1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Memory merging support. 4 * 5 * This code enables dynamic sharing of identical pages found in different 6 * memory areas, even if they are not shared by fork() 7 * 8 * Copyright (C) 2008-2009 Red Hat, Inc. 9 * Authors: 10 * Izik Eidus 11 * Andrea Arcangeli 12 * Chris Wright 13 * Hugh Dickins 14 */ 15 16 #include <linux/errno.h> 17 #include <linux/mm.h> 18 #include <linux/fs.h> 19 #include <linux/mman.h> 20 #include <linux/sched.h> 21 #include <linux/sched/mm.h> 22 #include <linux/sched/coredump.h> 23 #include <linux/rwsem.h> 24 #include <linux/pagemap.h> 25 #include <linux/rmap.h> 26 #include <linux/spinlock.h> 27 #include <linux/xxhash.h> 28 #include <linux/delay.h> 29 #include <linux/kthread.h> 30 #include <linux/wait.h> 31 #include <linux/slab.h> 32 #include <linux/rbtree.h> 33 #include <linux/memory.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/swap.h> 36 #include <linux/ksm.h> 37 #include <linux/hashtable.h> 38 #include <linux/freezer.h> 39 #include <linux/oom.h> 40 #include <linux/numa.h> 41 42 #include <asm/tlbflush.h> 43 #include "internal.h" 44 #include <linux/xpm.h> 45 46 #ifdef CONFIG_NUMA 47 #define NUMA(x) (x) 48 #define DO_NUMA(x) do { (x); } while (0) 49 #else 50 #define NUMA(x) (0) 51 #define DO_NUMA(x) do { } while (0) 52 #endif 53 54 /** 55 * DOC: Overview 56 * 57 * A few notes about the KSM scanning process, 58 * to make it easier to understand the data structures below: 59 * 60 * In order to reduce excessive scanning, KSM sorts the memory pages by their 61 * contents into a data structure that holds pointers to the pages' locations. 62 * 63 * Since the contents of the pages may change at any moment, KSM cannot just 64 * insert the pages into a normal sorted tree and expect it to find anything. 65 * Therefore KSM uses two data structures - the stable and the unstable tree. 66 * 67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted 68 * by their contents. Because each such page is write-protected, searching on 69 * this tree is fully assured to be working (except when pages are unmapped), 70 * and therefore this tree is called the stable tree. 71 * 72 * The stable tree node includes information required for reverse 73 * mapping from a KSM page to virtual addresses that map this page. 74 * 75 * In order to avoid large latencies of the rmap walks on KSM pages, 76 * KSM maintains two types of nodes in the stable tree: 77 * 78 * * the regular nodes that keep the reverse mapping structures in a 79 * linked list 80 * * the "chains" that link nodes ("dups") that represent the same 81 * write protected memory content, but each "dup" corresponds to a 82 * different KSM page copy of that content 83 * 84 * Internally, the regular nodes, "dups" and "chains" are represented 85 * using the same struct stable_node structure. 86 * 87 * In addition to the stable tree, KSM uses a second data structure called the 88 * unstable tree: this tree holds pointers to pages which have been found to 89 * be "unchanged for a period of time". The unstable tree sorts these pages 90 * by their contents, but since they are not write-protected, KSM cannot rely 91 * upon the unstable tree to work correctly - the unstable tree is liable to 92 * be corrupted as its contents are modified, and so it is called unstable. 93 * 94 * KSM solves this problem by several techniques: 95 * 96 * 1) The unstable tree is flushed every time KSM completes scanning all 97 * memory areas, and then the tree is rebuilt again from the beginning. 98 * 2) KSM will only insert into the unstable tree, pages whose hash value 99 * has not changed since the previous scan of all memory areas. 100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the 101 * colors of the nodes and not on their contents, assuring that even when 102 * the tree gets "corrupted" it won't get out of balance, so scanning time 103 * remains the same (also, searching and inserting nodes in an rbtree uses 104 * the same algorithm, so we have no overhead when we flush and rebuild). 105 * 4) KSM never flushes the stable tree, which means that even if it were to 106 * take 10 attempts to find a page in the unstable tree, once it is found, 107 * it is secured in the stable tree. (When we scan a new page, we first 108 * compare it against the stable tree, and then against the unstable tree.) 109 * 110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple 111 * stable trees and multiple unstable trees: one of each for each NUMA node. 112 */ 113 114 /** 115 * struct mm_slot - ksm information per mm that is being scanned 116 * @link: link to the mm_slots hash list 117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items 119 * @mm: the mm that this information is valid for 120 */ 121 struct mm_slot { 122 struct hlist_node link; 123 struct list_head mm_list; 124 struct rmap_item *rmap_list; 125 struct mm_struct *mm; 126 }; 127 128 /** 129 * struct ksm_scan - cursor for scanning 130 * @mm_slot: the current mm_slot we are scanning 131 * @address: the next address inside that to be scanned 132 * @rmap_list: link to the next rmap to be scanned in the rmap_list 133 * @seqnr: count of completed full scans (needed when removing unstable node) 134 * 135 * There is only the one ksm_scan instance of this cursor structure. 136 */ 137 struct ksm_scan { 138 struct mm_slot *mm_slot; 139 unsigned long address; 140 struct rmap_item **rmap_list; 141 unsigned long seqnr; 142 }; 143 144 /** 145 * struct stable_node - node of the stable rbtree 146 * @node: rb node of this ksm page in the stable tree 147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list 148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain 149 * @list: linked into migrate_nodes, pending placement in the proper node tree 150 * @hlist: hlist head of rmap_items using this ksm page 151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid) 152 * @chain_prune_time: time of the last full garbage collection 153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN 154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn) 155 */ 156 struct stable_node { 157 union { 158 struct rb_node node; /* when node of stable tree */ 159 struct { /* when listed for migration */ 160 struct list_head *head; 161 struct { 162 struct hlist_node hlist_dup; 163 struct list_head list; 164 }; 165 }; 166 }; 167 struct hlist_head hlist; 168 union { 169 unsigned long kpfn; 170 unsigned long chain_prune_time; 171 }; 172 /* 173 * STABLE_NODE_CHAIN can be any negative number in 174 * rmap_hlist_len negative range, but better not -1 to be able 175 * to reliably detect underflows. 176 */ 177 #define STABLE_NODE_CHAIN -1024 178 int rmap_hlist_len; 179 #ifdef CONFIG_NUMA 180 int nid; 181 #endif 182 }; 183 184 /** 185 * struct rmap_item - reverse mapping item for virtual addresses 186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list 187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree 188 * @nid: NUMA node id of unstable tree in which linked (may not match page) 189 * @mm: the memory structure this rmap_item is pointing into 190 * @address: the virtual address this rmap_item tracks (+ flags in low bits) 191 * @oldchecksum: previous checksum of the page at that virtual address 192 * @node: rb node of this rmap_item in the unstable tree 193 * @head: pointer to stable_node heading this list in the stable tree 194 * @hlist: link into hlist of rmap_items hanging off that stable_node 195 */ 196 struct rmap_item { 197 struct rmap_item *rmap_list; 198 union { 199 struct anon_vma *anon_vma; /* when stable */ 200 #ifdef CONFIG_NUMA 201 int nid; /* when node of unstable tree */ 202 #endif 203 }; 204 struct mm_struct *mm; 205 unsigned long address; /* + low bits used for flags below */ 206 unsigned int oldchecksum; /* when unstable */ 207 union { 208 struct rb_node node; /* when node of unstable tree */ 209 struct { /* when listed from stable tree */ 210 struct stable_node *head; 211 struct hlist_node hlist; 212 }; 213 }; 214 }; 215 216 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */ 217 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */ 218 #define STABLE_FLAG 0x200 /* is listed from the stable tree */ 219 #define KSM_FLAG_MASK (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG) 220 /* to mask all the flags */ 221 222 /* The stable and unstable tree heads */ 223 static struct rb_root one_stable_tree[1] = { RB_ROOT }; 224 static struct rb_root one_unstable_tree[1] = { RB_ROOT }; 225 static struct rb_root *root_stable_tree = one_stable_tree; 226 static struct rb_root *root_unstable_tree = one_unstable_tree; 227 228 /* Recently migrated nodes of stable tree, pending proper placement */ 229 static LIST_HEAD(migrate_nodes); 230 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev) 231 232 #define MM_SLOTS_HASH_BITS 10 233 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 234 235 static struct mm_slot ksm_mm_head = { 236 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list), 237 }; 238 static struct ksm_scan ksm_scan = { 239 .mm_slot = &ksm_mm_head, 240 }; 241 242 static struct kmem_cache *rmap_item_cache; 243 static struct kmem_cache *stable_node_cache; 244 static struct kmem_cache *mm_slot_cache; 245 246 /* The number of nodes in the stable tree */ 247 static unsigned long ksm_pages_shared; 248 249 /* The number of page slots additionally sharing those nodes */ 250 static unsigned long ksm_pages_sharing; 251 252 /* The number of nodes in the unstable tree */ 253 static unsigned long ksm_pages_unshared; 254 255 /* The number of rmap_items in use: to calculate pages_volatile */ 256 static unsigned long ksm_rmap_items; 257 258 /* The number of stable_node chains */ 259 static unsigned long ksm_stable_node_chains; 260 261 /* The number of stable_node dups linked to the stable_node chains */ 262 static unsigned long ksm_stable_node_dups; 263 264 /* Delay in pruning stale stable_node_dups in the stable_node_chains */ 265 static int ksm_stable_node_chains_prune_millisecs = 2000; 266 267 /* Maximum number of page slots sharing a stable node */ 268 static int ksm_max_page_sharing = 256; 269 270 /* Number of pages ksmd should scan in one batch */ 271 static unsigned int ksm_thread_pages_to_scan = 100; 272 273 /* Milliseconds ksmd should sleep between batches */ 274 static unsigned int ksm_thread_sleep_millisecs = 20; 275 276 /* Checksum of an empty (zeroed) page */ 277 static unsigned int zero_checksum __read_mostly; 278 279 /* Whether to merge empty (zeroed) pages with actual zero pages */ 280 static bool ksm_use_zero_pages __read_mostly; 281 282 #ifdef CONFIG_NUMA 283 /* Zeroed when merging across nodes is not allowed */ 284 static unsigned int ksm_merge_across_nodes = 1; 285 static int ksm_nr_node_ids = 1; 286 #else 287 #define ksm_merge_across_nodes 1U 288 #define ksm_nr_node_ids 1 289 #endif 290 291 #define KSM_RUN_STOP 0 292 #define KSM_RUN_MERGE 1 293 #define KSM_RUN_UNMERGE 2 294 #define KSM_RUN_OFFLINE 4 295 static unsigned long ksm_run = KSM_RUN_STOP; 296 static void wait_while_offlining(void); 297 298 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait); 299 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait); 300 static DEFINE_MUTEX(ksm_thread_mutex); 301 static DEFINE_SPINLOCK(ksm_mmlist_lock); 302 303 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\ 304 sizeof(struct __struct), __alignof__(struct __struct),\ 305 (__flags), NULL) 306 ksm_slab_init(void)307 static int __init ksm_slab_init(void) 308 { 309 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0); 310 if (!rmap_item_cache) 311 goto out; 312 313 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0); 314 if (!stable_node_cache) 315 goto out_free1; 316 317 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0); 318 if (!mm_slot_cache) 319 goto out_free2; 320 321 return 0; 322 323 out_free2: 324 kmem_cache_destroy(stable_node_cache); 325 out_free1: 326 kmem_cache_destroy(rmap_item_cache); 327 out: 328 return -ENOMEM; 329 } 330 ksm_slab_free(void)331 static void __init ksm_slab_free(void) 332 { 333 kmem_cache_destroy(mm_slot_cache); 334 kmem_cache_destroy(stable_node_cache); 335 kmem_cache_destroy(rmap_item_cache); 336 mm_slot_cache = NULL; 337 } 338 is_stable_node_chain(struct stable_node * chain)339 static __always_inline bool is_stable_node_chain(struct stable_node *chain) 340 { 341 return chain->rmap_hlist_len == STABLE_NODE_CHAIN; 342 } 343 is_stable_node_dup(struct stable_node * dup)344 static __always_inline bool is_stable_node_dup(struct stable_node *dup) 345 { 346 return dup->head == STABLE_NODE_DUP_HEAD; 347 } 348 stable_node_chain_add_dup(struct stable_node * dup,struct stable_node * chain)349 static inline void stable_node_chain_add_dup(struct stable_node *dup, 350 struct stable_node *chain) 351 { 352 VM_BUG_ON(is_stable_node_dup(dup)); 353 dup->head = STABLE_NODE_DUP_HEAD; 354 VM_BUG_ON(!is_stable_node_chain(chain)); 355 hlist_add_head(&dup->hlist_dup, &chain->hlist); 356 ksm_stable_node_dups++; 357 } 358 __stable_node_dup_del(struct stable_node * dup)359 static inline void __stable_node_dup_del(struct stable_node *dup) 360 { 361 VM_BUG_ON(!is_stable_node_dup(dup)); 362 hlist_del(&dup->hlist_dup); 363 ksm_stable_node_dups--; 364 } 365 stable_node_dup_del(struct stable_node * dup)366 static inline void stable_node_dup_del(struct stable_node *dup) 367 { 368 VM_BUG_ON(is_stable_node_chain(dup)); 369 if (is_stable_node_dup(dup)) 370 __stable_node_dup_del(dup); 371 else 372 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid)); 373 #ifdef CONFIG_DEBUG_VM 374 dup->head = NULL; 375 #endif 376 } 377 alloc_rmap_item(void)378 static inline struct rmap_item *alloc_rmap_item(void) 379 { 380 struct rmap_item *rmap_item; 381 382 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL | 383 __GFP_NORETRY | __GFP_NOWARN); 384 if (rmap_item) 385 ksm_rmap_items++; 386 return rmap_item; 387 } 388 free_rmap_item(struct rmap_item * rmap_item)389 static inline void free_rmap_item(struct rmap_item *rmap_item) 390 { 391 ksm_rmap_items--; 392 rmap_item->mm = NULL; /* debug safety */ 393 kmem_cache_free(rmap_item_cache, rmap_item); 394 } 395 alloc_stable_node(void)396 static inline struct stable_node *alloc_stable_node(void) 397 { 398 /* 399 * The allocation can take too long with GFP_KERNEL when memory is under 400 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH 401 * grants access to memory reserves, helping to avoid this problem. 