• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Memory merging support.
4   *
5   * This code enables dynamic sharing of identical pages found in different
6   * memory areas, even if they are not shared by fork()
7   *
8   * Copyright (C) 2008-2009 Red Hat, Inc.
9   * Authors:
10   *	Izik Eidus
11   *	Andrea Arcangeli
12   *	Chris Wright
13   *	Hugh Dickins
14   */
15  
16  #include <linux/errno.h>
17  #include <linux/mm.h>
18  #include <linux/fs.h>
19  #include <linux/mman.h>
20  #include <linux/sched.h>
21  #include <linux/sched/mm.h>
22  #include <linux/sched/coredump.h>
23  #include <linux/rwsem.h>
24  #include <linux/pagemap.h>
25  #include <linux/rmap.h>
26  #include <linux/spinlock.h>
27  #include <linux/xxhash.h>
28  #include <linux/delay.h>
29  #include <linux/kthread.h>
30  #include <linux/wait.h>
31  #include <linux/slab.h>
32  #include <linux/rbtree.h>
33  #include <linux/memory.h>
34  #include <linux/mmu_notifier.h>
35  #include <linux/swap.h>
36  #include <linux/ksm.h>
37  #include <linux/hashtable.h>
38  #include <linux/freezer.h>
39  #include <linux/oom.h>
40  #include <linux/numa.h>
41  
42  #include <asm/tlbflush.h>
43  #include "internal.h"
44  #include <linux/xpm.h>
45  
46  #ifdef CONFIG_NUMA
47  #define NUMA(x)		(x)
48  #define DO_NUMA(x)	do { (x); } while (0)
49  #else
50  #define NUMA(x)		(0)
51  #define DO_NUMA(x)	do { } while (0)
52  #endif
53  
54  /**
55   * DOC: Overview
56   *
57   * A few notes about the KSM scanning process,
58   * to make it easier to understand the data structures below:
59   *
60   * In order to reduce excessive scanning, KSM sorts the memory pages by their
61   * contents into a data structure that holds pointers to the pages' locations.
62   *
63   * Since the contents of the pages may change at any moment, KSM cannot just
64   * insert the pages into a normal sorted tree and expect it to find anything.
65   * Therefore KSM uses two data structures - the stable and the unstable tree.
66   *
67   * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68   * by their contents.  Because each such page is write-protected, searching on
69   * this tree is fully assured to be working (except when pages are unmapped),
70   * and therefore this tree is called the stable tree.
71   *
72   * The stable tree node includes information required for reverse
73   * mapping from a KSM page to virtual addresses that map this page.
74   *
75   * In order to avoid large latencies of the rmap walks on KSM pages,
76   * KSM maintains two types of nodes in the stable tree:
77   *
78   * * the regular nodes that keep the reverse mapping structures in a
79   *   linked list
80   * * the "chains" that link nodes ("dups") that represent the same
81   *   write protected memory content, but each "dup" corresponds to a
82   *   different KSM page copy of that content
83   *
84   * Internally, the regular nodes, "dups" and "chains" are represented
85   * using the same struct stable_node structure.
86   *
87   * In addition to the stable tree, KSM uses a second data structure called the
88   * unstable tree: this tree holds pointers to pages which have been found to
89   * be "unchanged for a period of time".  The unstable tree sorts these pages
90   * by their contents, but since they are not write-protected, KSM cannot rely
91   * upon the unstable tree to work correctly - the unstable tree is liable to
92   * be corrupted as its contents are modified, and so it is called unstable.
93   *
94   * KSM solves this problem by several techniques:
95   *
96   * 1) The unstable tree is flushed every time KSM completes scanning all
97   *    memory areas, and then the tree is rebuilt again from the beginning.
98   * 2) KSM will only insert into the unstable tree, pages whose hash value
99   *    has not changed since the previous scan of all memory areas.
100   * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101   *    colors of the nodes and not on their contents, assuring that even when
102   *    the tree gets "corrupted" it won't get out of balance, so scanning time
103   *    remains the same (also, searching and inserting nodes in an rbtree uses
104   *    the same algorithm, so we have no overhead when we flush and rebuild).
105   * 4) KSM never flushes the stable tree, which means that even if it were to
106   *    take 10 attempts to find a page in the unstable tree, once it is found,
107   *    it is secured in the stable tree.  (When we scan a new page, we first
108   *    compare it against the stable tree, and then against the unstable tree.)
109   *
110   * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111   * stable trees and multiple unstable trees: one of each for each NUMA node.
112   */
113  
114  /**
115   * struct mm_slot - ksm information per mm that is being scanned
116   * @link: link to the mm_slots hash list
117   * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
118   * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119   * @mm: the mm that this information is valid for
120   */
121  struct mm_slot {
122  	struct hlist_node link;
123  	struct list_head mm_list;
124  	struct rmap_item *rmap_list;
125  	struct mm_struct *mm;
126  };
127  
128  /**
129   * struct ksm_scan - cursor for scanning
130   * @mm_slot: the current mm_slot we are scanning
131   * @address: the next address inside that to be scanned
132   * @rmap_list: link to the next rmap to be scanned in the rmap_list
133   * @seqnr: count of completed full scans (needed when removing unstable node)
134   *
135   * There is only the one ksm_scan instance of this cursor structure.
136   */
137  struct ksm_scan {
138  	struct mm_slot *mm_slot;
139  	unsigned long address;
140  	struct rmap_item **rmap_list;
141  	unsigned long seqnr;
142  };
143  
144  /**
145   * struct stable_node - node of the stable rbtree
146   * @node: rb node of this ksm page in the stable tree
147   * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
148   * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
149   * @list: linked into migrate_nodes, pending placement in the proper node tree
150   * @hlist: hlist head of rmap_items using this ksm page
151   * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
152   * @chain_prune_time: time of the last full garbage collection
153   * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
154   * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
155   */
156  struct stable_node {
157  	union {
158  		struct rb_node node;	/* when node of stable tree */
159  		struct {		/* when listed for migration */
160  			struct list_head *head;
161  			struct {
162  				struct hlist_node hlist_dup;
163  				struct list_head list;
164  			};
165  		};
166  	};
167  	struct hlist_head hlist;
168  	union {
169  		unsigned long kpfn;
170  		unsigned long chain_prune_time;
171  	};
172  	/*
173  	 * STABLE_NODE_CHAIN can be any negative number in
174  	 * rmap_hlist_len negative range, but better not -1 to be able
175  	 * to reliably detect underflows.
176  	 */
177  #define STABLE_NODE_CHAIN -1024
178  	int rmap_hlist_len;
179  #ifdef CONFIG_NUMA
180  	int nid;
181  #endif
182  };
183  
184  /**
185   * struct rmap_item - reverse mapping item for virtual addresses
186   * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
187   * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
188   * @nid: NUMA node id of unstable tree in which linked (may not match page)
189   * @mm: the memory structure this rmap_item is pointing into
190   * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191   * @oldchecksum: previous checksum of the page at that virtual address
192   * @node: rb node of this rmap_item in the unstable tree
193   * @head: pointer to stable_node heading this list in the stable tree
194   * @hlist: link into hlist of rmap_items hanging off that stable_node
195   */
196  struct rmap_item {
197  	struct rmap_item *rmap_list;
198  	union {
199  		struct anon_vma *anon_vma;	/* when stable */
200  #ifdef CONFIG_NUMA
201  		int nid;		/* when node of unstable tree */
202  #endif
203  	};
204  	struct mm_struct *mm;
205  	unsigned long address;		/* + low bits used for flags below */
206  	unsigned int oldchecksum;	/* when unstable */
207  	union {
208  		struct rb_node node;	/* when node of unstable tree */
209  		struct {		/* when listed from stable tree */
210  			struct stable_node *head;
211  			struct hlist_node hlist;
212  		};
213  	};
214  };
215  
216  #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
217  #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
218  #define STABLE_FLAG	0x200	/* is listed from the stable tree */
219  #define KSM_FLAG_MASK	(SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
220  				/* to mask all the flags */
221  
222  /* The stable and unstable tree heads */
223  static struct rb_root one_stable_tree[1] = { RB_ROOT };
224  static struct rb_root one_unstable_tree[1] = { RB_ROOT };
225  static struct rb_root *root_stable_tree = one_stable_tree;
226  static struct rb_root *root_unstable_tree = one_unstable_tree;
227  
228  /* Recently migrated nodes of stable tree, pending proper placement */
229  static LIST_HEAD(migrate_nodes);
230  #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
231  
232  #define MM_SLOTS_HASH_BITS 10
233  static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
234  
235  static struct mm_slot ksm_mm_head = {
236  	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
237  };
238  static struct ksm_scan ksm_scan = {
239  	.mm_slot = &ksm_mm_head,
240  };
241  
242  static struct kmem_cache *rmap_item_cache;
243  static struct kmem_cache *stable_node_cache;
244  static struct kmem_cache *mm_slot_cache;
245  
246  /* The number of nodes in the stable tree */
247  static unsigned long ksm_pages_shared;
248  
249  /* The number of page slots additionally sharing those nodes */
250  static unsigned long ksm_pages_sharing;
251  
252  /* The number of nodes in the unstable tree */
253  static unsigned long ksm_pages_unshared;
254  
255  /* The number of rmap_items in use: to calculate pages_volatile */
256  static unsigned long ksm_rmap_items;
257  
258  /* The number of stable_node chains */
259  static unsigned long ksm_stable_node_chains;
260  
261  /* The number of stable_node dups linked to the stable_node chains */
262  static unsigned long ksm_stable_node_dups;
263  
264  /* Delay in pruning stale stable_node_dups in the stable_node_chains */
265  static int ksm_stable_node_chains_prune_millisecs = 2000;
266  
267  /* Maximum number of page slots sharing a stable node */
268  static int ksm_max_page_sharing = 256;
269  
270  /* Number of pages ksmd should scan in one batch */
271  static unsigned int ksm_thread_pages_to_scan = 100;
272  
273  /* Milliseconds ksmd should sleep between batches */
274  static unsigned int ksm_thread_sleep_millisecs = 20;
275  
276  /* Checksum of an empty (zeroed) page */
277  static unsigned int zero_checksum __read_mostly;
278  
279  /* Whether to merge empty (zeroed) pages with actual zero pages */
280  static bool ksm_use_zero_pages __read_mostly;
281  
282  #ifdef CONFIG_NUMA
283  /* Zeroed when merging across nodes is not allowed */
284  static unsigned int ksm_merge_across_nodes = 1;
285  static int ksm_nr_node_ids = 1;
286  #else
287  #define ksm_merge_across_nodes	1U
288  #define ksm_nr_node_ids		1
289  #endif
290  
291  #define KSM_RUN_STOP	0
292  #define KSM_RUN_MERGE	1
293  #define KSM_RUN_UNMERGE	2
294  #define KSM_RUN_OFFLINE	4
295  static unsigned long ksm_run = KSM_RUN_STOP;
296  static void wait_while_offlining(void);
297  
298  static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
299  static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
300  static DEFINE_MUTEX(ksm_thread_mutex);
301  static DEFINE_SPINLOCK(ksm_mmlist_lock);
302  
303  #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
304  		sizeof(struct __struct), __alignof__(struct __struct),\
305  		(__flags), NULL)
306  
ksm_slab_init(void)307  static int __init ksm_slab_init(void)
308  {
309  	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
310  	if (!rmap_item_cache)
311  		goto out;
312  
313  	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
314  	if (!stable_node_cache)
315  		goto out_free1;
316  
317  	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
318  	if (!mm_slot_cache)
319  		goto out_free2;
320  
321  	return 0;
322  
323  out_free2:
324  	kmem_cache_destroy(stable_node_cache);
325  out_free1:
326  	kmem_cache_destroy(rmap_item_cache);
327  out:
328  	return -ENOMEM;
329  }
330  
ksm_slab_free(void)331  static void __init ksm_slab_free(void)
332  {
333  	kmem_cache_destroy(mm_slot_cache);
334  	kmem_cache_destroy(stable_node_cache);
335  	kmem_cache_destroy(rmap_item_cache);
336  	mm_slot_cache = NULL;
337  }
338  
is_stable_node_chain(struct stable_node * chain)339  static __always_inline bool is_stable_node_chain(struct stable_node *chain)
340  {
341  	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
342  }
343  
is_stable_node_dup(struct stable_node * dup)344  static __always_inline bool is_stable_node_dup(struct stable_node *dup)
345  {
346  	return dup->head == STABLE_NODE_DUP_HEAD;
347  }
348  
stable_node_chain_add_dup(struct stable_node * dup,struct stable_node * chain)349  static inline void stable_node_chain_add_dup(struct stable_node *dup,
350  					     struct stable_node *chain)
351  {
352  	VM_BUG_ON(is_stable_node_dup(dup));
353  	dup->head = STABLE_NODE_DUP_HEAD;
354  	VM_BUG_ON(!is_stable_node_chain(chain));
355  	hlist_add_head(&dup->hlist_dup, &chain->hlist);
356  	ksm_stable_node_dups++;
357  }
358  
__stable_node_dup_del(struct stable_node * dup)359  static inline void __stable_node_dup_del(struct stable_node *dup)
360  {
361  	VM_BUG_ON(!is_stable_node_dup(dup));
362  	hlist_del(&dup->hlist_dup);
363  	ksm_stable_node_dups--;
364  }
365  
stable_node_dup_del(struct stable_node * dup)366  static inline void stable_node_dup_del(struct stable_node *dup)
367  {
368  	VM_BUG_ON(is_stable_node_chain(dup));
369  	if (is_stable_node_dup(dup))
370  		__stable_node_dup_del(dup);
371  	else
372  		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
373  #ifdef CONFIG_DEBUG_VM
374  	dup->head = NULL;
375  #endif
376  }
377  
alloc_rmap_item(void)378  static inline struct rmap_item *alloc_rmap_item(void)
379  {
380  	struct rmap_item *rmap_item;
381  
382  	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
383  						__GFP_NORETRY | __GFP_NOWARN);
384  	if (rmap_item)
385  		ksm_rmap_items++;
386  	return rmap_item;
387  }
388  
free_rmap_item(struct rmap_item * rmap_item)389  static inline void free_rmap_item(struct rmap_item *rmap_item)
390  {
391  	ksm_rmap_items--;
392  	rmap_item->mm = NULL;	/* debug safety */
393  	kmem_cache_free(rmap_item_cache, rmap_item);
394  }
395  
alloc_stable_node(void)396  static inline struct stable_node *alloc_stable_node(void)
397  {
398  	/*
399  	 * The allocation can take too long with GFP_KERNEL when memory is under
400  	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
401  	 * grants access to memory reserves, helping to avoid this problem.
