• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple NUMA memory policy for the Linux kernel.
4  *
5  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
6  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/pagewalk.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102 
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105 
106 #include "internal.h"
107 
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
111 
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114 
115 /* Highest zone. An specific allocation for a zone below that is not
116    policied. */
117 enum zone_type policy_zone = 0;
118 
119 /*
120  * run-time system-wide default policy => local allocation
121  */
122 static struct mempolicy default_policy = {
123 	.refcnt = ATOMIC_INIT(1), /* never free it */
124 	.mode = MPOL_PREFERRED,
125 	.flags = MPOL_F_LOCAL,
126 };
127 
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129 
130 /**
131  * numa_map_to_online_node - Find closest online node
132  * @node: Node id to start the search
133  *
134  * Lookup the next closest node by distance if @nid is not online.
135  */
numa_map_to_online_node(int node)136 int numa_map_to_online_node(int node)
137 {
138 	int min_dist = INT_MAX, dist, n, min_node;
139 
140 	if (node == NUMA_NO_NODE || node_online(node))
141 		return node;
142 
143 	min_node = node;
144 	for_each_online_node(n) {
145 		dist = node_distance(node, n);
146 		if (dist < min_dist) {
147 			min_dist = dist;
148 			min_node = n;
149 		}
150 	}
151 
152 	return min_node;
153 }
154 EXPORT_SYMBOL_GPL(numa_map_to_online_node);
155 
get_task_policy(struct task_struct * p)156 struct mempolicy *get_task_policy(struct task_struct *p)
157 {
158 	struct mempolicy *pol = p->mempolicy;
159 	int node;
160 
161 	if (pol)
162 		return pol;
163 
164 	node = numa_node_id();
165 	if (node != NUMA_NO_NODE) {
166 		pol = &preferred_node_policy[node];
167 		/* preferred_node_policy is not initialised early in boot */
168 		if (pol->mode)
169 			return pol;
170 	}
171 
172 	return &default_policy;
173 }
174 
175 static const struct mempolicy_operations {
176 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
177 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
178 } mpol_ops[MPOL_MAX];
179 
mpol_store_user_nodemask(const struct mempolicy * pol)180 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
181 {
182 	return pol->flags & MPOL_MODE_FLAGS;
183 }
184 
mpol_relative_nodemask(nodemask_t * ret,const nodemask_t * orig,const nodemask_t * rel)185 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
186 				   const nodemask_t *rel)
187 {
188 	nodemask_t tmp;
189 	nodes_fold(tmp, *orig, nodes_weight(*rel));
190 	nodes_onto(*ret, tmp, *rel);
191 }
192 
mpol_new_interleave(struct mempolicy * pol,const nodemask_t * nodes)193 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
194 {
195 	if (nodes_empty(*nodes))
196 		return -EINVAL;
197 	pol->v.nodes = *nodes;
198 	return 0;
199 }
200 
mpol_new_preferred(struct mempolicy * pol,const nodemask_t * nodes)201 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
202 {
203 	if (!nodes)
204 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
205 	else if (nodes_empty(*nodes))
206 		return -EINVAL;			/*  no allowed nodes */
207 	else
208 		pol->v.preferred_node = first_node(*nodes);
209 	return 0;
210 }
211 
mpol_new_bind(struct mempolicy * pol,const nodemask_t * nodes)212 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
213 {
214 	if (nodes_empty(*nodes))
215 		return -EINVAL;
216 	pol->v.nodes = *nodes;
217 	return 0;
218 }
219 
220 /*
221  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
222  * any, for the new policy.  mpol_new() has already validated the nodes
223  * parameter with respect to the policy mode and flags.  But, we need to
224  * handle an empty nodemask with MPOL_PREFERRED here.
225  *
226  * Must be called holding task's alloc_lock to protect task's mems_allowed
227  * and mempolicy.  May also be called holding the mmap_lock for write.
228  */
mpol_set_nodemask(struct mempolicy * pol,const nodemask_t * nodes,struct nodemask_scratch * nsc)229 static int mpol_set_nodemask(struct mempolicy *pol,
230 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
231 {
232 	int ret;
233 
234 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
235 	if (pol == NULL)
236 		return 0;
237 	/* Check N_MEMORY */
238 	nodes_and(nsc->mask1,
239 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
240 
241 	VM_BUG_ON(!nodes);
242 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
243 		nodes = NULL;	/* explicit local allocation */
244 	else {
245 		if (pol->flags & MPOL_F_RELATIVE_NODES)
246 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
247 		else
248 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
249 
250 		if (mpol_store_user_nodemask(pol))
251 			pol->w.user_nodemask = *nodes;
252 		else
253 			pol->w.cpuset_mems_allowed =
254 						cpuset_current_mems_allowed;
255 	}
256 
257 	if (nodes)
258 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
259 	else
260 		ret = mpol_ops[pol->mode].create(pol, NULL);
261 	return ret;
262 }
263 
264 /*
265  * This function just creates a new policy, does some check and simple
266  * initialization. You must invoke mpol_set_nodemask() to set nodes.
267  */
mpol_new(unsigned short mode,unsigned short flags,nodemask_t * nodes)268 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
269 				  nodemask_t *nodes)
270 {
271 	struct mempolicy *policy;
272 
273 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
274 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
275 
276 	if (mode == MPOL_DEFAULT) {
277 		if (nodes && !nodes_empty(*nodes))
278 			return ERR_PTR(-EINVAL);
279 		return NULL;
280 	}
281 	VM_BUG_ON(!nodes);
282 
283 	/*
284 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
285 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
286 	 * All other modes require a valid pointer to a non-empty nodemask.
287 	 */
288 	if (mode == MPOL_PREFERRED) {
289 		if (nodes_empty(*nodes)) {
290 			if (((flags & MPOL_F_STATIC_NODES) ||
291 			     (flags & MPOL_F_RELATIVE_NODES)))
292 				return ERR_PTR(-EINVAL);
293 		}
294 	} else if (mode == MPOL_LOCAL) {
295 		if (!nodes_empty(*nodes) ||
296 		    (flags & MPOL_F_STATIC_NODES) ||
297 		    (flags & MPOL_F_RELATIVE_NODES))
298 			return ERR_PTR(-EINVAL);
299 		mode = MPOL_PREFERRED;
300 	} else if (nodes_empty(*nodes))
301 		return ERR_PTR(-EINVAL);
302 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
303 	if (!policy)
304 		return ERR_PTR(-ENOMEM);
305 	atomic_set(&policy->refcnt, 1);
306 	policy->mode = mode;
307 	policy->flags = flags;
308 
309 	return policy;
310 }
311 
312 /* Slow path of a mpol destructor. */
__mpol_put(struct mempolicy * p)313 void __mpol_put(struct mempolicy *p)
314 {
315 	if (!atomic_dec_and_test(&p->refcnt))
316 		return;
317 	kmem_cache_free(policy_cache, p);
318 }
319 
mpol_rebind_default(struct mempolicy * pol,const nodemask_t * nodes)320 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
321 {
322 }
323 
mpol_rebind_nodemask(struct mempolicy * pol,const nodemask_t * nodes)324 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
325 {
326 	nodemask_t tmp;
327 
328 	if (pol->flags & MPOL_F_STATIC_NODES)
329 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
330 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
331 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
332 	else {
333 		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
334 								*nodes);
335 		pol->w.cpuset_mems_allowed = *nodes;
336 	}
337 
338 	if (nodes_empty(tmp))
339 		tmp = *nodes;
340 
341 	pol->v.nodes = tmp;
342 }
343 
mpol_rebind_preferred(struct mempolicy * pol,const nodemask_t * nodes)344 static void mpol_rebind_preferred(struct mempolicy *pol,
345 						const nodemask_t *nodes)
346 {
347 	nodemask_t tmp;
348 
349 	if (pol->flags & MPOL_F_STATIC_NODES) {
350 		int node = first_node(pol->w.user_nodemask);
351 
352 		if (node_isset(node, *nodes)) {
353 			pol->v.preferred_node = node;
354 			pol->flags &= ~MPOL_F_LOCAL;
355 		} else
356 			pol->flags |= MPOL_F_LOCAL;
357 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
358 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
359 		pol->v.preferred_node = first_node(tmp);
360 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
361 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
362 						   pol->w.cpuset_mems_allowed,
363 						   *nodes);
364 		pol->w.cpuset_mems_allowed = *nodes;
365 	}
366 }
367 
368 /*
369  * mpol_rebind_policy - Migrate a policy to a different set of nodes
370  *
371  * Per-vma policies are protected by mmap_lock. Allocations using per-task
372  * policies are protected by task->mems_allowed_seq to prevent a premature
373  * OOM/allocation failure due to parallel nodemask modification.
374  */
mpol_rebind_policy(struct mempolicy * pol,const nodemask_t * newmask)375 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
376 {
377 	if (!pol || pol->mode == MPOL_LOCAL)
378 		return;
379 	if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
380 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
381 		return;
382 
383 	mpol_ops[pol->mode].rebind(pol, newmask);
384 }
385 
386 /*
387  * Wrapper for mpol_rebind_policy() that just requires task
388  * pointer, and updates task mempolicy.
389  *
390  * Called with task's alloc_lock held.
391  */
392 
mpol_rebind_task(struct task_struct * tsk,const nodemask_t * new)393 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
394 {
395 	mpol_rebind_policy(tsk->mempolicy, new);
396 }
397 
398 /*
399  * Rebind each vma in mm to new nodemask.
400  *
401  * Call holding a reference to mm.  Takes mm->mmap_lock during call.
402  */
403 
mpol_rebind_mm(struct mm_struct * mm,nodemask_t * new)404 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
405 {
406 	struct vm_area_struct *vma;
407 
408 	mmap_write_lock(mm);
409 	for (vma = mm->mmap; vma; vma = vma->vm_next)
410 		mpol_rebind_policy(vma->vm_policy, new);
411 	mmap_write_unlock(mm);
412 }
413 
414 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
415 	[MPOL_DEFAULT] = {
416 		.rebind = mpol_rebind_default,
417 	},
418 	[MPOL_INTERLEAVE] = {
419 		.create = mpol_new_interleave,
420 		.rebind = mpol_rebind_nodemask,
421 	},
422 	[MPOL_PREFERRED] = {
423 		.create = mpol_new_preferred,
424 		.rebind = mpol_rebind_preferred,
425 	},
426 	[MPOL_BIND] = {
427 		.create = mpol_new_bind,
428 		.rebind = mpol_rebind_nodemask,
429 	},
430 };
431 
432 static int migrate_page_add(struct page *page, struct list_head *pagelist,
433 				unsigned long flags);
434 
435 struct queue_pages {
436 	struct list_head *pagelist;
437 	unsigned long flags;
438 	nodemask_t *nmask;
439 	unsigned long start;
440 	unsigned long end;
441 	struct vm_area_struct *first;
442 };
443 
444 /*
445  * Check if the page's nid is in qp->nmask.
446  *
447  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
448  * in the invert of qp->nmask.
449  */
queue_pages_required(struct page * page,struct queue_pages * qp)450 static inline bool queue_pages_required(struct page *page,
451 					struct queue_pages *qp)
452 {
453 	int nid = page_to_nid(page);
454 	unsigned long flags = qp->flags;
455 
456 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
457 }
458 
459 /*
460  * queue_pages_pmd() has four possible return values:
461  * 0 - pages are placed on the right node or queued successfully.
462  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
463  *     specified.
464  * 2 - THP was split.
465  * -EIO - is migration entry or only MPOL_MF_STRICT was specified and an
466  *        existing page was already on a node that does not follow the
467  *        policy.