402 */ 403 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH); 404 } 405 free_stable_node(struct stable_node * stable_node)406 static inline void free_stable_node(struct stable_node *stable_node) 407 { 408 VM_BUG_ON(stable_node->rmap_hlist_len && 409 !is_stable_node_chain(stable_node)); 410 kmem_cache_free(stable_node_cache, stable_node); 411 } 412 alloc_mm_slot(void)413 static inline struct mm_slot *alloc_mm_slot(void) 414 { 415 if (!mm_slot_cache) /* initialization failed */ 416 return NULL; 417 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 418 } 419 free_mm_slot(struct mm_slot * mm_slot)420 static inline void free_mm_slot(struct mm_slot *mm_slot) 421 { 422 kmem_cache_free(mm_slot_cache, mm_slot); 423 } 424 get_mm_slot(struct mm_struct * mm)425 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 426 { 427 struct mm_slot *slot; 428 429 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm) 430 if (slot->mm == mm) 431 return slot; 432 433 return NULL; 434 } 435 insert_to_mm_slots_hash(struct mm_struct * mm,struct mm_slot * mm_slot)436 static void insert_to_mm_slots_hash(struct mm_struct *mm, 437 struct mm_slot *mm_slot) 438 { 439 mm_slot->mm = mm; 440 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm); 441 } 442 443 /* 444 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's 445 * page tables after it has passed through ksm_exit() - which, if necessary, 446 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set 447 * a special flag: they can just back out as soon as mm_users goes to zero. 448 * ksm_test_exit() is used throughout to make this test for exit: in some 449 * places for correctness, in some places just to avoid unnecessary work. 450 */ ksm_test_exit(struct mm_struct * mm)451 static inline bool ksm_test_exit(struct mm_struct *mm) 452 { 453 return atomic_read(&mm->mm_users) == 0; 454 } 455 456 /* 457 * We use break_ksm to break COW on a ksm page: it's a stripped down 458 * 459 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1) 460 * put_page(page); 461 * 462 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma, 463 * in case the application has unmapped and remapped mm,addr meanwhile. 464 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP 465 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it. 466 * 467 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context 468 * of the process that owns 'vma'. We also do not want to enforce 469 * protection keys here anyway. 470 */ break_ksm(struct vm_area_struct * vma,unsigned long addr)471 static int break_ksm(struct vm_area_struct *vma, unsigned long addr) 472 { 473 struct page *page; 474 vm_fault_t ret = 0; 475 476 do { 477 cond_resched(); 478 page = follow_page(vma, addr, 479 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE); 480 if (IS_ERR_OR_NULL(page)) 481 break; 482 if (PageKsm(page)) 483 ret = handle_mm_fault(vma, addr, 484 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE, 485 NULL); 486 else 487 ret = VM_FAULT_WRITE; 488 put_page(page); 489 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM))); 490 /* 491 * We must loop because handle_mm_fault() may back out if there's 492 * any difficulty e.g. if pte accessed bit gets updated concurrently. 493 * 494 * VM_FAULT_WRITE is what we have been hoping for: it indicates that 495 * COW has been broken, even if the vma does not permit VM_WRITE; 496 * but note that a concurrent fault might break PageKsm for us. 497 * 498 * VM_FAULT_SIGBUS could occur if we race with truncation of the 499 * backing file, which also invalidates anonymous pages: that's 500 * okay, that truncation will have unmapped the PageKsm for us. 501 * 502 * VM_FAULT_OOM: at the time of writing (late July 2009), setting 503 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the 504 * current task has TIF_MEMDIE set, and will be OOM killed on return 505 * to user; and ksmd, having no mm, would never be chosen for that. 506 * 507 * But if the mm is in a limited mem_cgroup, then the fault may fail 508 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and 509 * even ksmd can fail in this way - though it's usually breaking ksm 510 * just to undo a merge it made a moment before, so unlikely to oom. 511 * 512 * That's a pity: we might therefore have more kernel pages allocated 513 * than we're counting as nodes in the stable tree; but ksm_do_scan 514 * will retry to break_cow on each pass, so should recover the page 515 * in due course. The important thing is to not let VM_MERGEABLE 516 * be cleared while any such pages might remain in the area. 517 */ 518 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0; 519 } 520 find_mergeable_vma(struct mm_struct * mm,unsigned long addr)521 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm, 522 unsigned long addr) 523 { 524 struct vm_area_struct *vma; 525 if (ksm_test_exit(mm)) 526 return NULL; 527 vma = find_vma(mm, addr); 528 if (!vma || vma->vm_start > addr) 529 return NULL; 530 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 531 return NULL; 532 return vma; 533 } 534 break_cow(struct rmap_item * rmap_item)535 static void break_cow(struct rmap_item *rmap_item) 536 { 537 struct mm_struct *mm = rmap_item->mm; 538 unsigned long addr = rmap_item->address; 539 struct vm_area_struct *vma; 540 541 /* 542 * It is not an accident that whenever we want to break COW 543 * to undo, we also need to drop a reference to the anon_vma. 544 */ 545 put_anon_vma(rmap_item->anon_vma); 546 547 mmap_read_lock(mm); 548 vma = find_mergeable_vma(mm, addr); 549 if (vma) 550 break_ksm(vma, addr); 551 mmap_read_unlock(mm); 552 } 553 get_mergeable_page(struct rmap_item * rmap_item)554 static struct page *get_mergeable_page(struct rmap_item *rmap_item) 555 { 556 struct mm_struct *mm = rmap_item->mm; 557 unsigned long addr = rmap_item->address; 558 struct vm_area_struct *vma; 559 struct page *page; 560 561 mmap_read_lock(mm); 562 vma = find_mergeable_vma(mm, addr); 563 if (!vma) 564 goto out; 565 566 page = follow_page(vma, addr, FOLL_GET); 567 if (IS_ERR_OR_NULL(page)) 568 goto out; 569 if (PageAnon(page)) { 570 flush_anon_page(vma, page, addr); 571 flush_dcache_page(page); 572 } else { 573 put_page(page); 574 out: 575 page = NULL; 576 } 577 mmap_read_unlock(mm); 578 return page; 579 } 580 581 /* 582 * This helper is used for getting right index into array of tree roots. 583 * When merge_across_nodes knob is set to 1, there are only two rb-trees for 584 * stable and unstable pages from all nodes with roots in index 0. Otherwise, 585 * every node has its own stable and unstable tree. 586 */ get_kpfn_nid(unsigned long kpfn)587 static inline int get_kpfn_nid(unsigned long kpfn) 588 { 589 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn)); 590 } 591 alloc_stable_node_chain(struct stable_node * dup,struct rb_root * root)592 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup, 593 struct rb_root *root) 594 { 595 struct stable_node *chain = alloc_stable_node(); 596 VM_BUG_ON(is_stable_node_chain(dup)); 597 if (likely(chain)) { 598 INIT_HLIST_HEAD(&chain->hlist); 599 chain->chain_prune_time = jiffies; 600 chain->rmap_hlist_len = STABLE_NODE_CHAIN; 601 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA) 602 chain->nid = NUMA_NO_NODE; /* debug */ 603 #endif 604 ksm_stable_node_chains++; 605 606 /* 607 * Put the stable node chain in the first dimension of 608 * the stable tree and at the same time remove the old 609 * stable node. 610 */ 611 rb_replace_node(&dup->node, &chain->node, root); 612 613 /* 614 * Move the old stable node to the second dimension 615 * queued in the hlist_dup. The invariant is that all 616 * dup stable_nodes in the chain->hlist point to pages 617 * that are write protected and have the exact same 618 * content. 619 */ 620 stable_node_chain_add_dup(dup, chain); 621 } 622 return chain; 623 } 624 free_stable_node_chain(struct stable_node * chain,struct rb_root * root)625 static inline void free_stable_node_chain(struct stable_node *chain, 626 struct rb_root *root) 627 { 628 rb_erase(&chain->node, root); 629 free_stable_node(chain); 630 ksm_stable_node_chains--; 631 } 632 remove_node_from_stable_tree(struct stable_node * stable_node)633 static void remove_node_from_stable_tree(struct stable_node *stable_node) 634 { 635 struct rmap_item *rmap_item; 636 637 /* check it's not STABLE_NODE_CHAIN or negative */ 638 BUG_ON(stable_node->rmap_hlist_len < 0); 639 640 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 641 if (rmap_item->hlist.next) 642 ksm_pages_sharing--; 643 else 644 ksm_pages_shared--; 645 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 646 stable_node->rmap_hlist_len--; 647 put_anon_vma(rmap_item->anon_vma); 648 rmap_item->address &= PAGE_MASK; 649 cond_resched(); 650 } 651 652 /* 653 * We need the second aligned pointer of the migrate_nodes 654 * list_head to stay clear from the rb_parent_color union 655 * (aligned and different than any node) and also different 656 * from &migrate_nodes. This will verify that future list.h changes 657 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it. 658 */ 659 #if defined(GCC_VERSION) && GCC_VERSION >= 40903 660 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes); 661 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1); 662 #endif 663 664 if (stable_node->head == &migrate_nodes) 665 list_del(&stable_node->list); 666 else 667 stable_node_dup_del(stable_node); 668 free_stable_node(stable_node); 669 } 670 671 enum get_ksm_page_flags { 672 GET_KSM_PAGE_NOLOCK, 673 GET_KSM_PAGE_LOCK, 674 GET_KSM_PAGE_TRYLOCK 675 }; 676 677 /* 678 * get_ksm_page: checks if the page indicated by the stable node 679 * is still its ksm page, despite having held no reference to it. 680 * In which case we can trust the content of the page, and it 681 * returns the gotten page; but if the page has now been zapped, 682 * remove the stale node from the stable tree and return NULL. 683 * But beware, the stable node's page might be being migrated. 684 * 685 * You would expect the stable_node to hold a reference to the ksm page. 686 * But if it increments the page's count, swapping out has to wait for 687 * ksmd to come around again before it can free the page, which may take 688 * seconds or even minutes: much too unresponsive. So instead we use a 689 * "keyhole reference": access to the ksm page from the stable node peeps 690 * out through its keyhole to see if that page still holds the right key, 691 * pointing back to this stable node. This relies on freeing a PageAnon 692 * page to reset its page->mapping to NULL, and relies on no other use of 693 * a page to put something that might look like our key in page->mapping. 694 * is on its way to being freed; but it is an anomaly to bear in mind. 695 */ get_ksm_page(struct stable_node * stable_node,enum get_ksm_page_flags flags)696 static struct page *get_ksm_page(struct stable_node *stable_node, 697 enum get_ksm_page_flags flags) 698 { 699 struct page *page; 700 void *expected_mapping; 701 unsigned long kpfn; 702 703 expected_mapping = (void *)((unsigned long)stable_node | 704 PAGE_MAPPING_KSM); 705 again: 706 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */ 707 page = pfn_to_page(kpfn); 708 if (READ_ONCE(page->mapping) != expected_mapping) 709 goto stale; 710 711 /* 712 * We cannot do anything with the page while its refcount is 0. 713 * Usually 0 means free, or tail of a higher-order page: in which 714 * case this node is no longer referenced, and should be freed; 715 * however, it might mean that the page is under page_ref_freeze(). 