402  	 */
403  	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
404  }
405  
free_stable_node(struct stable_node * stable_node)406  static inline void free_stable_node(struct stable_node *stable_node)
407  {
408  	VM_BUG_ON(stable_node->rmap_hlist_len &&
409  		  !is_stable_node_chain(stable_node));
410  	kmem_cache_free(stable_node_cache, stable_node);
411  }
412  
alloc_mm_slot(void)413  static inline struct mm_slot *alloc_mm_slot(void)
414  {
415  	if (!mm_slot_cache)	/* initialization failed */
416  		return NULL;
417  	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
418  }
419  
free_mm_slot(struct mm_slot * mm_slot)420  static inline void free_mm_slot(struct mm_slot *mm_slot)
421  {
422  	kmem_cache_free(mm_slot_cache, mm_slot);
423  }
424  
get_mm_slot(struct mm_struct * mm)425  static struct mm_slot *get_mm_slot(struct mm_struct *mm)
426  {
427  	struct mm_slot *slot;
428  
429  	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
430  		if (slot->mm == mm)
431  			return slot;
432  
433  	return NULL;
434  }
435  
insert_to_mm_slots_hash(struct mm_struct * mm,struct mm_slot * mm_slot)436  static void insert_to_mm_slots_hash(struct mm_struct *mm,
437  				    struct mm_slot *mm_slot)
438  {
439  	mm_slot->mm = mm;
440  	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
441  }
442  
443  /*
444   * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
445   * page tables after it has passed through ksm_exit() - which, if necessary,
446   * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
447   * a special flag: they can just back out as soon as mm_users goes to zero.
448   * ksm_test_exit() is used throughout to make this test for exit: in some
449   * places for correctness, in some places just to avoid unnecessary work.
450   */
ksm_test_exit(struct mm_struct * mm)451  static inline bool ksm_test_exit(struct mm_struct *mm)
452  {
453  	return atomic_read(&mm->mm_users) == 0;
454  }
455  
456  /*
457   * We use break_ksm to break COW on a ksm page: it's a stripped down
458   *
459   *	if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
460   *		put_page(page);
461   *
462   * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
463   * in case the application has unmapped and remapped mm,addr meanwhile.
464   * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
465   * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
466   *
467   * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
468   * of the process that owns 'vma'.  We also do not want to enforce
469   * protection keys here anyway.
470   */
break_ksm(struct vm_area_struct * vma,unsigned long addr)471  static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
472  {
473  	struct page *page;
474  	vm_fault_t ret = 0;
475  
476  	do {
477  		cond_resched();
478  		page = follow_page(vma, addr,
479  				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
480  		if (IS_ERR_OR_NULL(page))
481  			break;
482  		if (PageKsm(page))
483  			ret = handle_mm_fault(vma, addr,
484  					      FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
485  					      NULL);
486  		else
487  			ret = VM_FAULT_WRITE;
488  		put_page(page);
489  	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
490  	/*
491  	 * We must loop because handle_mm_fault() may back out if there's
492  	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
493  	 *
494  	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
495  	 * COW has been broken, even if the vma does not permit VM_WRITE;
496  	 * but note that a concurrent fault might break PageKsm for us.
497  	 *
498  	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
499  	 * backing file, which also invalidates anonymous pages: that's
500  	 * okay, that truncation will have unmapped the PageKsm for us.
501  	 *
502  	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
503  	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
504  	 * current task has TIF_MEMDIE set, and will be OOM killed on return
505  	 * to user; and ksmd, having no mm, would never be chosen for that.
506  	 *
507  	 * But if the mm is in a limited mem_cgroup, then the fault may fail
508  	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
509  	 * even ksmd can fail in this way - though it's usually breaking ksm
510  	 * just to undo a merge it made a moment before, so unlikely to oom.
511  	 *
512  	 * That's a pity: we might therefore have more kernel pages allocated
513  	 * than we're counting as nodes in the stable tree; but ksm_do_scan
514  	 * will retry to break_cow on each pass, so should recover the page
515  	 * in due course.  The important thing is to not let VM_MERGEABLE
516  	 * be cleared while any such pages might remain in the area.
517  	 */
518  	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
519  }
520  
find_mergeable_vma(struct mm_struct * mm,unsigned long addr)521  static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
522  		unsigned long addr)
523  {
524  	struct vm_area_struct *vma;
525  	if (ksm_test_exit(mm))
526  		return NULL;
527  	vma = find_vma(mm, addr);
528  	if (!vma || vma->vm_start > addr)
529  		return NULL;
530  	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
531  		return NULL;
532  	return vma;
533  }
534  
break_cow(struct rmap_item * rmap_item)535  static void break_cow(struct rmap_item *rmap_item)
536  {
537  	struct mm_struct *mm = rmap_item->mm;
538  	unsigned long addr = rmap_item->address;
539  	struct vm_area_struct *vma;
540  
541  	/*
542  	 * It is not an accident that whenever we want to break COW
543  	 * to undo, we also need to drop a reference to the anon_vma.
544  	 */
545  	put_anon_vma(rmap_item->anon_vma);
546  
547  	mmap_read_lock(mm);
548  	vma = find_mergeable_vma(mm, addr);
549  	if (vma)
550  		break_ksm(vma, addr);
551  	mmap_read_unlock(mm);
552  }
553  
get_mergeable_page(struct rmap_item * rmap_item)554  static struct page *get_mergeable_page(struct rmap_item *rmap_item)
555  {
556  	struct mm_struct *mm = rmap_item->mm;
557  	unsigned long addr = rmap_item->address;
558  	struct vm_area_struct *vma;
559  	struct page *page;
560  
561  	mmap_read_lock(mm);
562  	vma = find_mergeable_vma(mm, addr);
563  	if (!vma)
564  		goto out;
565  
566  	page = follow_page(vma, addr, FOLL_GET);
567  	if (IS_ERR_OR_NULL(page))
568  		goto out;
569  	if (PageAnon(page)) {
570  		flush_anon_page(vma, page, addr);
571  		flush_dcache_page(page);
572  	} else {
573  		put_page(page);
574  out:
575  		page = NULL;
576  	}
577  	mmap_read_unlock(mm);
578  	return page;
579  }
580  
581  /*
582   * This helper is used for getting right index into array of tree roots.
583   * When merge_across_nodes knob is set to 1, there are only two rb-trees for
584   * stable and unstable pages from all nodes with roots in index 0. Otherwise,
585   * every node has its own stable and unstable tree.
586   */
get_kpfn_nid(unsigned long kpfn)587  static inline int get_kpfn_nid(unsigned long kpfn)
588  {
589  	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
590  }
591  
alloc_stable_node_chain(struct stable_node * dup,struct rb_root * root)592  static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
593  						   struct rb_root *root)
594  {
595  	struct stable_node *chain = alloc_stable_node();
596  	VM_BUG_ON(is_stable_node_chain(dup));
597  	if (likely(chain)) {
598  		INIT_HLIST_HEAD(&chain->hlist);
599  		chain->chain_prune_time = jiffies;
600  		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
601  #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
602  		chain->nid = NUMA_NO_NODE; /* debug */
603  #endif
604  		ksm_stable_node_chains++;
605  
606  		/*
607  		 * Put the stable node chain in the first dimension of
608  		 * the stable tree and at the same time remove the old
609  		 * stable node.
610  		 */
611  		rb_replace_node(&dup->node, &chain->node, root);
612  
613  		/*
614  		 * Move the old stable node to the second dimension
615  		 * queued in the hlist_dup. The invariant is that all
616  		 * dup stable_nodes in the chain->hlist point to pages
617  		 * that are write protected and have the exact same
618  		 * content.
619  		 */
620  		stable_node_chain_add_dup(dup, chain);
621  	}
622  	return chain;
623  }
624  
free_stable_node_chain(struct stable_node * chain,struct rb_root * root)625  static inline void free_stable_node_chain(struct stable_node *chain,
626  					  struct rb_root *root)
627  {
628  	rb_erase(&chain->node, root);
629  	free_stable_node(chain);
630  	ksm_stable_node_chains--;
631  }
632  
remove_node_from_stable_tree(struct stable_node * stable_node)633  static void remove_node_from_stable_tree(struct stable_node *stable_node)
634  {
635  	struct rmap_item *rmap_item;
636  
637  	/* check it's not STABLE_NODE_CHAIN or negative */
638  	BUG_ON(stable_node->rmap_hlist_len < 0);
639  
640  	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
641  		if (rmap_item->hlist.next)
642  			ksm_pages_sharing--;
643  		else
644  			ksm_pages_shared--;
645  		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
646  		stable_node->rmap_hlist_len--;
647  		put_anon_vma(rmap_item->anon_vma);
648  		rmap_item->address &= PAGE_MASK;
649  		cond_resched();
650  	}
651  
652  	/*
653  	 * We need the second aligned pointer of the migrate_nodes
654  	 * list_head to stay clear from the rb_parent_color union
655  	 * (aligned and different than any node) and also different
656  	 * from &migrate_nodes. This will verify that future list.h changes
657  	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
658  	 */
659  #if defined(GCC_VERSION) && GCC_VERSION >= 40903
660  	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
661  	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
662  #endif
663  
664  	if (stable_node->head == &migrate_nodes)
665  		list_del(&stable_node->list);
666  	else
667  		stable_node_dup_del(stable_node);
668  	free_stable_node(stable_node);
669  }
670  
671  enum get_ksm_page_flags {
672  	GET_KSM_PAGE_NOLOCK,
673  	GET_KSM_PAGE_LOCK,
674  	GET_KSM_PAGE_TRYLOCK
675  };
676  
677  /*
678   * get_ksm_page: checks if the page indicated by the stable node
679   * is still its ksm page, despite having held no reference to it.
680   * In which case we can trust the content of the page, and it
681   * returns the gotten page; but if the page has now been zapped,
682   * remove the stale node from the stable tree and return NULL.
683   * But beware, the stable node's page might be being migrated.
684   *
685   * You would expect the stable_node to hold a reference to the ksm page.
686   * But if it increments the page's count, swapping out has to wait for
687   * ksmd to come around again before it can free the page, which may take
688   * seconds or even minutes: much too unresponsive.  So instead we use a
689   * "keyhole reference": access to the ksm page from the stable node peeps
690   * out through its keyhole to see if that page still holds the right key,
691   * pointing back to this stable node.  This relies on freeing a PageAnon
692   * page to reset its page->mapping to NULL, and relies on no other use of
693   * a page to put something that might look like our key in page->mapping.
694   * is on its way to being freed; but it is an anomaly to bear in mind.
695   */
get_ksm_page(struct stable_node * stable_node,enum get_ksm_page_flags flags)696  static struct page *get_ksm_page(struct stable_node *stable_node,
697  				 enum get_ksm_page_flags flags)
698  {
699  	struct page *page;
700  	void *expected_mapping;
701  	unsigned long kpfn;
702  
703  	expected_mapping = (void *)((unsigned long)stable_node |
704  					PAGE_MAPPING_KSM);
705  again:
706  	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
707  	page = pfn_to_page(kpfn);
708  	if (READ_ONCE(page->mapping) != expected_mapping)
709  		goto stale;
710  
711  	/*
712  	 * We cannot do anything with the page while its refcount is 0.
713  	 * Usually 0 means free, or tail of a higher-order page: in which
714  	 * case this node is no longer referenced, and should be freed;
715  	 * however, it might mean that the page is under page_ref_freeze().
716  	 * The __remove_mapping() case is easy, again the node is now stale;
717  	 * the same is in reuse_ksm_page() case; but if page is swapcache
718  	 * in migrate_page_move_mapping(), it might still be our page,
719  	 * in which case it's essential to keep the node.
720  	 */
721  	while (!get_page_unless_zero(page)) {
722  		/*
723  		 * Another check for page->mapping != expected_mapping would
724  		 * work here too.  We have chosen the !PageSwapCache test to
725  		 * optimize the common case, when the page is or is about to
726  		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
727  		 * in the ref_freeze section of __remove_mapping(); but Anon
728  		 * page->mapping reset to NULL later, in free_pages_prepare().
729  		 */
730  		if (!PageSwapCache(page))
731  			goto stale;
732  		cpu_relax();
733  	}
734  
735  	if (READ_ONCE(page->mapping) != expected_mapping) {
736  		put_page(page);
737  		goto stale;
738  	}
739  
740  	if (flags == GET_KSM_PAGE_TRYLOCK) {
741  		if (!trylock_page(page)) {
742  			put_page(page);
743  			return ERR_PTR(-EBUSY);
744  		}
745  	} else if (flags == GET_KSM_PAGE_LOCK)
746  		lock_page(page);
747  
748  	if (flags != GET_KSM_PAGE_NOLOCK) {
749  		if (READ_ONCE(page->mapping) != expected_mapping) {
750  			unlock_page(page);
751  			put_page(page);
752  			goto stale;
753  		}
754  	}
755  	return page;
756  
757  stale:
758  	/*
759  	 * We come here from above when page->mapping or !PageSwapCache
760  	 * suggests that the node is stale; but it might be under migration.
761  	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
762  	 * before checking whether node->kpfn has been changed.
763  	 */
764  	smp_rmb();
765  	if (READ_ONCE(stable_node->kpfn) != kpfn)
766  		goto again;
767  	remove_node_from_stable_tree(stable_node);
768  	return NULL;
769  }
770  
771  /*
772   * Removing rmap_item from stable or unstable tree.
773   * This function will clean the information from the stable/unstable tree.
774   */
remove_rmap_item_from_tree(struct rmap_item * rmap_item)775  static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
776  {
777  	if (rmap_item->address & STABLE_FLAG) {
778  		struct stable_node *stable_node;
779  		struct page *page;
780  
781  		stable_node = rmap_item->head;
782  		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
783  		if (!page)
784  			goto out;
785  
786  		hlist_del(&rmap_item->hlist);
787  		unlock_page(page);
788  		put_page(page);
789  
790  		if (!hlist_empty(&stable_node->hlist))
791  			ksm_pages_sharing--;
792  		else
793  			ksm_pages_shared--;
794  		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
795  		stable_node->rmap_hlist_len--;
796  
797  		put_anon_vma(rmap_item->anon_vma);
798  		rmap_item->head = NULL;
799  		rmap_item->address &= PAGE_MASK;
800  
801  	} else if (rmap_item->address & UNSTABLE_FLAG) {
802  		unsigned char age;
803  		/*
804  		 * Usually ksmd can and must skip the rb_erase, because
805  		 * root_unstable_tree was already reset to RB_ROOT.