468  */
queue_pages_pmd(pmd_t * pmd,spinlock_t * ptl,unsigned long addr,unsigned long end,struct mm_walk * walk)469 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
470 				unsigned long end, struct mm_walk *walk)
471 	__releases(ptl)
472 {
473 	int ret = 0;
474 	struct page *page;
475 	struct queue_pages *qp = walk->private;
476 	unsigned long flags;
477 
478 	if (unlikely(is_pmd_migration_entry(*pmd))) {
479 		ret = -EIO;
480 		goto unlock;
481 	}
482 	page = pmd_page(*pmd);
483 	if (is_huge_zero_page(page)) {
484 		spin_unlock(ptl);
485 		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
486 		ret = 2;
487 		goto out;
488 	}
489 	if (!queue_pages_required(page, qp))
490 		goto unlock;
491 
492 	flags = qp->flags;
493 	/* go to thp migration */
494 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
495 		if (!vma_migratable(walk->vma) ||
496 		    migrate_page_add(page, qp->pagelist, flags)) {
497 			ret = 1;
498 			goto unlock;
499 		}
500 	} else
501 		ret = -EIO;
502 unlock:
503 	spin_unlock(ptl);
504 out:
505 	return ret;
506 }
507 
508 /*
509  * Scan through pages checking if pages follow certain conditions,
510  * and move them to the pagelist if they do.
511  *
512  * queue_pages_pte_range() has three possible return values:
513  * 0 - pages are placed on the right node or queued successfully.
514  * 1 - there is unmovable page, and MPOL_MF_MOVE* & MPOL_MF_STRICT were
515  *     specified.
516  * -EIO - only MPOL_MF_STRICT was specified and an existing page was already
517  *        on a node that does not follow the policy.
518  */
queue_pages_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)519 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
520 			unsigned long end, struct mm_walk *walk)
521 {
522 	struct vm_area_struct *vma = walk->vma;
523 	struct page *page;
524 	struct queue_pages *qp = walk->private;
525 	unsigned long flags = qp->flags;
526 	int ret;
527 	bool has_unmovable = false;
528 	pte_t *pte, *mapped_pte;
529 	spinlock_t *ptl;
530 
531 	ptl = pmd_trans_huge_lock(pmd, vma);
532 	if (ptl) {
533 		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
534 		if (ret != 2)
535 			return ret;
536 	}
537 	/* THP was split, fall through to pte walk */
538 
539 	if (pmd_trans_unstable(pmd))
540 		return 0;
541 
542 	mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
543 	for (; addr != end; pte++, addr += PAGE_SIZE) {
544 		if (!pte_present(*pte))
545 			continue;
546 		page = vm_normal_page(vma, addr, *pte);
547 		if (!page)
548 			continue;
549 		/*
550 		 * vm_normal_page() filters out zero pages, but there might
551 		 * still be PageReserved pages to skip, perhaps in a VDSO.
552 		 */
553 		if (PageReserved(page))
554 			continue;
555 		if (!queue_pages_required(page, qp))
556 			continue;
557 		if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
558 			/* MPOL_MF_STRICT must be specified if we get here */
559 			if (!vma_migratable(vma)) {
560 				has_unmovable = true;
561 				break;
562 			}
563 
564 			/*
565 			 * Do not abort immediately since there may be
566 			 * temporary off LRU pages in the range.  Still
567 			 * need migrate other LRU pages.
568 			 */
569 			if (migrate_page_add(page, qp->pagelist, flags))
570 				has_unmovable = true;
571 		} else
572 			break;
573 	}
574 	pte_unmap_unlock(mapped_pte, ptl);
575 	cond_resched();
576 
577 	if (has_unmovable)
578 		return 1;
579 
580 	return addr != end ? -EIO : 0;
581 }
582 
queue_pages_hugetlb(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)583 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
584 			       unsigned long addr, unsigned long end,
585 			       struct mm_walk *walk)
586 {
587 	int ret = 0;
588 #ifdef CONFIG_HUGETLB_PAGE
589 	struct queue_pages *qp = walk->private;
590 	unsigned long flags = (qp->flags & MPOL_MF_VALID);
591 	struct page *page;
592 	spinlock_t *ptl;
593 	pte_t entry;
594 
595 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
596 	entry = huge_ptep_get(pte);
597 	if (!pte_present(entry))
598 		goto unlock;
599 	page = pte_page(entry);
600 	if (!queue_pages_required(page, qp))
601 		goto unlock;
602 
603 	if (flags == MPOL_MF_STRICT) {
604 		/*
605 		 * STRICT alone means only detecting misplaced page and no
606 		 * need to further check other vma.
607 		 */
608 		ret = -EIO;
609 		goto unlock;
610 	}
611 
612 	if (!vma_migratable(walk->vma)) {
613 		/*
614 		 * Must be STRICT with MOVE*, otherwise .test_walk() have
615 		 * stopped walking current vma.
616 		 * Detecting misplaced page but allow migrating pages which
617 		 * have been queued.
618 		 */
619 		ret = 1;
620 		goto unlock;
621 	}
622 
623 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
624 	if (flags & (MPOL_MF_MOVE_ALL) ||
625 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1 &&
626 	     !hugetlb_pmd_shared(pte))) {
627 		if (isolate_hugetlb(page, qp->pagelist) &&
628 			(flags & MPOL_MF_STRICT))
629 			/*
630 			 * Failed to isolate page but allow migrating pages
631 			 * which have been queued.
632 			 */
633 			ret = 1;
634 	}
635 unlock:
636 	spin_unlock(ptl);
637 #else
638 	BUG();
639 #endif
640 	return ret;
641 }
642 
643 #ifdef CONFIG_NUMA_BALANCING
644 /*
645  * This is used to mark a range of virtual addresses to be inaccessible.
646  * These are later cleared by a NUMA hinting fault. Depending on these
647  * faults, pages may be migrated for better NUMA placement.
648  *
649  * This is assuming that NUMA faults are handled using PROT_NONE. If
650  * an architecture makes a different choice, it will need further
651  * changes to the core.
652  */
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)653 unsigned long change_prot_numa(struct vm_area_struct *vma,
654 			unsigned long addr, unsigned long end)
655 {
656 	int nr_updated;
657 
658 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, MM_CP_PROT_NUMA);
659 	if (nr_updated)
660 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
661 
662 	return nr_updated;
663 }
664 #else
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)665 static unsigned long change_prot_numa(struct vm_area_struct *vma,
666 			unsigned long addr, unsigned long end)
667 {
668 	return 0;
669 }
670 #endif /* CONFIG_NUMA_BALANCING */
671 
queue_pages_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)672 static int queue_pages_test_walk(unsigned long start, unsigned long end,
673 				struct mm_walk *walk)
674 {
675 	struct vm_area_struct *vma = walk->vma;
676 	struct queue_pages *qp = walk->private;
677 	unsigned long endvma = vma->vm_end;
678 	unsigned long flags = qp->flags;
679 
680 	/* range check first */
681 	VM_BUG_ON_VMA((vma->vm_start > start) || (vma->vm_end < end), vma);
682 
683 	if (!qp->first) {
684 		qp->first = vma;
685 		if (!(flags & MPOL_MF_DISCONTIG_OK) &&
686 			(qp->start < vma->vm_start))
687 			/* hole at head side of range */
688 			return -EFAULT;
689 	}
690 	if (!(flags & MPOL_MF_DISCONTIG_OK) &&
691 		((vma->vm_end < qp->end) &&
692 		(!vma->vm_next || vma->vm_end < vma->vm_next->vm_start)))
693 		/* hole at middle or tail of range */
694 		return -EFAULT;
695 
696 	/*
697 	 * Need check MPOL_MF_STRICT to return -EIO if possible
698 	 * regardless of vma_migratable
699 	 */
700 	if (!vma_migratable(vma) &&
701 	    !(flags & MPOL_MF_STRICT))
702 		return 1;
703 
704 	if (endvma > end)
705 		endvma = end;
706 
707 	if (flags & MPOL_MF_LAZY) {
708 		/* Similar to task_numa_work, skip inaccessible VMAs */
709 		if (!is_vm_hugetlb_page(vma) && vma_is_accessible(vma) &&
710 			!(vma->vm_flags & VM_MIXEDMAP))
711 			change_prot_numa(vma, start, endvma);
712 		return 1;
713 	}
714 
715 	/* queue pages from current vma */
716 	if (flags & MPOL_MF_VALID)
717 		return 0;
718 	return 1;
719 }
720 
721 static const struct mm_walk_ops queue_pages_walk_ops = {
722 	.hugetlb_entry		= queue_pages_hugetlb,
723 	.pmd_entry		= queue_pages_pte_range,
724 	.test_walk		= queue_pages_test_walk,
725 };
726 
727 /*
728  * Walk through page tables and collect pages to be migrated.
729  *
730  * If pages found in a given range are on a set of nodes (determined by
731  * @nodes and @flags,) it's isolated and queued to the pagelist which is
732  * passed via @private.
733  *
734  * queue_pages_range() has three possible return values:
735  * 1 - there is unmovable page, but MPOL_MF_MOVE* & MPOL_MF_STRICT were
736  *     specified.
737  * 0 - queue pages successfully or no misplaced page.
738  * errno - i.e. misplaced pages with MPOL_MF_STRICT specified (-EIO) or
739  *         memory range specified by nodemask and maxnode points outside
740  *         your accessible address space (-EFAULT)
741  */
742 static int
queue_pages_range(struct mm_struct * mm,unsigned long start,unsigned long end,nodemask_t * nodes,unsigned long flags,struct list_head * pagelist)743 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
744 		nodemask_t *nodes, unsigned long flags,
745 		struct list_head *pagelist)
746 {
747 	int err;
748 	struct queue_pages qp = {
749 		.pagelist = pagelist,
750 		.flags = flags,
751 		.nmask = nodes,
752 		.start = start,
753 		.end = end,
754 		.first = NULL,
755 	};
756 
757 	err = walk_page_range(mm, start, end, &queue_pages_walk_ops, &qp);
758 
759 	if (!qp.first)
760 		/* whole range in hole */
761 		err = -EFAULT;
762 
763 	return err;
764 }
765 
766 /*
767  * Apply policy to a single VMA
768  * This must be called with the mmap_lock held for writing.