716 * The __remove_mapping() case is easy, again the node is now stale; 717 * the same is in reuse_ksm_page() case; but if page is swapcache 718 * in migrate_page_move_mapping(), it might still be our page, 719 * in which case it's essential to keep the node. 720 */ 721 while (!get_page_unless_zero(page)) { 722 /* 723 * Another check for page->mapping != expected_mapping would 724 * work here too. We have chosen the !PageSwapCache test to 725 * optimize the common case, when the page is or is about to 726 * be freed: PageSwapCache is cleared (under spin_lock_irq) 727 * in the ref_freeze section of __remove_mapping(); but Anon 728 * page->mapping reset to NULL later, in free_pages_prepare(). 729 */ 730 if (!PageSwapCache(page)) 731 goto stale; 732 cpu_relax(); 733 } 734 735 if (READ_ONCE(page->mapping) != expected_mapping) { 736 put_page(page); 737 goto stale; 738 } 739 740 if (flags == GET_KSM_PAGE_TRYLOCK) { 741 if (!trylock_page(page)) { 742 put_page(page); 743 return ERR_PTR(-EBUSY); 744 } 745 } else if (flags == GET_KSM_PAGE_LOCK) 746 lock_page(page); 747 748 if (flags != GET_KSM_PAGE_NOLOCK) { 749 if (READ_ONCE(page->mapping) != expected_mapping) { 750 unlock_page(page); 751 put_page(page); 752 goto stale; 753 } 754 } 755 return page; 756 757 stale: 758 /* 759 * We come here from above when page->mapping or !PageSwapCache 760 * suggests that the node is stale; but it might be under migration. 761 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(), 762 * before checking whether node->kpfn has been changed. 763 */ 764 smp_rmb(); 765 if (READ_ONCE(stable_node->kpfn) != kpfn) 766 goto again; 767 remove_node_from_stable_tree(stable_node); 768 return NULL; 769 } 770 771 /* 772 * Removing rmap_item from stable or unstable tree. 773 * This function will clean the information from the stable/unstable tree. 774 */ remove_rmap_item_from_tree(struct rmap_item * rmap_item)775 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item) 776 { 777 if (rmap_item->address & STABLE_FLAG) { 778 struct stable_node *stable_node; 779 struct page *page; 780 781 stable_node = rmap_item->head; 782 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 783 if (!page) 784 goto out; 785 786 hlist_del(&rmap_item->hlist); 787 unlock_page(page); 788 put_page(page); 789 790 if (!hlist_empty(&stable_node->hlist)) 791 ksm_pages_sharing--; 792 else 793 ksm_pages_shared--; 794 VM_BUG_ON(stable_node->rmap_hlist_len <= 0); 795 stable_node->rmap_hlist_len--; 796 797 put_anon_vma(rmap_item->anon_vma); 798 rmap_item->head = NULL; 799 rmap_item->address &= PAGE_MASK; 800 801 } else if (rmap_item->address & UNSTABLE_FLAG) { 802 unsigned char age; 803 /* 804 * Usually ksmd can and must skip the rb_erase, because 805 * root_unstable_tree was already reset to RB_ROOT. 806 * But be careful when an mm is exiting: do the rb_erase 807 * if this rmap_item was inserted by this scan, rather 808 * than left over from before. 809 */ 810 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address); 811 BUG_ON(age > 1); 812 if (!age) 813 rb_erase(&rmap_item->node, 814 root_unstable_tree + NUMA(rmap_item->nid)); 815 ksm_pages_unshared--; 816 rmap_item->address &= PAGE_MASK; 817 } 818 out: 819 cond_resched(); /* we're called from many long loops */ 820 } 821 remove_trailing_rmap_items(struct mm_slot * mm_slot,struct rmap_item ** rmap_list)822 static void remove_trailing_rmap_items(struct mm_slot *mm_slot, 823 struct rmap_item **rmap_list) 824 { 825 while (*rmap_list) { 826 struct rmap_item *rmap_item = *rmap_list; 827 *rmap_list = rmap_item->rmap_list; 828 remove_rmap_item_from_tree(rmap_item); 829 free_rmap_item(rmap_item); 830 } 831 } 832 833 /* 834 * Though it's very tempting to unmerge rmap_items from stable tree rather 835 * than check every pte of a given vma, the locking doesn't quite work for 836 * that - an rmap_item is assigned to the stable tree after inserting ksm 837 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing 838 * rmap_items from parent to child at fork time (so as not to waste time 839 * if exit comes before the next scan reaches it). 840 * 841 * Similarly, although we'd like to remove rmap_items (so updating counts 842 * and freeing memory) when unmerging an area, it's easier to leave that 843 * to the next pass of ksmd - consider, for example, how ksmd might be 844 * in cmp_and_merge_page on one of the rmap_items we would be removing. 845 */ unmerge_ksm_pages(struct vm_area_struct * vma,unsigned long start,unsigned long end)846 static int unmerge_ksm_pages(struct vm_area_struct *vma, 847 unsigned long start, unsigned long end) 848 { 849 unsigned long addr; 850 int err = 0; 851 852 for (addr = start; addr < end && !err; addr += PAGE_SIZE) { 853 if (ksm_test_exit(vma->vm_mm)) 854 break; 855 if (signal_pending(current)) 856 err = -ERESTARTSYS; 857 else 858 err = break_ksm(vma, addr); 859 } 860 return err; 861 } 862 page_stable_node(struct page * page)863 static inline struct stable_node *page_stable_node(struct page *page) 864 { 865 return PageKsm(page) ? page_rmapping(page) : NULL; 866 } 867 set_page_stable_node(struct page * page,struct stable_node * stable_node)868 static inline void set_page_stable_node(struct page *page, 869 struct stable_node *stable_node) 870 { 871 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM); 872 } 873 874 #ifdef CONFIG_SYSFS 875 /* 876 * Only called through the sysfs control interface: 877 */ remove_stable_node(struct stable_node * stable_node)878 static int remove_stable_node(struct stable_node *stable_node) 879 { 880 struct page *page; 881 int err; 882 883 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK); 884 if (!page) { 885 /* 886 * get_ksm_page did remove_node_from_stable_tree itself. 887 */ 888 return 0; 889 } 890 891 /* 892 * Page could be still mapped if this races with __mmput() running in 893 * between ksm_exit() and exit_mmap(). Just refuse to let 894 * merge_across_nodes/max_page_sharing be switched. 895 */ 896 err = -EBUSY; 897 if (!page_mapped(page)) { 898 /* 899 * The stable node did not yet appear stale to get_ksm_page(), 900 * since that allows for an unmapped ksm page to be recognized 901 * right up until it is freed; but the node is safe to remove. 902 * This page might be in a pagevec waiting to be freed, 903 * or it might be PageSwapCache (perhaps under writeback), 904 * or it might have been removed from swapcache a moment ago. 905 */ 906 set_page_stable_node(page, NULL); 907 remove_node_from_stable_tree(stable_node); 908 err = 0; 909 } 910 911 unlock_page(page); 912 put_page(page); 913 return err; 914 } 915 remove_stable_node_chain(struct stable_node * stable_node,struct rb_root * root)916 static int remove_stable_node_chain(struct stable_node *stable_node, 917 struct rb_root *root) 918 { 919 struct stable_node *dup; 920 struct hlist_node *hlist_safe; 921 922 if (!is_stable_node_chain(stable_node)) { 923 VM_BUG_ON(is_stable_node_dup(stable_node)); 924 if (remove_stable_node(stable_node)) 925 return true; 926 else 927 return false; 928 } 929 930 hlist_for_each_entry_safe(dup, hlist_safe, 931 &stable_node->hlist, hlist_dup) { 932 VM_BUG_ON(!is_stable_node_dup(dup)); 933 if (remove_stable_node(dup)) 934 return true; 935 } 936 BUG_ON(!hlist_empty(&stable_node->hlist)); 937 free_stable_node_chain(stable_node, root); 938 return false; 939 } 940 remove_all_stable_nodes(void)941 static int remove_all_stable_nodes(void) 942 { 943 struct stable_node *stable_node, *next; 944 int nid; 945 int err = 0; 946 947 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 948 while (root_stable_tree[nid].rb_node) { 949 stable_node = rb_entry(root_stable_tree[nid].rb_node, 950 struct stable_node, node); 951 if (remove_stable_node_chain(stable_node, 952 root_stable_tree + nid)) { 953 err = -EBUSY; 954 break; /* proceed to next nid */ 955 } 956 cond_resched(); 957 } 958 } 959 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 960 if (remove_stable_node(stable_node)) 961 err = -EBUSY; 962 cond_resched(); 963 } 964 return err; 965 } 966 unmerge_and_remove_all_rmap_items(void)967 static int unmerge_and_remove_all_rmap_items(void) 968 { 969 struct mm_slot *mm_slot; 970 struct mm_struct *mm; 971 struct vm_area_struct *vma; 972 int err = 0; 973 974 spin_lock(&ksm_mmlist_lock); 975 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next, 976 struct mm_slot, mm_list); 977 spin_unlock(&ksm_mmlist_lock); 978 979 for (mm_slot = ksm_scan.mm_slot; 980 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) { 981 mm = mm_slot->mm; 982 mmap_read_lock(mm); 983 for (vma = mm->mmap; vma; vma = vma->vm_next) { 984 if (ksm_test_exit(mm)) 985 break; 986 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma) 987 continue; 988 err = unmerge_ksm_pages(vma, 989 vma->vm_start, vma->vm_end); 990 if (err) 991 goto error; 992 } 993 994 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list); 995 mmap_read_unlock(mm); 996 997 spin_lock(&ksm_mmlist_lock); 998 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next, 999 struct mm_slot, mm_list); 1000 if (ksm_test_exit(mm)) { 1001 hash_del(&mm_slot->link); 1002 list_del(&mm_slot->mm_list); 1003 spin_unlock(&ksm_mmlist_lock); 1004 1005 free_mm_slot(mm_slot); 1006 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 1007 mmdrop(mm); 1008 } else 1009 spin_unlock(&ksm_mmlist_lock); 1010 } 1011 1012 /* Clean up stable nodes, but don't worry if some are still busy */ 1013 remove_all_stable_nodes(); 1014 ksm_scan.seqnr = 0; 1015 return 0; 1016 1017 error: 1018 mmap_read_unlock(mm); 1019 spin_lock(&ksm_mmlist_lock); 1020 ksm_scan.mm_slot = &ksm_mm_head; 1021 spin_unlock(&ksm_mmlist_lock); 1022 return err; 1023 } 1024 #endif /* CONFIG_SYSFS */ 1025 calc_checksum(struct page * page)1026 static u32 calc_checksum(struct page *page) 1027 { 1028 u32 checksum; 1029 void *addr = kmap_atomic(page); 1030 checksum = xxhash(addr, PAGE_SIZE, 0); 1031 kunmap_atomic(addr); 1032 return checksum; 1033 } 1034 write_protect_page(struct vm_area_struct * vma,struct page * page,pte_t * orig_pte)1035 static int write_protect_page(struct vm_area_struct *vma, struct page *page, 1036 pte_t *orig_pte) 1037 { 1038 struct mm_struct *mm = vma->vm_mm; 1039 struct page_vma_mapped_walk pvmw = { 1040 .page = page, 1041 .vma = vma, 1042 }; 1043 int swapped; 1044 int err = -EFAULT; 1045 struct mmu_notifier_range range; 1046 1047 pvmw.address = page_address_in_vma(page, vma); 1048 if (pvmw.address == -EFAULT) 1049 goto out; 1050 1051 BUG_ON(PageTransCompound(page)); 1052 1053 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 1054 pvmw.address, 1055 pvmw.address + PAGE_SIZE); 1056 mmu_notifier_invalidate_range_start(&range); 1057 1058 if (!page_vma_mapped_walk(&pvmw)) 1059 goto out_mn; 1060 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?")) 1061 goto out_unlock; 1062 1063 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) || 1064 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) || 1065 mm_tlb_flush_pending(mm)) { 1066 pte_t entry; 1067 1068 swapped = PageSwapCache(page); 1069 flush_cache_page(vma, pvmw.address, page_to_pfn(page)); 1070 /* 1071 * Ok this is tricky, when get_user_pages_fast() run it doesn't 1072 * take any lock, therefore the check that we are going to make 1073 * with the pagecount against the mapcount is racey and 1074 * O_DIRECT can happen right after the check. 1075 * So we clear the pte and flush the tlb before the check 1076 * this assure us that no O_DIRECT can happen after the check 1077 * or in the middle of the check. 1078 * 1079 * No need to notify as we are downgrading page table to read 1080 * only not changing it to point to a new page. 1081 * 1082 * See Documentation/vm/mmu_notifier.rst 1083 */ 1084 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte); 1085 /* 1086 * Check that no O_DIRECT or similar I/O is in progress on the 1087 * page 1088 */ 1089 if (page_mapcount(page) + 1 + swapped != page_count(page)) { 1090 set_pte_at(mm, pvmw.address, pvmw.pte, entry); 1091 goto out_unlock; 1092 } 1093 if (pte_dirty(entry)) 1094 set_page_dirty(page); 1095 1096 if (pte_protnone(entry)) 1097 entry = pte_mkclean(pte_clear_savedwrite(entry)); 1098 else 1099 entry = pte_mkclean(pte_wrprotect(entry)); 1100 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry); 1101 } 1102 *orig_pte = *pvmw.pte; 1103 err = 0; 1104 1105 out_unlock: 1106 page_vma_mapped_walk_done(&pvmw); 1107 out_mn: 1108 mmu_notifier_invalidate_range_end(&range); 1109 out: 1110 return err; 1111 } 1112 1113 /** 1114 * replace_page - replace page in vma by new ksm page 1115 * @vma: vma that holds the pte pointing to page 1116 * @page: the page we are replacing by kpage 1117 * @kpage: the ksm page we replace page by 1118 * @orig_pte: the original value of the pte 1119 * 1120 * Returns 0 on success, -EFAULT on failure. 1121 */ replace_page(struct vm_area_struct * vma,struct page * page,struct page * kpage,pte_t orig_pte)1122 static int replace_page(struct vm_area_struct *vma, struct page *page, 1123 struct page *kpage, pte_t orig_pte) 1124 { 1125 struct mm_struct *mm = vma->vm_mm; 1126 pmd_t *pmd; 1127 pte_t *ptep; 1128 pte_t newpte; 1129 spinlock_t *ptl; 1130 unsigned long addr; 1131 int err = -EFAULT; 1132 struct mmu_notifier_range range; 1133 1134 addr = page_address_in_vma(page, vma); 1135 if (addr == -EFAULT) 1136 goto out; 1137 1138 pmd = mm_find_pmd(mm, addr); 1139 if (!pmd) 1140 goto out; 1141 1142 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 1143 addr + PAGE_SIZE); 1144 mmu_notifier_invalidate_range_start(&range); 1145 1146 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl); 1147 if (!pte_same(*ptep, orig_pte)) { 1148 pte_unmap_unlock(ptep, ptl); 1149 goto out_mn; 1150 } 1151 1152 /* 1153 * No need to check ksm_use_zero_pages here: we can only have a 1154 * zero_page here if ksm_use_zero_pages was enabled already. 