806  		 * But be careful when an mm is exiting: do the rb_erase
807  		 * if this rmap_item was inserted by this scan, rather
808  		 * than left over from before.
809  		 */
810  		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
811  		BUG_ON(age > 1);
812  		if (!age)
813  			rb_erase(&rmap_item->node,
814  				 root_unstable_tree + NUMA(rmap_item->nid));
815  		ksm_pages_unshared--;
816  		rmap_item->address &= PAGE_MASK;
817  	}
818  out:
819  	cond_resched();		/* we're called from many long loops */
820  }
821  
remove_trailing_rmap_items(struct mm_slot * mm_slot,struct rmap_item ** rmap_list)822  static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
823  				       struct rmap_item **rmap_list)
824  {
825  	while (*rmap_list) {
826  		struct rmap_item *rmap_item = *rmap_list;
827  		*rmap_list = rmap_item->rmap_list;
828  		remove_rmap_item_from_tree(rmap_item);
829  		free_rmap_item(rmap_item);
830  	}
831  }
832  
833  /*
834   * Though it's very tempting to unmerge rmap_items from stable tree rather
835   * than check every pte of a given vma, the locking doesn't quite work for
836   * that - an rmap_item is assigned to the stable tree after inserting ksm
837   * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
838   * rmap_items from parent to child at fork time (so as not to waste time
839   * if exit comes before the next scan reaches it).
840   *
841   * Similarly, although we'd like to remove rmap_items (so updating counts
842   * and freeing memory) when unmerging an area, it's easier to leave that
843   * to the next pass of ksmd - consider, for example, how ksmd might be
844   * in cmp_and_merge_page on one of the rmap_items we would be removing.
845   */
unmerge_ksm_pages(struct vm_area_struct * vma,unsigned long start,unsigned long end)846  static int unmerge_ksm_pages(struct vm_area_struct *vma,
847  			     unsigned long start, unsigned long end)
848  {
849  	unsigned long addr;
850  	int err = 0;
851  
852  	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
853  		if (ksm_test_exit(vma->vm_mm))
854  			break;
855  		if (signal_pending(current))
856  			err = -ERESTARTSYS;
857  		else
858  			err = break_ksm(vma, addr);
859  	}
860  	return err;
861  }
862  
page_stable_node(struct page * page)863  static inline struct stable_node *page_stable_node(struct page *page)
864  {
865  	return PageKsm(page) ? page_rmapping(page) : NULL;
866  }
867  
set_page_stable_node(struct page * page,struct stable_node * stable_node)868  static inline void set_page_stable_node(struct page *page,
869  					struct stable_node *stable_node)
870  {
871  	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
872  }
873  
874  #ifdef CONFIG_SYSFS
875  /*
876   * Only called through the sysfs control interface:
877   */
remove_stable_node(struct stable_node * stable_node)878  static int remove_stable_node(struct stable_node *stable_node)
879  {
880  	struct page *page;
881  	int err;
882  
883  	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
884  	if (!page) {
885  		/*
886  		 * get_ksm_page did remove_node_from_stable_tree itself.
887  		 */
888  		return 0;
889  	}
890  
891  	/*
892  	 * Page could be still mapped if this races with __mmput() running in
893  	 * between ksm_exit() and exit_mmap(). Just refuse to let
894  	 * merge_across_nodes/max_page_sharing be switched.
895  	 */
896  	err = -EBUSY;
897  	if (!page_mapped(page)) {
898  		/*
899  		 * The stable node did not yet appear stale to get_ksm_page(),
900  		 * since that allows for an unmapped ksm page to be recognized
901  		 * right up until it is freed; but the node is safe to remove.
902  		 * This page might be in a pagevec waiting to be freed,
903  		 * or it might be PageSwapCache (perhaps under writeback),
904  		 * or it might have been removed from swapcache a moment ago.
905  		 */
906  		set_page_stable_node(page, NULL);
907  		remove_node_from_stable_tree(stable_node);
908  		err = 0;
909  	}
910  
911  	unlock_page(page);
912  	put_page(page);
913  	return err;
914  }
915  
remove_stable_node_chain(struct stable_node * stable_node,struct rb_root * root)916  static int remove_stable_node_chain(struct stable_node *stable_node,
917  				    struct rb_root *root)
918  {
919  	struct stable_node *dup;
920  	struct hlist_node *hlist_safe;
921  
922  	if (!is_stable_node_chain(stable_node)) {
923  		VM_BUG_ON(is_stable_node_dup(stable_node));
924  		if (remove_stable_node(stable_node))
925  			return true;
926  		else
927  			return false;
928  	}
929  
930  	hlist_for_each_entry_safe(dup, hlist_safe,
931  				  &stable_node->hlist, hlist_dup) {
932  		VM_BUG_ON(!is_stable_node_dup(dup));
933  		if (remove_stable_node(dup))
934  			return true;
935  	}
936  	BUG_ON(!hlist_empty(&stable_node->hlist));
937  	free_stable_node_chain(stable_node, root);
938  	return false;
939  }
940  
remove_all_stable_nodes(void)941  static int remove_all_stable_nodes(void)
942  {
943  	struct stable_node *stable_node, *next;
944  	int nid;
945  	int err = 0;
946  
947  	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
948  		while (root_stable_tree[nid].rb_node) {
949  			stable_node = rb_entry(root_stable_tree[nid].rb_node,
950  						struct stable_node, node);
951  			if (remove_stable_node_chain(stable_node,
952  						     root_stable_tree + nid)) {
953  				err = -EBUSY;
954  				break;	/* proceed to next nid */
955  			}
956  			cond_resched();
957  		}
958  	}
959  	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
960  		if (remove_stable_node(stable_node))
961  			err = -EBUSY;
962  		cond_resched();
963  	}
964  	return err;
965  }
966  
unmerge_and_remove_all_rmap_items(void)967  static int unmerge_and_remove_all_rmap_items(void)
968  {
969  	struct mm_slot *mm_slot;
970  	struct mm_struct *mm;
971  	struct vm_area_struct *vma;
972  	int err = 0;
973  
974  	spin_lock(&ksm_mmlist_lock);
975  	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
976  						struct mm_slot, mm_list);
977  	spin_unlock(&ksm_mmlist_lock);
978  
979  	for (mm_slot = ksm_scan.mm_slot;
980  			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
981  		mm = mm_slot->mm;
982  		mmap_read_lock(mm);
983  		for (vma = mm->mmap; vma; vma = vma->vm_next) {
984  			if (ksm_test_exit(mm))
985  				break;
986  			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
987  				continue;
988  			err = unmerge_ksm_pages(vma,
989  						vma->vm_start, vma->vm_end);
990  			if (err)
991  				goto error;
992  		}
993  
994  		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
995  		mmap_read_unlock(mm);
996  
997  		spin_lock(&ksm_mmlist_lock);
998  		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
999  						struct mm_slot, mm_list);
1000  		if (ksm_test_exit(mm)) {
1001  			hash_del(&mm_slot->link);
1002  			list_del(&mm_slot->mm_list);
1003  			spin_unlock(&ksm_mmlist_lock);
1004  
1005  			free_mm_slot(mm_slot);
1006  			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1007  			mmdrop(mm);
1008  		} else
1009  			spin_unlock(&ksm_mmlist_lock);
1010  	}
1011  
1012  	/* Clean up stable nodes, but don't worry if some are still busy */
1013  	remove_all_stable_nodes();
1014  	ksm_scan.seqnr = 0;
1015  	return 0;
1016  
1017  error:
1018  	mmap_read_unlock(mm);
1019  	spin_lock(&ksm_mmlist_lock);
1020  	ksm_scan.mm_slot = &ksm_mm_head;
1021  	spin_unlock(&ksm_mmlist_lock);
1022  	return err;
1023  }
1024  #endif /* CONFIG_SYSFS */
1025  
calc_checksum(struct page * page)1026  static u32 calc_checksum(struct page *page)
1027  {
1028  	u32 checksum;
1029  	void *addr = kmap_atomic(page);
1030  	checksum = xxhash(addr, PAGE_SIZE, 0);
1031  	kunmap_atomic(addr);
1032  	return checksum;
1033  }
1034  
write_protect_page(struct vm_area_struct * vma,struct page * page,pte_t * orig_pte)1035  static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1036  			      pte_t *orig_pte)
1037  {
1038  	struct mm_struct *mm = vma->vm_mm;
1039  	struct page_vma_mapped_walk pvmw = {
1040  		.page = page,
1041  		.vma = vma,
1042  	};
1043  	int swapped;
1044  	int err = -EFAULT;
1045  	struct mmu_notifier_range range;
1046  
1047  	pvmw.address = page_address_in_vma(page, vma);
1048  	if (pvmw.address == -EFAULT)
1049  		goto out;
1050  
1051  	BUG_ON(PageTransCompound(page));
1052  
1053  	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1054  				pvmw.address,
1055  				pvmw.address + PAGE_SIZE);
1056  	mmu_notifier_invalidate_range_start(&range);
1057  
1058  	if (!page_vma_mapped_walk(&pvmw))
1059  		goto out_mn;
1060  	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1061  		goto out_unlock;
1062  
1063  	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1064  	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1065  						mm_tlb_flush_pending(mm)) {
1066  		pte_t entry;
1067  
1068  		swapped = PageSwapCache(page);
1069  		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1070  		/*
1071  		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1072  		 * take any lock, therefore the check that we are going to make
1073  		 * with the pagecount against the mapcount is racey and
1074  		 * O_DIRECT can happen right after the check.
1075  		 * So we clear the pte and flush the tlb before the check
1076  		 * this assure us that no O_DIRECT can happen after the check
1077  		 * or in the middle of the check.
1078  		 *
1079  		 * No need to notify as we are downgrading page table to read
1080  		 * only not changing it to point to a new page.
1081  		 *
1082  		 * See Documentation/vm/mmu_notifier.rst
1083  		 */
1084  		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1085  		/*
1086  		 * Check that no O_DIRECT or similar I/O is in progress on the
1087  		 * page
1088  		 */
1089  		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1090  			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1091  			goto out_unlock;
1092  		}
1093  		if (pte_dirty(entry))
1094  			set_page_dirty(page);
1095  
1096  		if (pte_protnone(entry))
1097  			entry = pte_mkclean(pte_clear_savedwrite(entry));
1098  		else
1099  			entry = pte_mkclean(pte_wrprotect(entry));
1100  		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1101  	}
1102  	*orig_pte = *pvmw.pte;
1103  	err = 0;
1104  
1105  out_unlock:
1106  	page_vma_mapped_walk_done(&pvmw);
1107  out_mn:
1108  	mmu_notifier_invalidate_range_end(&range);
1109  out:
1110  	return err;
1111  }
1112  
1113  /**
1114   * replace_page - replace page in vma by new ksm page
1115   * @vma:      vma that holds the pte pointing to page
1116   * @page:     the page we are replacing by kpage
1117   * @kpage:    the ksm page we replace page by
1118   * @orig_pte: the original value of the pte
1119   *
1120   * Returns 0 on success, -EFAULT on failure.
1121   */
replace_page(struct vm_area_struct * vma,struct page * page,struct page * kpage,pte_t orig_pte)1122  static int replace_page(struct vm_area_struct *vma, struct page *page,
1123  			struct page *kpage, pte_t orig_pte)
1124  {
1125  	struct mm_struct *mm = vma->vm_mm;
1126  	pmd_t *pmd;
1127  	pte_t *ptep;
1128  	pte_t newpte;
1129  	spinlock_t *ptl;
1130  	unsigned long addr;
1131  	int err = -EFAULT;
1132  	struct mmu_notifier_range range;
1133  
1134  	addr = page_address_in_vma(page, vma);
1135  	if (addr == -EFAULT)
1136  		goto out;
1137  
1138  	pmd = mm_find_pmd(mm, addr);
1139  	if (!pmd)
1140  		goto out;
1141  
1142  	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1143  				addr + PAGE_SIZE);
1144  	mmu_notifier_invalidate_range_start(&range);
1145  
1146  	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1147  	if (!pte_same(*ptep, orig_pte)) {
1148  		pte_unmap_unlock(ptep, ptl);
1149  		goto out_mn;
1150  	}
1151  
1152  	/*
1153  	 * No need to check ksm_use_zero_pages here: we can only have a
1154  	 * zero_page here if ksm_use_zero_pages was enabled already.
1155  	 */
1156  	if (!is_zero_pfn(page_to_pfn(kpage))) {
1157  		get_page(kpage);
1158  		page_add_anon_rmap(kpage, vma, addr, false);
1159  		newpte = mk_pte(kpage, vma->vm_page_prot);
1160  	} else {
1161  		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1162  					       vma->vm_page_prot));
1163  		/*
1164  		 * We're replacing an anonymous page with a zero page, which is
1165  		 * not anonymous. We need to do proper accounting otherwise we
1166  		 * will get wrong values in /proc, and a BUG message in dmesg
1167  		 * when tearing down the mm.
1168  		 */
1169  		dec_mm_counter(mm, MM_ANONPAGES);
1170  	}
1171  
1172  	flush_cache_page(vma, addr, pte_pfn(*ptep));
1173  	/*
1174  	 * No need to notify as we are replacing a read only page with another
1175  	 * read only page with the same content.
1176  	 *
1177  	 * See Documentation/vm/mmu_notifier.rst
1178  	 */
1179  	ptep_clear_flush(vma, addr, ptep);
1180  	set_pte_at_notify(mm, addr, ptep, newpte);
1181  
1182  	page_remove_rmap(page, false);
1183  	if (!page_mapped(page))
1184  		try_to_free_swap(page);
1185  	put_page(page);
1186  
1187  	pte_unmap_unlock(ptep, ptl);
1188  	err = 0;
1189  out_mn:
1190  	mmu_notifier_invalidate_range_end(&range);
1191  out:
1192  	return err;
1193  }
1194  
1195  /*
1196   * try_to_merge_one_page - take two pages and merge them into one
1197   * @vma: the vma that holds the pte pointing to page
1198   * @page: the PageAnon page that we want to replace with kpage
1199   * @kpage: the PageKsm page that we want to map instead of page,
1200   *         or NULL the first time when we want to use page as kpage.
1201   *
1202   * This function returns 0 if the pages were merged, -EFAULT otherwise.