769  */
vma_replace_policy(struct vm_area_struct * vma,struct mempolicy * pol)770 static int vma_replace_policy(struct vm_area_struct *vma,
771 						struct mempolicy *pol)
772 {
773 	int err;
774 	struct mempolicy *old;
775 	struct mempolicy *new;
776 
777 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
778 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
779 		 vma->vm_ops, vma->vm_file,
780 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
781 
782 	new = mpol_dup(pol);
783 	if (IS_ERR(new))
784 		return PTR_ERR(new);
785 
786 	if (vma->vm_ops && vma->vm_ops->set_policy) {
787 		err = vma->vm_ops->set_policy(vma, new);
788 		if (err)
789 			goto err_out;
790 	}
791 
792 	old = vma->vm_policy;
793 	vma->vm_policy = new; /* protected by mmap_lock */
794 	mpol_put(old);
795 
796 	return 0;
797  err_out:
798 	mpol_put(new);
799 	return err;
800 }
801 
802 /* Step 2: apply policy to a range and do splits. */
mbind_range(struct mm_struct * mm,unsigned long start,unsigned long end,struct mempolicy * new_pol)803 static int mbind_range(struct mm_struct *mm, unsigned long start,
804 		       unsigned long end, struct mempolicy *new_pol)
805 {
806 	struct vm_area_struct *prev;
807 	struct vm_area_struct *vma;
808 	int err = 0;
809 	pgoff_t pgoff;
810 	unsigned long vmstart;
811 	unsigned long vmend;
812 
813 	vma = find_vma(mm, start);
814 	VM_BUG_ON(!vma);
815 
816 	prev = vma->vm_prev;
817 	if (start > vma->vm_start)
818 		prev = vma;
819 
820 	for (; vma && vma->vm_start < end; prev = vma, vma = vma->vm_next) {
821 		vmstart = max(start, vma->vm_start);
822 		vmend   = min(end, vma->vm_end);
823 
824 		if (mpol_equal(vma_policy(vma), new_pol))
825 			continue;
826 
827 		pgoff = vma->vm_pgoff +
828 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
829 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
830 				 vma->anon_vma, vma->vm_file, pgoff,
831 				 new_pol, vma->vm_userfaultfd_ctx,
832 				 anon_vma_name(vma));
833 		if (prev) {
834 			vma = prev;
835 			goto replace;
836 		}
837 		if (vma->vm_start != vmstart) {
838 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
839 			if (err)
840 				goto out;
841 		}
842 		if (vma->vm_end != vmend) {
843 			err = split_vma(vma->vm_mm, vma, vmend, 0);
844 			if (err)
845 				goto out;
846 		}
847  replace:
848 		err = vma_replace_policy(vma, new_pol);
849 		if (err)
850 			goto out;
851 	}
852 
853  out:
854 	return err;
855 }
856 
857 /* Set the process memory policy */
do_set_mempolicy(unsigned short mode,unsigned short flags,nodemask_t * nodes)858 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
859 			     nodemask_t *nodes)
860 {
861 	struct mempolicy *new, *old;
862 	NODEMASK_SCRATCH(scratch);
863 	int ret;
864 
865 	if (!scratch)
866 		return -ENOMEM;
867 
868 	new = mpol_new(mode, flags, nodes);
869 	if (IS_ERR(new)) {
870 		ret = PTR_ERR(new);
871 		goto out;
872 	}
873 
874 	ret = mpol_set_nodemask(new, nodes, scratch);
875 	if (ret) {
876 		mpol_put(new);
877 		goto out;
878 	}
879 	task_lock(current);
880 	old = current->mempolicy;
881 	current->mempolicy = new;
882 	if (new && new->mode == MPOL_INTERLEAVE)
883 		current->il_prev = MAX_NUMNODES-1;
884 	task_unlock(current);
885 	mpol_put(old);
886 	ret = 0;
887 out:
888 	NODEMASK_SCRATCH_FREE(scratch);
889 	return ret;
890 }
891 
892 /*
893  * Return nodemask for policy for get_mempolicy() query
894  *
895  * Called with task's alloc_lock held
896  */
get_policy_nodemask(struct mempolicy * p,nodemask_t * nodes)897 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
898 {
899 	nodes_clear(*nodes);
900 	if (p == &default_policy)
901 		return;
902 
903 	switch (p->mode) {
904 	case MPOL_BIND:
905 	case MPOL_INTERLEAVE:
906 		*nodes = p->v.nodes;
907 		break;
908 	case MPOL_PREFERRED:
909 		if (!(p->flags & MPOL_F_LOCAL))
910 			node_set(p->v.preferred_node, *nodes);
911 		/* else return empty node mask for local allocation */
912 		break;
913 	default:
914 		BUG();
915 	}
916 }
917 
lookup_node(struct mm_struct * mm,unsigned long addr)918 static int lookup_node(struct mm_struct *mm, unsigned long addr)
919 {
920 	struct page *p = NULL;
921 	int err;
922 
923 	int locked = 1;
924 	err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
925 	if (err > 0) {
926 		err = page_to_nid(p);
927 		put_page(p);
928 	}
929 	if (locked)
930 		mmap_read_unlock(mm);
931 	return err;
932 }
933 
934 /* Retrieve NUMA policy */
do_get_mempolicy(int * policy,nodemask_t * nmask,unsigned long addr,unsigned long flags)935 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
936 			     unsigned long addr, unsigned long flags)
937 {
938 	int err;
939 	struct mm_struct *mm = current->mm;
940 	struct vm_area_struct *vma = NULL;
941 	struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
942 
943 	if (flags &
944 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
945 		return -EINVAL;
946 
947 	if (flags & MPOL_F_MEMS_ALLOWED) {
948 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
949 			return -EINVAL;
950 		*policy = 0;	/* just so it's initialized */
951 		task_lock(current);
952 		*nmask  = cpuset_current_mems_allowed;
953 		task_unlock(current);
954 		return 0;
955 	}
956 
957 	if (flags & MPOL_F_ADDR) {
958 		/*
959 		 * Do NOT fall back to task policy if the
960 		 * vma/shared policy at addr is NULL.  We
961 		 * want to return MPOL_DEFAULT in this case.
962 		 */
963 		mmap_read_lock(mm);
964 		vma = find_vma_intersection(mm, addr, addr+1);
965 		if (!vma) {
966 			mmap_read_unlock(mm);
967 			return -EFAULT;
968 		}
969 		if (vma->vm_ops && vma->vm_ops->get_policy)
970 			pol = vma->vm_ops->get_policy(vma, addr);
971 		else
972 			pol = vma->vm_policy;
973 	} else if (addr)
974 		return -EINVAL;
975 
976 	if (!pol)
977 		pol = &default_policy;	/* indicates default behavior */
978 
979 	if (flags & MPOL_F_NODE) {
980 		if (flags & MPOL_F_ADDR) {
981 			/*
982 			 * Take a refcount on the mpol, lookup_node()
983 			 * wil drop the mmap_lock, so after calling
984 			 * lookup_node() only "pol" remains valid, "vma"
985 			 * is stale.
986 			 */
987 			pol_refcount = pol;
988 			vma = NULL;
989 			mpol_get(pol);
990 			err = lookup_node(mm, addr);
991 			if (err < 0)
992 				goto out;
993 			*policy = err;
994 		} else if (pol == current->mempolicy &&
995 				pol->mode == MPOL_INTERLEAVE) {
996 			*policy = next_node_in(current->il_prev, pol->v.nodes);
997 		} else {
998 			err = -EINVAL;
999 			goto out;
1000 		}
1001 	} else {
1002 		*policy = pol == &default_policy ? MPOL_DEFAULT :
1003 						pol->mode;
1004 		/*
1005 		 * Internal mempolicy flags must be masked off before exposing
1006 		 * the policy to userspace.
1007 		 */
1008 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
1009 	}
1010 
1011 	err = 0;
1012 	if (nmask) {
1013 		if (mpol_store_user_nodemask(pol)) {
1014 			*nmask = pol->w.user_nodemask;
1015 		} else {
1016 			task_lock(current);
1017 			get_policy_nodemask(pol, nmask);
1018 			task_unlock(current);
1019 		}
1020 	}
1021 
1022  out:
1023 	mpol_cond_put(pol);
1024 	if (vma)
1025 		mmap_read_unlock(mm);
1026 	if (pol_refcount)
1027 		mpol_put(pol_refcount);
1028 	return err;
1029 }
1030 
1031 #ifdef CONFIG_MIGRATION
1032 /*
1033  * page migration, thp tail pages can be passed.
1034  */
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)1035 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1036 				unsigned long flags)
1037 {
1038 	struct page *head = compound_head(page);
1039 	/*
1040 	 * Avoid migrating a page that is shared with others.
1041 	 */
1042 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
1043 		if (!isolate_lru_page(head)) {
1044 			list_add_tail(&head->lru, pagelist);
1045 			mod_node_page_state(page_pgdat(head),
1046 				NR_ISOLATED_ANON + page_is_file_lru(head),
1047 				thp_nr_pages(head));
1048 		} else if (flags & MPOL_MF_STRICT) {
1049 			/*
1050 			 * Non-movable page may reach here.  And, there may be
1051 			 * temporary off LRU pages or non-LRU movable pages.
1052 			 * Treat them as unmovable pages since they can't be
1053 			 * isolated, so they can't be moved at the moment.  It
1054 			 * should return -EIO for this case too.
1055 			 */
1056 			return -EIO;
1057 		}
1058 	}
1059 
1060 	return 0;
1061 }
1062 
1063 /*
1064  * Migrate pages from one node to a target node.
1065  * Returns error or the number of pages not migrated.
1066  */
migrate_to_node(struct mm_struct * mm,int source,int dest,int flags)1067 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1068 			   int flags)
1069 {
1070 	nodemask_t nmask;
1071 	LIST_HEAD(pagelist);
1072 	int err = 0;
1073 	struct migration_target_control mtc = {
1074 		.nid = dest,
1075 		.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1076 	};
1077 
1078 	nodes_clear(nmask);
1079 	node_set(source, nmask);
1080 
1081 	/*
1082 	 * This does not "check" the range but isolates all pages that
1083 	 * need migration.  Between passing in the full user address
1084 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1085 	 */
1086 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1087 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1088 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1089 
1090 	if (!list_empty(&pagelist)) {
1091 		err = migrate_pages(&pagelist, alloc_migration_target, NULL,
1092 				(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1093 		if (err)
1094 			putback_movable_pages(&pagelist);
1095 	}
1096 
1097 	return err;
1098 }
1099 
1100 /*
1101  * Move pages between the two nodesets so as to preserve the physical
1102  * layout as much as possible.
1103  *
1104  * Returns the number of page that could not be moved.
1105  */
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1106 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1107 		     const nodemask_t *to, int flags)
1108 {
1109 	int busy = 0;
1110 	int err;
1111 	nodemask_t tmp;
1112 
1113 	err = migrate_prep();
1114 	if (err)
1115 		return err;
1116 
1117 	mmap_read_lock(mm);
1118 
1119 	/*
1120 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1121 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
1122 	 * bit in 'tmp', and return that <source, dest> pair for migration.
1123 	 * The pair of nodemasks 'to' and 'from' define the map.
1124 	 *
1125 	 * If no pair of bits is found that way, fallback to picking some
1126 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1127 	 * 'source' and 'dest' bits are the same, this represents a node
1128 	 * that will be migrating to itself, so no pages need move.
1129 	 *
1130 	 * If no bits are left in 'tmp', or if all remaining bits left
1131 	 * in 'tmp' correspond to the same bit in 'to', return false
1132 	 * (nothing left to migrate).
1133 	 *
1134 	 * This lets us pick a pair of nodes to migrate between, such that
1135 	 * if possible the dest node is not already occupied by some other
1136 	 * source node, minimizing the risk of overloading the memory on a
1137 	 * node that would happen if we migrated incoming memory to a node
1138 	 * before migrating outgoing memory source that same node.
1139 	 *
1140 	 * A single scan of tmp is sufficient.  As we go, we remember the
1141 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1142 	 * that not only moved, but what's better, moved to an empty slot
1143 	 * (d is not set in tmp), then we break out then, with that pair.
1144 	 * Otherwise when we finish scanning from_tmp, we at least have the
1145 	 * most recent <s, d> pair that moved.  If we get all the way through
1146 	 * the scan of tmp without finding any node that moved, much less
1147 	 * moved to an empty node, then there is nothing left worth migrating.
1148 	 */
1149 
1150 	tmp = *from;
1151 	while (!nodes_empty(tmp)) {
1152 		int s,d;
1153 		int source = NUMA_NO_NODE;
1154 		int dest = 0;
1155 
1156 		for_each_node_mask(s, tmp) {
1157 
1158 			/*
1159 			 * do_migrate_pages() tries to maintain the relative
1160 			 * node relationship of the pages established between
1161 			 * threads and memory areas.
1162                          *
1163 			 * However if the number of source nodes is not equal to
1164 			 * the number of destination nodes we can not preserve
1165 			 * this node relative relationship.  In that case, skip
1166 			 * copying memory from a node that is in the destination
1167 			 * mask.
1168 			 *
1169 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1170 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1171 			 */
1172 
1173 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1174 						(node_isset(s, *to)))
1175 				continue;
1176 
1177 			d = node_remap(s, *from, *to);
1178 			if (s == d)
1179 				continue;
1180 
1181 			source = s;	/* Node moved. Memorize */
1182 			dest = d;
1183 
1184 			/* dest not in remaining from nodes? */
1185 			if (!node_isset(dest, tmp))
1186 				break;
1187 		}
1188 		if (source == NUMA_NO_NODE)
1189 			break;
1190 
1191 		node_clear(source, tmp);
1192 		err = migrate_to_node(mm, source, dest, flags);
1193 		if (err > 0)
1194 			busy += err;
1195 		if (err < 0)
1196 			break;
1197 	}
1198 	mmap_read_unlock(mm);
1199 	if (err < 0)
1200 		return err;
1201 	return busy;
1202 
1203 }
1204 
1205 /*
1206  * Allocate a new page for page migration based on vma policy.
1207  * Start by assuming the page is mapped by the same vma as contains @start.
1208  * Search forward from there, if not.  N.B., this assumes that the
1209  * list of pages handed to migrate_pages()--which is how we get here--
1210  * is in virtual address order.