1155 */ 1156 if (!is_zero_pfn(page_to_pfn(kpage))) { 1157 get_page(kpage); 1158 page_add_anon_rmap(kpage, vma, addr, false); 1159 newpte = mk_pte(kpage, vma->vm_page_prot); 1160 } else { 1161 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage), 1162 vma->vm_page_prot)); 1163 /* 1164 * We're replacing an anonymous page with a zero page, which is 1165 * not anonymous. We need to do proper accounting otherwise we 1166 * will get wrong values in /proc, and a BUG message in dmesg 1167 * when tearing down the mm. 1168 */ 1169 dec_mm_counter(mm, MM_ANONPAGES); 1170 } 1171 1172 flush_cache_page(vma, addr, pte_pfn(*ptep)); 1173 /* 1174 * No need to notify as we are replacing a read only page with another 1175 * read only page with the same content. 1176 * 1177 * See Documentation/vm/mmu_notifier.rst 1178 */ 1179 ptep_clear_flush(vma, addr, ptep); 1180 set_pte_at_notify(mm, addr, ptep, newpte); 1181 1182 page_remove_rmap(page, false); 1183 if (!page_mapped(page)) 1184 try_to_free_swap(page); 1185 put_page(page); 1186 1187 pte_unmap_unlock(ptep, ptl); 1188 err = 0; 1189 out_mn: 1190 mmu_notifier_invalidate_range_end(&range); 1191 out: 1192 return err; 1193 } 1194 1195 /* 1196 * try_to_merge_one_page - take two pages and merge them into one 1197 * @vma: the vma that holds the pte pointing to page 1198 * @page: the PageAnon page that we want to replace with kpage 1199 * @kpage: the PageKsm page that we want to map instead of page, 1200 * or NULL the first time when we want to use page as kpage. 1201 * 1202 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1203 */ try_to_merge_one_page(struct vm_area_struct * vma,struct page * page,struct page * kpage)1204 static int try_to_merge_one_page(struct vm_area_struct *vma, 1205 struct page *page, struct page *kpage) 1206 { 1207 pte_t orig_pte = __pte(0); 1208 int err = -EFAULT; 1209 1210 if (page == kpage) /* ksm page forked */ 1211 return 0; 1212 1213 if (!PageAnon(page)) 1214 goto out; 1215 1216 if(!xpm_integrity_check_one_page_merge(page, kpage)) 1217 goto out; 1218 1219 /* 1220 * We need the page lock to read a stable PageSwapCache in 1221 * write_protect_page(). We use trylock_page() instead of 1222 * lock_page() because we don't want to wait here - we 1223 * prefer to continue scanning and merging different pages, 1224 * then come back to this page when it is unlocked. 1225 */ 1226 if (!trylock_page(page)) 1227 goto out; 1228 1229 if (PageTransCompound(page)) { 1230 if (split_huge_page(page)) 1231 goto out_unlock; 1232 } 1233 1234 /* 1235 * If this anonymous page is mapped only here, its pte may need 1236 * to be write-protected. If it's mapped elsewhere, all of its 1237 * ptes are necessarily already write-protected. But in either 1238 * case, we need to lock and check page_count is not raised. 1239 */ 1240 if (write_protect_page(vma, page, &orig_pte) == 0) { 1241 if (!kpage) { 1242 /* 1243 * While we hold page lock, upgrade page from 1244 * PageAnon+anon_vma to PageKsm+NULL stable_node: 1245 * stable_tree_insert() will update stable_node. 1246 */ 1247 set_page_stable_node(page, NULL); 1248 mark_page_accessed(page); 1249 /* 1250 * Page reclaim just frees a clean page with no dirty 1251 * ptes: make sure that the ksm page would be swapped. 1252 */ 1253 if (!PageDirty(page)) 1254 SetPageDirty(page); 1255 err = 0; 1256 } else if (pages_identical(page, kpage)) 1257 err = replace_page(vma, page, kpage, orig_pte); 1258 } 1259 1260 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) { 1261 munlock_vma_page(page); 1262 if (!PageMlocked(kpage)) { 1263 unlock_page(page); 1264 lock_page(kpage); 1265 mlock_vma_page(kpage); 1266 page = kpage; /* for final unlock */ 1267 } 1268 } 1269 1270 out_unlock: 1271 unlock_page(page); 1272 out: 1273 return err; 1274 } 1275 1276 /* 1277 * try_to_merge_with_ksm_page - like try_to_merge_two_pages, 1278 * but no new kernel page is allocated: kpage must already be a ksm page. 1279 * 1280 * This function returns 0 if the pages were merged, -EFAULT otherwise. 1281 */ try_to_merge_with_ksm_page(struct rmap_item * rmap_item,struct page * page,struct page * kpage)1282 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item, 1283 struct page *page, struct page *kpage) 1284 { 1285 struct mm_struct *mm = rmap_item->mm; 1286 struct vm_area_struct *vma; 1287 int err = -EFAULT; 1288 1289 mmap_read_lock(mm); 1290 vma = find_mergeable_vma(mm, rmap_item->address); 1291 if (!vma) 1292 goto out; 1293 1294 err = try_to_merge_one_page(vma, page, kpage); 1295 if (err) 1296 goto out; 1297 1298 /* Unstable nid is in union with stable anon_vma: remove first */ 1299 remove_rmap_item_from_tree(rmap_item); 1300 1301 /* Must get reference to anon_vma while still holding mmap_lock */ 1302 rmap_item->anon_vma = vma->anon_vma; 1303 get_anon_vma(vma->anon_vma); 1304 out: 1305 mmap_read_unlock(mm); 1306 return err; 1307 } 1308 1309 /* 1310 * try_to_merge_two_pages - take two identical pages and prepare them 1311 * to be merged into one page. 1312 * 1313 * This function returns the kpage if we successfully merged two identical 1314 * pages into one ksm page, NULL otherwise. 1315 * 1316 * Note that this function upgrades page to ksm page: if one of the pages 1317 * is already a ksm page, try_to_merge_with_ksm_page should be used. 1318 */ try_to_merge_two_pages(struct rmap_item * rmap_item,struct page * page,struct rmap_item * tree_rmap_item,struct page * tree_page)1319 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item, 1320 struct page *page, 1321 struct rmap_item *tree_rmap_item, 1322 struct page *tree_page) 1323 { 1324 int err; 1325 1326 err = try_to_merge_with_ksm_page(rmap_item, page, NULL); 1327 if (!err) { 1328 err = try_to_merge_with_ksm_page(tree_rmap_item, 1329 tree_page, page); 1330 /* 1331 * If that fails, we have a ksm page with only one pte 1332 * pointing to it: so break it. 1333 */ 1334 if (err) 1335 break_cow(rmap_item); 1336 } 1337 return err ? NULL : page; 1338 } 1339 1340 static __always_inline __is_page_sharing_candidate(struct stable_node * stable_node,int offset)1341 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset) 1342 { 1343 VM_BUG_ON(stable_node->rmap_hlist_len < 0); 1344 /* 1345 * Check that at least one mapping still exists, otherwise 1346 * there's no much point to merge and share with this 1347 * stable_node, as the underlying tree_page of the other 1348 * sharer is going to be freed soon. 1349 */ 1350 return stable_node->rmap_hlist_len && 1351 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing; 1352 } 1353 1354 static __always_inline is_page_sharing_candidate(struct stable_node * stable_node)1355 bool is_page_sharing_candidate(struct stable_node *stable_node) 1356 { 1357 return __is_page_sharing_candidate(stable_node, 0); 1358 } 1359 stable_node_dup(struct stable_node ** _stable_node_dup,struct stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1360 static struct page *stable_node_dup(struct stable_node **_stable_node_dup, 1361 struct stable_node **_stable_node, 1362 struct rb_root *root, 1363 bool prune_stale_stable_nodes) 1364 { 1365 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node; 1366 struct hlist_node *hlist_safe; 1367 struct page *_tree_page, *tree_page = NULL; 1368 int nr = 0; 1369 int found_rmap_hlist_len; 1370 1371 if (!prune_stale_stable_nodes || 1372 time_before(jiffies, stable_node->chain_prune_time + 1373 msecs_to_jiffies( 1374 ksm_stable_node_chains_prune_millisecs))) 1375 prune_stale_stable_nodes = false; 1376 else 1377 stable_node->chain_prune_time = jiffies; 1378 1379 hlist_for_each_entry_safe(dup, hlist_safe, 1380 &stable_node->hlist, hlist_dup) { 1381 cond_resched(); 1382 /* 1383 * We must walk all stable_node_dup to prune the stale 1384 * stable nodes during lookup. 1385 * 1386 * get_ksm_page can drop the nodes from the 1387 * stable_node->hlist if they point to freed pages 1388 * (that's why we do a _safe walk). The "dup" 1389 * stable_node parameter itself will be freed from 1390 * under us if it returns NULL. 1391 */ 1392 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK); 1393 if (!_tree_page) 1394 continue; 1395 nr += 1; 1396 if (is_page_sharing_candidate(dup)) { 1397 if (!found || 1398 dup->rmap_hlist_len > found_rmap_hlist_len) { 1399 if (found) 1400 put_page(tree_page); 1401 found = dup; 1402 found_rmap_hlist_len = found->rmap_hlist_len; 1403 tree_page = _tree_page; 1404 1405 /* skip put_page for found dup */ 1406 if (!prune_stale_stable_nodes) 1407 break; 1408 continue; 1409 } 1410 } 1411 put_page(_tree_page); 1412 } 1413 1414 if (found) { 1415 /* 1416 * nr is counting all dups in the chain only if 1417 * prune_stale_stable_nodes is true, otherwise we may 1418 * break the loop at nr == 1 even if there are 1419 * multiple entries. 1420 */ 1421 if (prune_stale_stable_nodes && nr == 1) { 1422 /* 1423 * If there's not just one entry it would 1424 * corrupt memory, better BUG_ON. In KSM 1425 * context with no lock held it's not even 1426 * fatal. 1427 */ 1428 BUG_ON(stable_node->hlist.first->next); 1429 1430 /* 1431 * There's just one entry and it is below the 1432 * deduplication limit so drop the chain. 1433 */ 1434 rb_replace_node(&stable_node->node, &found->node, 1435 root); 1436 free_stable_node(stable_node); 1437 ksm_stable_node_chains--; 1438 ksm_stable_node_dups--; 1439 /* 1440 * NOTE: the caller depends on the stable_node 1441 * to be equal to stable_node_dup if the chain 1442 * was collapsed. 1443 */ 1444 *_stable_node = found; 1445 /* 1446 * Just for robustneess as stable_node is 1447 * otherwise left as a stable pointer, the 1448 * compiler shall optimize it away at build 1449 * time. 1450 */ 1451 stable_node = NULL; 1452 } else if (stable_node->hlist.first != &found->hlist_dup && 1453 __is_page_sharing_candidate(found, 1)) { 1454 /* 1455 * If the found stable_node dup can accept one 1456 * more future merge (in addition to the one 1457 * that is underway) and is not at the head of 1458 * the chain, put it there so next search will 1459 * be quicker in the !prune_stale_stable_nodes 1460 * case. 1461 * 1462 * NOTE: it would be inaccurate to use nr > 1 1463 * instead of checking the hlist.first pointer 1464 * directly, because in the 1465 * prune_stale_stable_nodes case "nr" isn't 1466 * the position of the found dup in the chain, 1467 * but the total number of dups in the chain. 1468 */ 1469 hlist_del(&found->hlist_dup); 1470 hlist_add_head(&found->hlist_dup, 1471 &stable_node->hlist); 1472 } 1473 } 1474 1475 *_stable_node_dup = found; 1476 return tree_page; 1477 } 1478 stable_node_dup_any(struct stable_node * stable_node,struct rb_root * root)1479 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node, 1480 struct rb_root *root) 1481 { 1482 if (!is_stable_node_chain(stable_node)) 1483 return stable_node; 1484 if (hlist_empty(&stable_node->hlist)) { 1485 free_stable_node_chain(stable_node, root); 1486 return NULL; 1487 } 1488 return hlist_entry(stable_node->hlist.first, 1489 typeof(*stable_node), hlist_dup); 1490 } 1491 1492 /* 1493 * Like for get_ksm_page, this function can free the *_stable_node and 1494 * *_stable_node_dup if the returned tree_page is NULL. 1495 * 1496 * It can also free and overwrite *_stable_node with the found 1497 * stable_node_dup if the chain is collapsed (in which case 1498 * *_stable_node will be equal to *_stable_node_dup like if the chain 1499 * never existed). It's up to the caller to verify tree_page is not 1500 * NULL before dereferencing *_stable_node or *_stable_node_dup. 1501 * 1502 * *_stable_node_dup is really a second output parameter of this 1503 * function and will be overwritten in all cases, the caller doesn't 1504 * need to initialize it. 1505 */ __stable_node_chain(struct stable_node ** _stable_node_dup,struct stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1506 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup, 1507 struct stable_node **_stable_node, 1508 struct rb_root *root, 1509 bool prune_stale_stable_nodes) 1510 { 1511 struct stable_node *stable_node = *_stable_node; 1512 if (!is_stable_node_chain(stable_node)) { 1513 if (is_page_sharing_candidate(stable_node)) { 1514 *_stable_node_dup = stable_node; 1515 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK); 1516 } 1517 /* 1518 * _stable_node_dup set to NULL means the stable_node 1519 * reached the ksm_max_page_sharing limit. 