1346 		do {
1347 			next = min(start + MAX_SCAN_SIZE, end);
1348 			scan_block(start, next, object);
1349 
1350 			start = next;
1351 			if (start >= end)
1352 				break;
1353 
1354 			raw_spin_unlock_irqrestore(&object->lock, flags);
1355 			cond_resched();
1356 			raw_spin_lock_irqsave(&object->lock, flags);
1357 		} while (object->flags & OBJECT_ALLOCATED);
1358 	} else
1359 		hlist_for_each_entry(area, &object->area_list, node)
1360 			scan_block((void *)area->start,
1361 				   (void *)(area->start + area->size),
1362 				   object);
1363 out:
1364 	raw_spin_unlock_irqrestore(&object->lock, flags);
1365 }
1366 
1367 /*
1368  * Scan the objects already referenced (gray objects). More objects will be
1369  * referenced and, if there are no memory leaks, all the objects are scanned.
1370  */
scan_gray_list(void)1371 static void scan_gray_list(void)
1372 {
1373 	struct kmemleak_object *object, *tmp;
1374 
1375 	/*
1376 	 * The list traversal is safe for both tail additions and removals
1377 	 * from inside the loop. The kmemleak objects cannot be freed from
1378 	 * outside the loop because their use_count was incremented.
1379 	 */
1380 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1381 	while (&object->gray_list != &gray_list) {
1382 		cond_resched();
1383 
1384 		/* may add new objects to the list */
1385 		if (!scan_should_stop())
1386 			scan_object(object);
1387 
1388 		tmp = list_entry(object->gray_list.next, typeof(*object),
1389 				 gray_list);
1390 
1391 		/* remove the object from the list and release it */
1392 		list_del(&object->gray_list);
1393 		put_object(object);
1394 
1395 		object = tmp;
1396 	}
1397 	WARN_ON(!list_empty(&gray_list));
1398 }
1399 
1400 /*
1401  * Scan data sections and all the referenced memory blocks allocated via the
1402  * kernel's standard allocators. This function must be called with the
1403  * scan_mutex held.
1404  */
kmemleak_scan(void)1405 static void kmemleak_scan(void)
1406 {
1407 	unsigned long flags;
1408 	struct kmemleak_object *object;
1409 	struct zone *zone;
1410 	int __maybe_unused i;
1411 	int new_leaks = 0;
1412 
1413 	jiffies_last_scan = jiffies;
1414 
1415 	/* prepare the kmemleak_object's */
1416 	rcu_read_lock();
1417 	list_for_each_entry_rcu(object, &object_list, object_list) {
1418 		raw_spin_lock_irqsave(&object->lock, flags);
1419 #ifdef DEBUG
1420 		/*
1421 		 * With a few exceptions there should be a maximum of
1422 		 * 1 reference to any object at this point.
1423 		 */
1424 		if (atomic_read(&object->use_count) > 1) {
1425 			pr_debug("object->use_count = %d\n",
1426 				 atomic_read(&object->use_count));
1427 			dump_object_info(object);
1428 		}
1429 #endif
1430 		/* reset the reference count (whiten the object) */
1431 		object->count = 0;
1432 		if (color_gray(object) && get_object(object))
1433 			list_add_tail(&object->gray_list, &gray_list);
1434 
1435 		raw_spin_unlock_irqrestore(&object->lock, flags);
1436 	}
1437 	rcu_read_unlock();
1438 
1439 #ifdef CONFIG_SMP
1440 	/* per-cpu sections scanning */
1441 	for_each_possible_cpu(i)
1442 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1443 				 __per_cpu_end + per_cpu_offset(i));
1444 #endif
1445 
1446 	/*
1447 	 * Struct page scanning for each node.
1448 	 */
1449 	get_online_mems();
1450 	for_each_populated_zone(zone) {
1451 		unsigned long start_pfn = zone->zone_start_pfn;
1452 		unsigned long end_pfn = zone_end_pfn(zone);
1453 		unsigned long pfn;
1454 
1455 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1456 			struct page *page = pfn_to_online_page(pfn);
1457 
1458 			if (!page)
1459 				continue;
1460 
1461 			/* only scan pages belonging to this zone */
1462 			if (page_zone(page) != zone)
1463 				continue;
1464 			/* only scan if page is in use */
1465 			if (page_count(page) == 0)
1466 				continue;
1467 			scan_block(page, page + 1, NULL);
1468 			if (!(pfn & 63))
1469 				cond_resched();
1470 		}
1471 	}
1472 	put_online_mems();
1473 
1474 	/*
1475 	 * Scanning the task stacks (may introduce false negatives).