1211  */
new_page(struct page * page,unsigned long start)1212 static struct page *new_page(struct page *page, unsigned long start)
1213 {
1214 	struct vm_area_struct *vma;
1215 	unsigned long address;
1216 
1217 	vma = find_vma(current->mm, start);
1218 	while (vma) {
1219 		address = page_address_in_vma(page, vma);
1220 		if (address != -EFAULT)
1221 			break;
1222 		vma = vma->vm_next;
1223 	}
1224 
1225 	if (PageHuge(page)) {
1226 		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1227 				vma, address);
1228 	} else if (PageTransHuge(page)) {
1229 		struct page *thp;
1230 
1231 		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1232 					 HPAGE_PMD_ORDER);
1233 		if (!thp)
1234 			return NULL;
1235 		prep_transhuge_page(thp);
1236 		return thp;
1237 	}
1238 	/*
1239 	 * if !vma, alloc_page_vma() will use task or system default policy
1240 	 */
1241 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1242 			vma, address);
1243 }
1244 #else
1245 
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)1246 static int migrate_page_add(struct page *page, struct list_head *pagelist,
1247 				unsigned long flags)
1248 {
1249 	return -EIO;
1250 }
1251 
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1252 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1253 		     const nodemask_t *to, int flags)
1254 {
1255 	return -ENOSYS;
1256 }
1257 
new_page(struct page * page,unsigned long start)1258 static struct page *new_page(struct page *page, unsigned long start)
1259 {
1260 	return NULL;
1261 }
1262 #endif
1263 
do_mbind(unsigned long start,unsigned long len,unsigned short mode,unsigned short mode_flags,nodemask_t * nmask,unsigned long flags)1264 static long do_mbind(unsigned long start, unsigned long len,
1265 		     unsigned short mode, unsigned short mode_flags,
1266 		     nodemask_t *nmask, unsigned long flags)
1267 {
1268 	struct mm_struct *mm = current->mm;
1269 	struct mempolicy *new;
1270 	unsigned long end;
1271 	int err;
1272 	int ret;
1273 	LIST_HEAD(pagelist);
1274 
1275 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1276 		return -EINVAL;
1277 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1278 		return -EPERM;
1279 
1280 	if (start & ~PAGE_MASK)
1281 		return -EINVAL;
1282 
1283 	if (mode == MPOL_DEFAULT)
1284 		flags &= ~MPOL_MF_STRICT;
1285 
1286 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1287 	end = start + len;
1288 
1289 	if (end < start)
1290 		return -EINVAL;
1291 	if (end == start)
1292 		return 0;
1293 
1294 	new = mpol_new(mode, mode_flags, nmask);
1295 	if (IS_ERR(new))
1296 		return PTR_ERR(new);
1297 
1298 	if (flags & MPOL_MF_LAZY)
1299 		new->flags |= MPOL_F_MOF;
1300 
1301 	/*
1302 	 * If we are using the default policy then operation
1303 	 * on discontinuous address spaces is okay after all
1304 	 */
1305 	if (!new)
1306 		flags |= MPOL_MF_DISCONTIG_OK;
1307 
1308 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1309 		 start, start + len, mode, mode_flags,
1310 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1311 
1312 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1313 
1314 		err = migrate_prep();
1315 		if (err)
1316 			goto mpol_out;
1317 	}
1318 	{
1319 		NODEMASK_SCRATCH(scratch);
1320 		if (scratch) {
1321 			mmap_write_lock(mm);
1322 			err = mpol_set_nodemask(new, nmask, scratch);
1323 			if (err)
1324 				mmap_write_unlock(mm);
1325 		} else
1326 			err = -ENOMEM;
1327 		NODEMASK_SCRATCH_FREE(scratch);
1328 	}
1329 	if (err)
1330 		goto mpol_out;
1331 
1332 	ret = queue_pages_range(mm, start, end, nmask,
1333 			  flags | MPOL_MF_INVERT, &pagelist);
1334 
1335 	if (ret < 0) {
1336 		err = ret;
1337 		goto up_out;
1338 	}
1339 
1340 	err = mbind_range(mm, start, end, new);
1341 
1342 	if (!err) {
1343 		int nr_failed = 0;
1344 
1345 		if (!list_empty(&pagelist)) {
1346 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1347 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1348 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1349 			if (nr_failed)
1350 				putback_movable_pages(&pagelist);
1351 		}
1352 
1353 		if ((ret > 0) || (nr_failed && (flags & MPOL_MF_STRICT)))
1354 			err = -EIO;
1355 	} else {
1356 up_out:
1357 		if (!list_empty(&pagelist))
1358 			putback_movable_pages(&pagelist);
1359 	}
1360 
1361 	mmap_write_unlock(mm);
1362 mpol_out:
1363 	mpol_put(new);
1364 	return err;
1365 }
1366 
1367 /*
1368  * User space interface with variable sized bitmaps for nodelists.
1369  */
1370 
1371 /* Copy a node mask from user space. */
get_nodes(nodemask_t * nodes,const unsigned long __user * nmask,unsigned long maxnode)1372 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1373 		     unsigned long maxnode)
1374 {
1375 	unsigned long k;
1376 	unsigned long t;
1377 	unsigned long nlongs;
1378 	unsigned long endmask;
1379 
1380 	--maxnode;
1381 	nodes_clear(*nodes);
1382 	if (maxnode == 0 || !nmask)
1383 		return 0;
1384 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1385 		return -EINVAL;
1386 
1387 	nlongs = BITS_TO_LONGS(maxnode);
1388 	if ((maxnode % BITS_PER_LONG) == 0)
1389 		endmask = ~0UL;
1390 	else
1391 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1392 
1393 	/*
1394 	 * When the user specified more nodes than supported just check
1395 	 * if the non supported part is all zero.
1396 	 *
1397 	 * If maxnode have more longs than MAX_NUMNODES, check
1398 	 * the bits in that area first. And then go through to
1399 	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1400 	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1401 	 */
1402 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1403 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1404 			if (get_user(t, nmask + k))
1405 				return -EFAULT;
1406 			if (k == nlongs - 1) {
1407 				if (t & endmask)
1408 					return -EINVAL;
1409 			} else if (t)
1410 				return -EINVAL;
1411 		}
1412 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1413 		endmask = ~0UL;
1414 	}
1415 
1416 	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1417 		unsigned long valid_mask = endmask;
1418 
1419 		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1420 		if (get_user(t, nmask + nlongs - 1))
1421 			return -EFAULT;
1422 		if (t & valid_mask)
1423 			return -EINVAL;
1424 	}
1425 
1426 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1427 		return -EFAULT;
1428 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1429 	return 0;
1430 }
1431 
1432 /* Copy a kernel node mask to user space */
copy_nodes_to_user(unsigned long __user * mask,unsigned long maxnode,nodemask_t * nodes)1433 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1434 			      nodemask_t *nodes)
1435 {
1436 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1437 	unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1438 
1439 	if (copy > nbytes) {
1440 		if (copy > PAGE_SIZE)
1441 			return -EINVAL;
1442 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1443 			return -EFAULT;
1444 		copy = nbytes;
1445 	}
1446 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1447 }
1448 
kernel_mbind(unsigned long start,unsigned long len,unsigned long mode,const unsigned long __user * nmask,unsigned long maxnode,unsigned int flags)1449 static long kernel_mbind(unsigned long start, unsigned long len,
1450 			 unsigned long mode, const unsigned long __user *nmask,
1451 			 unsigned long maxnode, unsigned int flags)
1452 {
1453 	nodemask_t nodes;
1454 	int err;
1455 	unsigned short mode_flags;
1456 
1457 	start = untagged_addr(start);
1458 	mode_flags = mode & MPOL_MODE_FLAGS;
1459 	mode &= ~MPOL_MODE_FLAGS;
1460 	if (mode >= MPOL_MAX)
1461 		return -EINVAL;
1462 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1463 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1464 		return -EINVAL;
1465 	err = get_nodes(&nodes, nmask, maxnode);
1466 	if (err)
1467 		return err;
1468 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1469 }
1470 
SYSCALL_DEFINE6(mbind,unsigned long,start,unsigned long,len,unsigned long,mode,const unsigned long __user *,nmask,unsigned long,maxnode,unsigned int,flags)1471 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1472 		unsigned long, mode, const unsigned long __user *, nmask,
1473 		unsigned long, maxnode, unsigned int, flags)
1474 {
1475 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1476 }
1477 
1478 /* Set the process memory policy */
kernel_set_mempolicy(int mode,const unsigned long __user * nmask,unsigned long maxnode)1479 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1480 				 unsigned long maxnode)
1481 {
1482 	int err;
1483 	nodemask_t nodes;
1484 	unsigned short flags;
1485 
1486 	flags = mode & MPOL_MODE_FLAGS;
1487 	mode &= ~MPOL_MODE_FLAGS;
1488 	if ((unsigned int)mode >= MPOL_MAX)
1489 		return -EINVAL;
1490 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1491 		return -EINVAL;
1492 	err = get_nodes(&nodes, nmask, maxnode);
1493 	if (err)
1494 		return err;
1495 	return do_set_mempolicy(mode, flags, &nodes);
1496 }
1497 
SYSCALL_DEFINE3(set_mempolicy,int,mode,const unsigned long __user *,nmask,unsigned long,maxnode)1498 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1499 		unsigned long, maxnode)
1500 {
1501 	return kernel_set_mempolicy(mode, nmask, maxnode);
1502 }
1503 
kernel_migrate_pages(pid_t pid,unsigned long maxnode,const unsigned long __user * old_nodes,const unsigned long __user * new_nodes)1504 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1505 				const unsigned long __user *old_nodes,
1506 				const unsigned long __user *new_nodes)
1507 {
1508 	struct mm_struct *mm = NULL;
1509 	struct task_struct *task;
1510 	nodemask_t task_nodes;
1511 	int err;
1512 	nodemask_t *old;
1513 	nodemask_t *new;
1514 	NODEMASK_SCRATCH(scratch);
1515 
1516 	if (!scratch)
1517 		return -ENOMEM;
1518 
1519 	old = &scratch->mask1;
1520 	new = &scratch->mask2;
1521 
1522 	err = get_nodes(old, old_nodes, maxnode);
1523 	if (err)
1524 		goto out;
1525 
1526 	err = get_nodes(new, new_nodes, maxnode);
1527 	if (err)
1528 		goto out;
1529 
1530 	/* Find the mm_struct */
1531 	rcu_read_lock();
1532 	task = pid ? find_task_by_vpid(pid) : current;
1533 	if (!task) {
1534 		rcu_read_unlock();
1535 		err = -ESRCH;
1536 		goto out;
1537 	}
1538 	get_task_struct(task);
1539 
1540 	err = -EINVAL;
1541 
1542 	/*
1543 	 * Check if this process has the right to modify the specified process.
1544 	 * Use the regular "ptrace_may_access()" checks.