1520 */ 1521 *_stable_node_dup = NULL; 1522 return NULL; 1523 } 1524 return stable_node_dup(_stable_node_dup, _stable_node, root, 1525 prune_stale_stable_nodes); 1526 } 1527 chain_prune(struct stable_node ** s_n_d,struct stable_node ** s_n,struct rb_root * root)1528 static __always_inline struct page *chain_prune(struct stable_node **s_n_d, 1529 struct stable_node **s_n, 1530 struct rb_root *root) 1531 { 1532 return __stable_node_chain(s_n_d, s_n, root, true); 1533 } 1534 chain(struct stable_node ** s_n_d,struct stable_node * s_n,struct rb_root * root)1535 static __always_inline struct page *chain(struct stable_node **s_n_d, 1536 struct stable_node *s_n, 1537 struct rb_root *root) 1538 { 1539 struct stable_node *old_stable_node = s_n; 1540 struct page *tree_page; 1541 1542 tree_page = __stable_node_chain(s_n_d, &s_n, root, false); 1543 /* not pruning dups so s_n cannot have changed */ 1544 VM_BUG_ON(s_n != old_stable_node); 1545 return tree_page; 1546 } 1547 1548 /* 1549 * stable_tree_search - search for page inside the stable tree 1550 * 1551 * This function checks if there is a page inside the stable tree 1552 * with identical content to the page that we are scanning right now. 1553 * 1554 * This function returns the stable tree node of identical content if found, 1555 * NULL otherwise. 1556 */ stable_tree_search(struct page * page)1557 static struct page *stable_tree_search(struct page *page) 1558 { 1559 int nid; 1560 struct rb_root *root; 1561 struct rb_node **new; 1562 struct rb_node *parent; 1563 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1564 struct stable_node *page_node; 1565 1566 page_node = page_stable_node(page); 1567 if (page_node && page_node->head != &migrate_nodes) { 1568 /* ksm page forked */ 1569 get_page(page); 1570 return page; 1571 } 1572 1573 nid = get_kpfn_nid(page_to_pfn(page)); 1574 root = root_stable_tree + nid; 1575 again: 1576 new = &root->rb_node; 1577 parent = NULL; 1578 1579 while (*new) { 1580 struct page *tree_page; 1581 int ret; 1582 1583 cond_resched(); 1584 stable_node = rb_entry(*new, struct stable_node, node); 1585 stable_node_any = NULL; 1586 tree_page = chain_prune(&stable_node_dup, &stable_node, root); 1587 /* 1588 * NOTE: stable_node may have been freed by 1589 * chain_prune() if the returned stable_node_dup is 1590 * not NULL. stable_node_dup may have been inserted in 1591 * the rbtree instead as a regular stable_node (in 1592 * order to collapse the stable_node chain if a single 1593 * stable_node dup was found in it). In such case the 1594 * stable_node is overwritten by the calleee to point 1595 * to the stable_node_dup that was collapsed in the 1596 * stable rbtree and stable_node will be equal to 1597 * stable_node_dup like if the chain never existed. 1598 */ 1599 if (!stable_node_dup) { 1600 /* 1601 * Either all stable_node dups were full in 1602 * this stable_node chain, or this chain was 1603 * empty and should be rb_erased. 1604 */ 1605 stable_node_any = stable_node_dup_any(stable_node, 1606 root); 1607 if (!stable_node_any) { 1608 /* rb_erase just run */ 1609 goto again; 1610 } 1611 /* 1612 * Take any of the stable_node dups page of 1613 * this stable_node chain to let the tree walk 1614 * continue. All KSM pages belonging to the 1615 * stable_node dups in a stable_node chain 1616 * have the same content and they're 1617 * write protected at all times. Any will work 1618 * fine to continue the walk. 1619 */ 1620 tree_page = get_ksm_page(stable_node_any, 1621 GET_KSM_PAGE_NOLOCK); 1622 } 1623 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1624 if (!tree_page) { 1625 /* 1626 * If we walked over a stale stable_node, 1627 * get_ksm_page() will call rb_erase() and it 1628 * may rebalance the tree from under us. So 1629 * restart the search from scratch. Returning 1630 * NULL would be safe too, but we'd generate 1631 * false negative insertions just because some 1632 * stable_node was stale. 1633 */ 1634 goto again; 1635 } 1636 1637 ret = memcmp_pages(page, tree_page); 1638 put_page(tree_page); 1639 1640 parent = *new; 1641 if (ret < 0) 1642 new = &parent->rb_left; 1643 else if (ret > 0) 1644 new = &parent->rb_right; 1645 else { 1646 if (page_node) { 1647 VM_BUG_ON(page_node->head != &migrate_nodes); 1648 /* 1649 * Test if the migrated page should be merged 1650 * into a stable node dup. If the mapcount is 1651 * 1 we can migrate it with another KSM page 1652 * without adding it to the chain. 1653 */ 1654 if (page_mapcount(page) > 1) 1655 goto chain_append; 1656 } 1657 1658 if (!stable_node_dup) { 1659 /* 1660 * If the stable_node is a chain and 1661 * we got a payload match in memcmp 1662 * but we cannot merge the scanned 1663 * page in any of the existing 1664 * stable_node dups because they're 1665 * all full, we need to wait the 1666 * scanned page to find itself a match 1667 * in the unstable tree to create a 1668 * brand new KSM page to add later to 1669 * the dups of this stable_node. 1670 */ 1671 return NULL; 1672 } 1673 1674 /* 1675 * Lock and unlock the stable_node's page (which 1676 * might already have been migrated) so that page 1677 * migration is sure to notice its raised count. 1678 * It would be more elegant to return stable_node 1679 * than kpage, but that involves more changes. 1680 */ 1681 tree_page = get_ksm_page(stable_node_dup, 1682 GET_KSM_PAGE_TRYLOCK); 1683 1684 if (PTR_ERR(tree_page) == -EBUSY) 1685 return ERR_PTR(-EBUSY); 1686 1687 if (unlikely(!tree_page)) 1688 /* 1689 * The tree may have been rebalanced, 1690 * so re-evaluate parent and new. 1691 */ 1692 goto again; 1693 unlock_page(tree_page); 1694 1695 if (get_kpfn_nid(stable_node_dup->kpfn) != 1696 NUMA(stable_node_dup->nid)) { 1697 put_page(tree_page); 1698 goto replace; 1699 } 1700 return tree_page; 1701 } 1702 } 1703 1704 if (!page_node) 1705 return NULL; 1706 1707 list_del(&page_node->list); 1708 DO_NUMA(page_node->nid = nid); 1709 rb_link_node(&page_node->node, parent, new); 1710 rb_insert_color(&page_node->node, root); 1711 out: 1712 if (is_page_sharing_candidate(page_node)) { 1713 get_page(page); 1714 return page; 1715 } else 1716 return NULL; 1717 1718 replace: 1719 /* 1720 * If stable_node was a chain and chain_prune collapsed it, 1721 * stable_node has been updated to be the new regular 1722 * stable_node. A collapse of the chain is indistinguishable 1723 * from the case there was no chain in the stable 1724 * rbtree. Otherwise stable_node is the chain and 1725 * stable_node_dup is the dup to replace. 1726 */ 1727 if (stable_node_dup == stable_node) { 1728 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1729 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1730 /* there is no chain */ 1731 if (page_node) { 1732 VM_BUG_ON(page_node->head != &migrate_nodes); 1733 list_del(&page_node->list); 1734 DO_NUMA(page_node->nid = nid); 1735 rb_replace_node(&stable_node_dup->node, 1736 &page_node->node, 1737 root); 1738 if (is_page_sharing_candidate(page_node)) 1739 get_page(page); 1740 else 1741 page = NULL; 1742 } else { 1743 rb_erase(&stable_node_dup->node, root); 1744 page = NULL; 1745 } 1746 } else { 1747 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1748 __stable_node_dup_del(stable_node_dup); 1749 if (page_node) { 1750 VM_BUG_ON(page_node->head != &migrate_nodes); 1751 list_del(&page_node->list); 1752 DO_NUMA(page_node->nid = nid); 1753 stable_node_chain_add_dup(page_node, stable_node); 1754 if (is_page_sharing_candidate(page_node)) 1755 get_page(page); 1756 else 1757 page = NULL; 1758 } else { 1759 page = NULL; 1760 } 1761 } 1762 stable_node_dup->head = &migrate_nodes; 1763 list_add(&stable_node_dup->list, stable_node_dup->head); 1764 return page; 1765 1766 chain_append: 1767 /* stable_node_dup could be null if it reached the limit */ 1768 if (!stable_node_dup) 1769 stable_node_dup = stable_node_any; 1770 /* 1771 * If stable_node was a chain and chain_prune collapsed it, 1772 * stable_node has been updated to be the new regular 1773 * stable_node. A collapse of the chain is indistinguishable 1774 * from the case there was no chain in the stable 1775 * rbtree. Otherwise stable_node is the chain and 1776 * stable_node_dup is the dup to replace. 1777 */ 1778 if (stable_node_dup == stable_node) { 1779 VM_BUG_ON(is_stable_node_chain(stable_node_dup)); 1780 VM_BUG_ON(is_stable_node_dup(stable_node_dup)); 1781 /* chain is missing so create it */ 1782 stable_node = alloc_stable_node_chain(stable_node_dup, 1783 root); 1784 if (!stable_node) 1785 return NULL; 1786 } 1787 /* 1788 * Add this stable_node dup that was 1789 * migrated to the stable_node chain 1790 * of the current nid for this page 1791 * content. 1792 */ 1793 VM_BUG_ON(!is_stable_node_chain(stable_node)); 1794 VM_BUG_ON(!is_stable_node_dup(stable_node_dup)); 1795 VM_BUG_ON(page_node->head != &migrate_nodes); 1796 list_del(&page_node->list); 1797 DO_NUMA(page_node->nid = nid); 1798 stable_node_chain_add_dup(page_node, stable_node); 1799 goto out; 1800 } 1801 1802 /* 1803 * stable_tree_insert - insert stable tree node pointing to new ksm page 1804 * into the stable tree. 1805 * 1806 * This function returns the stable tree node just allocated on success, 1807 * NULL otherwise. 1808 */ stable_tree_insert(struct page * kpage)1809 static struct stable_node *stable_tree_insert(struct page *kpage) 1810 { 1811 int nid; 1812 unsigned long kpfn; 1813 struct rb_root *root; 1814 struct rb_node **new; 1815 struct rb_node *parent; 1816 struct stable_node *stable_node, *stable_node_dup, *stable_node_any; 1817 bool need_chain = false; 1818 1819 kpfn = page_to_pfn(kpage); 1820 nid = get_kpfn_nid(kpfn); 1821 root = root_stable_tree + nid; 1822 again: 1823 parent = NULL; 1824 new = &root->rb_node; 1825 1826 while (*new) { 1827 struct page *tree_page; 1828 int ret; 1829 1830 cond_resched(); 1831 stable_node = rb_entry(*new, struct stable_node, node); 1832 stable_node_any = NULL; 1833 tree_page = chain(&stable_node_dup, stable_node, root); 1834 if (!stable_node_dup) { 1835 /* 1836 * Either all stable_node dups were full in 1837 * this stable_node chain, or this chain was 1838 * empty and should be rb_erased. 1839 */ 1840 stable_node_any = stable_node_dup_any(stable_node, 1841 root); 1842 if (!stable_node_any) { 1843 /* rb_erase just run */ 1844 goto again; 1845 } 1846 /* 1847 * Take any of the stable_node dups page of 1848 * this stable_node chain to let the tree walk 1849 * continue. All KSM pages belonging to the 1850 * stable_node dups in a stable_node chain 1851 * have the same content and they're 1852 * write protected at all times. Any will work 1853 * fine to continue the walk. 1854 */ 1855 tree_page = get_ksm_page(stable_node_any, 1856 GET_KSM_PAGE_NOLOCK); 1857 } 1858 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any); 1859 if (!tree_page) { 1860 /* 1861 * If we walked over a stale stable_node, 1862 * get_ksm_page() will call rb_erase() and it 1863 * may rebalance the tree from under us. So 1864 * restart the search from scratch. Returning 1865 * NULL would be safe too, but we'd generate 1866 * false negative insertions just because some 1867 * stable_node was stale. 1868 */ 1869 goto again; 1870 } 1871 1872 ret = memcmp_pages(kpage, tree_page); 1873 put_page(tree_page); 1874 1875 parent = *new; 1876 if (ret < 0) 1877 new = &parent->rb_left; 1878 else if (ret > 0) 1879 new = &parent->rb_right; 1880 else { 1881 need_chain = true; 1882 break; 1883 } 1884 } 1885 1886 stable_node_dup = alloc_stable_node(); 1887 if (!stable_node_dup) 1888 return NULL; 1889 1890 INIT_HLIST_HEAD(&stable_node_dup->hlist); 1891 stable_node_dup->kpfn = kpfn; 1892 set_page_stable_node(kpage, stable_node_dup); 1893 stable_node_dup->rmap_hlist_len = 0; 1894 DO_NUMA(stable_node_dup->nid = nid); 1895 if (!need_chain) { 1896 rb_link_node(&stable_node_dup->node, parent, new); 1897 rb_insert_color(&stable_node_dup->node, root); 1898 } else { 1899 if (!is_stable_node_chain(stable_node)) { 1900 struct stable_node *orig = stable_node; 1901 /* chain is missing so create it */ 1902 stable_node = alloc_stable_node_chain(orig, root); 1903 if (!stable_node) { 1904 free_stable_node(stable_node_dup); 1905 return NULL; 1906 } 1907 } 1908 stable_node_chain_add_dup(stable_node_dup, stable_node); 1909 } 1910 1911 return stable_node_dup; 1912 } 1913 1914 /* 1915 * unstable_tree_search_insert - search for identical page, 1916 * else insert rmap_item into the unstable tree. 1917 * 1918 * This function searches for a page in the unstable tree identical to the 1919 * page currently being scanned; and if no identical page is found in the 1920 * tree, we insert rmap_item as a new object into the unstable tree. 1921 * 1922 * This function returns pointer to rmap_item found to be identical 1923 * to the currently scanned page, NULL otherwise. 1924 * 1925 * This function does both searching and inserting, because they share 1926 * the same walking algorithm in an rbtree. 