1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/vmscan.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, Stephen Tweedie. 8 * kswapd added: 7.1.96 sct 9 * Removed kswapd_ctl limits, and swap out as many pages as needed 10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 12 * Multiqueue VM started 5.8.00, Rik van Riel. 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/mm.h> 18 #include <linux/sched/mm.h> 19 #include <linux/module.h> 20 #include <linux/gfp.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/swap.h> 23 #include <linux/pagemap.h> 24 #include <linux/init.h> 25 #include <linux/highmem.h> 26 #include <linux/vmpressure.h> 27 #include <linux/vmstat.h> 28 #include <linux/file.h> 29 #include <linux/writeback.h> 30 #include <linux/blkdev.h> 31 #include <linux/buffer_head.h> /* for try_to_release_page(), 32 buffer_heads_over_limit */ 33 #include <linux/mm_inline.h> 34 #include <linux/backing-dev.h> 35 #include <linux/rmap.h> 36 #include <linux/topology.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/compaction.h> 40 #include <linux/notifier.h> 41 #include <linux/rwsem.h> 42 #include <linux/delay.h> 43 #include <linux/kthread.h> 44 #include <linux/freezer.h> 45 #include <linux/memcontrol.h> 46 #include <linux/delayacct.h> 47 #include <linux/sysctl.h> 48 #include <linux/oom.h> 49 #include <linux/pagevec.h> 50 #include <linux/prefetch.h> 51 #include <linux/printk.h> 52 #include <linux/dax.h> 53 #include <linux/psi.h> 54 55 #include <asm/tlbflush.h> 56 #include <asm/div64.h> 57 58 #include <linux/swapops.h> 59 #include <linux/balloon_compaction.h> 60 61 #include "internal.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/vmscan.h> 65 66 #ifdef CONFIG_HYPERHOLD_FILE_LRU 67 #include <linux/memcg_policy.h> 68 #endif 69 70 #ifdef CONFIG_RECLAIM_ACCT 71 #include <linux/reclaim_acct.h> 72 #endif 73 74 #ifdef ARCH_HAS_PREFETCHW 75 #define prefetchw_prev_lru_page(_page, _base, _field) \ 76 do { \ 77 if ((_page)->lru.prev != _base) { \ 78 struct page *prev; \ 79 \ 80 prev = lru_to_page(&(_page->lru)); \ 81 prefetchw(&prev->_field); \ 82 } \ 83 } while (0) 84 #else 85 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 86 #endif 87 88 #ifdef CONFIG_HYPERHOLD_FILE_LRU 89 unsigned int enough_inactive_file = 1; 90 #endif 91 92 /* 93 * From 0 .. 200. Higher means more swappy. 94 */ 95 int vm_swappiness = 60; 96 set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)97 static void set_task_reclaim_state(struct task_struct *task, 98 struct reclaim_state *rs) 99 { 100 /* Check for an overwrite */ 101 WARN_ON_ONCE(rs && task->reclaim_state); 102 103 /* Check for the nulling of an already-nulled member */ 104 WARN_ON_ONCE(!rs && !task->reclaim_state); 105 106 task->reclaim_state = rs; 107 } 108 109 static LIST_HEAD(shrinker_list); 110 static DECLARE_RWSEM(shrinker_rwsem); 111 112 #ifdef CONFIG_MEMCG 113 114 static DEFINE_IDR(shrinker_idr); 115 static int shrinker_nr_max; 116 prealloc_memcg_shrinker(struct shrinker * shrinker)117 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 118 { 119 int id, ret = -ENOMEM; 120 121 down_write(&shrinker_rwsem); 122 /* This may call shrinker, so it must use down_read_trylock() */ 123 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL); 124 if (id < 0) 125 goto unlock; 126 127 if (id >= shrinker_nr_max) { 128 if (memcg_expand_shrinker_maps(id)) { 129 idr_remove(&shrinker_idr, id); 130 goto unlock; 131 } 132 133 shrinker_nr_max = id + 1; 134 } 135 shrinker->id = id; 136 ret = 0; 137 unlock: 138 up_write(&shrinker_rwsem); 139 return ret; 140 } 141 unregister_memcg_shrinker(struct shrinker * shrinker)142 static void unregister_memcg_shrinker(struct shrinker *shrinker) 143 { 144 int id = shrinker->id; 145 146 BUG_ON(id < 0); 147 148 lockdep_assert_held(&shrinker_rwsem); 149 150 idr_remove(&shrinker_idr, id); 151 } 152 cgroup_reclaim(struct scan_control * sc)153 bool cgroup_reclaim(struct scan_control *sc) 154 { 155 return sc->target_mem_cgroup; 156 } 157 158 /** 159 * writeback_throttling_sane - is the usual dirty throttling mechanism available? 160 * @sc: scan_control in question 161 * 162 * The normal page dirty throttling mechanism in balance_dirty_pages() is 163 * completely broken with the legacy memcg and direct stalling in 164 * shrink_page_list() is used for throttling instead, which lacks all the 165 * niceties such as fairness, adaptive pausing, bandwidth proportional 166 * allocation and configurability. 