1545 	 */
1546 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1547 		rcu_read_unlock();
1548 		err = -EPERM;
1549 		goto out_put;
1550 	}
1551 	rcu_read_unlock();
1552 
1553 	task_nodes = cpuset_mems_allowed(task);
1554 	/* Is the user allowed to access the target nodes? */
1555 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1556 		err = -EPERM;
1557 		goto out_put;
1558 	}
1559 
1560 	task_nodes = cpuset_mems_allowed(current);
1561 	nodes_and(*new, *new, task_nodes);
1562 	if (nodes_empty(*new))
1563 		goto out_put;
1564 
1565 	err = security_task_movememory(task);
1566 	if (err)
1567 		goto out_put;
1568 
1569 	mm = get_task_mm(task);
1570 	put_task_struct(task);
1571 
1572 	if (!mm) {
1573 		err = -EINVAL;
1574 		goto out;
1575 	}
1576 
1577 	err = do_migrate_pages(mm, old, new,
1578 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1579 
1580 	mmput(mm);
1581 out:
1582 	NODEMASK_SCRATCH_FREE(scratch);
1583 
1584 	return err;
1585 
1586 out_put:
1587 	put_task_struct(task);
1588 	goto out;
1589 
1590 }
1591 
SYSCALL_DEFINE4(migrate_pages,pid_t,pid,unsigned long,maxnode,const unsigned long __user *,old_nodes,const unsigned long __user *,new_nodes)1592 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1593 		const unsigned long __user *, old_nodes,
1594 		const unsigned long __user *, new_nodes)
1595 {
1596 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1597 }
1598 
1599 
1600 /* Retrieve NUMA policy */
kernel_get_mempolicy(int __user * policy,unsigned long __user * nmask,unsigned long maxnode,unsigned long addr,unsigned long flags)1601 static int kernel_get_mempolicy(int __user *policy,
1602 				unsigned long __user *nmask,
1603 				unsigned long maxnode,
1604 				unsigned long addr,
1605 				unsigned long flags)
1606 {
1607 	int err;
1608 	int pval;
1609 	nodemask_t nodes;
1610 
1611 	if (nmask != NULL && maxnode < nr_node_ids)
1612 		return -EINVAL;
1613 
1614 	addr = untagged_addr(addr);
1615 
1616 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1617 
1618 	if (err)
1619 		return err;
1620 
1621 	if (policy && put_user(pval, policy))
1622 		return -EFAULT;
1623 
1624 	if (nmask)
1625 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1626 
1627 	return err;
1628 }
1629 
SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,unsigned long __user *,nmask,unsigned long,maxnode,unsigned long,addr,unsigned long,flags)1630 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1631 		unsigned long __user *, nmask, unsigned long, maxnode,
1632 		unsigned long, addr, unsigned long, flags)
1633 {
1634 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1635 }
1636 
1637 #ifdef CONFIG_COMPAT
1638 
COMPAT_SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode,compat_ulong_t,addr,compat_ulong_t,flags)1639 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1640 		       compat_ulong_t __user *, nmask,
1641 		       compat_ulong_t, maxnode,
1642 		       compat_ulong_t, addr, compat_ulong_t, flags)
1643 {
1644 	long err;
1645 	unsigned long __user *nm = NULL;
1646 	unsigned long nr_bits, alloc_size;
1647 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1648 
1649 	nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1650 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1651 
1652 	if (nmask)
1653 		nm = compat_alloc_user_space(alloc_size);
1654 
1655 	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1656 
1657 	if (!err && nmask) {
1658 		unsigned long copy_size;
1659 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1660 		err = copy_from_user(bm, nm, copy_size);
1661 		/* ensure entire bitmap is zeroed */
1662 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1663 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1664 	}
1665 
1666 	return err;
1667 }
1668 
COMPAT_SYSCALL_DEFINE3(set_mempolicy,int,mode,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode)1669 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1670 		       compat_ulong_t, maxnode)
1671 {
1672 	unsigned long __user *nm = NULL;
1673 	unsigned long nr_bits, alloc_size;
1674 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1675 
1676 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1677 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1678 
1679 	if (nmask) {
1680 		if (compat_get_bitmap(bm, nmask, nr_bits))
1681 			return -EFAULT;
1682 		nm = compat_alloc_user_space(alloc_size);
1683 		if (copy_to_user(nm, bm, alloc_size))
1684 			return -EFAULT;
1685 	}
1686 
1687 	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1688 }
1689 
COMPAT_SYSCALL_DEFINE6(mbind,compat_ulong_t,start,compat_ulong_t,len,compat_ulong_t,mode,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode,compat_ulong_t,flags)1690 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1691 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1692 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1693 {
1694 	unsigned long __user *nm = NULL;
1695 	unsigned long nr_bits, alloc_size;
1696 	nodemask_t bm;
1697 
1698 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1699 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1700 
1701 	if (nmask) {
1702 		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1703 			return -EFAULT;
1704 		nm = compat_alloc_user_space(alloc_size);
1705 		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1706 			return -EFAULT;
1707 	}
1708 
1709 	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1710 }
1711 
COMPAT_SYSCALL_DEFINE4(migrate_pages,compat_pid_t,pid,compat_ulong_t,maxnode,const compat_ulong_t __user *,old_nodes,const compat_ulong_t __user *,new_nodes)1712 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1713 		       compat_ulong_t, maxnode,
1714 		       const compat_ulong_t __user *, old_nodes,
1715 		       const compat_ulong_t __user *, new_nodes)
1716 {
1717 	unsigned long __user *old = NULL;
1718 	unsigned long __user *new = NULL;
1719 	nodemask_t tmp_mask;
1720 	unsigned long nr_bits;
1721 	unsigned long size;
1722 
1723 	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1724 	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1725 	if (old_nodes) {
1726 		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1727 			return -EFAULT;
1728 		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1729 		if (new_nodes)
1730 			new = old + size / sizeof(unsigned long);
1731 		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1732 			return -EFAULT;
1733 	}
1734 	if (new_nodes) {
1735 		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1736 			return -EFAULT;
1737 		if (new == NULL)
1738 			new = compat_alloc_user_space(size);
1739 		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1740 			return -EFAULT;
1741 	}
1742 	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1743 }
1744 
1745 #endif /* CONFIG_COMPAT */
1746 
vma_migratable(struct vm_area_struct * vma)1747 bool vma_migratable(struct vm_area_struct *vma)
1748 {
1749 	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1750 		return false;
1751 
1752 	/*
1753 	 * DAX device mappings require predictable access latency, so avoid
1754 	 * incurring periodic faults.
1755 	 */
1756 	if (vma_is_dax(vma))
1757 		return false;
1758 
1759 	if (is_vm_hugetlb_page(vma) &&
1760 		!hugepage_migration_supported(hstate_vma(vma)))
1761 		return false;
1762 
1763 	/*
1764 	 * Migration allocates pages in the highest zone. If we cannot
1765 	 * do so then migration (at least from node to node) is not
1766 	 * possible.
1767 	 */
1768 	if (vma->vm_file &&
1769 		gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
1770 			< policy_zone)
1771 		return false;
1772 	return true;
1773 }
1774 
__get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1775 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1776 						unsigned long addr)
1777 {
1778 	struct mempolicy *pol = NULL;
1779 
1780 	if (vma) {
1781 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1782 			pol = vma->vm_ops->get_policy(vma, addr);
1783 		} else if (vma->vm_policy) {
1784 			pol = vma->vm_policy;
1785 
1786 			/*
1787 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1788 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1789 			 * count on these policies which will be dropped by
1790 			 * mpol_cond_put() later
1791 			 */
1792 			if (mpol_needs_cond_ref(pol))
1793 				mpol_get(pol);
1794 		}
1795 	}
1796 
1797 	return pol;
1798 }
1799 
1800 /*
1801  * get_vma_policy(@vma, @addr)
1802  * @vma: virtual memory area whose policy is sought
1803  * @addr: address in @vma for shared policy lookup
1804  *
1805  * Returns effective policy for a VMA at specified address.
1806  * Falls back to current->mempolicy or system default policy, as necessary.
1807  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1808  * count--added by the get_policy() vm_op, as appropriate--to protect against
1809  * freeing by another task.  It is the caller's responsibility to free the
1810  * extra reference for shared policies.
1811  */
get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1812 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1813 						unsigned long addr)
1814 {
1815 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1816 
1817 	if (!pol)
1818 		pol = get_task_policy(current);
1819 
1820 	return pol;
1821 }
1822 
vma_policy_mof(struct vm_area_struct * vma)1823 bool vma_policy_mof(struct vm_area_struct *vma)
1824 {
1825 	struct mempolicy *pol;
1826 
1827 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1828 		bool ret = false;
1829 
1830 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1831 		if (pol && (pol->flags & MPOL_F_MOF))
1832 			ret = true;
1833 		mpol_cond_put(pol);
1834 
1835 		return ret;
1836 	}
1837 
1838 	pol = vma->vm_policy;
1839 	if (!pol)
1840 		pol = get_task_policy(current);
1841 
1842 	return pol->flags & MPOL_F_MOF;
1843 }
1844 
apply_policy_zone(struct mempolicy * policy,enum zone_type zone)1845 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1846 {
1847 	enum zone_type dynamic_policy_zone = policy_zone;
1848 
1849 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1850 
1851 	/*
1852 	 * if policy->v.nodes has movable memory only,
1853 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1854 	 *
1855 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1856 	 * so if the following test faile, it implies
1857 	 * policy->v.nodes has movable memory only.
1858 	 */
1859 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1860 		dynamic_policy_zone = ZONE_MOVABLE;
1861 
1862 	return zone >= dynamic_policy_zone;
1863 }
1864 
1865 /*
1866  * Return a nodemask representing a mempolicy for filtering nodes for
1867  * page allocation
1868  */
policy_nodemask(gfp_t gfp,struct mempolicy * policy)1869 nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1870 {
1871 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1872 	if (unlikely(policy->mode == MPOL_BIND) &&
1873 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1874 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1875 		return &policy->v.nodes;
1876 
1877 	return NULL;
1878 }
1879 
1880 /* Return the node id preferred by the given mempolicy, or the given id */
policy_node(gfp_t gfp,struct mempolicy * policy,int nd)1881 static int policy_node(gfp_t gfp, struct mempolicy *policy, int nd)
1882 {
1883 	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1884 		nd = policy->v.preferred_node;
1885 	else {
1886 		/*
1887 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1888 		 * because we might easily break the expectation to stay on the
1889 		 * requested node and not break the policy.
1890 		 */
1891 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1892 	}
1893 
1894 	return nd;
1895 }
1896 
1897 /* Do dynamic interleaving for a process */
interleave_nodes(struct mempolicy * policy)1898 static unsigned interleave_nodes(struct mempolicy *policy)
1899 {
1900 	unsigned next;
1901 	struct task_struct *me = current;
1902 
1903 	next = next_node_in(me->il_prev, policy->v.nodes);
1904 	if (next < MAX_NUMNODES)
1905 		me->il_prev = next;
1906 	return next;
1907 }
1908 
1909 /*
1910  * Depending on the memory policy provide a node from which to allocate the
1911  * next slab entry.
1912  */
mempolicy_slab_node(void)1913 unsigned int mempolicy_slab_node(void)
1914 {
1915 	struct mempolicy *policy;
1916 	int node = numa_mem_id();
1917 
1918 	if (in_interrupt())
1919 		return node;
1920 
1921 	policy = current->mempolicy;
1922 	if (!policy || policy->flags & MPOL_F_LOCAL)
1923 		return node;
1924 
1925 	switch (policy->mode) {
1926 	case MPOL_PREFERRED:
1927 		/*
1928 		 * handled MPOL_F_LOCAL above
1929 		 */
1930 		return policy->v.preferred_node;
1931 
1932 	case MPOL_INTERLEAVE:
1933 		return interleave_nodes(policy);
1934 
1935 	case MPOL_BIND: {
1936 		struct zoneref *z;
1937 
1938 		/*
1939 		 * Follow bind policy behavior and start allocation at the
1940 		 * first node.
1941 		 */
1942 		struct zonelist *zonelist;
1943 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1944 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1945 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1946 							&policy->v.nodes);
1947 		return z->zone ? zone_to_nid(z->zone) : node;
1948 	}
1949 
1950 	default:
1951 		BUG();
1952 	}
1953 }
1954 
1955 /*
1956  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1957  * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1958  * number of present nodes.
1959  */
offset_il_node(struct mempolicy * pol,unsigned long n)1960 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1961 {
1962 	unsigned nnodes = nodes_weight(pol->v.nodes);
1963 	unsigned target;
1964 	int i;
1965 	int nid;
1966 
1967 	if (!nnodes)
1968 		return numa_node_id();
1969 	target = (unsigned int)n % nnodes;
1970 	nid = first_node(pol->v.nodes);
1971 	for (i = 0; i < target; i++)
1972 		nid = next_node(nid, pol->v.nodes);
1973 	return nid;
1974 }
1975 
1976 /* Determine a node number for interleave */
interleave_nid(struct mempolicy * pol,struct vm_area_struct * vma,unsigned long addr,int shift)1977 static inline unsigned interleave_nid(struct mempolicy *pol,
1978 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1979 {
1980 	if (vma) {
1981 		unsigned long off;
1982 
1983 		/*
1984 		 * for small pages, there is no difference between
1985 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1986 		 * for huge pages, since vm_pgoff is in units of small
1987 		 * pages, we need to shift off the always 0 bits to get
1988 		 * a useful offset.