1927 */ 1928 static unstable_tree_search_insert(struct rmap_item * rmap_item,struct page * page,struct page ** tree_pagep)1929 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item, 1930 struct page *page, 1931 struct page **tree_pagep) 1932 { 1933 struct rb_node **new; 1934 struct rb_root *root; 1935 struct rb_node *parent = NULL; 1936 int nid; 1937 1938 nid = get_kpfn_nid(page_to_pfn(page)); 1939 root = root_unstable_tree + nid; 1940 new = &root->rb_node; 1941 1942 while (*new) { 1943 struct rmap_item *tree_rmap_item; 1944 struct page *tree_page; 1945 int ret; 1946 1947 cond_resched(); 1948 tree_rmap_item = rb_entry(*new, struct rmap_item, node); 1949 tree_page = get_mergeable_page(tree_rmap_item); 1950 if (!tree_page) 1951 return NULL; 1952 1953 /* 1954 * Don't substitute a ksm page for a forked page. 1955 */ 1956 if (page == tree_page) { 1957 put_page(tree_page); 1958 return NULL; 1959 } 1960 1961 ret = memcmp_pages(page, tree_page); 1962 1963 parent = *new; 1964 if (ret < 0) { 1965 put_page(tree_page); 1966 new = &parent->rb_left; 1967 } else if (ret > 0) { 1968 put_page(tree_page); 1969 new = &parent->rb_right; 1970 } else if (!ksm_merge_across_nodes && 1971 page_to_nid(tree_page) != nid) { 1972 /* 1973 * If tree_page has been migrated to another NUMA node, 1974 * it will be flushed out and put in the right unstable 1975 * tree next time: only merge with it when across_nodes. 1976 */ 1977 put_page(tree_page); 1978 return NULL; 1979 } else { 1980 *tree_pagep = tree_page; 1981 return tree_rmap_item; 1982 } 1983 } 1984 1985 rmap_item->address |= UNSTABLE_FLAG; 1986 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK); 1987 DO_NUMA(rmap_item->nid = nid); 1988 rb_link_node(&rmap_item->node, parent, new); 1989 rb_insert_color(&rmap_item->node, root); 1990 1991 ksm_pages_unshared++; 1992 return NULL; 1993 } 1994 1995 /* 1996 * stable_tree_append - add another rmap_item to the linked list of 1997 * rmap_items hanging off a given node of the stable tree, all sharing 1998 * the same ksm page. 1999 */ stable_tree_append(struct rmap_item * rmap_item,struct stable_node * stable_node,bool max_page_sharing_bypass)2000 static void stable_tree_append(struct rmap_item *rmap_item, 2001 struct stable_node *stable_node, 2002 bool max_page_sharing_bypass) 2003 { 2004 /* 2005 * rmap won't find this mapping if we don't insert the 2006 * rmap_item in the right stable_node 2007 * duplicate. page_migration could break later if rmap breaks, 2008 * so we can as well crash here. We really need to check for 2009 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check 2010 * for other negative values as an underflow if detected here 2011 * for the first time (and not when decreasing rmap_hlist_len) 2012 * would be sign of memory corruption in the stable_node. 2013 */ 2014 BUG_ON(stable_node->rmap_hlist_len < 0); 2015 2016 stable_node->rmap_hlist_len++; 2017 if (!max_page_sharing_bypass) 2018 /* possibly non fatal but unexpected overflow, only warn */ 2019 WARN_ON_ONCE(stable_node->rmap_hlist_len > 2020 ksm_max_page_sharing); 2021 2022 rmap_item->head = stable_node; 2023 rmap_item->address |= STABLE_FLAG; 2024 hlist_add_head(&rmap_item->hlist, &stable_node->hlist); 2025 2026 if (rmap_item->hlist.next) 2027 ksm_pages_sharing++; 2028 else 2029 ksm_pages_shared++; 2030 } 2031 2032 /* 2033 * cmp_and_merge_page - first see if page can be merged into the stable tree; 2034 * if not, compare checksum to previous and if it's the same, see if page can 2035 * be inserted into the unstable tree, or merged with a page already there and 2036 * both transferred to the stable tree. 2037 * 2038 * @page: the page that we are searching identical page to. 2039 * @rmap_item: the reverse mapping into the virtual address of this page 2040 */ cmp_and_merge_page(struct page * page,struct rmap_item * rmap_item)2041 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item) 2042 { 2043 struct mm_struct *mm = rmap_item->mm; 2044 struct rmap_item *tree_rmap_item; 2045 struct page *tree_page = NULL; 2046 struct stable_node *stable_node; 2047 struct page *kpage; 2048 unsigned int checksum; 2049 int err; 2050 bool max_page_sharing_bypass = false; 2051 2052 stable_node = page_stable_node(page); 2053 if (stable_node) { 2054 if (stable_node->head != &migrate_nodes && 2055 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) != 2056 NUMA(stable_node->nid)) { 2057 stable_node_dup_del(stable_node); 2058 stable_node->head = &migrate_nodes; 2059 list_add(&stable_node->list, stable_node->head); 2060 } 2061 if (stable_node->head != &migrate_nodes && 2062 rmap_item->head == stable_node) 2063 return; 2064 /* 2065 * If it's a KSM fork, allow it to go over the sharing limit 2066 * without warnings. 2067 */ 2068 if (!is_page_sharing_candidate(stable_node)) 2069 max_page_sharing_bypass = true; 2070 } 2071 2072 /* We first start with searching the page inside the stable tree */ 2073 kpage = stable_tree_search(page); 2074 if (kpage == page && rmap_item->head == stable_node) { 2075 put_page(kpage); 2076 return; 2077 } 2078 2079 remove_rmap_item_from_tree(rmap_item); 2080 2081 if (kpage) { 2082 if (PTR_ERR(kpage) == -EBUSY) 2083 return; 2084 2085 err = try_to_merge_with_ksm_page(rmap_item, page, kpage); 2086 if (!err) { 2087 /* 2088 * The page was successfully merged: 2089 * add its rmap_item to the stable tree. 2090 */ 2091 lock_page(kpage); 2092 stable_tree_append(rmap_item, page_stable_node(kpage), 2093 max_page_sharing_bypass); 2094 unlock_page(kpage); 2095 } 2096 put_page(kpage); 2097 return; 2098 } 2099 2100 /* 2101 * If the hash value of the page has changed from the last time 2102 * we calculated it, this page is changing frequently: therefore we 2103 * don't want to insert it in the unstable tree, and we don't want 2104 * to waste our time searching for something identical to it there. 2105 */ 2106 checksum = calc_checksum(page); 2107 if (rmap_item->oldchecksum != checksum) { 2108 rmap_item->oldchecksum = checksum; 2109 return; 2110 } 2111 2112 /* 2113 * Same checksum as an empty page. We attempt to merge it with the 2114 * appropriate zero page if the user enabled this via sysfs. 2115 */ 2116 if (ksm_use_zero_pages && (checksum == zero_checksum)) { 2117 struct vm_area_struct *vma; 2118 2119 mmap_read_lock(mm); 2120 vma = find_mergeable_vma(mm, rmap_item->address); 2121 if (vma) { 2122 err = try_to_merge_one_page(vma, page, 2123 ZERO_PAGE(rmap_item->address)); 2124 } else { 2125 /* 2126 * If the vma is out of date, we do not need to 2127 * continue. 2128 */ 2129 err = 0; 2130 } 2131 mmap_read_unlock(mm); 2132 /* 2133 * In case of failure, the page was not really empty, so we 2134 * need to continue. Otherwise we're done. 2135 */ 2136 if (!err) 2137 return; 2138 } 2139 tree_rmap_item = 2140 unstable_tree_search_insert(rmap_item, page, &tree_page); 2141 if (tree_rmap_item) { 2142 bool split; 2143 2144 kpage = try_to_merge_two_pages(rmap_item, page, 2145 tree_rmap_item, tree_page); 2146 /* 2147 * If both pages we tried to merge belong to the same compound 2148 * page, then we actually ended up increasing the reference 2149 * count of the same compound page twice, and split_huge_page 2150 * failed. 2151 * Here we set a flag if that happened, and we use it later to 2152 * try split_huge_page again. Since we call put_page right 2153 * afterwards, the reference count will be correct and 2154 * split_huge_page should succeed. 2155 */ 2156 split = PageTransCompound(page) 2157 && compound_head(page) == compound_head(tree_page); 2158 put_page(tree_page); 2159 if (kpage) { 2160 /* 2161 * The pages were successfully merged: insert new 2162 * node in the stable tree and add both rmap_items. 2163 */ 2164 lock_page(kpage); 2165 stable_node = stable_tree_insert(kpage); 2166 if (stable_node) { 2167 stable_tree_append(tree_rmap_item, stable_node, 2168 false); 2169 stable_tree_append(rmap_item, stable_node, 2170 false); 2171 } 2172 unlock_page(kpage); 2173 2174 /* 2175 * If we fail to insert the page into the stable tree, 2176 * we will have 2 virtual addresses that are pointing 2177 * to a ksm page left outside the stable tree, 2178 * in which case we need to break_cow on both. 2179 */ 2180 if (!stable_node) { 2181 break_cow(tree_rmap_item); 2182 break_cow(rmap_item); 2183 } 2184 } else if (split) { 2185 /* 2186 * We are here if we tried to merge two pages and 2187 * failed because they both belonged to the same 2188 * compound page. We will split the page now, but no 2189 * merging will take place. 2190 * We do not want to add the cost of a full lock; if 2191 * the page is locked, it is better to skip it and 2192 * perhaps try again later. 2193 */ 2194 if (!trylock_page(page)) 2195 return; 2196 split_huge_page(page); 2197 unlock_page(page); 2198 } 2199 } 2200 } 2201 get_next_rmap_item(struct mm_slot * mm_slot,struct rmap_item ** rmap_list,unsigned long addr)2202 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot, 2203 struct rmap_item **rmap_list, 2204 unsigned long addr) 2205 { 2206 struct rmap_item *rmap_item; 2207 2208 while (*rmap_list) { 2209 rmap_item = *rmap_list; 2210 if ((rmap_item->address & PAGE_MASK) == addr) 2211 return rmap_item; 2212 if (rmap_item->address > addr) 2213 break; 2214 *rmap_list = rmap_item->rmap_list; 2215 remove_rmap_item_from_tree(rmap_item); 2216 free_rmap_item(rmap_item); 2217 } 2218 2219 rmap_item = alloc_rmap_item(); 2220 if (rmap_item) { 2221 /* It has already been zeroed */ 2222 rmap_item->mm = mm_slot->mm; 2223 rmap_item->address = addr; 2224 rmap_item->rmap_list = *rmap_list; 2225 *rmap_list = rmap_item; 2226 } 2227 return rmap_item; 2228 } 2229 scan_get_next_rmap_item(struct page ** page)2230 static struct rmap_item *scan_get_next_rmap_item(struct page **page) 2231 { 2232 struct mm_struct *mm; 2233 struct mm_slot *slot; 2234 struct vm_area_struct *vma; 2235 struct rmap_item *rmap_item; 2236 int nid; 2237 2238 if (list_empty(&ksm_mm_head.mm_list)) 2239 return NULL; 2240 2241 slot = ksm_scan.mm_slot; 2242 if (slot == &ksm_mm_head) { 2243 /* 2244 * A number of pages can hang around indefinitely on per-cpu 2245 * pagevecs, raised page count preventing write_protect_page 2246 * from merging them. Though it doesn't really matter much, 2247 * it is puzzling to see some stuck in pages_volatile until 2248 * other activity jostles them out, and they also prevented 2249 * LTP's KSM test from succeeding deterministically; so drain 2250 * them here (here rather than on entry to ksm_do_scan(), 2251 * so we don't IPI too often when pages_to_scan is set low). 2252 */ 2253 lru_add_drain_all(); 2254 2255 /* 2256 * Whereas stale stable_nodes on the stable_tree itself 2257 * get pruned in the regular course of stable_tree_search(), 2258 * those moved out to the migrate_nodes list can accumulate: 2259 * so prune them once before each full scan. 2260 */ 2261 if (!ksm_merge_across_nodes) { 2262 struct stable_node *stable_node, *next; 2263 struct page *page; 2264 2265 list_for_each_entry_safe(stable_node, next, 2266 &migrate_nodes, list) { 2267 page = get_ksm_page(stable_node, 2268 GET_KSM_PAGE_NOLOCK); 2269 if (page) 2270 put_page(page); 2271 cond_resched(); 2272 } 2273 } 2274 2275 for (nid = 0; nid < ksm_nr_node_ids; nid++) 2276 root_unstable_tree[nid] = RB_ROOT; 2277 2278 spin_lock(&ksm_mmlist_lock); 2279 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list); 2280 ksm_scan.mm_slot = slot; 2281 spin_unlock(&ksm_mmlist_lock); 2282 /* 2283 * Although we tested list_empty() above, a racing __ksm_exit 2284 * of the last mm on the list may have removed it since then. 2285 */ 2286 if (slot == &ksm_mm_head) 2287 return NULL; 2288 next_mm: 2289 ksm_scan.address = 0; 2290 ksm_scan.rmap_list = &slot->rmap_list; 2291 } 2292 2293 mm = slot->mm; 2294 mmap_read_lock(mm); 2295 if (ksm_test_exit(mm)) 2296 vma = NULL; 2297 else 2298 vma = find_vma(mm, ksm_scan.address); 2299 2300 for (; vma; vma = vma->vm_next) { 2301 if (!(vma->vm_flags & VM_MERGEABLE)) 2302 continue; 2303 if (ksm_scan.address < vma->vm_start) 2304 ksm_scan.address = vma->vm_start; 2305 if (!vma->anon_vma) 2306 ksm_scan.address = vma->vm_end; 2307 2308 while (ksm_scan.address < vma->vm_end) { 2309 if (ksm_test_exit(mm)) 2310 break; 2311 *page = follow_page(vma, ksm_scan.address, FOLL_GET); 2312 if (IS_ERR_OR_NULL(*page)) { 2313 ksm_scan.address += PAGE_SIZE; 2314 cond_resched(); 2315 continue; 2316 } 2317 if (PageAnon(*page)) { 2318 flush_anon_page(vma, *page, ksm_scan.address); 2319 flush_dcache_page(*page); 2320 rmap_item = get_next_rmap_item(slot, 2321 ksm_scan.rmap_list, ksm_scan.address); 2322 if (rmap_item) { 2323 ksm_scan.rmap_list = 2324 &rmap_item->rmap_list; 2325 ksm_scan.address += PAGE_SIZE; 2326 } else 2327 put_page(*page); 2328 mmap_read_unlock(mm); 2329 return rmap_item; 2330 } 2331 put_page(*page); 2332 ksm_scan.address += PAGE_SIZE; 2333 cond_resched(); 2334 } 2335 } 2336 2337 if (ksm_test_exit(mm)) { 2338 ksm_scan.address = 0; 2339 ksm_scan.rmap_list = &slot->rmap_list; 2340 } 2341 /* 2342 * Nuke all the rmap_items that are above this current rmap: 2343 * because there were no VM_MERGEABLE vmas with such addresses. 2344 */ 2345 remove_trailing_rmap_items(slot, ksm_scan.rmap_list); 2346 2347 spin_lock(&ksm_mmlist_lock); 2348 ksm_scan.mm_slot = list_entry(slot->mm_list.next, 2349 struct mm_slot, mm_list); 2350 if (ksm_scan.address == 0) { 2351 /* 2352 * We've completed a full scan of all vmas, holding mmap_lock 2353 * throughout, and found no VM_MERGEABLE: so do the same as 2354 * __ksm_exit does to remove this mm from all our lists now. 2355 * This applies either when cleaning up after __ksm_exit 2356 * (but beware: we can reach here even before __ksm_exit), 2357 * or when all VM_MERGEABLE areas have been unmapped (and 2358 * mmap_lock then protects against race with MADV_MERGEABLE). 