1476 	 */
1477 	if (kmemleak_stack_scan) {
1478 		struct task_struct *p, *g;
1479 
1480 		rcu_read_lock();
1481 		for_each_process_thread(g, p) {
1482 			void *stack = try_get_task_stack(p);
1483 			if (stack) {
1484 				scan_block(stack, stack + THREAD_SIZE, NULL);
1485 				put_task_stack(p);
1486 			}
1487 		}
1488 		rcu_read_unlock();
1489 	}
1490 
1491 	/*
1492 	 * Scan the objects already referenced from the sections scanned
1493 	 * above.
1494 	 */
1495 	scan_gray_list();
1496 
1497 	/*
1498 	 * Check for new or unreferenced objects modified since the previous
1499 	 * scan and color them gray until the next scan.
1500 	 */
1501 	rcu_read_lock();
1502 	list_for_each_entry_rcu(object, &object_list, object_list) {
1503 		raw_spin_lock_irqsave(&object->lock, flags);
1504 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1505 		    && update_checksum(object) && get_object(object)) {
1506 			/* color it gray temporarily */
1507 			object->count = object->min_count;
1508 			list_add_tail(&object->gray_list, &gray_list);
1509 		}
1510 		raw_spin_unlock_irqrestore(&object->lock, flags);
1511 	}
1512 	rcu_read_unlock();
1513 
1514 	/*
1515 	 * Re-scan the gray list for modified unreferenced objects.
1516 	 */
1517 	scan_gray_list();
1518 
1519 	/*
1520 	 * If scanning was stopped do not report any new unreferenced objects.
1521 	 */
1522 	if (scan_should_stop())
1523 		return;
1524 
1525 	/*
1526 	 * Scanning result reporting.
1527 	 */
1528 	rcu_read_lock();
1529 	list_for_each_entry_rcu(object, &object_list, object_list) {
1530 		raw_spin_lock_irqsave(&object->lock, flags);
1531 		if (unreferenced_object(object) &&
1532 		    !(object->flags & OBJECT_REPORTED)) {
1533 			object->flags |= OBJECT_REPORTED;
1534 
1535 			if (kmemleak_verbose)
1536 				print_unreferenced(NULL, object);
1537 
1538 			new_leaks++;
1539 		}
1540 		raw_spin_unlock_irqrestore(&object->lock, flags);
1541 	}
1542 	rcu_read_unlock();
1543 
1544 	if (new_leaks) {
1545 		kmemleak_found_leaks = true;
1546 
1547 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1548 			new_leaks);
1549 	}
1550 
1551 }
1552 
1553 /*
1554  * Thread function performing automatic memory scanning. Unreferenced objects
1555  * at the end of a memory scan are reported but only the first time.
1556  */
kmemleak_scan_thread(void * arg)1557 static int kmemleak_scan_thread(void *arg)
1558 {
1559 	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1560 
1561 	pr_info("Automatic memory scanning thread started\n");
1562 	set_user_nice(current, 10);
1563 
1564 	/*
1565 	 * Wait before the first scan to allow the system to fully initialize.
1566 	 */
1567 	if (first_run) {
1568 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1569 		first_run = 0;
1570 		while (timeout && !kthread_should_stop())
1571 			timeout = schedule_timeout_interruptible(timeout);
1572 	}
1573 
1574 	while (!kthread_should_stop()) {
1575 		signed long timeout = jiffies_scan_wait;
1576 
1577 		mutex_lock(&scan_mutex);
1578 		kmemleak_scan();
1579 		mutex_unlock(&scan_mutex);
1580 
1581 		/* wait before the next scan */
1582 		while (timeout && !kthread_should_stop())
1583 			timeout = schedule_timeout_interruptible(timeout);
1584 	}
1585 
1586 	pr_info("Automatic memory scanning thread ended\n");
1587 
1588 	return 0;
1589 }
1590 
1591 /*
1592  * Start the automatic memory scanning thread. This function must be called
1593  * with the scan_mutex held.
1594  */
start_scan_thread(void)1595 static void start_scan_thread(void)
1596 {
1597 	if (scan_thread)
1598 		return;
1599 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1600 	if (IS_ERR(scan_thread)) {
1601 		pr_warn("Failed to create the scan thread\n");
1602 		scan_thread = NULL;
1603 	}
1604 }
1605 
1606 /*
1607  * Stop the automatic memory scanning thread.