1989 		 */
1990 		BUG_ON(shift < PAGE_SHIFT);
1991 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1992 		off += (addr - vma->vm_start) >> shift;
1993 		return offset_il_node(pol, off);
1994 	} else
1995 		return interleave_nodes(pol);
1996 }
1997 
1998 #ifdef CONFIG_HUGETLBFS
1999 /*
2000  * huge_node(@vma, @addr, @gfp_flags, @mpol)
2001  * @vma: virtual memory area whose policy is sought
2002  * @addr: address in @vma for shared policy lookup and interleave policy
2003  * @gfp_flags: for requested zone
2004  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
2005  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
2006  *
2007  * Returns a nid suitable for a huge page allocation and a pointer
2008  * to the struct mempolicy for conditional unref after allocation.
2009  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
2010  * @nodemask for filtering the zonelist.
2011  *
2012  * Must be protected by read_mems_allowed_begin()
2013  */
huge_node(struct vm_area_struct * vma,unsigned long addr,gfp_t gfp_flags,struct mempolicy ** mpol,nodemask_t ** nodemask)2014 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
2015 				struct mempolicy **mpol, nodemask_t **nodemask)
2016 {
2017 	int nid;
2018 
2019 	*mpol = get_vma_policy(vma, addr);
2020 	*nodemask = NULL;	/* assume !MPOL_BIND */
2021 
2022 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
2023 		nid = interleave_nid(*mpol, vma, addr,
2024 					huge_page_shift(hstate_vma(vma)));
2025 	} else {
2026 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
2027 		if ((*mpol)->mode == MPOL_BIND)
2028 			*nodemask = &(*mpol)->v.nodes;
2029 	}
2030 	return nid;
2031 }
2032 
2033 /*
2034  * init_nodemask_of_mempolicy
2035  *
2036  * If the current task's mempolicy is "default" [NULL], return 'false'
2037  * to indicate default policy.  Otherwise, extract the policy nodemask
2038  * for 'bind' or 'interleave' policy into the argument nodemask, or
2039  * initialize the argument nodemask to contain the single node for
2040  * 'preferred' or 'local' policy and return 'true' to indicate presence
2041  * of non-default mempolicy.
2042  *
2043  * We don't bother with reference counting the mempolicy [mpol_get/put]
2044  * because the current task is examining it's own mempolicy and a task's
2045  * mempolicy is only ever changed by the task itself.
2046  *
2047  * N.B., it is the caller's responsibility to free a returned nodemask.
2048  */
init_nodemask_of_mempolicy(nodemask_t * mask)2049 bool init_nodemask_of_mempolicy(nodemask_t *mask)
2050 {
2051 	struct mempolicy *mempolicy;
2052 	int nid;
2053 
2054 	if (!(mask && current->mempolicy))
2055 		return false;
2056 
2057 	task_lock(current);
2058 	mempolicy = current->mempolicy;
2059 	switch (mempolicy->mode) {
2060 	case MPOL_PREFERRED:
2061 		if (mempolicy->flags & MPOL_F_LOCAL)
2062 			nid = numa_node_id();
2063 		else
2064 			nid = mempolicy->v.preferred_node;
2065 		init_nodemask_of_node(mask, nid);
2066 		break;
2067 
2068 	case MPOL_BIND:
2069 	case MPOL_INTERLEAVE:
2070 		*mask =  mempolicy->v.nodes;
2071 		break;
2072 
2073 	default:
2074 		BUG();
2075 	}
2076 	task_unlock(current);
2077 
2078 	return true;
2079 }
2080 #endif
2081 
2082 /*
2083  * mempolicy_nodemask_intersects
2084  *
2085  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
2086  * policy.  Otherwise, check for intersection between mask and the policy
2087  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
2088  * policy, always return true since it may allocate elsewhere on fallback.
2089  *
2090  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
2091  */
mempolicy_nodemask_intersects(struct task_struct * tsk,const nodemask_t * mask)2092 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
2093 					const nodemask_t *mask)
2094 {
2095 	struct mempolicy *mempolicy;
2096 	bool ret = true;
2097 
2098 	if (!mask)
2099 		return ret;
2100 	task_lock(tsk);
2101 	mempolicy = tsk->mempolicy;
2102 	if (!mempolicy)
2103 		goto out;
2104 
2105 	switch (mempolicy->mode) {
2106 	case MPOL_PREFERRED:
2107 		/*
2108 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
2109 		 * allocate from, they may fallback to other nodes when oom.
2110 		 * Thus, it's possible for tsk to have allocated memory from
2111 		 * nodes in mask.
2112 		 */
2113 		break;
2114 	case MPOL_BIND:
2115 	case MPOL_INTERLEAVE:
2116 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
2117 		break;
2118 	default:
2119 		BUG();
2120 	}
2121 out:
2122 	task_unlock(tsk);
2123 	return ret;
2124 }
2125 
2126 /* Allocate a page in interleaved policy.
2127    Own path because it needs to do special accounting. */
alloc_page_interleave(gfp_t gfp,unsigned order,unsigned nid)2128 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2129 					unsigned nid)
2130 {
2131 	struct page *page;
2132 
2133 	page = __alloc_pages(gfp, order, nid);
2134 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2135 	if (!static_branch_likely(&vm_numa_stat_key))
2136 		return page;
2137 	if (page && page_to_nid(page) == nid) {
2138 		preempt_disable();
2139 		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2140 		preempt_enable();
2141 	}
2142 	return page;
2143 }
2144 
2145 /**
2146  * 	alloc_pages_vma	- Allocate a page for a VMA.
2147  *
2148  * 	@gfp:
2149  *      %GFP_USER    user allocation.
2150  *      %GFP_KERNEL  kernel allocations,
2151  *      %GFP_HIGHMEM highmem/user allocations,
2152  *      %GFP_FS      allocation should not call back into a file system.
2153  *      %GFP_ATOMIC  don't sleep.
2154  *
2155  *	@order:Order of the GFP allocation.
2156  * 	@vma:  Pointer to VMA or NULL if not available.
2157  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
2158  *	@node: Which node to prefer for allocation (modulo policy).
2159  *	@hugepage: for hugepages try only the preferred node if possible
2160  *
2161  * 	This function allocates a page from the kernel page pool and applies
2162  *	a NUMA policy associated with the VMA or the current process.
2163  *	When VMA is not NULL caller must read-lock the mmap_lock of the
2164  *	mm_struct of the VMA to prevent it from going away. Should be used for
2165  *	all allocations for pages that will be mapped into user space. Returns
2166  *	NULL when no page can be allocated.
2167  */
2168 struct page *
alloc_pages_vma(gfp_t gfp,int order,struct vm_area_struct * vma,unsigned long addr,int node,bool hugepage)2169 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2170 		unsigned long addr, int node, bool hugepage)
2171 {
2172 	struct mempolicy *pol;
2173 	struct page *page;
2174 	int preferred_nid;
2175 	nodemask_t *nmask;
2176 
2177 	pol = get_vma_policy(vma, addr);
2178 
2179 	if (pol->mode == MPOL_INTERLEAVE) {
2180 		unsigned nid;
2181 
2182 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2183 		mpol_cond_put(pol);
2184 		page = alloc_page_interleave(gfp, order, nid);
2185 		goto out;
2186 	}
2187 
2188 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2189 		int hpage_node = node;
2190 
2191 		/*
2192 		 * For hugepage allocation and non-interleave policy which
2193 		 * allows the current node (or other explicitly preferred
2194 		 * node) we only try to allocate from the current/preferred
2195 		 * node and don't fall back to other nodes, as the cost of
2196 		 * remote accesses would likely offset THP benefits.
2197 		 *
2198 		 * If the policy is interleave, or does not allow the current
2199 		 * node in its nodemask, we allocate the standard way.
2200 		 */
2201 		if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2202 			hpage_node = pol->v.preferred_node;
2203 
2204 		nmask = policy_nodemask(gfp, pol);
2205 		if (!nmask || node_isset(hpage_node, *nmask)) {
2206 			mpol_cond_put(pol);
2207 			/*
2208 			 * First, try to allocate THP only on local node, but
2209 			 * don't reclaim unnecessarily, just compact.
2210 			 */
2211 			page = __alloc_pages_node(hpage_node,
2212 				gfp | __GFP_THISNODE | __GFP_NORETRY, order);
2213 
2214 			/*
2215 			 * If hugepage allocations are configured to always
2216 			 * synchronous compact or the vma has been madvised
2217 			 * to prefer hugepage backing, retry allowing remote
2218 			 * memory with both reclaim and compact as well.
2219 			 */
2220 			if (!page && (gfp & __GFP_DIRECT_RECLAIM))
2221 				page = __alloc_pages_nodemask(gfp, order,
2222 							hpage_node, nmask);
2223 
2224 			goto out;
2225 		}
2226 	}
2227 
2228 	nmask = policy_nodemask(gfp, pol);
2229 	preferred_nid = policy_node(gfp, pol, node);
2230 	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2231 	mpol_cond_put(pol);
2232 out:
2233 	return page;
2234 }
2235 EXPORT_SYMBOL(alloc_pages_vma);
2236 
2237 /**
2238  * 	alloc_pages_current - Allocate pages.
2239  *
2240  *	@gfp:
2241  *		%GFP_USER   user allocation,
2242  *      	%GFP_KERNEL kernel allocation,
2243  *      	%GFP_HIGHMEM highmem allocation,
2244  *      	%GFP_FS     don't call back into a file system.
2245  *      	%GFP_ATOMIC don't sleep.
2246  *	@order: Power of two of allocation size in pages. 0 is a single page.
2247  *
2248  *	Allocate a page from the kernel page pool.  When not in
2249  *	interrupt context and apply the current process NUMA policy.
2250  *	Returns NULL when no page can be allocated.
2251  */
alloc_pages_current(gfp_t gfp,unsigned order)2252 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2253 {
2254 	struct mempolicy *pol = &default_policy;
2255 	struct page *page;
2256 
2257 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2258 		pol = get_task_policy(current);
2259 
2260 	/*
2261 	 * No reference counting needed for current->mempolicy
2262 	 * nor system default_policy
2263 	 */
2264 	if (pol->mode == MPOL_INTERLEAVE)
2265 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2266 	else
2267 		page = __alloc_pages_nodemask(gfp, order,
2268 				policy_node(gfp, pol, numa_node_id()),
2269 				policy_nodemask(gfp, pol));
2270 
2271 	return page;
2272 }
2273 EXPORT_SYMBOL(alloc_pages_current);
2274 
vma_dup_policy(struct vm_area_struct * src,struct vm_area_struct * dst)2275 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2276 {
2277 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2278 
2279 	if (IS_ERR(pol))
2280 		return PTR_ERR(pol);
2281 	dst->vm_policy = pol;
2282 	return 0;
2283 }
2284 
2285 /*
2286  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2287  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2288  * with the mems_allowed returned by cpuset_mems_allowed().  This
2289  * keeps mempolicies cpuset relative after its cpuset moves.  See
2290  * further kernel/cpuset.c update_nodemask().
2291  *
2292  * current's mempolicy may be rebinded by the other task(the task that changes
2293  * cpuset's mems), so we needn't do rebind work for current task.