1203   */
try_to_merge_one_page(struct vm_area_struct * vma,struct page * page,struct page * kpage)1204  static int try_to_merge_one_page(struct vm_area_struct *vma,
1205  				 struct page *page, struct page *kpage)
1206  {
1207  	pte_t orig_pte = __pte(0);
1208  	int err = -EFAULT;
1209  
1210  	if (page == kpage)			/* ksm page forked */
1211  		return 0;
1212  
1213  	if (!PageAnon(page))
1214  		goto out;
1215  
1216  	if(!xpm_integrity_check_one_page_merge(page, kpage))
1217  		goto out;
1218  
1219  	/*
1220  	 * We need the page lock to read a stable PageSwapCache in
1221  	 * write_protect_page().  We use trylock_page() instead of
1222  	 * lock_page() because we don't want to wait here - we
1223  	 * prefer to continue scanning and merging different pages,
1224  	 * then come back to this page when it is unlocked.
1225  	 */
1226  	if (!trylock_page(page))
1227  		goto out;
1228  
1229  	if (PageTransCompound(page)) {
1230  		if (split_huge_page(page))
1231  			goto out_unlock;
1232  	}
1233  
1234  	/*
1235  	 * If this anonymous page is mapped only here, its pte may need
1236  	 * to be write-protected.  If it's mapped elsewhere, all of its
1237  	 * ptes are necessarily already write-protected.  But in either
1238  	 * case, we need to lock and check page_count is not raised.
1239  	 */
1240  	if (write_protect_page(vma, page, &orig_pte) == 0) {
1241  		if (!kpage) {
1242  			/*
1243  			 * While we hold page lock, upgrade page from
1244  			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1245  			 * stable_tree_insert() will update stable_node.
1246  			 */
1247  			set_page_stable_node(page, NULL);
1248  			mark_page_accessed(page);
1249  			/*
1250  			 * Page reclaim just frees a clean page with no dirty
1251  			 * ptes: make sure that the ksm page would be swapped.
1252  			 */
1253  			if (!PageDirty(page))
1254  				SetPageDirty(page);
1255  			err = 0;
1256  		} else if (pages_identical(page, kpage))
1257  			err = replace_page(vma, page, kpage, orig_pte);
1258  	}
1259  
1260  	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1261  		munlock_vma_page(page);
1262  		if (!PageMlocked(kpage)) {
1263  			unlock_page(page);
1264  			lock_page(kpage);
1265  			mlock_vma_page(kpage);
1266  			page = kpage;		/* for final unlock */
1267  		}
1268  	}
1269  
1270  out_unlock:
1271  	unlock_page(page);
1272  out:
1273  	return err;
1274  }
1275  
1276  /*
1277   * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1278   * but no new kernel page is allocated: kpage must already be a ksm page.
1279   *
1280   * This function returns 0 if the pages were merged, -EFAULT otherwise.
1281   */
try_to_merge_with_ksm_page(struct rmap_item * rmap_item,struct page * page,struct page * kpage)1282  static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1283  				      struct page *page, struct page *kpage)
1284  {
1285  	struct mm_struct *mm = rmap_item->mm;
1286  	struct vm_area_struct *vma;
1287  	int err = -EFAULT;
1288  
1289  	mmap_read_lock(mm);
1290  	vma = find_mergeable_vma(mm, rmap_item->address);
1291  	if (!vma)
1292  		goto out;
1293  
1294  	err = try_to_merge_one_page(vma, page, kpage);
1295  	if (err)
1296  		goto out;
1297  
1298  	/* Unstable nid is in union with stable anon_vma: remove first */
1299  	remove_rmap_item_from_tree(rmap_item);
1300  
1301  	/* Must get reference to anon_vma while still holding mmap_lock */
1302  	rmap_item->anon_vma = vma->anon_vma;
1303  	get_anon_vma(vma->anon_vma);
1304  out:
1305  	mmap_read_unlock(mm);
1306  	return err;
1307  }
1308  
1309  /*
1310   * try_to_merge_two_pages - take two identical pages and prepare them
1311   * to be merged into one page.
1312   *
1313   * This function returns the kpage if we successfully merged two identical
1314   * pages into one ksm page, NULL otherwise.
1315   *
1316   * Note that this function upgrades page to ksm page: if one of the pages
1317   * is already a ksm page, try_to_merge_with_ksm_page should be used.
1318   */
try_to_merge_two_pages(struct rmap_item * rmap_item,struct page * page,struct rmap_item * tree_rmap_item,struct page * tree_page)1319  static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1320  					   struct page *page,
1321  					   struct rmap_item *tree_rmap_item,
1322  					   struct page *tree_page)
1323  {
1324  	int err;
1325  
1326  	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1327  	if (!err) {
1328  		err = try_to_merge_with_ksm_page(tree_rmap_item,
1329  							tree_page, page);
1330  		/*
1331  		 * If that fails, we have a ksm page with only one pte
1332  		 * pointing to it: so break it.
1333  		 */
1334  		if (err)
1335  			break_cow(rmap_item);
1336  	}
1337  	return err ? NULL : page;
1338  }
1339  
1340  static __always_inline
__is_page_sharing_candidate(struct stable_node * stable_node,int offset)1341  bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1342  {
1343  	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1344  	/*
1345  	 * Check that at least one mapping still exists, otherwise
1346  	 * there's no much point to merge and share with this
1347  	 * stable_node, as the underlying tree_page of the other
1348  	 * sharer is going to be freed soon.
1349  	 */
1350  	return stable_node->rmap_hlist_len &&
1351  		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1352  }
1353  
1354  static __always_inline
is_page_sharing_candidate(struct stable_node * stable_node)1355  bool is_page_sharing_candidate(struct stable_node *stable_node)
1356  {
1357  	return __is_page_sharing_candidate(stable_node, 0);
1358  }
1359  
stable_node_dup(struct stable_node ** _stable_node_dup,struct stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1360  static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1361  				    struct stable_node **_stable_node,
1362  				    struct rb_root *root,
1363  				    bool prune_stale_stable_nodes)
1364  {
1365  	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1366  	struct hlist_node *hlist_safe;
1367  	struct page *_tree_page, *tree_page = NULL;
1368  	int nr = 0;
1369  	int found_rmap_hlist_len;
1370  
1371  	if (!prune_stale_stable_nodes ||
1372  	    time_before(jiffies, stable_node->chain_prune_time +
1373  			msecs_to_jiffies(
1374  				ksm_stable_node_chains_prune_millisecs)))
1375  		prune_stale_stable_nodes = false;
1376  	else
1377  		stable_node->chain_prune_time = jiffies;
1378  
1379  	hlist_for_each_entry_safe(dup, hlist_safe,
1380  				  &stable_node->hlist, hlist_dup) {
1381  		cond_resched();
1382  		/*
1383  		 * We must walk all stable_node_dup to prune the stale
1384  		 * stable nodes during lookup.
1385  		 *
1386  		 * get_ksm_page can drop the nodes from the
1387  		 * stable_node->hlist if they point to freed pages
1388  		 * (that's why we do a _safe walk). The "dup"
1389  		 * stable_node parameter itself will be freed from
1390  		 * under us if it returns NULL.
1391  		 */
1392  		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1393  		if (!_tree_page)
1394  			continue;
1395  		nr += 1;
1396  		if (is_page_sharing_candidate(dup)) {
1397  			if (!found ||
1398  			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1399  				if (found)
1400  					put_page(tree_page);
1401  				found = dup;
1402  				found_rmap_hlist_len = found->rmap_hlist_len;
1403  				tree_page = _tree_page;
1404  
1405  				/* skip put_page for found dup */
1406  				if (!prune_stale_stable_nodes)
1407  					break;
1408  				continue;
1409  			}
1410  		}
1411  		put_page(_tree_page);
1412  	}
1413  
1414  	if (found) {
1415  		/*
1416  		 * nr is counting all dups in the chain only if
1417  		 * prune_stale_stable_nodes is true, otherwise we may
1418  		 * break the loop at nr == 1 even if there are
1419  		 * multiple entries.
1420  		 */
1421  		if (prune_stale_stable_nodes && nr == 1) {
1422  			/*
1423  			 * If there's not just one entry it would
1424  			 * corrupt memory, better BUG_ON. In KSM
1425  			 * context with no lock held it's not even
1426  			 * fatal.
1427  			 */
1428  			BUG_ON(stable_node->hlist.first->next);
1429  
1430  			/*
1431  			 * There's just one entry and it is below the
1432  			 * deduplication limit so drop the chain.
1433  			 */
1434  			rb_replace_node(&stable_node->node, &found->node,
1435  					root);
1436  			free_stable_node(stable_node);
1437  			ksm_stable_node_chains--;
1438  			ksm_stable_node_dups--;
1439  			/*
1440  			 * NOTE: the caller depends on the stable_node
1441  			 * to be equal to stable_node_dup if the chain
1442  			 * was collapsed.
1443  			 */
1444  			*_stable_node = found;
1445  			/*
1446  			 * Just for robustneess as stable_node is
1447  			 * otherwise left as a stable pointer, the
1448  			 * compiler shall optimize it away at build
1449  			 * time.
1450  			 */
1451  			stable_node = NULL;
1452  		} else if (stable_node->hlist.first != &found->hlist_dup &&
1453  			   __is_page_sharing_candidate(found, 1)) {
1454  			/*
1455  			 * If the found stable_node dup can accept one
1456  			 * more future merge (in addition to the one
1457  			 * that is underway) and is not at the head of
1458  			 * the chain, put it there so next search will
1459  			 * be quicker in the !prune_stale_stable_nodes
1460  			 * case.
1461  			 *
1462  			 * NOTE: it would be inaccurate to use nr > 1
1463  			 * instead of checking the hlist.first pointer
1464  			 * directly, because in the
1465  			 * prune_stale_stable_nodes case "nr" isn't
1466  			 * the position of the found dup in the chain,
1467  			 * but the total number of dups in the chain.
1468  			 */
1469  			hlist_del(&found->hlist_dup);
1470  			hlist_add_head(&found->hlist_dup,
1471  				       &stable_node->hlist);
1472  		}
1473  	}
1474  
1475  	*_stable_node_dup = found;
1476  	return tree_page;
1477  }
1478  
stable_node_dup_any(struct stable_node * stable_node,struct rb_root * root)1479  static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1480  					       struct rb_root *root)
1481  {
1482  	if (!is_stable_node_chain(stable_node))
1483  		return stable_node;
1484  	if (hlist_empty(&stable_node->hlist)) {
1485  		free_stable_node_chain(stable_node, root);
1486  		return NULL;
1487  	}
1488  	return hlist_entry(stable_node->hlist.first,
1489  			   typeof(*stable_node), hlist_dup);
1490  }
1491  
1492  /*
1493   * Like for get_ksm_page, this function can free the *_stable_node and
1494   * *_stable_node_dup if the returned tree_page is NULL.
1495   *
1496   * It can also free and overwrite *_stable_node with the found
1497   * stable_node_dup if the chain is collapsed (in which case
1498   * *_stable_node will be equal to *_stable_node_dup like if the chain
1499   * never existed). It's up to the caller to verify tree_page is not
1500   * NULL before dereferencing *_stable_node or *_stable_node_dup.
1501   *
1502   * *_stable_node_dup is really a second output parameter of this
1503   * function and will be overwritten in all cases, the caller doesn't
1504   * need to initialize it.
1505   */
__stable_node_chain(struct stable_node ** _stable_node_dup,struct stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1506  static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1507  					struct stable_node **_stable_node,
1508  					struct rb_root *root,
1509  					bool prune_stale_stable_nodes)
1510  {
1511  	struct stable_node *stable_node = *_stable_node;
1512  	if (!is_stable_node_chain(stable_node)) {
1513  		if (is_page_sharing_candidate(stable_node)) {
1514  			*_stable_node_dup = stable_node;
1515  			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1516  		}
1517  		/*
1518  		 * _stable_node_dup set to NULL means the stable_node
1519  		 * reached the ksm_max_page_sharing limit.
1520  		 */
1521  		*_stable_node_dup = NULL;
1522  		return NULL;
1523  	}
1524  	return stable_node_dup(_stable_node_dup, _stable_node, root,
1525  			       prune_stale_stable_nodes);
1526  }
1527  
chain_prune(struct stable_node ** s_n_d,struct stable_node ** s_n,struct rb_root * root)1528  static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1529  						struct stable_node **s_n,
1530  						struct rb_root *root)
1531  {
1532  	return __stable_node_chain(s_n_d, s_n, root, true);
1533  }
1534  
chain(struct stable_node ** s_n_d,struct stable_node * s_n,struct rb_root * root)1535  static __always_inline struct page *chain(struct stable_node **s_n_d,
1536  					  struct stable_node *s_n,
1537  					  struct rb_root *root)
1538  {
1539  	struct stable_node *old_stable_node = s_n;
1540  	struct page *tree_page;
1541  
1542  	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1543  	/* not pruning dups so s_n cannot have changed */
1544  	VM_BUG_ON(s_n != old_stable_node);
1545  	return tree_page;
1546  }
1547  
1548  /*
1549   * stable_tree_search - search for page inside the stable tree
1550   *
1551   * This function checks if there is a page inside the stable tree
1552   * with identical content to the page that we are scanning right now.
1553   *
1554   * This function returns the stable tree node of identical content if found,
1555   * NULL otherwise.
1556   */
stable_tree_search(struct page * page)1557  static struct page *stable_tree_search(struct page *page)
1558  {
1559  	int nid;
1560  	struct rb_root *root;
1561  	struct rb_node **new;
1562  	struct rb_node *parent;
1563  	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1564  	struct stable_node *page_node;
1565  
1566  	page_node = page_stable_node(page);
1567  	if (page_node && page_node->head != &migrate_nodes) {
1568  		/* ksm page forked */
1569  		get_page(page);
1570  		return page;
1571  	}
1572  
1573  	nid = get_kpfn_nid(page_to_pfn(page));
1574  	root = root_stable_tree + nid;
1575  again:
1576  	new = &root->rb_node;
1577  	parent = NULL;
1578  
1579  	while (*new) {
1580  		struct page *tree_page;
1581  		int ret;
1582  
1583  		cond_resched();
1584  		stable_node = rb_entry(*new, struct stable_node, node);
1585  		stable_node_any = NULL;
1586  		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1587  		/*
1588  		 * NOTE: stable_node may have been freed by
1589  		 * chain_prune() if the returned stable_node_dup is
1590  		 * not NULL. stable_node_dup may have been inserted in
1591  		 * the rbtree instead as a regular stable_node (in
1592  		 * order to collapse the stable_node chain if a single
1593  		 * stable_node dup was found in it). In such case the
1594  		 * stable_node is overwritten by the calleee to point
1595  		 * to the stable_node_dup that was collapsed in the
1596  		 * stable rbtree and stable_node will be equal to
1597  		 * stable_node_dup like if the chain never existed.