2359 */ 2360 hash_del(&slot->link); 2361 list_del(&slot->mm_list); 2362 spin_unlock(&ksm_mmlist_lock); 2363 2364 free_mm_slot(slot); 2365 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2366 mmap_read_unlock(mm); 2367 mmdrop(mm); 2368 } else { 2369 mmap_read_unlock(mm); 2370 /* 2371 * mmap_read_unlock(mm) first because after 2372 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may 2373 * already have been freed under us by __ksm_exit() 2374 * because the "mm_slot" is still hashed and 2375 * ksm_scan.mm_slot doesn't point to it anymore. 2376 */ 2377 spin_unlock(&ksm_mmlist_lock); 2378 } 2379 2380 /* Repeat until we've completed scanning the whole list */ 2381 slot = ksm_scan.mm_slot; 2382 if (slot != &ksm_mm_head) 2383 goto next_mm; 2384 2385 ksm_scan.seqnr++; 2386 return NULL; 2387 } 2388 2389 /** 2390 * ksm_do_scan - the ksm scanner main worker function. 2391 * @scan_npages: number of pages we want to scan before we return. 2392 */ ksm_do_scan(unsigned int scan_npages)2393 static void ksm_do_scan(unsigned int scan_npages) 2394 { 2395 struct rmap_item *rmap_item; 2396 struct page *page; 2397 2398 while (scan_npages-- && likely(!freezing(current))) { 2399 cond_resched(); 2400 rmap_item = scan_get_next_rmap_item(&page); 2401 if (!rmap_item) 2402 return; 2403 cmp_and_merge_page(page, rmap_item); 2404 put_page(page); 2405 } 2406 } 2407 ksmd_should_run(void)2408 static int ksmd_should_run(void) 2409 { 2410 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list); 2411 } 2412 ksm_scan_thread(void * nothing)2413 static int ksm_scan_thread(void *nothing) 2414 { 2415 unsigned int sleep_ms; 2416 2417 set_freezable(); 2418 set_user_nice(current, 5); 2419 2420 while (!kthread_should_stop()) { 2421 mutex_lock(&ksm_thread_mutex); 2422 wait_while_offlining(); 2423 if (ksmd_should_run()) 2424 ksm_do_scan(ksm_thread_pages_to_scan); 2425 mutex_unlock(&ksm_thread_mutex); 2426 2427 try_to_freeze(); 2428 2429 if (ksmd_should_run()) { 2430 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs); 2431 wait_event_interruptible_timeout(ksm_iter_wait, 2432 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs), 2433 msecs_to_jiffies(sleep_ms)); 2434 } else { 2435 wait_event_freezable(ksm_thread_wait, 2436 ksmd_should_run() || kthread_should_stop()); 2437 } 2438 } 2439 return 0; 2440 } 2441 ksm_madvise(struct vm_area_struct * vma,unsigned long start,unsigned long end,int advice,unsigned long * vm_flags)2442 int ksm_madvise(struct vm_area_struct *vma, unsigned long start, 2443 unsigned long end, int advice, unsigned long *vm_flags) 2444 { 2445 struct mm_struct *mm = vma->vm_mm; 2446 int err; 2447 2448 switch (advice) { 2449 case MADV_MERGEABLE: 2450 /* 2451 * Be somewhat over-protective for now! 2452 */ 2453 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE | 2454 VM_PFNMAP | VM_IO | VM_DONTEXPAND | 2455 VM_HUGETLB | VM_MIXEDMAP)) 2456 return 0; /* just ignore the advice */ 2457 2458 if (vma_is_dax(vma)) 2459 return 0; 2460 2461 #ifdef VM_SAO 2462 if (*vm_flags & VM_SAO) 2463 return 0; 2464 #endif 2465 #ifdef VM_SPARC_ADI 2466 if (*vm_flags & VM_SPARC_ADI) 2467 return 0; 2468 #endif 2469 2470 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) { 2471 err = __ksm_enter(mm); 2472 if (err) 2473 return err; 2474 } 2475 2476 *vm_flags |= VM_MERGEABLE; 2477 break; 2478 2479 case MADV_UNMERGEABLE: 2480 if (!(*vm_flags & VM_MERGEABLE)) 2481 return 0; /* just ignore the advice */ 2482 2483 if (vma->anon_vma) { 2484 err = unmerge_ksm_pages(vma, start, end); 2485 if (err) 2486 return err; 2487 } 2488 2489 *vm_flags &= ~VM_MERGEABLE; 2490 break; 2491 } 2492 2493 return 0; 2494 } 2495 EXPORT_SYMBOL_GPL(ksm_madvise); 2496 __ksm_enter(struct mm_struct * mm)2497 int __ksm_enter(struct mm_struct *mm) 2498 { 2499 struct mm_slot *mm_slot; 2500 int needs_wakeup; 2501 2502 mm_slot = alloc_mm_slot(); 2503 if (!mm_slot) 2504 return -ENOMEM; 2505 2506 /* Check ksm_run too? Would need tighter locking */ 2507 needs_wakeup = list_empty(&ksm_mm_head.mm_list); 2508 2509 spin_lock(&ksm_mmlist_lock); 2510 insert_to_mm_slots_hash(mm, mm_slot); 2511 /* 2512 * When KSM_RUN_MERGE (or KSM_RUN_STOP), 2513 * insert just behind the scanning cursor, to let the area settle 2514 * down a little; when fork is followed by immediate exec, we don't 2515 * want ksmd to waste time setting up and tearing down an rmap_list. 2516 * 2517 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its 2518 * scanning cursor, otherwise KSM pages in newly forked mms will be 2519 * missed: then we might as well insert at the end of the list. 2520 */ 2521 if (ksm_run & KSM_RUN_UNMERGE) 2522 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); 2523 else 2524 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); 2525 spin_unlock(&ksm_mmlist_lock); 2526 2527 set_bit(MMF_VM_MERGEABLE, &mm->flags); 2528 mmgrab(mm); 2529 2530 if (needs_wakeup) 2531 wake_up_interruptible(&ksm_thread_wait); 2532 2533 return 0; 2534 } 2535 __ksm_exit(struct mm_struct * mm)2536 void __ksm_exit(struct mm_struct *mm) 2537 { 2538 struct mm_slot *mm_slot; 2539 int easy_to_free = 0; 2540 2541 /* 2542 * This process is exiting: if it's straightforward (as is the 2543 * case when ksmd was never running), free mm_slot immediately. 2544 * But if it's at the cursor or has rmap_items linked to it, use 2545 * mmap_lock to synchronize with any break_cows before pagetables 2546 * are freed, and leave the mm_slot on the list for ksmd to free. 2547 * Beware: ksm may already have noticed it exiting and freed the slot. 2548 */ 2549 2550 spin_lock(&ksm_mmlist_lock); 2551 mm_slot = get_mm_slot(mm); 2552 if (mm_slot && ksm_scan.mm_slot != mm_slot) { 2553 if (!mm_slot->rmap_list) { 2554 hash_del(&mm_slot->link); 2555 list_del(&mm_slot->mm_list); 2556 easy_to_free = 1; 2557 } else { 2558 list_move(&mm_slot->mm_list, 2559 &ksm_scan.mm_slot->mm_list); 2560 } 2561 } 2562 spin_unlock(&ksm_mmlist_lock); 2563 2564 if (easy_to_free) { 2565 free_mm_slot(mm_slot); 2566 clear_bit(MMF_VM_MERGEABLE, &mm->flags); 2567 mmdrop(mm); 2568 } else if (mm_slot) { 2569 mmap_write_lock(mm); 2570 mmap_write_unlock(mm); 2571 } 2572 } 2573 ksm_might_need_to_copy(struct page * page,struct vm_area_struct * vma,unsigned long address)2574 struct page *ksm_might_need_to_copy(struct page *page, 2575 struct vm_area_struct *vma, unsigned long address) 2576 { 2577 struct anon_vma *anon_vma = page_anon_vma(page); 2578 struct page *new_page; 2579 2580 if (PageKsm(page)) { 2581 if (page_stable_node(page) && 2582 !(ksm_run & KSM_RUN_UNMERGE)) 2583 return page; /* no need to copy it */ 2584 } else if (!anon_vma) { 2585 return page; /* no need to copy it */ 2586 } else if (anon_vma->root == vma->anon_vma->root && 2587 page->index == linear_page_index(vma, address)) { 2588 return page; /* still no need to copy it */ 2589 } 2590 if (!PageUptodate(page)) 2591 return page; /* let do_swap_page report the error */ 2592 2593 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2594 if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) { 2595 put_page(new_page); 2596 new_page = NULL; 2597 } 2598 if (new_page) { 2599 copy_user_highpage(new_page, page, address, vma); 2600 2601 SetPageDirty(new_page); 2602 __SetPageUptodate(new_page); 2603 __SetPageLocked(new_page); 2604 } 2605 2606 return new_page; 2607 } 2608 rmap_walk_ksm(struct page * page,struct rmap_walk_control * rwc)2609 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc) 2610 { 2611 struct stable_node *stable_node; 2612 struct rmap_item *rmap_item; 2613 int search_new_forks = 0; 2614 2615 VM_BUG_ON_PAGE(!PageKsm(page), page); 2616 2617 /* 2618 * Rely on the page lock to protect against concurrent modifications 2619 * to that page's node of the stable tree. 2620 */ 2621 VM_BUG_ON_PAGE(!PageLocked(page), page); 2622 2623 stable_node = page_stable_node(page); 2624 if (!stable_node) 2625 return; 2626 again: 2627 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) { 2628 struct anon_vma *anon_vma = rmap_item->anon_vma; 2629 struct anon_vma_chain *vmac; 2630 struct vm_area_struct *vma; 2631 2632 cond_resched(); 2633 anon_vma_lock_read(anon_vma); 2634 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root, 2635 0, ULONG_MAX) { 2636 unsigned long addr; 2637 2638 cond_resched(); 2639 vma = vmac->vma; 2640 2641 /* Ignore the stable/unstable/sqnr flags */ 2642 addr = rmap_item->address & ~KSM_FLAG_MASK; 2643 2644 if (addr < vma->vm_start || addr >= vma->vm_end) 2645 continue; 2646 /* 2647 * Initially we examine only the vma which covers this 2648 * rmap_item; but later, if there is still work to do, 2649 * we examine covering vmas in other mms: in case they 2650 * were forked from the original since ksmd passed. 2651 */ 2652 if ((rmap_item->mm == vma->vm_mm) == search_new_forks) 2653 continue; 2654 2655 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) 2656 continue; 2657 2658 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) { 2659 anon_vma_unlock_read(anon_vma); 2660 return; 2661 } 2662 if (rwc->done && rwc->done(page)) { 2663 anon_vma_unlock_read(anon_vma); 2664 return; 2665 } 2666 } 2667 anon_vma_unlock_read(anon_vma); 2668 } 2669 if (!search_new_forks++) 2670 goto again; 2671 } 2672 2673 #ifdef CONFIG_MIGRATION ksm_migrate_page(struct page * newpage,struct page * oldpage)2674 void ksm_migrate_page(struct page *newpage, struct page *oldpage) 2675 { 2676 struct stable_node *stable_node; 2677 2678 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 2679 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 2680 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage); 2681 2682 stable_node = page_stable_node(newpage); 2683 if (stable_node) { 2684 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage); 2685 stable_node->kpfn = page_to_pfn(newpage); 2686 /* 2687 * newpage->mapping was set in advance; now we need smp_wmb() 2688 * to make sure that the new stable_node->kpfn is visible 2689 * to get_ksm_page() before it can see that oldpage->mapping 2690 * has gone stale (or that PageSwapCache has been cleared). 2691 */ 2692 smp_wmb(); 2693 set_page_stable_node(oldpage, NULL); 2694 } 2695 } 2696 #endif /* CONFIG_MIGRATION */ 2697 2698 #ifdef CONFIG_MEMORY_HOTREMOVE wait_while_offlining(void)2699 static void wait_while_offlining(void) 2700 { 2701 while (ksm_run & KSM_RUN_OFFLINE) { 2702 mutex_unlock(&ksm_thread_mutex); 2703 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE), 2704 TASK_UNINTERRUPTIBLE); 2705 mutex_lock(&ksm_thread_mutex); 2706 } 2707 } 2708 stable_node_dup_remove_range(struct stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn)2709 static bool stable_node_dup_remove_range(struct stable_node *stable_node, 2710 unsigned long start_pfn, 2711 unsigned long end_pfn) 2712 { 2713 if (stable_node->kpfn >= start_pfn && 2714 stable_node->kpfn < end_pfn) { 2715 /* 2716 * Don't get_ksm_page, page has already gone: 2717 * which is why we keep kpfn instead of page* 2718 */ 2719 remove_node_from_stable_tree(stable_node); 2720 return true; 2721 } 2722 return false; 2723 } 2724 stable_node_chain_remove_range(struct stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn,struct rb_root * root)2725 static bool stable_node_chain_remove_range(struct stable_node *stable_node, 2726 unsigned long start_pfn, 2727 unsigned long end_pfn, 2728 struct rb_root *root) 2729 { 2730 struct stable_node *dup; 2731 struct hlist_node *hlist_safe; 2732 2733 if (!is_stable_node_chain(stable_node)) { 2734 VM_BUG_ON(is_stable_node_dup(stable_node)); 2735 return stable_node_dup_remove_range(stable_node, start_pfn, 2736 end_pfn); 2737 } 2738 2739 hlist_for_each_entry_safe(dup, hlist_safe, 2740 &stable_node->hlist, hlist_dup) { 2741 VM_BUG_ON(!is_stable_node_dup(dup)); 2742 stable_node_dup_remove_range(dup, start_pfn, end_pfn); 2743 } 2744 if (hlist_empty(&stable_node->hlist)) { 2745 free_stable_node_chain(stable_node, root); 2746 return true; /* notify caller that tree was rebalanced */ 2747 } else 2748 return false; 2749 } 2750 ksm_check_stable_tree(unsigned long start_pfn,unsigned long end_pfn)2751 static void ksm_check_stable_tree(unsigned long start_pfn, 2752 unsigned long end_pfn) 2753 { 2754 struct stable_node *stable_node, *next; 2755 struct rb_node *node; 2756 int nid; 2757 2758 for (nid = 0; nid < ksm_nr_node_ids; nid++) { 2759 node = rb_first(root_stable_tree + nid); 2760 while (node) { 2761 stable_node = rb_entry(node, struct stable_node, node); 2762 if (stable_node_chain_remove_range(stable_node, 2763 start_pfn, end_pfn, 2764 root_stable_tree + 2765 nid)) 2766 node = rb_first(root_stable_tree + nid); 2767 else 2768 node = rb_next(node); 2769 cond_resched(); 2770 } 2771 } 2772 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) { 2773 if (stable_node->kpfn >= start_pfn && 2774 stable_node->kpfn < end_pfn) 2775 remove_node_from_stable_tree(stable_node); 2776 cond_resched(); 2777 } 2778 } 2779 ksm_memory_callback(struct notifier_block * self,unsigned long action,void * arg)2780 static int ksm_memory_callback(struct notifier_block *self, 2781 unsigned long action, void *arg) 2782 { 2783 struct memory_notify *mn = arg; 2784 2785 switch (action) { 2786 case MEM_GOING_OFFLINE: 2787 /* 2788 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items() 2789 * and remove_all_stable_nodes() while memory is going offline: 2790 * it is unsafe for them to touch the stable tree at this time. 2791 * But unmerge_ksm_pages(), rmap lookups and other entry points 2792 * which do not need the ksm_thread_mutex are all safe. 2793 */ 2794 mutex_lock(&ksm_thread_mutex); 2795 ksm_run |= KSM_RUN_OFFLINE; 2796 mutex_unlock(&ksm_thread_mutex); 2797 break; 2798 2799 case MEM_OFFLINE: 2800 /* 2801 * Most of the work is done by page migration; but there might 2802 * be a few stable_nodes left over, still pointing to struct 2803 * pages which have been offlined: prune those from the tree, 2804 * otherwise get_ksm_page() might later try to access a 2805 * non-existent struct page. 2806 */ 2807 ksm_check_stable_tree(mn->start_pfn, 2808 mn->start_pfn + mn->nr_pages); 2809 fallthrough; 2810 case MEM_CANCEL_OFFLINE: 2811 mutex_lock(&ksm_thread_mutex); 2812 ksm_run &= ~KSM_RUN_OFFLINE; 2813 mutex_unlock(&ksm_thread_mutex); 2814 2815 smp_mb(); /* wake_up_bit advises this */ 2816 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE)); 2817 break; 2818 } 2819 return NOTIFY_OK; 2820 } 2821 #else wait_while_offlining(void)2822 static void wait_while_offlining(void) 2823 { 2824 } 2825 #endif /* CONFIG_MEMORY_HOTREMOVE */ 2826 2827 #ifdef CONFIG_SYSFS 2828 /* 2829 * This all compiles without CONFIG_SYSFS, but is a waste of space. 