2294  */
2295 
2296 /* Slow path of a mempolicy duplicate */
__mpol_dup(struct mempolicy * old)2297 struct mempolicy *__mpol_dup(struct mempolicy *old)
2298 {
2299 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2300 
2301 	if (!new)
2302 		return ERR_PTR(-ENOMEM);
2303 
2304 	/* task's mempolicy is protected by alloc_lock */
2305 	if (old == current->mempolicy) {
2306 		task_lock(current);
2307 		*new = *old;
2308 		task_unlock(current);
2309 	} else
2310 		*new = *old;
2311 
2312 	if (current_cpuset_is_being_rebound()) {
2313 		nodemask_t mems = cpuset_mems_allowed(current);
2314 		mpol_rebind_policy(new, &mems);
2315 	}
2316 	atomic_set(&new->refcnt, 1);
2317 	return new;
2318 }
2319 
2320 /* Slow path of a mempolicy comparison */
__mpol_equal(struct mempolicy * a,struct mempolicy * b)2321 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2322 {
2323 	if (!a || !b)
2324 		return false;
2325 	if (a->mode != b->mode)
2326 		return false;
2327 	if (a->flags != b->flags)
2328 		return false;
2329 	if (mpol_store_user_nodemask(a))
2330 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2331 			return false;
2332 
2333 	switch (a->mode) {
2334 	case MPOL_BIND:
2335 	case MPOL_INTERLEAVE:
2336 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2337 	case MPOL_PREFERRED:
2338 		/* a's ->flags is the same as b's */
2339 		if (a->flags & MPOL_F_LOCAL)
2340 			return true;
2341 		return a->v.preferred_node == b->v.preferred_node;
2342 	default:
2343 		BUG();
2344 		return false;
2345 	}
2346 }
2347 
2348 /*
2349  * Shared memory backing store policy support.
2350  *
2351  * Remember policies even when nobody has shared memory mapped.
2352  * The policies are kept in Red-Black tree linked from the inode.
2353  * They are protected by the sp->lock rwlock, which should be held
2354  * for any accesses to the tree.
2355  */
2356 
2357 /*
2358  * lookup first element intersecting start-end.  Caller holds sp->lock for
2359  * reading or for writing
2360  */
2361 static struct sp_node *
sp_lookup(struct shared_policy * sp,unsigned long start,unsigned long end)2362 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2363 {
2364 	struct rb_node *n = sp->root.rb_node;
2365 
2366 	while (n) {
2367 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2368 
2369 		if (start >= p->end)
2370 			n = n->rb_right;
2371 		else if (end <= p->start)
2372 			n = n->rb_left;
2373 		else
2374 			break;
2375 	}
2376 	if (!n)
2377 		return NULL;
2378 	for (;;) {
2379 		struct sp_node *w = NULL;
2380 		struct rb_node *prev = rb_prev(n);
2381 		if (!prev)
2382 			break;
2383 		w = rb_entry(prev, struct sp_node, nd);
2384 		if (w->end <= start)
2385 			break;
2386 		n = prev;
2387 	}
2388 	return rb_entry(n, struct sp_node, nd);
2389 }
2390 
2391 /*
2392  * Insert a new shared policy into the list.  Caller holds sp->lock for
2393  * writing.
2394  */
sp_insert(struct shared_policy * sp,struct sp_node * new)2395 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2396 {
2397 	struct rb_node **p = &sp->root.rb_node;
2398 	struct rb_node *parent = NULL;
2399 	struct sp_node *nd;
2400 
2401 	while (*p) {
2402 		parent = *p;
2403 		nd = rb_entry(parent, struct sp_node, nd);
2404 		if (new->start < nd->start)
2405 			p = &(*p)->rb_left;
2406 		else if (new->end > nd->end)
2407 			p = &(*p)->rb_right;
2408 		else
2409 			BUG();
2410 	}
2411 	rb_link_node(&new->nd, parent, p);
2412 	rb_insert_color(&new->nd, &sp->root);
2413 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2414 		 new->policy ? new->policy->mode : 0);
2415 }
2416 
2417 /* Find shared policy intersecting idx */
2418 struct mempolicy *
mpol_shared_policy_lookup(struct shared_policy * sp,unsigned long idx)2419 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2420 {
2421 	struct mempolicy *pol = NULL;
2422 	struct sp_node *sn;
2423 
2424 	if (!sp->root.rb_node)
2425 		return NULL;
2426 	read_lock(&sp->lock);
2427 	sn = sp_lookup(sp, idx, idx+1);
2428 	if (sn) {
2429 		mpol_get(sn->policy);
2430 		pol = sn->policy;
2431 	}
2432 	read_unlock(&sp->lock);
2433 	return pol;
2434 }
2435 
sp_free(struct sp_node * n)2436 static void sp_free(struct sp_node *n)
2437 {
2438 	mpol_put(n->policy);
2439 	kmem_cache_free(sn_cache, n);
2440 }
2441 
2442 /**
2443  * mpol_misplaced - check whether current page node is valid in policy
2444  *
2445  * @page: page to be checked
2446  * @vma: vm area where page mapped
2447  * @addr: virtual address where page mapped
2448  *
2449  * Lookup current policy node id for vma,addr and "compare to" page's
2450  * node id.
2451  *
2452  * Returns:
2453  *	-1	- not misplaced, page is in the right node
2454  *	node	- node id where the page should be
2455  *
2456  * Policy determination "mimics" alloc_page_vma().
2457  * Called from fault path where we know the vma and faulting address.
2458  */
mpol_misplaced(struct page * page,struct vm_area_struct * vma,unsigned long addr)2459 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2460 {
2461 	struct mempolicy *pol;
2462 	struct zoneref *z;
2463 	int curnid = page_to_nid(page);
2464 	unsigned long pgoff;
2465 	int thiscpu = raw_smp_processor_id();
2466 	int thisnid = cpu_to_node(thiscpu);
2467 	int polnid = NUMA_NO_NODE;
2468 	int ret = -1;
2469 
2470 	pol = get_vma_policy(vma, addr);
2471 	if (!(pol->flags & MPOL_F_MOF))
2472 		goto out;
2473 
2474 	switch (pol->mode) {
2475 	case MPOL_INTERLEAVE:
2476 		pgoff = vma->vm_pgoff;
2477 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2478 		polnid = offset_il_node(pol, pgoff);
2479 		break;
2480 
2481 	case MPOL_PREFERRED:
2482 		if (pol->flags & MPOL_F_LOCAL)
2483 			polnid = numa_node_id();
2484 		else
2485 			polnid = pol->v.preferred_node;
2486 		break;
2487 
2488 	case MPOL_BIND:
2489 
2490 		/*
2491 		 * allows binding to multiple nodes.
2492 		 * use current page if in policy nodemask,
2493 		 * else select nearest allowed node, if any.
2494 		 * If no allowed nodes, use current [!misplaced].
2495 		 */
2496 		if (node_isset(curnid, pol->v.nodes))
2497 			goto out;
2498 		z = first_zones_zonelist(
2499 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2500 				gfp_zone(GFP_HIGHUSER),
2501 				&pol->v.nodes);
2502 		polnid = zone_to_nid(z->zone);
2503 		break;
2504 
2505 	default:
2506 		BUG();
2507 	}
2508 
2509 	/* Migrate the page towards the node whose CPU is referencing it */
2510 	if (pol->flags & MPOL_F_MORON) {
2511 		polnid = thisnid;
2512 
2513 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2514 			goto out;
2515 	}
2516 
2517 	if (curnid != polnid)
2518 		ret = polnid;
2519 out:
2520 	mpol_cond_put(pol);
2521 
2522 	return ret;
2523 }
2524 
2525 /*
2526  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2527  * dropped after task->mempolicy is set to NULL so that any allocation done as
2528  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2529  * policy.
2530  */
mpol_put_task_policy(struct task_struct * task)2531 void mpol_put_task_policy(struct task_struct *task)
2532 {
2533 	struct mempolicy *pol;
2534 
2535 	task_lock(task);
2536 	pol = task->mempolicy;
2537 	task->mempolicy = NULL;
2538 	task_unlock(task);
2539 	mpol_put(pol);
2540 }
2541 
sp_delete(struct shared_policy * sp,struct sp_node * n)2542 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2543 {
2544 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2545 	rb_erase(&n->nd, &sp->root);
2546 	sp_free(n);
2547 }
2548 
sp_node_init(struct sp_node * node,unsigned long start,unsigned long end,struct mempolicy * pol)2549 static void sp_node_init(struct sp_node *node, unsigned long start,
2550 			unsigned long end, struct mempolicy *pol)
2551 {
2552 	node->start = start;
2553 	node->end = end;
2554 	node->policy = pol;
2555 }
2556 
sp_alloc(unsigned long start,unsigned long end,struct mempolicy * pol)2557 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2558 				struct mempolicy *pol)
2559 {
2560 	struct sp_node *n;
2561 	struct mempolicy *newpol;
2562 
2563 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2564 	if (!n)
2565 		return NULL;
2566 
2567 	newpol = mpol_dup(pol);
2568 	if (IS_ERR(newpol)) {
2569 		kmem_cache_free(sn_cache, n);
2570 		return NULL;
2571 	}
2572 	newpol->flags |= MPOL_F_SHARED;
2573 	sp_node_init(n, start, end, newpol);
2574 
2575 	return n;
2576 }
2577 
2578 /* Replace a policy range. */
shared_policy_replace(struct shared_policy * sp,unsigned long start,unsigned long end,struct sp_node * new)2579 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2580 				 unsigned long end, struct sp_node *new)
2581 {
2582 	struct sp_node *n;
2583 	struct sp_node *n_new = NULL;
2584 	struct mempolicy *mpol_new = NULL;
2585 	int ret = 0;
2586 
2587 restart:
2588 	write_lock(&sp->lock);
2589 	n = sp_lookup(sp, start, end);
2590 	/* Take care of old policies in the same range. */
2591 	while (n && n->start < end) {
2592 		struct rb_node *next = rb_next(&n->nd);
2593 		if (n->start >= start) {
2594 			if (n->end <= end)
2595 				sp_delete(sp, n);
2596 			else
2597 				n->start = end;
2598 		} else {
2599 			/* Old policy spanning whole new range. */
2600 			if (n->end > end) {
2601 				if (!n_new)
2602 					goto alloc_new;
2603 
2604 				*mpol_new = *n->policy;
2605 				atomic_set(&mpol_new->refcnt, 1);
2606 				sp_node_init(n_new, end, n->end, mpol_new);
2607 				n->end = start;
2608 				sp_insert(sp, n_new);
2609 				n_new = NULL;
2610 				mpol_new = NULL;
2611 				break;
2612 			} else
2613 				n->end = start;
2614 		}
2615 		if (!next)
2616 			break;
2617 		n = rb_entry(next, struct sp_node, nd);
2618 	}
2619 	if (new)
2620 		sp_insert(sp, new);
2621 	write_unlock(&sp->lock);
2622 	ret = 0;
2623 
2624 err_out:
2625 	if (mpol_new)
2626 		mpol_put(mpol_new);
2627 	if (n_new)
2628 		kmem_cache_free(sn_cache, n_new);
2629 
2630 	return ret;
2631 
2632 alloc_new:
2633 	write_unlock(&sp->lock);
2634 	ret = -ENOMEM;
2635 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2636 	if (!n_new)
2637 		goto err_out;
2638 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2639 	if (!mpol_new)
2640 		goto err_out;
2641 	atomic_set(&mpol_new->refcnt, 1);
2642 	goto restart;
2643 }
2644 
2645 /**
2646  * mpol_shared_policy_init - initialize shared policy for inode
2647  * @sp: pointer to inode shared policy
2648  * @mpol:  struct mempolicy to install
2649  *
2650  * Install non-NULL @mpol in inode's shared policy rb-tree.
2651  * On entry, the current task has a reference on a non-NULL @mpol.
2652  * This must be released on exit.
2653  * This is called at get_inode() calls and we can use GFP_KERNEL.