1598  		 */
1599  		if (!stable_node_dup) {
1600  			/*
1601  			 * Either all stable_node dups were full in
1602  			 * this stable_node chain, or this chain was
1603  			 * empty and should be rb_erased.
1604  			 */
1605  			stable_node_any = stable_node_dup_any(stable_node,
1606  							      root);
1607  			if (!stable_node_any) {
1608  				/* rb_erase just run */
1609  				goto again;
1610  			}
1611  			/*
1612  			 * Take any of the stable_node dups page of
1613  			 * this stable_node chain to let the tree walk
1614  			 * continue. All KSM pages belonging to the
1615  			 * stable_node dups in a stable_node chain
1616  			 * have the same content and they're
1617  			 * write protected at all times. Any will work
1618  			 * fine to continue the walk.
1619  			 */
1620  			tree_page = get_ksm_page(stable_node_any,
1621  						 GET_KSM_PAGE_NOLOCK);
1622  		}
1623  		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1624  		if (!tree_page) {
1625  			/*
1626  			 * If we walked over a stale stable_node,
1627  			 * get_ksm_page() will call rb_erase() and it
1628  			 * may rebalance the tree from under us. So
1629  			 * restart the search from scratch. Returning
1630  			 * NULL would be safe too, but we'd generate
1631  			 * false negative insertions just because some
1632  			 * stable_node was stale.
1633  			 */
1634  			goto again;
1635  		}
1636  
1637  		ret = memcmp_pages(page, tree_page);
1638  		put_page(tree_page);
1639  
1640  		parent = *new;
1641  		if (ret < 0)
1642  			new = &parent->rb_left;
1643  		else if (ret > 0)
1644  			new = &parent->rb_right;
1645  		else {
1646  			if (page_node) {
1647  				VM_BUG_ON(page_node->head != &migrate_nodes);
1648  				/*
1649  				 * Test if the migrated page should be merged
1650  				 * into a stable node dup. If the mapcount is
1651  				 * 1 we can migrate it with another KSM page
1652  				 * without adding it to the chain.
1653  				 */
1654  				if (page_mapcount(page) > 1)
1655  					goto chain_append;
1656  			}
1657  
1658  			if (!stable_node_dup) {
1659  				/*
1660  				 * If the stable_node is a chain and
1661  				 * we got a payload match in memcmp
1662  				 * but we cannot merge the scanned
1663  				 * page in any of the existing
1664  				 * stable_node dups because they're
1665  				 * all full, we need to wait the
1666  				 * scanned page to find itself a match
1667  				 * in the unstable tree to create a
1668  				 * brand new KSM page to add later to
1669  				 * the dups of this stable_node.
1670  				 */
1671  				return NULL;
1672  			}
1673  
1674  			/*
1675  			 * Lock and unlock the stable_node's page (which
1676  			 * might already have been migrated) so that page
1677  			 * migration is sure to notice its raised count.
1678  			 * It would be more elegant to return stable_node
1679  			 * than kpage, but that involves more changes.
1680  			 */
1681  			tree_page = get_ksm_page(stable_node_dup,
1682  						 GET_KSM_PAGE_TRYLOCK);
1683  
1684  			if (PTR_ERR(tree_page) == -EBUSY)
1685  				return ERR_PTR(-EBUSY);
1686  
1687  			if (unlikely(!tree_page))
1688  				/*
1689  				 * The tree may have been rebalanced,
1690  				 * so re-evaluate parent and new.
1691  				 */
1692  				goto again;
1693  			unlock_page(tree_page);
1694  
1695  			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1696  			    NUMA(stable_node_dup->nid)) {
1697  				put_page(tree_page);
1698  				goto replace;
1699  			}
1700  			return tree_page;
1701  		}
1702  	}
1703  
1704  	if (!page_node)
1705  		return NULL;
1706  
1707  	list_del(&page_node->list);
1708  	DO_NUMA(page_node->nid = nid);
1709  	rb_link_node(&page_node->node, parent, new);
1710  	rb_insert_color(&page_node->node, root);
1711  out:
1712  	if (is_page_sharing_candidate(page_node)) {
1713  		get_page(page);
1714  		return page;
1715  	} else
1716  		return NULL;
1717  
1718  replace:
1719  	/*
1720  	 * If stable_node was a chain and chain_prune collapsed it,
1721  	 * stable_node has been updated to be the new regular
1722  	 * stable_node. A collapse of the chain is indistinguishable
1723  	 * from the case there was no chain in the stable
1724  	 * rbtree. Otherwise stable_node is the chain and
1725  	 * stable_node_dup is the dup to replace.
1726  	 */
1727  	if (stable_node_dup == stable_node) {
1728  		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1729  		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1730  		/* there is no chain */
1731  		if (page_node) {
1732  			VM_BUG_ON(page_node->head != &migrate_nodes);
1733  			list_del(&page_node->list);
1734  			DO_NUMA(page_node->nid = nid);
1735  			rb_replace_node(&stable_node_dup->node,
1736  					&page_node->node,
1737  					root);
1738  			if (is_page_sharing_candidate(page_node))
1739  				get_page(page);
1740  			else
1741  				page = NULL;
1742  		} else {
1743  			rb_erase(&stable_node_dup->node, root);
1744  			page = NULL;
1745  		}
1746  	} else {
1747  		VM_BUG_ON(!is_stable_node_chain(stable_node));
1748  		__stable_node_dup_del(stable_node_dup);
1749  		if (page_node) {
1750  			VM_BUG_ON(page_node->head != &migrate_nodes);
1751  			list_del(&page_node->list);
1752  			DO_NUMA(page_node->nid = nid);
1753  			stable_node_chain_add_dup(page_node, stable_node);
1754  			if (is_page_sharing_candidate(page_node))
1755  				get_page(page);
1756  			else
1757  				page = NULL;
1758  		} else {
1759  			page = NULL;
1760  		}
1761  	}
1762  	stable_node_dup->head = &migrate_nodes;
1763  	list_add(&stable_node_dup->list, stable_node_dup->head);
1764  	return page;
1765  
1766  chain_append:
1767  	/* stable_node_dup could be null if it reached the limit */
1768  	if (!stable_node_dup)
1769  		stable_node_dup = stable_node_any;
1770  	/*
1771  	 * If stable_node was a chain and chain_prune collapsed it,
1772  	 * stable_node has been updated to be the new regular
1773  	 * stable_node. A collapse of the chain is indistinguishable
1774  	 * from the case there was no chain in the stable
1775  	 * rbtree. Otherwise stable_node is the chain and
1776  	 * stable_node_dup is the dup to replace.
1777  	 */
1778  	if (stable_node_dup == stable_node) {
1779  		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1780  		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1781  		/* chain is missing so create it */
1782  		stable_node = alloc_stable_node_chain(stable_node_dup,
1783  						      root);
1784  		if (!stable_node)
1785  			return NULL;
1786  	}
1787  	/*
1788  	 * Add this stable_node dup that was
1789  	 * migrated to the stable_node chain
1790  	 * of the current nid for this page
1791  	 * content.
1792  	 */
1793  	VM_BUG_ON(!is_stable_node_chain(stable_node));
1794  	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1795  	VM_BUG_ON(page_node->head != &migrate_nodes);
1796  	list_del(&page_node->list);
1797  	DO_NUMA(page_node->nid = nid);
1798  	stable_node_chain_add_dup(page_node, stable_node);
1799  	goto out;
1800  }
1801  
1802  /*
1803   * stable_tree_insert - insert stable tree node pointing to new ksm page
1804   * into the stable tree.
1805   *
1806   * This function returns the stable tree node just allocated on success,
1807   * NULL otherwise.
1808   */
stable_tree_insert(struct page * kpage)1809  static struct stable_node *stable_tree_insert(struct page *kpage)
1810  {
1811  	int nid;
1812  	unsigned long kpfn;
1813  	struct rb_root *root;
1814  	struct rb_node **new;
1815  	struct rb_node *parent;
1816  	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1817  	bool need_chain = false;
1818  
1819  	kpfn = page_to_pfn(kpage);
1820  	nid = get_kpfn_nid(kpfn);
1821  	root = root_stable_tree + nid;
1822  again:
1823  	parent = NULL;
1824  	new = &root->rb_node;
1825  
1826  	while (*new) {
1827  		struct page *tree_page;
1828  		int ret;
1829  
1830  		cond_resched();
1831  		stable_node = rb_entry(*new, struct stable_node, node);
1832  		stable_node_any = NULL;
1833  		tree_page = chain(&stable_node_dup, stable_node, root);
1834  		if (!stable_node_dup) {
1835  			/*
1836  			 * Either all stable_node dups were full in
1837  			 * this stable_node chain, or this chain was
1838  			 * empty and should be rb_erased.
1839  			 */
1840  			stable_node_any = stable_node_dup_any(stable_node,
1841  							      root);
1842  			if (!stable_node_any) {
1843  				/* rb_erase just run */
1844  				goto again;
1845  			}
1846  			/*
1847  			 * Take any of the stable_node dups page of
1848  			 * this stable_node chain to let the tree walk
1849  			 * continue. All KSM pages belonging to the
1850  			 * stable_node dups in a stable_node chain
1851  			 * have the same content and they're
1852  			 * write protected at all times. Any will work
1853  			 * fine to continue the walk.
1854  			 */
1855  			tree_page = get_ksm_page(stable_node_any,
1856  						 GET_KSM_PAGE_NOLOCK);
1857  		}
1858  		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1859  		if (!tree_page) {
1860  			/*
1861  			 * If we walked over a stale stable_node,
1862  			 * get_ksm_page() will call rb_erase() and it
1863  			 * may rebalance the tree from under us. So
1864  			 * restart the search from scratch. Returning
1865  			 * NULL would be safe too, but we'd generate
1866  			 * false negative insertions just because some
1867  			 * stable_node was stale.
1868  			 */
1869  			goto again;
1870  		}
1871  
1872  		ret = memcmp_pages(kpage, tree_page);
1873  		put_page(tree_page);
1874  
1875  		parent = *new;
1876  		if (ret < 0)
1877  			new = &parent->rb_left;
1878  		else if (ret > 0)
1879  			new = &parent->rb_right;
1880  		else {
1881  			need_chain = true;
1882  			break;
1883  		}
1884  	}
1885  
1886  	stable_node_dup = alloc_stable_node();
1887  	if (!stable_node_dup)
1888  		return NULL;
1889  
1890  	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1891  	stable_node_dup->kpfn = kpfn;
1892  	set_page_stable_node(kpage, stable_node_dup);
1893  	stable_node_dup->rmap_hlist_len = 0;
1894  	DO_NUMA(stable_node_dup->nid = nid);
1895  	if (!need_chain) {
1896  		rb_link_node(&stable_node_dup->node, parent, new);
1897  		rb_insert_color(&stable_node_dup->node, root);
1898  	} else {
1899  		if (!is_stable_node_chain(stable_node)) {
1900  			struct stable_node *orig = stable_node;
1901  			/* chain is missing so create it */
1902  			stable_node = alloc_stable_node_chain(orig, root);
1903  			if (!stable_node) {
1904  				free_stable_node(stable_node_dup);
1905  				return NULL;
1906  			}
1907  		}
1908  		stable_node_chain_add_dup(stable_node_dup, stable_node);
1909  	}
1910  
1911  	return stable_node_dup;
1912  }
1913  
1914  /*
1915   * unstable_tree_search_insert - search for identical page,
1916   * else insert rmap_item into the unstable tree.
1917   *
1918   * This function searches for a page in the unstable tree identical to the
1919   * page currently being scanned; and if no identical page is found in the
1920   * tree, we insert rmap_item as a new object into the unstable tree.
1921   *
1922   * This function returns pointer to rmap_item found to be identical
1923   * to the currently scanned page, NULL otherwise.
1924   *
1925   * This function does both searching and inserting, because they share
1926   * the same walking algorithm in an rbtree.
1927   */
1928  static
unstable_tree_search_insert(struct rmap_item * rmap_item,struct page * page,struct page ** tree_pagep)1929  struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1930  					      struct page *page,
1931  					      struct page **tree_pagep)
1932  {
1933  	struct rb_node **new;
1934  	struct rb_root *root;
1935  	struct rb_node *parent = NULL;
1936  	int nid;
1937  
1938  	nid = get_kpfn_nid(page_to_pfn(page));
1939  	root = root_unstable_tree + nid;
1940  	new = &root->rb_node;
1941  
1942  	while (*new) {
1943  		struct rmap_item *tree_rmap_item;
1944  		struct page *tree_page;
1945  		int ret;
1946  
1947  		cond_resched();
1948  		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1949  		tree_page = get_mergeable_page(tree_rmap_item);
1950  		if (!tree_page)
1951  			return NULL;
1952  
1953  		/*
1954  		 * Don't substitute a ksm page for a forked page.
1955  		 */
1956  		if (page == tree_page) {
1957  			put_page(tree_page);
1958  			return NULL;
1959  		}
1960  
1961  		ret = memcmp_pages(page, tree_page);
1962  
1963  		parent = *new;
1964  		if (ret < 0) {
1965  			put_page(tree_page);
1966  			new = &parent->rb_left;
1967  		} else if (ret > 0) {
1968  			put_page(tree_page);
1969  			new = &parent->rb_right;
1970  		} else if (!ksm_merge_across_nodes &&
1971  			   page_to_nid(tree_page) != nid) {
1972  			/*
1973  			 * If tree_page has been migrated to another NUMA node,
1974  			 * it will be flushed out and put in the right unstable
1975  			 * tree next time: only merge with it when across_nodes.
1976  			 */
1977  			put_page(tree_page);
1978  			return NULL;
1979  		} else {
1980  			*tree_pagep = tree_page;
1981  			return tree_rmap_item;
1982  		}
1983  	}
1984  
1985  	rmap_item->address |= UNSTABLE_FLAG;
1986  	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1987  	DO_NUMA(rmap_item->nid = nid);
1988  	rb_link_node(&rmap_item->node, parent, new);
1989  	rb_insert_color(&rmap_item->node, root);
1990  
1991  	ksm_pages_unshared++;
1992  	return NULL;
1993  }
1994  
1995  /*
1996   * stable_tree_append - add another rmap_item to the linked list of
1997   * rmap_items hanging off a given node of the stable tree, all sharing
1998   * the same ksm page.