1608  */
stop_scan_thread(void)1609 static void stop_scan_thread(void)
1610 {
1611 	if (scan_thread) {
1612 		kthread_stop(scan_thread);
1613 		scan_thread = NULL;
1614 	}
1615 }
1616 
1617 /*
1618  * Iterate over the object_list and return the first valid object at or after
1619  * the required position with its use_count incremented. The function triggers
1620  * a memory scanning when the pos argument points to the first position.
1621  */
kmemleak_seq_start(struct seq_file * seq,loff_t * pos)1622 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1623 {
1624 	struct kmemleak_object *object;
1625 	loff_t n = *pos;
1626 	int err;
1627 
1628 	err = mutex_lock_interruptible(&scan_mutex);
1629 	if (err < 0)
1630 		return ERR_PTR(err);
1631 
1632 	rcu_read_lock();
1633 	list_for_each_entry_rcu(object, &object_list, object_list) {
1634 		if (n-- > 0)
1635 			continue;
1636 		if (get_object(object))
1637 			goto out;
1638 	}
1639 	object = NULL;
1640 out:
1641 	return object;
1642 }
1643 
1644 /*
1645  * Return the next object in the object_list. The function decrements the
1646  * use_count of the previous object and increases that of the next one.
1647  */
kmemleak_seq_next(struct seq_file * seq,void * v,loff_t * pos)1648 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1649 {
1650 	struct kmemleak_object *prev_obj = v;
1651 	struct kmemleak_object *next_obj = NULL;
1652 	struct kmemleak_object *obj = prev_obj;
1653 
1654 	++(*pos);
1655 
1656 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1657 		if (get_object(obj)) {
1658 			next_obj = obj;
1659 			break;
1660 		}
1661 	}
1662 
1663 	put_object(prev_obj);
1664 	return next_obj;
1665 }
1666 
1667 /*
1668  * Decrement the use_count of the last object required, if any.
1669  */
kmemleak_seq_stop(struct seq_file * seq,void * v)1670 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1671 {
1672 	if (!IS_ERR(v)) {
1673 		/*
1674 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1675 		 * waiting was interrupted, so only release it if !IS_ERR.
1676 		 */
1677 		rcu_read_unlock();
1678 		mutex_unlock(&scan_mutex);
1679 		if (v)
1680 			put_object(v);
1681 	}
1682 }
1683 
1684 /*
1685  * Print the information for an unreferenced object to the seq file.
1686  */
kmemleak_seq_show(struct seq_file * seq,void * v)1687 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1688 {
1689 	struct kmemleak_object *object = v;
1690 	unsigned long flags;
1691 
1692 	raw_spin_lock_irqsave(&object->lock, flags);
1693 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1694 		print_unreferenced(seq, object);
1695 	raw_spin_unlock_irqrestore(&object->lock, flags);
1696 	return 0;
1697 }
1698 
1699 static const struct seq_operations kmemleak_seq_ops = {
1700 	.start = kmemleak_seq_start,
1701 	.next  = kmemleak_seq_next,
1702 	.stop  = kmemleak_seq_stop,
1703 	.show  = kmemleak_seq_show,
1704 };
1705 
kmemleak_open(struct inode * inode,struct file * file)1706 static int kmemleak_open(struct inode *inode, struct file *file)
1707 {
1708 	return seq_open(file, &kmemleak_seq_ops);
1709 }
1710 
dump_str_object_info(const char * str)1711 static int dump_str_object_info(const char *str)
1712 {
1713 	unsigned long flags;
1714 	struct kmemleak_object *object;
1715 	unsigned long addr;
1716 
1717 	if (kstrtoul(str, 0, &addr))
1718 		return -EINVAL;
1719 	object = find_and_get_object(addr, 0);
1720 	if (!object) {
1721 		pr_info("Unknown object at 0x%08lx\n", addr);
1722 		return -EINVAL;
1723 	}
1724 
1725 	raw_spin_lock_irqsave(&object->lock, flags);
1726 	dump_object_info(object);
1727 	raw_spin_unlock_irqrestore(&object->lock, flags);
1728 
1729 	put_object(object);
1730 	return 0;
1731 }
1732 
1733 /*
1734  * We use grey instead of black to ensure we can do future scans on the same
1735  * objects. If we did not do future scans these black objects could
1736  * potentially contain references to newly allocated objects in the future and
1737  * we'd end up with false positives.