2654  */
mpol_shared_policy_init(struct shared_policy * sp,struct mempolicy * mpol)2655 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2656 {
2657 	int ret;
2658 
2659 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2660 	rwlock_init(&sp->lock);
2661 
2662 	if (mpol) {
2663 		struct vm_area_struct pvma;
2664 		struct mempolicy *new;
2665 		NODEMASK_SCRATCH(scratch);
2666 
2667 		if (!scratch)
2668 			goto put_mpol;
2669 		/* contextualize the tmpfs mount point mempolicy */
2670 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2671 		if (IS_ERR(new))
2672 			goto free_scratch; /* no valid nodemask intersection */
2673 
2674 		task_lock(current);
2675 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2676 		task_unlock(current);
2677 		if (ret)
2678 			goto put_new;
2679 
2680 		/* Create pseudo-vma that contains just the policy */
2681 		vma_init(&pvma, NULL);
2682 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2683 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2684 
2685 put_new:
2686 		mpol_put(new);			/* drop initial ref */
2687 free_scratch:
2688 		NODEMASK_SCRATCH_FREE(scratch);
2689 put_mpol:
2690 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2691 	}
2692 }
2693 
mpol_set_shared_policy(struct shared_policy * info,struct vm_area_struct * vma,struct mempolicy * npol)2694 int mpol_set_shared_policy(struct shared_policy *info,
2695 			struct vm_area_struct *vma, struct mempolicy *npol)
2696 {
2697 	int err;
2698 	struct sp_node *new = NULL;
2699 	unsigned long sz = vma_pages(vma);
2700 
2701 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2702 		 vma->vm_pgoff,
2703 		 sz, npol ? npol->mode : -1,
2704 		 npol ? npol->flags : -1,
2705 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2706 
2707 	if (npol) {
2708 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2709 		if (!new)
2710 			return -ENOMEM;
2711 	}
2712 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2713 	if (err && new)
2714 		sp_free(new);
2715 	return err;
2716 }
2717 
2718 /* Free a backing policy store on inode delete. */
mpol_free_shared_policy(struct shared_policy * p)2719 void mpol_free_shared_policy(struct shared_policy *p)
2720 {
2721 	struct sp_node *n;
2722 	struct rb_node *next;
2723 
2724 	if (!p->root.rb_node)
2725 		return;
2726 	write_lock(&p->lock);
2727 	next = rb_first(&p->root);
2728 	while (next) {
2729 		n = rb_entry(next, struct sp_node, nd);
2730 		next = rb_next(&n->nd);
2731 		sp_delete(p, n);
2732 	}
2733 	write_unlock(&p->lock);
2734 }
2735 
2736 #ifdef CONFIG_NUMA_BALANCING
2737 static int __initdata numabalancing_override;
2738 
check_numabalancing_enable(void)2739 static void __init check_numabalancing_enable(void)
2740 {
2741 	bool numabalancing_default = false;
2742 
2743 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2744 		numabalancing_default = true;
2745 
2746 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2747 	if (numabalancing_override)
2748 		set_numabalancing_state(numabalancing_override == 1);
2749 
2750 	if (num_online_nodes() > 1 && !numabalancing_override) {
2751 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2752 			numabalancing_default ? "Enabling" : "Disabling");
2753 		set_numabalancing_state(numabalancing_default);
2754 	}
2755 }
2756 
setup_numabalancing(char * str)2757 static int __init setup_numabalancing(char *str)
2758 {
2759 	int ret = 0;
2760 	if (!str)
2761 		goto out;
2762 
2763 	if (!strcmp(str, "enable")) {
2764 		numabalancing_override = 1;
2765 		ret = 1;
2766 	} else if (!strcmp(str, "disable")) {
2767 		numabalancing_override = -1;
2768 		ret = 1;
2769 	}
2770 out:
2771 	if (!ret)
2772 		pr_warn("Unable to parse numa_balancing=\n");
2773 
2774 	return ret;
2775 }
2776 __setup("numa_balancing=", setup_numabalancing);
2777 #else
check_numabalancing_enable(void)2778 static inline void __init check_numabalancing_enable(void)
2779 {
2780 }
2781 #endif /* CONFIG_NUMA_BALANCING */
2782 
2783 /* assumes fs == KERNEL_DS */
numa_policy_init(void)2784 void __init numa_policy_init(void)
2785 {
2786 	nodemask_t interleave_nodes;
2787 	unsigned long largest = 0;
2788 	int nid, prefer = 0;
2789 
2790 	policy_cache = kmem_cache_create("numa_policy",
2791 					 sizeof(struct mempolicy),
2792 					 0, SLAB_PANIC, NULL);
2793 
2794 	sn_cache = kmem_cache_create("shared_policy_node",
2795 				     sizeof(struct sp_node),
2796 				     0, SLAB_PANIC, NULL);
2797 
2798 	for_each_node(nid) {
2799 		preferred_node_policy[nid] = (struct mempolicy) {
2800 			.refcnt = ATOMIC_INIT(1),
2801 			.mode = MPOL_PREFERRED,
2802 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2803 			.v = { .preferred_node = nid, },
2804 		};
2805 	}
2806 
2807 	/*
2808 	 * Set interleaving policy for system init. Interleaving is only
2809 	 * enabled across suitably sized nodes (default is >= 16MB), or
2810 	 * fall back to the largest node if they're all smaller.
2811 	 */
2812 	nodes_clear(interleave_nodes);
2813 	for_each_node_state(nid, N_MEMORY) {
2814 		unsigned long total_pages = node_present_pages(nid);
2815 
2816 		/* Preserve the largest node */
2817 		if (largest < total_pages) {
2818 			largest = total_pages;
2819 			prefer = nid;
2820 		}
2821 
2822 		/* Interleave this node? */
2823 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2824 			node_set(nid, interleave_nodes);
2825 	}
2826 
2827 	/* All too small, use the largest */
2828 	if (unlikely(nodes_empty(interleave_nodes)))
2829 		node_set(prefer, interleave_nodes);
2830 
2831 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2832 		pr_err("%s: interleaving failed\n", __func__);
2833 
2834 	check_numabalancing_enable();
2835 }
2836 
2837 /* Reset policy of current process to default */
numa_default_policy(void)2838 void numa_default_policy(void)
2839 {
2840 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2841 }
2842 
2843 /*
2844  * Parse and format mempolicy from/to strings
2845  */
2846 
2847 /*
2848  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2849  */
2850 static const char * const policy_modes[] =
2851 {
2852 	[MPOL_DEFAULT]    = "default",
2853 	[MPOL_PREFERRED]  = "prefer",
2854 	[MPOL_BIND]       = "bind",
2855 	[MPOL_INTERLEAVE] = "interleave",
2856 	[MPOL_LOCAL]      = "local",
2857 };
2858 
2859 
2860 #ifdef CONFIG_TMPFS
2861 /**
2862  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2863  * @str:  string containing mempolicy to parse
2864  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2865  *
2866  * Format of input:
2867  *	<mode>[=<flags>][:<nodelist>]
2868  *
2869  * On success, returns 0, else 1
2870  */
mpol_parse_str(char * str,struct mempolicy ** mpol)2871 int mpol_parse_str(char *str, struct mempolicy **mpol)
2872 {
2873 	struct mempolicy *new = NULL;
2874 	unsigned short mode_flags;
2875 	nodemask_t nodes;
2876 	char *nodelist = strchr(str, ':');
2877 	char *flags = strchr(str, '=');
2878 	int err = 1, mode;
2879 
2880 	if (flags)
2881 		*flags++ = '\0';	/* terminate mode string */
2882 
2883 	if (nodelist) {
2884 		/* NUL-terminate mode or flags string */
2885 		*nodelist++ = '\0';
2886 		if (nodelist_parse(nodelist, nodes))
2887 			goto out;
2888 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2889 			goto out;
2890 	} else
2891 		nodes_clear(nodes);
2892 
2893 	mode = match_string(policy_modes, MPOL_MAX, str);
2894 	if (mode < 0)
2895 		goto out;
2896 
2897 	switch (mode) {
2898 	case MPOL_PREFERRED:
2899 		/*
2900 		 * Insist on a nodelist of one node only, although later
2901 		 * we use first_node(nodes) to grab a single node, so here
2902 		 * nodelist (or nodes) cannot be empty.
2903 		 */
2904 		if (nodelist) {
2905 			char *rest = nodelist;
2906 			while (isdigit(*rest))
2907 				rest++;
2908 			if (*rest)
2909 				goto out;
2910 			if (nodes_empty(nodes))
2911 				goto out;
2912 		}
2913 		break;
2914 	case MPOL_INTERLEAVE:
2915 		/*
2916 		 * Default to online nodes with memory if no nodelist
2917 		 */
2918 		if (!nodelist)
2919 			nodes = node_states[N_MEMORY];
2920 		break;
2921 	case MPOL_LOCAL:
2922 		/*
2923 		 * Don't allow a nodelist;  mpol_new() checks flags
2924 		 */
2925 		if (nodelist)
2926 			goto out;
2927 		mode = MPOL_PREFERRED;
2928 		break;
2929 	case MPOL_DEFAULT:
2930 		/*
2931 		 * Insist on a empty nodelist
2932 		 */
2933 		if (!nodelist)
2934 			err = 0;
2935 		goto out;
2936 	case MPOL_BIND:
2937 		/*
2938 		 * Insist on a nodelist
2939 		 */
2940 		if (!nodelist)
2941 			goto out;
2942 	}
2943 
2944 	mode_flags = 0;
2945 	if (flags) {
2946 		/*
2947 		 * Currently, we only support two mutually exclusive
2948 		 * mode flags.
2949 		 */
2950 		if (!strcmp(flags, "static"))
2951 			mode_flags |= MPOL_F_STATIC_NODES;
2952 		else if (!strcmp(flags, "relative"))
2953 			mode_flags |= MPOL_F_RELATIVE_NODES;
2954 		else
2955 			goto out;
2956 	}
2957 
2958 	new = mpol_new(mode, mode_flags, &nodes);
2959 	if (IS_ERR(new))
2960 		goto out;
2961 
2962 	/*
2963 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2964 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2965 	 */
2966 	if (mode != MPOL_PREFERRED)
2967 		new->v.nodes = nodes;
2968 	else if (nodelist)
2969 		new->v.preferred_node = first_node(nodes);
2970 	else
2971 		new->flags |= MPOL_F_LOCAL;
2972 
2973 	/*
2974 	 * Save nodes for contextualization: this will be used to "clone"
2975 	 * the mempolicy in a specific context [cpuset] at a later time.
2976 	 */
2977 	new->w.user_nodemask = nodes;
2978 
2979 	err = 0;
2980 
2981 out:
2982 	/* Restore string for error message */
2983 	if (nodelist)
2984 		*--nodelist = ':';
2985 	if (flags)
2986 		*--flags = '=';
2987 	if (!err)
2988 		*mpol = new;
2989 	return err;
2990 }
2991 #endif /* CONFIG_TMPFS */
2992 
2993 /**
2994  * mpol_to_str - format a mempolicy structure for printing
2995  * @buffer:  to contain formatted mempolicy string
2996  * @maxlen:  length of @buffer
2997  * @pol:  pointer to mempolicy to be formatted
2998  *
2999  * Convert @pol into a string.  If @buffer is too short, truncate the string.
3000  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
3001  * longest flag, "relative", and to display at least a few node ids.
3002  */
mpol_to_str(char * buffer,int maxlen,struct mempolicy * pol)3003 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
3004 {
3005 	char *p = buffer;
3006 	nodemask_t nodes = NODE_MASK_NONE;
3007 	unsigned short mode = MPOL_DEFAULT;
3008 	unsigned short flags = 0;
3009 
3010 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
3011 		mode = pol->mode;
3012 		flags = pol->flags;
3013 	}
3014 
3015 	switch (mode) {
3016 	case MPOL_DEFAULT:
3017 		break;
3018 	case MPOL_PREFERRED:
3019 		if (flags & MPOL_F_LOCAL)
3020 			mode = MPOL_LOCAL;
3021 		else
3022 			node_set(pol->v.preferred_node, nodes);
3023 		break;
3024 	case MPOL_BIND:
3025 	case MPOL_INTERLEAVE:
3026 		nodes = pol->v.nodes;
3027 		break;
3028 	default:
3029 		WARN_ON_ONCE(1);
3030 		snprintf(p, maxlen, "unknown");
3031 		return;
3032 	}
3033 
3034 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
3035 
3036 	if (flags & MPOL_MODE_FLAGS) {
3037 		p += snprintf(p, buffer + maxlen - p, "=");
3038 
3039 		/*
3040 		 * Currently, the only defined flags are mutually exclusive
3041 		 */
3042 		if (flags & MPOL_F_STATIC_NODES)
3043 			p += snprintf(p, buffer + maxlen - p, "static");
3044 		else if (flags & MPOL_F_RELATIVE_NODES)
3045 			p += snprintf(p, buffer + maxlen - p, "relative");
3046 	}
3047 
3048 	if (!nodes_empty(nodes))
3049 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
3050 			       nodemask_pr_args(&nodes));
3051 }
3052