1999   */
stable_tree_append(struct rmap_item * rmap_item,struct stable_node * stable_node,bool max_page_sharing_bypass)2000  static void stable_tree_append(struct rmap_item *rmap_item,
2001  			       struct stable_node *stable_node,
2002  			       bool max_page_sharing_bypass)
2003  {
2004  	/*
2005  	 * rmap won't find this mapping if we don't insert the
2006  	 * rmap_item in the right stable_node
2007  	 * duplicate. page_migration could break later if rmap breaks,
2008  	 * so we can as well crash here. We really need to check for
2009  	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2010  	 * for other negative values as an underflow if detected here
2011  	 * for the first time (and not when decreasing rmap_hlist_len)
2012  	 * would be sign of memory corruption in the stable_node.
2013  	 */
2014  	BUG_ON(stable_node->rmap_hlist_len < 0);
2015  
2016  	stable_node->rmap_hlist_len++;
2017  	if (!max_page_sharing_bypass)
2018  		/* possibly non fatal but unexpected overflow, only warn */
2019  		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2020  			     ksm_max_page_sharing);
2021  
2022  	rmap_item->head = stable_node;
2023  	rmap_item->address |= STABLE_FLAG;
2024  	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2025  
2026  	if (rmap_item->hlist.next)
2027  		ksm_pages_sharing++;
2028  	else
2029  		ksm_pages_shared++;
2030  }
2031  
2032  /*
2033   * cmp_and_merge_page - first see if page can be merged into the stable tree;
2034   * if not, compare checksum to previous and if it's the same, see if page can
2035   * be inserted into the unstable tree, or merged with a page already there and
2036   * both transferred to the stable tree.
2037   *
2038   * @page: the page that we are searching identical page to.
2039   * @rmap_item: the reverse mapping into the virtual address of this page
2040   */
cmp_and_merge_page(struct page * page,struct rmap_item * rmap_item)2041  static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2042  {
2043  	struct mm_struct *mm = rmap_item->mm;
2044  	struct rmap_item *tree_rmap_item;
2045  	struct page *tree_page = NULL;
2046  	struct stable_node *stable_node;
2047  	struct page *kpage;
2048  	unsigned int checksum;
2049  	int err;
2050  	bool max_page_sharing_bypass = false;
2051  
2052  	stable_node = page_stable_node(page);
2053  	if (stable_node) {
2054  		if (stable_node->head != &migrate_nodes &&
2055  		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2056  		    NUMA(stable_node->nid)) {
2057  			stable_node_dup_del(stable_node);
2058  			stable_node->head = &migrate_nodes;
2059  			list_add(&stable_node->list, stable_node->head);
2060  		}
2061  		if (stable_node->head != &migrate_nodes &&
2062  		    rmap_item->head == stable_node)
2063  			return;
2064  		/*
2065  		 * If it's a KSM fork, allow it to go over the sharing limit
2066  		 * without warnings.
2067  		 */
2068  		if (!is_page_sharing_candidate(stable_node))
2069  			max_page_sharing_bypass = true;
2070  	}
2071  
2072  	/* We first start with searching the page inside the stable tree */
2073  	kpage = stable_tree_search(page);
2074  	if (kpage == page && rmap_item->head == stable_node) {
2075  		put_page(kpage);
2076  		return;
2077  	}
2078  
2079  	remove_rmap_item_from_tree(rmap_item);
2080  
2081  	if (kpage) {
2082  		if (PTR_ERR(kpage) == -EBUSY)
2083  			return;
2084  
2085  		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2086  		if (!err) {
2087  			/*
2088  			 * The page was successfully merged:
2089  			 * add its rmap_item to the stable tree.
2090  			 */
2091  			lock_page(kpage);
2092  			stable_tree_append(rmap_item, page_stable_node(kpage),
2093  					   max_page_sharing_bypass);
2094  			unlock_page(kpage);
2095  		}
2096  		put_page(kpage);
2097  		return;
2098  	}
2099  
2100  	/*
2101  	 * If the hash value of the page has changed from the last time
2102  	 * we calculated it, this page is changing frequently: therefore we
2103  	 * don't want to insert it in the unstable tree, and we don't want
2104  	 * to waste our time searching for something identical to it there.
2105  	 */
2106  	checksum = calc_checksum(page);
2107  	if (rmap_item->oldchecksum != checksum) {
2108  		rmap_item->oldchecksum = checksum;
2109  		return;
2110  	}
2111  
2112  	/*
2113  	 * Same checksum as an empty page. We attempt to merge it with the
2114  	 * appropriate zero page if the user enabled this via sysfs.
2115  	 */
2116  	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2117  		struct vm_area_struct *vma;
2118  
2119  		mmap_read_lock(mm);
2120  		vma = find_mergeable_vma(mm, rmap_item->address);
2121  		if (vma) {
2122  			err = try_to_merge_one_page(vma, page,
2123  					ZERO_PAGE(rmap_item->address));
2124  		} else {
2125  			/*
2126  			 * If the vma is out of date, we do not need to
2127  			 * continue.
2128  			 */
2129  			err = 0;
2130  		}
2131  		mmap_read_unlock(mm);
2132  		/*
2133  		 * In case of failure, the page was not really empty, so we
2134  		 * need to continue. Otherwise we're done.
2135  		 */
2136  		if (!err)
2137  			return;
2138  	}
2139  	tree_rmap_item =
2140  		unstable_tree_search_insert(rmap_item, page, &tree_page);
2141  	if (tree_rmap_item) {
2142  		bool split;
2143  
2144  		kpage = try_to_merge_two_pages(rmap_item, page,
2145  						tree_rmap_item, tree_page);
2146  		/*
2147  		 * If both pages we tried to merge belong to the same compound
2148  		 * page, then we actually ended up increasing the reference
2149  		 * count of the same compound page twice, and split_huge_page
2150  		 * failed.
2151  		 * Here we set a flag if that happened, and we use it later to
2152  		 * try split_huge_page again. Since we call put_page right
2153  		 * afterwards, the reference count will be correct and
2154  		 * split_huge_page should succeed.
2155  		 */
2156  		split = PageTransCompound(page)
2157  			&& compound_head(page) == compound_head(tree_page);
2158  		put_page(tree_page);
2159  		if (kpage) {
2160  			/*
2161  			 * The pages were successfully merged: insert new
2162  			 * node in the stable tree and add both rmap_items.
2163  			 */
2164  			lock_page(kpage);
2165  			stable_node = stable_tree_insert(kpage);
2166  			if (stable_node) {
2167  				stable_tree_append(tree_rmap_item, stable_node,
2168  						   false);
2169  				stable_tree_append(rmap_item, stable_node,
2170  						   false);
2171  			}
2172  			unlock_page(kpage);
2173  
2174  			/*
2175  			 * If we fail to insert the page into the stable tree,
2176  			 * we will have 2 virtual addresses that are pointing
2177  			 * to a ksm page left outside the stable tree,
2178  			 * in which case we need to break_cow on both.
2179  			 */
2180  			if (!stable_node) {
2181  				break_cow(tree_rmap_item);
2182  				break_cow(rmap_item);
2183  			}
2184  		} else if (split) {
2185  			/*
2186  			 * We are here if we tried to merge two pages and
2187  			 * failed because they both belonged to the same
2188  			 * compound page. We will split the page now, but no
2189  			 * merging will take place.
2190  			 * We do not want to add the cost of a full lock; if
2191  			 * the page is locked, it is better to skip it and
2192  			 * perhaps try again later.
2193  			 */
2194  			if (!trylock_page(page))
2195  				return;
2196  			split_huge_page(page);
2197  			unlock_page(page);
2198  		}
2199  	}
2200  }
2201  
get_next_rmap_item(struct mm_slot * mm_slot,struct rmap_item ** rmap_list,unsigned long addr)2202  static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2203  					    struct rmap_item **rmap_list,
2204  					    unsigned long addr)
2205  {
2206  	struct rmap_item *rmap_item;
2207  
2208  	while (*rmap_list) {
2209  		rmap_item = *rmap_list;
2210  		if ((rmap_item->address & PAGE_MASK) == addr)
2211  			return rmap_item;
2212  		if (rmap_item->address > addr)
2213  			break;
2214  		*rmap_list = rmap_item->rmap_list;
2215  		remove_rmap_item_from_tree(rmap_item);
2216  		free_rmap_item(rmap_item);
2217  	}
2218  
2219  	rmap_item = alloc_rmap_item();
2220  	if (rmap_item) {
2221  		/* It has already been zeroed */
2222  		rmap_item->mm = mm_slot->mm;
2223  		rmap_item->address = addr;
2224  		rmap_item->rmap_list = *rmap_list;
2225  		*rmap_list = rmap_item;
2226  	}
2227  	return rmap_item;
2228  }
2229  
scan_get_next_rmap_item(struct page ** page)2230  static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2231  {
2232  	struct mm_struct *mm;
2233  	struct mm_slot *slot;
2234  	struct vm_area_struct *vma;
2235  	struct rmap_item *rmap_item;
2236  	int nid;
2237  
2238  	if (list_empty(&ksm_mm_head.mm_list))
2239  		return NULL;
2240  
2241  	slot = ksm_scan.mm_slot;
2242  	if (slot == &ksm_mm_head) {
2243  		/*
2244  		 * A number of pages can hang around indefinitely on per-cpu
2245  		 * pagevecs, raised page count preventing write_protect_page
2246  		 * from merging them.  Though it doesn't really matter much,
2247  		 * it is puzzling to see some stuck in pages_volatile until
2248  		 * other activity jostles them out, and they also prevented
2249  		 * LTP's KSM test from succeeding deterministically; so drain
2250  		 * them here (here rather than on entry to ksm_do_scan(),
2251  		 * so we don't IPI too often when pages_to_scan is set low).
2252  		 */
2253  		lru_add_drain_all();
2254  
2255  		/*
2256  		 * Whereas stale stable_nodes on the stable_tree itself
2257  		 * get pruned in the regular course of stable_tree_search(),
2258  		 * those moved out to the migrate_nodes list can accumulate:
2259  		 * so prune them once before each full scan.
2260  		 */
2261  		if (!ksm_merge_across_nodes) {
2262  			struct stable_node *stable_node, *next;
2263  			struct page *page;
2264  
2265  			list_for_each_entry_safe(stable_node, next,
2266  						 &migrate_nodes, list) {
2267  				page = get_ksm_page(stable_node,
2268  						    GET_KSM_PAGE_NOLOCK);
2269  				if (page)
2270  					put_page(page);
2271  				cond_resched();
2272  			}
2273  		}
2274  
2275  		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2276  			root_unstable_tree[nid] = RB_ROOT;
2277  
2278  		spin_lock(&ksm_mmlist_lock);
2279  		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2280  		ksm_scan.mm_slot = slot;
2281  		spin_unlock(&ksm_mmlist_lock);
2282  		/*
2283  		 * Although we tested list_empty() above, a racing __ksm_exit
2284  		 * of the last mm on the list may have removed it since then.
2285  		 */
2286  		if (slot == &ksm_mm_head)
2287  			return NULL;
2288  next_mm:
2289  		ksm_scan.address = 0;
2290  		ksm_scan.rmap_list = &slot->rmap_list;
2291  	}
2292  
2293  	mm = slot->mm;
2294  	mmap_read_lock(mm);
2295  	if (ksm_test_exit(mm))
2296  		vma = NULL;
2297  	else
2298  		vma = find_vma(mm, ksm_scan.address);
2299  
2300  	for (; vma; vma = vma->vm_next) {
2301  		if (!(vma->vm_flags & VM_MERGEABLE))
2302  			continue;
2303  		if (ksm_scan.address < vma->vm_start)
2304  			ksm_scan.address = vma->vm_start;
2305  		if (!vma->anon_vma)
2306  			ksm_scan.address = vma->vm_end;
2307  
2308  		while (ksm_scan.address < vma->vm_end) {
2309  			if (ksm_test_exit(mm))
2310  				break;
2311  			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2312  			if (IS_ERR_OR_NULL(*page)) {
2313  				ksm_scan.address += PAGE_SIZE;
2314  				cond_resched();
2315  				continue;
2316  			}
2317  			if (PageAnon(*page)) {
2318  				flush_anon_page(vma, *page, ksm_scan.address);
2319  				flush_dcache_page(*page);
2320  				rmap_item = get_next_rmap_item(slot,
2321  					ksm_scan.rmap_list, ksm_scan.address);
2322  				if (rmap_item) {
2323  					ksm_scan.rmap_list =
2324  							&rmap_item->rmap_list;
2325  					ksm_scan.address += PAGE_SIZE;
2326  				} else
2327  					put_page(*page);
2328  				mmap_read_unlock(mm);
2329  				return rmap_item;
2330  			}
2331  			put_page(*page);
2332  			ksm_scan.address += PAGE_SIZE;
2333  			cond_resched();
2334  		}
2335  	}
2336  
2337  	if (ksm_test_exit(mm)) {
2338  		ksm_scan.address = 0;
2339  		ksm_scan.rmap_list = &slot->rmap_list;
2340  	}
2341  	/*
2342  	 * Nuke all the rmap_items that are above this current rmap:
2343  	 * because there were no VM_MERGEABLE vmas with such addresses.
2344  	 */
2345  	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2346  
2347  	spin_lock(&ksm_mmlist_lock);
2348  	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2349  						struct mm_slot, mm_list);
2350  	if (ksm_scan.address == 0) {
2351  		/*
2352  		 * We've completed a full scan of all vmas, holding mmap_lock
2353  		 * throughout, and found no VM_MERGEABLE: so do the same as
2354  		 * __ksm_exit does to remove this mm from all our lists now.
2355  		 * This applies either when cleaning up after __ksm_exit
2356  		 * (but beware: we can reach here even before __ksm_exit),
2357  		 * or when all VM_MERGEABLE areas have been unmapped (and
2358  		 * mmap_lock then protects against race with MADV_MERGEABLE).
2359  		 */
2360  		hash_del(&slot->link);
2361  		list_del(&slot->mm_list);
2362  		spin_unlock(&ksm_mmlist_lock);
2363  
2364  		free_mm_slot(slot);
2365  		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2366  		mmap_read_unlock(mm);
2367  		mmdrop(mm);
2368  	} else {
2369  		mmap_read_unlock(mm);
2370  		/*
2371  		 * mmap_read_unlock(mm) first because after
2372  		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2373  		 * already have been freed under us by __ksm_exit()
2374  		 * because the "mm_slot" is still hashed and
2375  		 * ksm_scan.mm_slot doesn't point to it anymore.
2376  		 */
2377  		spin_unlock(&ksm_mmlist_lock);
2378  	}
2379  
2380  	/* Repeat until we've completed scanning the whole list */
2381  	slot = ksm_scan.mm_slot;
2382  	if (slot != &ksm_mm_head)
2383  		goto next_mm;
2384  
2385  	ksm_scan.seqnr++;
2386  	return NULL;
2387  }
2388  
2389  /**
2390   * ksm_do_scan  - the ksm scanner main worker function.