1738  */
kmemleak_clear(void)1739 static void kmemleak_clear(void)
1740 {
1741 	struct kmemleak_object *object;
1742 	unsigned long flags;
1743 
1744 	rcu_read_lock();
1745 	list_for_each_entry_rcu(object, &object_list, object_list) {
1746 		raw_spin_lock_irqsave(&object->lock, flags);
1747 		if ((object->flags & OBJECT_REPORTED) &&
1748 		    unreferenced_object(object))
1749 			__paint_it(object, KMEMLEAK_GREY);
1750 		raw_spin_unlock_irqrestore(&object->lock, flags);
1751 	}
1752 	rcu_read_unlock();
1753 
1754 	kmemleak_found_leaks = false;
1755 }
1756 
1757 static void __kmemleak_do_cleanup(void);
1758 
1759 /*
1760  * File write operation to configure kmemleak at run-time. The following
1761  * commands can be written to the /sys/kernel/debug/kmemleak file:
1762  *   off	- disable kmemleak (irreversible)
1763  *   stack=on	- enable the task stacks scanning
1764  *   stack=off	- disable the tasks stacks scanning
1765  *   scan=on	- start the automatic memory scanning thread
1766  *   scan=off	- stop the automatic memory scanning thread
1767  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1768  *		  disable it)
1769  *   scan	- trigger a memory scan
1770  *   clear	- mark all current reported unreferenced kmemleak objects as
1771  *		  grey to ignore printing them, or free all kmemleak objects
1772  *		  if kmemleak has been disabled.
1773  *   dump=...	- dump information about the object found at the given address
1774  */
kmemleak_write(struct file * file,const char __user * user_buf,size_t size,loff_t * ppos)1775 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1776 			      size_t size, loff_t *ppos)
1777 {
1778 	char buf[64];
1779 	int buf_size;
1780 	int ret;
1781 
1782 	buf_size = min(size, (sizeof(buf) - 1));
1783 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1784 		return -EFAULT;
1785 	buf[buf_size] = 0;
1786 
1787 	ret = mutex_lock_interruptible(&scan_mutex);
1788 	if (ret < 0)
1789 		return ret;
1790 
1791 	if (strncmp(buf, "clear", 5) == 0) {
1792 		if (kmemleak_enabled)
1793 			kmemleak_clear();
1794 		else
1795 			__kmemleak_do_cleanup();
1796 		goto out;
1797 	}
1798 
1799 	if (!kmemleak_enabled) {
1800 		ret = -EPERM;
1801 		goto out;
1802 	}
1803 
1804 	if (strncmp(buf, "off", 3) == 0)
1805 		kmemleak_disable();
1806 	else if (strncmp(buf, "stack=on", 8) == 0)
1807 		kmemleak_stack_scan = 1;
1808 	else if (strncmp(buf, "stack=off", 9) == 0)
1809 		kmemleak_stack_scan = 0;
1810 	else if (strncmp(buf, "scan=on", 7) == 0)
1811 		start_scan_thread();
1812 	else if (strncmp(buf, "scan=off", 8) == 0)
1813 		stop_scan_thread();
1814 	else if (strncmp(buf, "scan=", 5) == 0) {
1815 		unsigned long secs;
1816 
1817 		ret = kstrtoul(buf + 5, 0, &secs);
1818 		if (ret < 0)
1819 			goto out;
1820 		stop_scan_thread();
1821 		if (secs) {
1822 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1823 			start_scan_thread();
1824 		}
1825 	} else if (strncmp(buf, "scan", 4) == 0)
1826 		kmemleak_scan();
1827 	else if (strncmp(buf, "dump=", 5) == 0)
1828 		ret = dump_str_object_info(buf + 5);
1829 	else
1830 		ret = -EINVAL;
1831 
1832 out:
1833 	mutex_unlock(&scan_mutex);
1834 	if (ret < 0)
1835 		return ret;
1836 
1837 	/* ignore the rest of the buffer, only one command at a time */
1838 	*ppos += size;
1839 	return size;
1840 }
1841 
1842 static const struct file_operations kmemleak_fops = {
1843 	.owner		= THIS_MODULE,
1844 	.open		= kmemleak_open,
1845 	.read		= seq_read,
1846 	.write		= kmemleak_write,
1847 	.llseek		= seq_lseek,
1848 	.release	= seq_release,
1849 };
1850 
__kmemleak_do_cleanup(void)1851 static void __kmemleak_do_cleanup(void)
1852 {
1853 	struct kmemleak_object *object, *tmp;
1854 
1855 	/*
1856 	 * Kmemleak has already been disabled, no need for RCU list traversal
1857 	 * or kmemleak_lock held.