167 * 168 * This function tests whether the vmscan currently in progress can assume 169 * that the normal dirty throttling mechanism is operational. 170 */ writeback_throttling_sane(struct scan_control * sc)171 bool writeback_throttling_sane(struct scan_control *sc) 172 { 173 if (!cgroup_reclaim(sc)) 174 return true; 175 #ifdef CONFIG_CGROUP_WRITEBACK 176 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 177 return true; 178 #endif 179 return false; 180 } 181 #else prealloc_memcg_shrinker(struct shrinker * shrinker)182 static int prealloc_memcg_shrinker(struct shrinker *shrinker) 183 { 184 return 0; 185 } 186 unregister_memcg_shrinker(struct shrinker * shrinker)187 static void unregister_memcg_shrinker(struct shrinker *shrinker) 188 { 189 } 190 cgroup_reclaim(struct scan_control * sc)191 bool cgroup_reclaim(struct scan_control *sc) 192 { 193 return false; 194 } 195 writeback_throttling_sane(struct scan_control * sc)196 bool writeback_throttling_sane(struct scan_control *sc) 197 { 198 return true; 199 } 200 #endif 201 202 /* 203 * This misses isolated pages which are not accounted for to save counters. 204 * As the data only determines if reclaim or compaction continues, it is 205 * not expected that isolated pages will be a dominating factor. 206 */ zone_reclaimable_pages(struct zone * zone)207 unsigned long zone_reclaimable_pages(struct zone *zone) 208 { 209 unsigned long nr; 210 211 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 212 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 213 if (get_nr_swap_pages() > 0) 214 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 215 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 216 217 return nr; 218 } 219 220 /** 221 * lruvec_lru_size - Returns the number of pages on the given LRU list. 222 * @lruvec: lru vector 223 * @lru: lru to use 224 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 225 */ lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)226 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 227 { 228 unsigned long size = 0; 229 int zid; 230 231 #ifdef CONFIG_HYPERHOLD_FILE_LRU 232 if (!mem_cgroup_disabled() && is_node_lruvec(lruvec)) { 233 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 234 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 235 236 if (!managed_zone(zone)) 237 continue; 238 239 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 240 } 241 242 return size; 243 } 244 #endif 245 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) { 246 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 247 248 if (!managed_zone(zone)) 249 continue; 250 251 if (!mem_cgroup_disabled()) 252 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 253 else 254 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru); 255 } 256 return size; 257 } 258 259 /* 260 * Add a shrinker callback to be called from the vm. 261 */ prealloc_shrinker(struct shrinker * shrinker)262 int prealloc_shrinker(struct shrinker *shrinker) 263 { 264 unsigned int size = sizeof(*shrinker->nr_deferred); 265 266 if (shrinker->flags & SHRINKER_NUMA_AWARE) 267 size *= nr_node_ids; 268 269 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 270 if (!shrinker->nr_deferred) 271 return -ENOMEM; 272 273 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 274 if (prealloc_memcg_shrinker(shrinker)) 275 goto free_deferred; 276 } 277 278 return 0; 279 280 free_deferred: 281 kfree(shrinker->nr_deferred); 282 shrinker->nr_deferred = NULL; 283 return -ENOMEM; 284 } 285 free_prealloced_shrinker(struct shrinker * shrinker)286 void free_prealloced_shrinker(struct shrinker *shrinker) 287 { 288 if (!shrinker->nr_deferred) 289 return; 290 291 if (shrinker->flags & SHRINKER_MEMCG_AWARE) { 292 down_write(&shrinker_rwsem); 293 unregister_memcg_shrinker(shrinker); 294 up_write(&shrinker_rwsem); 295 } 296 297 kfree(shrinker->nr_deferred); 298 shrinker->nr_deferred = NULL; 299 } 300 register_shrinker_prepared(struct shrinker * shrinker)301 void register_shrinker_prepared(struct shrinker *shrinker) 302 { 303 down_write(&shrinker_rwsem); 304 list_add_tail(&shrinker->list, &shrinker_list); 305 shrinker->flags |= SHRINKER_REGISTERED; 306 up_write(&shrinker_rwsem); 307 } 308 register_shrinker(struct shrinker * shrinker)309 int register_shrinker(struct shrinker *shrinker) 310 { 311 int err = prealloc_shrinker(shrinker); 312 313 if (err) 314 return err; 315 register_shrinker_prepared(shrinker); 316 return 0; 317 } 318 EXPORT_SYMBOL(register_shrinker); 319 320 /* 321 * Remove one 322 */ unregister_shrinker(struct shrinker * shrinker)323 void unregister_shrinker(struct shrinker *shrinker) 324 { 325 if (!