2391   * @scan_npages:  number of pages we want to scan before we return.
2392   */
ksm_do_scan(unsigned int scan_npages)2393  static void ksm_do_scan(unsigned int scan_npages)
2394  {
2395  	struct rmap_item *rmap_item;
2396  	struct page *page;
2397  
2398  	while (scan_npages-- && likely(!freezing(current))) {
2399  		cond_resched();
2400  		rmap_item = scan_get_next_rmap_item(&page);
2401  		if (!rmap_item)
2402  			return;
2403  		cmp_and_merge_page(page, rmap_item);
2404  		put_page(page);
2405  	}
2406  }
2407  
ksmd_should_run(void)2408  static int ksmd_should_run(void)
2409  {
2410  	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2411  }
2412  
ksm_scan_thread(void * nothing)2413  static int ksm_scan_thread(void *nothing)
2414  {
2415  	unsigned int sleep_ms;
2416  
2417  	set_freezable();
2418  	set_user_nice(current, 5);
2419  
2420  	while (!kthread_should_stop()) {
2421  		mutex_lock(&ksm_thread_mutex);
2422  		wait_while_offlining();
2423  		if (ksmd_should_run())
2424  			ksm_do_scan(ksm_thread_pages_to_scan);
2425  		mutex_unlock(&ksm_thread_mutex);
2426  
2427  		try_to_freeze();
2428  
2429  		if (ksmd_should_run()) {
2430  			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2431  			wait_event_interruptible_timeout(ksm_iter_wait,
2432  				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2433  				msecs_to_jiffies(sleep_ms));
2434  		} else {
2435  			wait_event_freezable(ksm_thread_wait,
2436  				ksmd_should_run() || kthread_should_stop());
2437  		}
2438  	}
2439  	return 0;
2440  }
2441  
ksm_madvise(struct vm_area_struct * vma,unsigned long start,unsigned long end,int advice,unsigned long * vm_flags)2442  int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2443  		unsigned long end, int advice, unsigned long *vm_flags)
2444  {
2445  	struct mm_struct *mm = vma->vm_mm;
2446  	int err;
2447  
2448  	switch (advice) {
2449  	case MADV_MERGEABLE:
2450  		/*
2451  		 * Be somewhat over-protective for now!
2452  		 */
2453  		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2454  				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2455  				 VM_HUGETLB | VM_MIXEDMAP))
2456  			return 0;		/* just ignore the advice */
2457  
2458  		if (vma_is_dax(vma))
2459  			return 0;
2460  
2461  #ifdef VM_SAO
2462  		if (*vm_flags & VM_SAO)
2463  			return 0;
2464  #endif
2465  #ifdef VM_SPARC_ADI
2466  		if (*vm_flags & VM_SPARC_ADI)
2467  			return 0;
2468  #endif
2469  
2470  		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2471  			err = __ksm_enter(mm);
2472  			if (err)
2473  				return err;
2474  		}
2475  
2476  		*vm_flags |= VM_MERGEABLE;
2477  		break;
2478  
2479  	case MADV_UNMERGEABLE:
2480  		if (!(*vm_flags & VM_MERGEABLE))
2481  			return 0;		/* just ignore the advice */
2482  
2483  		if (vma->anon_vma) {
2484  			err = unmerge_ksm_pages(vma, start, end);
2485  			if (err)
2486  				return err;
2487  		}
2488  
2489  		*vm_flags &= ~VM_MERGEABLE;
2490  		break;
2491  	}
2492  
2493  	return 0;
2494  }
2495  EXPORT_SYMBOL_GPL(ksm_madvise);
2496  
__ksm_enter(struct mm_struct * mm)2497  int __ksm_enter(struct mm_struct *mm)
2498  {
2499  	struct mm_slot *mm_slot;
2500  	int needs_wakeup;
2501  
2502  	mm_slot = alloc_mm_slot();
2503  	if (!mm_slot)
2504  		return -ENOMEM;
2505  
2506  	/* Check ksm_run too?  Would need tighter locking */
2507  	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2508  
2509  	spin_lock(&ksm_mmlist_lock);
2510  	insert_to_mm_slots_hash(mm, mm_slot);
2511  	/*
2512  	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2513  	 * insert just behind the scanning cursor, to let the area settle
2514  	 * down a little; when fork is followed by immediate exec, we don't
2515  	 * want ksmd to waste time setting up and tearing down an rmap_list.
2516  	 *
2517  	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2518  	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2519  	 * missed: then we might as well insert at the end of the list.
2520  	 */
2521  	if (ksm_run & KSM_RUN_UNMERGE)
2522  		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2523  	else
2524  		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2525  	spin_unlock(&ksm_mmlist_lock);
2526  
2527  	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2528  	mmgrab(mm);
2529  
2530  	if (needs_wakeup)
2531  		wake_up_interruptible(&ksm_thread_wait);
2532  
2533  	return 0;
2534  }
2535  
__ksm_exit(struct mm_struct * mm)2536  void __ksm_exit(struct mm_struct *mm)
2537  {
2538  	struct mm_slot *mm_slot;
2539  	int easy_to_free = 0;
2540  
2541  	/*
2542  	 * This process is exiting: if it's straightforward (as is the
2543  	 * case when ksmd was never running), free mm_slot immediately.
2544  	 * But if it's at the cursor or has rmap_items linked to it, use
2545  	 * mmap_lock to synchronize with any break_cows before pagetables
2546  	 * are freed, and leave the mm_slot on the list for ksmd to free.
2547  	 * Beware: ksm may already have noticed it exiting and freed the slot.
2548  	 */
2549  
2550  	spin_lock(&ksm_mmlist_lock);
2551  	mm_slot = get_mm_slot(mm);
2552  	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2553  		if (!mm_slot->rmap_list) {
2554  			hash_del(&mm_slot->link);
2555  			list_del(&mm_slot->mm_list);
2556  			easy_to_free = 1;
2557  		} else {
2558  			list_move(&mm_slot->mm_list,
2559  				  &ksm_scan.mm_slot->mm_list);
2560  		}
2561  	}
2562  	spin_unlock(&ksm_mmlist_lock);
2563  
2564  	if (easy_to_free) {
2565  		free_mm_slot(mm_slot);
2566  		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2567  		mmdrop(mm);
2568  	} else if (mm_slot) {
2569  		mmap_write_lock(mm);
2570  		mmap_write_unlock(mm);
2571  	}
2572  }
2573  
ksm_might_need_to_copy(struct page * page,struct vm_area_struct * vma,unsigned long address)2574  struct page *ksm_might_need_to_copy(struct page *page,
2575  			struct vm_area_struct *vma, unsigned long address)
2576  {
2577  	struct anon_vma *anon_vma = page_anon_vma(page);
2578  	struct page *new_page;
2579  
2580  	if (PageKsm(page)) {
2581  		if (page_stable_node(page) &&
2582  		    !(ksm_run & KSM_RUN_UNMERGE))
2583  			return page;	/* no need to copy it */
2584  	} else if (!anon_vma) {
2585  		return page;		/* no need to copy it */
2586  	} else if (anon_vma->root == vma->anon_vma->root &&
2587  		 page->index == linear_page_index(vma, address)) {
2588  		return page;		/* still no need to copy it */
2589  	}
2590  	if (!PageUptodate(page))
2591  		return page;		/* let do_swap_page report the error */
2592  
2593  	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2594  	if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) {
2595  		put_page(new_page);
2596  		new_page = NULL;
2597  	}
2598  	if (new_page) {
2599  		copy_user_highpage(new_page, page, address, vma);
2600  
2601  		SetPageDirty(new_page);
2602  		__SetPageUptodate(new_page);
2603  		__SetPageLocked(new_page);
2604  	}
2605  
2606  	return new_page;
2607  }
2608  
rmap_walk_ksm(struct page * page,struct rmap_walk_control * rwc)2609  void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2610  {
2611  	struct stable_node *stable_node;
2612  	struct rmap_item *rmap_item;
2613  	int search_new_forks = 0;
2614  
2615  	VM_BUG_ON_PAGE(!PageKsm(page), page);
2616  
2617  	/*
2618  	 * Rely on the page lock to protect against concurrent modifications
2619  	 * to that page's node of the stable tree.
2620  	 */
2621  	VM_BUG_ON_PAGE(!PageLocked(page), page);
2622  
2623  	stable_node = page_stable_node(page);
2624  	if (!stable_node)
2625  		return;
2626  again:
2627  	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2628  		struct anon_vma *anon_vma = rmap_item->anon_vma;
2629  		struct anon_vma_chain *vmac;
2630  		struct vm_area_struct *vma;
2631  
2632  		cond_resched();
2633  		anon_vma_lock_read(anon_vma);
2634  		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2635  					       0, ULONG_MAX) {
2636  			unsigned long addr;
2637  
2638  			cond_resched();
2639  			vma = vmac->vma;
2640  
2641  			/* Ignore the stable/unstable/sqnr flags */
2642  			addr = rmap_item->address & ~KSM_FLAG_MASK;
2643  
2644  			if (addr < vma->vm_start || addr >= vma->vm_end)
2645  				continue;
2646  			/*
2647  			 * Initially we examine only the vma which covers this
2648  			 * rmap_item; but later, if there is still work to do,
2649  			 * we examine covering vmas in other mms: in case they
2650  			 * were forked from the original since ksmd passed.
2651  			 */
2652  			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2653  				continue;
2654  
2655  			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2656  				continue;
2657  
2658  			if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2659  				anon_vma_unlock_read(anon_vma);
2660  				return;
2661  			}
2662  			if (rwc->done && rwc->done(page)) {
2663  				anon_vma_unlock_read(anon_vma);
2664  				return;
2665  			}
2666  		}
2667  		anon_vma_unlock_read(anon_vma);
2668  	}
2669  	if (!search_new_forks++)
2670  		goto again;
2671  }
2672  
2673  #ifdef CONFIG_MIGRATION
ksm_migrate_page(struct page * newpage,struct page * oldpage)2674  void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2675  {
2676  	struct stable_node *stable_node;
2677  
2678  	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2679  	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2680  	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2681  
2682  	stable_node = page_stable_node(newpage);
2683  	if (stable_node) {
2684  		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2685  		stable_node->kpfn = page_to_pfn(newpage);
2686  		/*
2687  		 * newpage->mapping was set in advance; now we need smp_wmb()
2688  		 * to make sure that the new stable_node->kpfn is visible
2689  		 * to get_ksm_page() before it can see that oldpage->mapping
2690  		 * has gone stale (or that PageSwapCache has been cleared).
2691  		 */
2692  		smp_wmb();
2693  		set_page_stable_node(oldpage, NULL);
2694  	}
2695  }
2696  #endif /* CONFIG_MIGRATION */
2697  
2698  #ifdef CONFIG_MEMORY_HOTREMOVE
wait_while_offlining(void)2699  static void wait_while_offlining(void)
2700  {
2701  	while (ksm_run & KSM_RUN_OFFLINE) {
2702  		mutex_unlock(&ksm_thread_mutex);
2703  		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2704  			    TASK_UNINTERRUPTIBLE);
2705  		mutex_lock(&ksm_thread_mutex);
2706  	}
2707  }
2708  
stable_node_dup_remove_range(struct stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn)2709  static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2710  					 unsigned long start_pfn,
2711  					 unsigned long end_pfn)
2712  {
2713  	if (stable_node->kpfn >= start_pfn &&
2714  	    stable_node->kpfn < end_pfn) {
2715  		/*
2716  		 * Don't get_ksm_page, page has already gone:
2717  		 * which is why we keep kpfn instead of page*
2718  		 */
2719  		remove_node_from_stable_tree(stable_node);
2720  		return true;
2721  	}
2722  	return false;
2723  }
2724  
stable_node_chain_remove_range(struct stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn,struct rb_root * root)2725  static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2726  					   unsigned long start_pfn,
2727  					   unsigned long end_pfn,
2728  					   struct rb_root *root)
2729  {
2730  	struct stable_node *dup;
2731  	struct hlist_node *hlist_safe;
2732  
2733  	if (!is_stable_node_chain(stable_node)) {
2734  		VM_BUG_ON(is_stable_node_dup(stable_node));
2735  		return stable_node_dup_remove_range(stable_node, start_pfn,
2736  						    end_pfn);
2737  	}
2738  
2739  	hlist_for_each_entry_safe(dup, hlist_safe,
2740  				  &stable_node->hlist, hlist_dup) {
2741  		VM_BUG_ON(!is_stable_node_dup(dup));
2742  		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2743  	}
2744  	if (hlist_empty(&stable_node->hlist)) {
2745  		free_stable_node_chain(stable_node, root);
2746  		return true; /* notify caller that tree was rebalanced */
2747  	} else
2748  		return false;
2749  }
2750  
ksm_check_stable_tree(unsigned long start_pfn,unsigned long end_pfn)2751  static void ksm_check_stable_tree(unsigned long start_pfn,
2752  				  unsigned long end_pfn)
2753  {
2754  	struct stable_node *stable_node, *next;
2755  	struct rb_node *node;
2756  	int nid;
2757  
2758  	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2759  		node = rb_first(root_stable_tree + nid);
2760  		while (node) {
2761  			stable_node = rb_entry(node, struct stable_node, node);
2762  			if (stable_node_chain_remove_range(stable_node,
2763  							   start_pfn, end_pfn,
2764  							   root_stable_tree +
2765  							   nid))
2766  				node = rb_first(root_stable_tree + nid);
2767  			else
2768  				node = rb_next(node);
2769  			cond_resched();
2770  		}
2771  	}
2772  	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2773  		if (stable_node->kpfn >= start_pfn &&
2774  		    stable_node->kpfn < end_pfn)
2775  			remove_node_from_stable_tree(stable_node);
2776  		cond_resched();
2777  	}
2778  }
2779  
ksm_memory_callback(struct notifier_block * self,unsigned long action,void * arg)2780  static int ksm_memory_callback(struct notifier_block *self,
2781  			       unsigned long action, void *arg)
2782  {
2783  	struct memory_notify *mn = arg;
2784  
2785  	switch (action) {
2786  	case MEM_GOING_OFFLINE:
2787  		/*
2788  		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2789  		 * and remove_all_stable_nodes() while memory is going offline:
2790  		 * it is unsafe for them to touch the stable tree at this time.
2791  		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2792  		 * which do not need the ksm_thread_mutex are all safe.