2830 */ 2831 2832 #define KSM_ATTR_RO(_name) \ 2833 static struct kobj_attribute _name##_attr = __ATTR_RO(_name) 2834 #define KSM_ATTR(_name) \ 2835 static struct kobj_attribute _name##_attr = \ 2836 __ATTR(_name, 0644, _name##_show, _name##_store) 2837 sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2838 static ssize_t sleep_millisecs_show(struct kobject *kobj, 2839 struct kobj_attribute *attr, char *buf) 2840 { 2841 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs); 2842 } 2843 sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2844 static ssize_t sleep_millisecs_store(struct kobject *kobj, 2845 struct kobj_attribute *attr, 2846 const char *buf, size_t count) 2847 { 2848 unsigned long msecs; 2849 int err; 2850 2851 err = kstrtoul(buf, 10, &msecs); 2852 if (err || msecs > UINT_MAX) 2853 return -EINVAL; 2854 2855 ksm_thread_sleep_millisecs = msecs; 2856 wake_up_interruptible(&ksm_iter_wait); 2857 2858 return count; 2859 } 2860 KSM_ATTR(sleep_millisecs); 2861 pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2862 static ssize_t pages_to_scan_show(struct kobject *kobj, 2863 struct kobj_attribute *attr, char *buf) 2864 { 2865 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan); 2866 } 2867 pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2868 static ssize_t pages_to_scan_store(struct kobject *kobj, 2869 struct kobj_attribute *attr, 2870 const char *buf, size_t count) 2871 { 2872 int err; 2873 unsigned long nr_pages; 2874 2875 err = kstrtoul(buf, 10, &nr_pages); 2876 if (err || nr_pages > UINT_MAX) 2877 return -EINVAL; 2878 2879 ksm_thread_pages_to_scan = nr_pages; 2880 2881 return count; 2882 } 2883 KSM_ATTR(pages_to_scan); 2884 run_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2885 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr, 2886 char *buf) 2887 { 2888 return sprintf(buf, "%lu\n", ksm_run); 2889 } 2890 run_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2891 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, 2892 const char *buf, size_t count) 2893 { 2894 int err; 2895 unsigned long flags; 2896 2897 err = kstrtoul(buf, 10, &flags); 2898 if (err || flags > UINT_MAX) 2899 return -EINVAL; 2900 if (flags > KSM_RUN_UNMERGE) 2901 return -EINVAL; 2902 2903 /* 2904 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running. 2905 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items, 2906 * breaking COW to free the pages_shared (but leaves mm_slots 2907 * on the list for when ksmd may be set running again). 2908 */ 2909 2910 mutex_lock(&ksm_thread_mutex); 2911 wait_while_offlining(); 2912 if (ksm_run != flags) { 2913 ksm_run = flags; 2914 if (flags & KSM_RUN_UNMERGE) { 2915 set_current_oom_origin(); 2916 err = unmerge_and_remove_all_rmap_items(); 2917 clear_current_oom_origin(); 2918 if (err) { 2919 ksm_run = KSM_RUN_STOP; 2920 count = err; 2921 } 2922 } 2923 } 2924 mutex_unlock(&ksm_thread_mutex); 2925 2926 if (flags & KSM_RUN_MERGE) 2927 wake_up_interruptible(&ksm_thread_wait); 2928 2929 return count; 2930 } 2931 KSM_ATTR(run); 2932 2933 #ifdef CONFIG_NUMA merge_across_nodes_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2934 static ssize_t merge_across_nodes_show(struct kobject *kobj, 2935 struct kobj_attribute *attr, char *buf) 2936 { 2937 return sprintf(buf, "%u\n", ksm_merge_across_nodes); 2938 } 2939 merge_across_nodes_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2940 static ssize_t merge_across_nodes_store(struct kobject *kobj, 2941 struct kobj_attribute *attr, 2942 const char *buf, size_t count) 2943 { 2944 int err; 2945 unsigned long knob; 2946 2947 err = kstrtoul(buf, 10, &knob); 2948 if (err) 2949 return err; 2950 if (knob > 1) 2951 return -EINVAL; 2952 2953 mutex_lock(&ksm_thread_mutex); 2954 wait_while_offlining(); 2955 if (ksm_merge_across_nodes != knob) { 2956 if (ksm_pages_shared || remove_all_stable_nodes()) 2957 err = -EBUSY; 2958 else if (root_stable_tree == one_stable_tree) { 2959 struct rb_root *buf; 2960 /* 2961 * This is the first time that we switch away from the 2962 * default of merging across nodes: must now allocate 2963 * a buffer to hold as many roots as may be needed. 2964 * Allocate stable and unstable together: 2965 * MAXSMP NODES_SHIFT 10 will use 16kB. 2966 */ 2967 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf), 2968 GFP_KERNEL); 2969 /* Let us assume that RB_ROOT is NULL is zero */ 2970 if (!buf) 2971 err = -ENOMEM; 2972 else { 2973 root_stable_tree = buf; 2974 root_unstable_tree = buf + nr_node_ids; 2975 /* Stable tree is empty but not the unstable */ 2976 root_unstable_tree[0] = one_unstable_tree[0]; 2977 } 2978 } 2979 if (!err) { 2980 ksm_merge_across_nodes = knob; 2981 ksm_nr_node_ids = knob ? 1 : nr_node_ids; 2982 } 2983 } 2984 mutex_unlock(&ksm_thread_mutex); 2985 2986 return err ? err : count; 2987 } 2988 KSM_ATTR(merge_across_nodes); 2989 #endif 2990 use_zero_pages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2991 static ssize_t use_zero_pages_show(struct kobject *kobj, 2992 struct kobj_attribute *attr, char *buf) 2993 { 2994 return sprintf(buf, "%u\n", ksm_use_zero_pages); 2995 } use_zero_pages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2996 static ssize_t use_zero_pages_store(struct kobject *kobj, 2997 struct kobj_attribute *attr, 2998 const char *buf, size_t count) 2999 { 3000 int err; 3001 bool value; 3002 3003 err = kstrtobool(buf, &value); 3004 if (err) 3005 return -EINVAL; 3006 3007 ksm_use_zero_pages = value; 3008 3009 return count; 3010 } 3011 KSM_ATTR(use_zero_pages); 3012 max_page_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3013 static ssize_t max_page_sharing_show(struct kobject *kobj, 3014 struct kobj_attribute *attr, char *buf) 3015 { 3016 return sprintf(buf, "%u\n", ksm_max_page_sharing); 3017 } 3018 max_page_sharing_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3019 static ssize_t max_page_sharing_store(struct kobject *kobj, 3020 struct kobj_attribute *attr, 3021 const char *buf, size_t count) 3022 { 3023 int err; 3024 int knob; 3025 3026 err = kstrtoint(buf, 10, &knob); 3027 if (err) 3028 return err; 3029 /* 3030 * When a KSM page is created it is shared by 2 mappings. This 3031 * being a signed comparison, it implicitly verifies it's not 3032 * negative. 3033 */ 3034 if (knob < 2) 3035 return -EINVAL; 3036 3037 if (READ_ONCE(ksm_max_page_sharing) == knob) 3038 return count; 3039 3040 mutex_lock(&ksm_thread_mutex); 3041 wait_while_offlining(); 3042 if (ksm_max_page_sharing != knob) { 3043 if (ksm_pages_shared || remove_all_stable_nodes()) 3044 err = -EBUSY; 3045 else 3046 ksm_max_page_sharing = knob; 3047 } 3048 mutex_unlock(&ksm_thread_mutex); 3049 3050 return err ? err : count; 3051 } 3052 KSM_ATTR(max_page_sharing); 3053 pages_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3054 static ssize_t pages_shared_show(struct kobject *kobj, 3055 struct kobj_attribute *attr, char *buf) 3056 { 3057 return sprintf(buf, "%lu\n", ksm_pages_shared); 3058 } 3059 KSM_ATTR_RO(pages_shared); 3060 pages_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3061 static ssize_t pages_sharing_show(struct kobject *kobj, 3062 struct kobj_attribute *attr, char *buf) 3063 { 3064 return sprintf(buf, "%lu\n", ksm_pages_sharing); 3065 } 3066 KSM_ATTR_RO(pages_sharing); 3067 pages_unshared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3068 static ssize_t pages_unshared_show(struct kobject *kobj, 3069 struct kobj_attribute *attr, char *buf) 3070 { 3071 return sprintf(buf, "%lu\n", ksm_pages_unshared); 3072 } 3073 KSM_ATTR_RO(pages_unshared); 3074 pages_volatile_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3075 static ssize_t pages_volatile_show(struct kobject *kobj, 3076 struct kobj_attribute *attr, char *buf) 3077 { 3078 long ksm_pages_volatile; 3079 3080 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared 3081 - ksm_pages_sharing - ksm_pages_unshared; 3082 /* 3083 * It was not worth any locking to calculate that statistic, 3084 * but it might therefore sometimes be negative: conceal that. 3085 */ 3086 if (ksm_pages_volatile < 0) 3087 ksm_pages_volatile = 0; 3088 return sprintf(buf, "%ld\n", ksm_pages_volatile); 3089 } 3090 KSM_ATTR_RO(pages_volatile); 3091 stable_node_dups_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3092 static ssize_t stable_node_dups_show(struct kobject *kobj, 3093 struct kobj_attribute *attr, char *buf) 3094 { 3095 return sprintf(buf, "%lu\n", ksm_stable_node_dups); 3096 } 3097 KSM_ATTR_RO(stable_node_dups); 3098 stable_node_chains_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3099 static ssize_t stable_node_chains_show(struct kobject *kobj, 3100 struct kobj_attribute *attr, char *buf) 3101 { 3102 return sprintf(buf, "%lu\n", ksm_stable_node_chains); 3103 } 3104 KSM_ATTR_RO(stable_node_chains); 3105 3106 static ssize_t stable_node_chains_prune_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3107 stable_node_chains_prune_millisecs_show(struct kobject *kobj, 3108 struct kobj_attribute *attr, 3109 char *buf) 3110 { 3111 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs); 3112 } 3113 3114 static ssize_t stable_node_chains_prune_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3115 stable_node_chains_prune_millisecs_store(struct kobject *kobj, 3116 struct kobj_attribute *attr, 3117 const char *buf, size_t count) 3118 { 3119 unsigned long msecs; 3120 int err; 3121 3122 err = kstrtoul(buf, 10, &msecs); 3123 if (err || msecs > UINT_MAX) 3124 return -EINVAL; 3125 3126 ksm_stable_node_chains_prune_millisecs = msecs; 3127 3128 return count; 3129 } 3130 KSM_ATTR(stable_node_chains_prune_millisecs); 3131 full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3132 static ssize_t full_scans_show(struct kobject *kobj, 3133 struct kobj_attribute *attr, char *buf) 3134 { 3135 return sprintf(buf, "%lu\n", ksm_scan.seqnr); 3136 } 3137 KSM_ATTR_RO(full_scans); 3138 3139 static struct attribute *ksm_attrs[] = { 3140 &sleep_millisecs_attr.attr, 3141 &pages_to_scan_attr.attr, 3142 &run_attr.attr, 3143 &pages_shared_attr.attr, 3144 &pages_sharing_attr.attr, 3145 &pages_unshared_attr.attr, 3146 &pages_volatile_attr.attr, 3147 &full_scans_attr.attr, 3148 #ifdef CONFIG_NUMA 3149 &merge_across_nodes_attr.attr, 3150 #endif 3151 &max_page_sharing_attr.attr, 3152 &stable_node_chains_attr.attr, 3153 &stable_node_dups_attr.attr, 3154 &stable_node_chains_prune_millisecs_attr.attr, 3155 &use_zero_pages_attr.attr, 3156 NULL, 3157 }; 3158 3159 static const struct attribute_group ksm_attr_group = { 3160 .attrs = ksm_attrs, 3161 .name = "ksm", 3162 }; 3163 #endif /* CONFIG_SYSFS */ 3164 ksm_init(void)3165 static int __init ksm_init(void) 3166 { 3167 struct task_struct *ksm_thread; 3168 int err; 3169 3170 /* The correct value depends on page size and endianness */ 3171 zero_checksum = calc_checksum(ZERO_PAGE(0)); 3172 /* Default to false for backwards compatibility */ 3173 ksm_use_zero_pages = false; 3174 3175 err = ksm_slab_init(); 3176 if (err) 3177 goto out; 3178 3179 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd"); 3180 if (IS_ERR(ksm_thread)) { 3181 pr_err("ksm: creating kthread failed\n"); 3182 err = PTR_ERR(ksm_thread); 3183 goto out_free; 3184 } 3185 3186 #ifdef CONFIG_SYSFS 3187 err = sysfs_create_group(mm_kobj, &ksm_attr_group); 3188 if (err) { 3189 pr_err("ksm: register sysfs failed\n"); 3190 kthread_stop(ksm_thread); 3191 goto out_free; 3192 } 3193 #else 3194 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */ 3195 3196 #endif /* CONFIG_SYSFS */ 3197 3198 #ifdef CONFIG_MEMORY_HOTREMOVE 3199 /* There is no significance to this priority 100 */ 3200 hotplug_memory_notifier(ksm_memory_callback, 100); 3201 #endif 3202 return 0; 3203 3204 out_free: 3205 ksm_slab_free(); 3206 out: 3207 return err; 3208 } 3209 subsys_initcall(ksm_init); 3210