1858 	 */
1859 	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
1860 		__remove_object(object);
1861 		__delete_object(object);
1862 	}
1863 }
1864 
1865 /*
1866  * Stop the memory scanning thread and free the kmemleak internal objects if
1867  * no previous scan thread (otherwise, kmemleak may still have some useful
1868  * information on memory leaks).
1869  */
kmemleak_do_cleanup(struct work_struct * work)1870 static void kmemleak_do_cleanup(struct work_struct *work)
1871 {
1872 	stop_scan_thread();
1873 
1874 	mutex_lock(&scan_mutex);
1875 	/*
1876 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1877 	 * longer track object freeing. Ordering of the scan thread stopping and
1878 	 * the memory accesses below is guaranteed by the kthread_stop()
1879 	 * function.
1880 	 */
1881 	kmemleak_free_enabled = 0;
1882 	mutex_unlock(&scan_mutex);
1883 
1884 	if (!kmemleak_found_leaks)
1885 		__kmemleak_do_cleanup();
1886 	else
1887 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1888 }
1889 
1890 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1891 
1892 /*
1893  * Disable kmemleak. No memory allocation/freeing will be traced once this
1894  * function is called. Disabling kmemleak is an irreversible operation.
1895  */
kmemleak_disable(void)1896 static void kmemleak_disable(void)
1897 {
1898 	/* atomically check whether it was already invoked */
1899 	if (cmpxchg(&kmemleak_error, 0, 1))
1900 		return;
1901 
1902 	/* stop any memory operation tracing */
1903 	kmemleak_enabled = 0;
1904 
1905 	/* check whether it is too early for a kernel thread */
1906 	if (kmemleak_initialized)
1907 		schedule_work(&cleanup_work);
1908 	else
1909 		kmemleak_free_enabled = 0;
1910 
1911 	pr_info("Kernel memory leak detector disabled\n");
1912 }
1913 
1914 /*
1915  * Allow boot-time kmemleak disabling (enabled by default).
1916  */
kmemleak_boot_config(char * str)1917 static int __init kmemleak_boot_config(char *str)
1918 {
1919 	if (!str)
1920 		return -EINVAL;
1921 	if (strcmp(str, "off") == 0)
1922 		kmemleak_disable();
1923 	else if (strcmp(str, "on") == 0)
1924 		kmemleak_skip_disable = 1;
1925 	else
1926 		return -EINVAL;
1927 	return 0;
1928 }
1929 early_param("kmemleak", kmemleak_boot_config);
1930 
1931 /*
1932  * Kmemleak initialization.
1933  */
kmemleak_init(void)1934 void __init kmemleak_init(void)
1935 {
1936 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1937 	if (!kmemleak_skip_disable) {
1938 		kmemleak_disable();
1939 		return;
1940 	}
1941 #endif
1942 
1943 	if (kmemleak_error)
1944 		return;
1945 
1946 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1947 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1948 
1949 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1950 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1951 
1952 	/* register the data/bss sections */
1953 	create_object((unsigned long)_sdata, _edata - _sdata,
1954 		      KMEMLEAK_GREY, GFP_ATOMIC);
1955 	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
1956 		      KMEMLEAK_GREY, GFP_ATOMIC);
1957 	/* only register .data..ro_after_init if not within .data */
1958 	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
1959 		create_object((unsigned long)__start_ro_after_init,
1960 			      __end_ro_after_init - __start_ro_after_init,
1961 			      KMEMLEAK_GREY, GFP_ATOMIC);
1962 }
1963 
1964 /*
1965  * Late initialization function.
1966  */
kmemleak_late_init(void)1967 static int __init kmemleak_late_init(void)
1968 {
1969 	kmemleak_initialized = 1;
1970 
1971 	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
1972 
1973 	if (kmemleak_error) {
1974 		/*
1975 		 * Some error occurred and kmemleak was disabled. There is a
1976 		 * small chance that kmemleak_disable() was called immediately
1977 		 * after setting kmemleak_initialized and we may end up with
1978 		 * two clean-up threads but serialized by scan_mutex.
1979 		 */
1980 		schedule_work(&cleanup_work);
1981 		return -ENOMEM;
1982 	}
1983 
1984 	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
1985 		mutex_lock(&scan_mutex);
1986 		start_scan_thread();
1987 		mutex_unlock(&scan_mutex);
1988 	}
1989 
1990 	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
1991 		mem_pool_free_count);
1992 
1993 	return 0;
1994 }
1995 late_initcall(kmemleak_late_init);
1996