2793  		 */
2794  		mutex_lock(&ksm_thread_mutex);
2795  		ksm_run |= KSM_RUN_OFFLINE;
2796  		mutex_unlock(&ksm_thread_mutex);
2797  		break;
2798  
2799  	case MEM_OFFLINE:
2800  		/*
2801  		 * Most of the work is done by page migration; but there might
2802  		 * be a few stable_nodes left over, still pointing to struct
2803  		 * pages which have been offlined: prune those from the tree,
2804  		 * otherwise get_ksm_page() might later try to access a
2805  		 * non-existent struct page.
2806  		 */
2807  		ksm_check_stable_tree(mn->start_pfn,
2808  				      mn->start_pfn + mn->nr_pages);
2809  		fallthrough;
2810  	case MEM_CANCEL_OFFLINE:
2811  		mutex_lock(&ksm_thread_mutex);
2812  		ksm_run &= ~KSM_RUN_OFFLINE;
2813  		mutex_unlock(&ksm_thread_mutex);
2814  
2815  		smp_mb();	/* wake_up_bit advises this */
2816  		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2817  		break;
2818  	}
2819  	return NOTIFY_OK;
2820  }
2821  #else
wait_while_offlining(void)2822  static void wait_while_offlining(void)
2823  {
2824  }
2825  #endif /* CONFIG_MEMORY_HOTREMOVE */
2826  
2827  #ifdef CONFIG_SYSFS
2828  /*
2829   * This all compiles without CONFIG_SYSFS, but is a waste of space.
2830   */
2831  
2832  #define KSM_ATTR_RO(_name) \
2833  	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2834  #define KSM_ATTR(_name) \
2835  	static struct kobj_attribute _name##_attr = \
2836  		__ATTR(_name, 0644, _name##_show, _name##_store)
2837  
sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2838  static ssize_t sleep_millisecs_show(struct kobject *kobj,
2839  				    struct kobj_attribute *attr, char *buf)
2840  {
2841  	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2842  }
2843  
sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2844  static ssize_t sleep_millisecs_store(struct kobject *kobj,
2845  				     struct kobj_attribute *attr,
2846  				     const char *buf, size_t count)
2847  {
2848  	unsigned long msecs;
2849  	int err;
2850  
2851  	err = kstrtoul(buf, 10, &msecs);
2852  	if (err || msecs > UINT_MAX)
2853  		return -EINVAL;
2854  
2855  	ksm_thread_sleep_millisecs = msecs;
2856  	wake_up_interruptible(&ksm_iter_wait);
2857  
2858  	return count;
2859  }
2860  KSM_ATTR(sleep_millisecs);
2861  
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2862  static ssize_t pages_to_scan_show(struct kobject *kobj,
2863  				  struct kobj_attribute *attr, char *buf)
2864  {
2865  	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2866  }
2867  
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2868  static ssize_t pages_to_scan_store(struct kobject *kobj,
2869  				   struct kobj_attribute *attr,
2870  				   const char *buf, size_t count)
2871  {
2872  	int err;
2873  	unsigned long nr_pages;
2874  
2875  	err = kstrtoul(buf, 10, &nr_pages);
2876  	if (err || nr_pages > UINT_MAX)
2877  		return -EINVAL;
2878  
2879  	ksm_thread_pages_to_scan = nr_pages;
2880  
2881  	return count;
2882  }
2883  KSM_ATTR(pages_to_scan);
2884  
run_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2885  static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2886  			char *buf)
2887  {
2888  	return sprintf(buf, "%lu\n", ksm_run);
2889  }
2890  
run_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2891  static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2892  			 const char *buf, size_t count)
2893  {
2894  	int err;
2895  	unsigned long flags;
2896  
2897  	err = kstrtoul(buf, 10, &flags);
2898  	if (err || flags > UINT_MAX)
2899  		return -EINVAL;
2900  	if (flags > KSM_RUN_UNMERGE)
2901  		return -EINVAL;
2902  
2903  	/*
2904  	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2905  	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2906  	 * breaking COW to free the pages_shared (but leaves mm_slots
2907  	 * on the list for when ksmd may be set running again).
2908  	 */
2909  
2910  	mutex_lock(&ksm_thread_mutex);
2911  	wait_while_offlining();
2912  	if (ksm_run != flags) {
2913  		ksm_run = flags;
2914  		if (flags & KSM_RUN_UNMERGE) {
2915  			set_current_oom_origin();
2916  			err = unmerge_and_remove_all_rmap_items();
2917  			clear_current_oom_origin();
2918  			if (err) {
2919  				ksm_run = KSM_RUN_STOP;
2920  				count = err;
2921  			}
2922  		}
2923  	}
2924  	mutex_unlock(&ksm_thread_mutex);
2925  
2926  	if (flags & KSM_RUN_MERGE)
2927  		wake_up_interruptible(&ksm_thread_wait);
2928  
2929  	return count;
2930  }
2931  KSM_ATTR(run);
2932  
2933  #ifdef CONFIG_NUMA
merge_across_nodes_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2934  static ssize_t merge_across_nodes_show(struct kobject *kobj,
2935  				struct kobj_attribute *attr, char *buf)
2936  {
2937  	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2938  }
2939  
merge_across_nodes_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2940  static ssize_t merge_across_nodes_store(struct kobject *kobj,
2941  				   struct kobj_attribute *attr,
2942  				   const char *buf, size_t count)
2943  {
2944  	int err;
2945  	unsigned long knob;
2946  
2947  	err = kstrtoul(buf, 10, &knob);
2948  	if (err)
2949  		return err;
2950  	if (knob > 1)
2951  		return -EINVAL;
2952  
2953  	mutex_lock(&ksm_thread_mutex);
2954  	wait_while_offlining();
2955  	if (ksm_merge_across_nodes != knob) {
2956  		if (ksm_pages_shared || remove_all_stable_nodes())
2957  			err = -EBUSY;
2958  		else if (root_stable_tree == one_stable_tree) {
2959  			struct rb_root *buf;
2960  			/*
2961  			 * This is the first time that we switch away from the
2962  			 * default of merging across nodes: must now allocate
2963  			 * a buffer to hold as many roots as may be needed.
2964  			 * Allocate stable and unstable together:
2965  			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2966  			 */
2967  			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2968  				      GFP_KERNEL);
2969  			/* Let us assume that RB_ROOT is NULL is zero */
2970  			if (!buf)
2971  				err = -ENOMEM;
2972  			else {
2973  				root_stable_tree = buf;
2974  				root_unstable_tree = buf + nr_node_ids;
2975  				/* Stable tree is empty but not the unstable */
2976  				root_unstable_tree[0] = one_unstable_tree[0];
2977  			}
2978  		}
2979  		if (!err) {
2980  			ksm_merge_across_nodes = knob;
2981  			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2982  		}
2983  	}
2984  	mutex_unlock(&ksm_thread_mutex);
2985  
2986  	return err ? err : count;
2987  }
2988  KSM_ATTR(merge_across_nodes);
2989  #endif
2990  
use_zero_pages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2991  static ssize_t use_zero_pages_show(struct kobject *kobj,
2992  				struct kobj_attribute *attr, char *buf)
2993  {
2994  	return sprintf(buf, "%u\n", ksm_use_zero_pages);
2995  }
use_zero_pages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2996  static ssize_t use_zero_pages_store(struct kobject *kobj,
2997  				   struct kobj_attribute *attr,
2998  				   const char *buf, size_t count)
2999  {
3000  	int err;
3001  	bool value;
3002  
3003  	err = kstrtobool(buf, &value);
3004  	if (err)
3005  		return -EINVAL;
3006  
3007  	ksm_use_zero_pages = value;
3008  
3009  	return count;
3010  }
3011  KSM_ATTR(use_zero_pages);
3012  
max_page_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3013  static ssize_t max_page_sharing_show(struct kobject *kobj,
3014  				     struct kobj_attribute *attr, char *buf)
3015  {
3016  	return sprintf(buf, "%u\n", ksm_max_page_sharing);
3017  }
3018  
max_page_sharing_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3019  static ssize_t max_page_sharing_store(struct kobject *kobj,
3020  				      struct kobj_attribute *attr,
3021  				      const char *buf, size_t count)
3022  {
3023  	int err;
3024  	int knob;
3025  
3026  	err = kstrtoint(buf, 10, &knob);
3027  	if (err)
3028  		return err;
3029  	/*
3030  	 * When a KSM page is created it is shared by 2 mappings. This
3031  	 * being a signed comparison, it implicitly verifies it's not
3032  	 * negative.
3033  	 */
3034  	if (knob < 2)
3035  		return -EINVAL;
3036  
3037  	if (READ_ONCE(ksm_max_page_sharing) == knob)
3038  		return count;
3039  
3040  	mutex_lock(&ksm_thread_mutex);
3041  	wait_while_offlining();
3042  	if (ksm_max_page_sharing != knob) {
3043  		if (ksm_pages_shared || remove_all_stable_nodes())
3044  			err = -EBUSY;
3045  		else
3046  			ksm_max_page_sharing = knob;
3047  	}
3048  	mutex_unlock(&ksm_thread_mutex);
3049  
3050  	return err ? err : count;
3051  }
3052  KSM_ATTR(max_page_sharing);
3053  
pages_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3054  static ssize_t pages_shared_show(struct kobject *kobj,
3055  				 struct kobj_attribute *attr, char *buf)
3056  {
3057  	return sprintf(buf, "%lu\n", ksm_pages_shared);
3058  }
3059  KSM_ATTR_RO(pages_shared);
3060  
pages_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3061  static ssize_t pages_sharing_show(struct kobject *kobj,
3062  				  struct kobj_attribute *attr, char *buf)
3063  {
3064  	return sprintf(buf, "%lu\n", ksm_pages_sharing);
3065  }
3066  KSM_ATTR_RO(pages_sharing);
3067  
pages_unshared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3068  static ssize_t pages_unshared_show(struct kobject *kobj,
3069  				   struct kobj_attribute *attr, char *buf)
3070  {
3071  	return sprintf(buf, "%lu\n", ksm_pages_unshared);
3072  }
3073  KSM_ATTR_RO(pages_unshared);
3074  
pages_volatile_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3075  static ssize_t pages_volatile_show(struct kobject *kobj,
3076  				   struct kobj_attribute *attr, char *buf)
3077  {
3078  	long ksm_pages_volatile;
3079  
3080  	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3081  				- ksm_pages_sharing - ksm_pages_unshared;
3082  	/*
3083  	 * It was not worth any locking to calculate that statistic,
3084  	 * but it might therefore sometimes be negative: conceal that.
3085  	 */
3086  	if (ksm_pages_volatile < 0)
3087  		ksm_pages_volatile = 0;
3088  	return sprintf(buf, "%ld\n", ksm_pages_volatile);
3089  }
3090  KSM_ATTR_RO(pages_volatile);
3091  
stable_node_dups_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3092  static ssize_t stable_node_dups_show(struct kobject *kobj,
3093  				     struct kobj_attribute *attr, char *buf)
3094  {
3095  	return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3096  }
3097  KSM_ATTR_RO(stable_node_dups);
3098  
stable_node_chains_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3099  static ssize_t stable_node_chains_show(struct kobject *kobj,
3100  				       struct kobj_attribute *attr, char *buf)
3101  {
3102  	return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3103  }
3104  KSM_ATTR_RO(stable_node_chains);
3105  
3106  static ssize_t
stable_node_chains_prune_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3107  stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3108  					struct kobj_attribute *attr,
3109  					char *buf)
3110  {
3111  	return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3112  }
3113  
3114  static ssize_t
stable_node_chains_prune_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3115  stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3116  					 struct kobj_attribute *attr,
3117  					 const char *buf, size_t count)
3118  {
3119  	unsigned long msecs;
3120  	int err;
3121  
3122  	err = kstrtoul(buf, 10, &msecs);
3123  	if (err || msecs > UINT_MAX)
3124  		return -EINVAL;
3125  
3126  	ksm_stable_node_chains_prune_millisecs = msecs;
3127  
3128  	return count;
3129  }
3130  KSM_ATTR(stable_node_chains_prune_millisecs);
3131  
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3132  static ssize_t full_scans_show(struct kobject *kobj,
3133  			       struct kobj_attribute *attr, char *buf)
3134  {
3135  	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3136  }
3137  KSM_ATTR_RO(full_scans);
3138  
3139  static struct attribute *ksm_attrs[] = {
3140  	&sleep_millisecs_attr.attr,
3141  	&pages_to_scan_attr.attr,
3142  	&run_attr.attr,
3143  	&pages_shared_attr.attr,
3144  	&pages_sharing_attr.attr,
3145  	&pages_unshared_attr.attr,
3146  	&pages_volatile_attr.attr,
3147  	&full_scans_attr.attr,
3148  #ifdef CONFIG_NUMA
3149  	&merge_across_nodes_attr.attr,
3150  #endif
3151  	&max_page_sharing_attr.attr,
3152  	&stable_node_chains_attr.attr,
3153  	&stable_node_dups_attr.attr,
3154  	&stable_node_chains_prune_millisecs_attr.attr,
3155  	&use_zero_pages_attr.attr,
3156  	NULL,
3157  };
3158  
3159  static const struct attribute_group ksm_attr_group = {
3160  	.attrs = ksm_attrs,
3161  	.name = "ksm",
3162  };
3163  #endif /* CONFIG_SYSFS */
3164  
ksm_init(void)3165  static int __init ksm_init(void)
3166  {
3167  	struct task_struct *ksm_thread;
3168  	int err;
3169  
3170  	/* The correct value depends on page size and endianness */
3171  	zero_checksum = calc_checksum(ZERO_PAGE(0));
3172  	/* Default to false for backwards compatibility */
3173  	ksm_use_zero_pages = false;
3174  
3175  	err = ksm_slab_init();
3176  	if (err)
3177  		goto out;
3178  
3179  	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3180  	if (IS_ERR(ksm_thread)) {
3181  		pr_err("ksm: creating kthread failed\n");
3182  		err = PTR_ERR(ksm_thread);
3183  		goto out_free;
3184  	}
3185  
3186  #ifdef CONFIG_SYSFS
3187  	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3188  	if (err) {
3189  		pr_err("ksm: register sysfs failed\n");
3190  		kthread_stop(ksm_thread);
3191  		goto out_free;
3192  	}
3193  #else
3194  	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3195  
3196  #endif /* CONFIG_SYSFS */
3197  
3198  #ifdef CONFIG_MEMORY_HOTREMOVE
3199  	/* There is no significance to this priority 100 */
3200  	hotplug_memory_notifier(ksm_memory_callback, 100);
3201  #endif
3202  	return 0;
3203  
3204  out_free:
3205  	ksm_slab_free();
3206  out:
3207  	return err;
3208  }
3209  subsys_initcall(ksm_init);
3210