(shrinker->flags & SHRINKER_REGISTERED)) 326 return; 327 328 down_write(&shrinker_rwsem); 329 list_del(&shrinker->list); 330 shrinker->flags &= ~SHRINKER_REGISTERED; 331 if (shrinker->flags & SHRINKER_MEMCG_AWARE) 332 unregister_memcg_shrinker(shrinker); 333 up_write(&shrinker_rwsem); 334 335 kfree(shrinker->nr_deferred); 336 shrinker->nr_deferred = NULL; 337 } 338 EXPORT_SYMBOL(unregister_shrinker); 339 340 #define SHRINK_BATCH 128 341 do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,int priority)342 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 343 struct shrinker *shrinker, int priority) 344 { 345 unsigned long freed = 0; 346 unsigned long long delta; 347 long total_scan; 348 long freeable; 349 long nr; 350 long new_nr; 351 int nid = shrinkctl->nid; 352 long batch_size = shrinker->batch ? shrinker->batch 353 : SHRINK_BATCH; 354 long scanned = 0, next_deferred; 355 356 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 357 nid = 0; 358 359 freeable = shrinker->count_objects(shrinker, shrinkctl); 360 if (freeable == 0 || freeable == SHRINK_EMPTY) 361 return freeable; 362 363 /* 364 * copy the current shrinker scan count into a local variable 365 * and zero it so that other concurrent shrinker invocations 366 * don't also do this scanning work. 367 */ 368 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 369 370 total_scan = nr; 371 if (shrinker->seeks) { 372 delta = freeable >> priority; 373 delta *= 4; 374 do_div(delta, shrinker->seeks); 375 } else { 376 /* 377 * These objects don't require any IO to create. Trim 378 * them aggressively under memory pressure to keep 379 * them from causing refetches in the IO caches. 380 */ 381 delta = freeable / 2; 382 } 383 384 total_scan += delta; 385 if (total_scan < 0) { 386 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n", 387 shrinker->scan_objects, total_scan); 388 total_scan = freeable; 389 next_deferred = nr; 390 } else 391 next_deferred = total_scan; 392 393 /* 394 * We need to avoid excessive windup on filesystem shrinkers 395 * due to large numbers of GFP_NOFS allocations causing the 396 * shrinkers to return -1 all the time. This results in a large 397 * nr being built up so when a shrink that can do some work 398 * comes along it empties the entire cache due to nr >>> 399 * freeable. This is bad for sustaining a working set in 400 * memory. 401 * 402 * Hence only allow the shrinker to scan the entire cache when 403 * a large delta change is calculated directly. 404 */ 405 if (delta < freeable / 4) 406 total_scan = min(total_scan, freeable / 2); 407 408 /* 409 * Avoid risking looping forever due to too large nr value: 410 * never try to free more than twice the estimate number of 411 * freeable entries. 412 */ 413 if (total_scan > freeable * 2) 414 total_scan = freeable * 2; 415 416 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 417 freeable, delta, total_scan, priority); 418 419 /* 420 * Normally, we should not scan less than batch_size objects in one 421 * pass to avoid too frequent shrinker calls, but if the slab has less 422 * than batch_size objects in total and we are really tight on memory, 423 * we will try to reclaim all available objects, otherwise we can end 424 * up failing allocations although there are plenty of reclaimable 425 * objects spread over several slabs with usage less than the 426 * batch_size. 427 * 428 * We detect the "tight on memory" situations by looking at the total 429 * number of objects we want to scan (total_scan). If it is greater 430 * than the total number of objects on slab (freeable), we must be 431 * scanning at high prio and therefore should try to reclaim as much as 432 * possible. 433 */ 434 while (total_scan >= batch_size || 435 total_scan >= freeable) { 436 unsigned long ret; 437 unsigned long nr_to_scan = min(batch_size, total_scan); 438 439 shrinkctl->nr_to_scan = nr_to_scan; 440 shrinkctl->nr_scanned = nr_to_scan; 441 ret = shrinker->scan_objects(shrinker, shrinkctl); 442 if (ret == SHRINK_STOP) 443 break; 444 freed += ret; 445 446 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); 447 total_scan -= shrinkctl->nr_scanned; 448 scanned += shrinkctl->nr_scanned; 449 450 cond_resched(); 451 } 452 453 if (next_deferred >= scanned) 454 next_deferred -= scanned; 455 else 456 next_deferred = 0; 457 /* 458 * move the unused scan count back into the shrinker in a 459 * manner that handles concurrent updates. If we exhausted the 460 * scan, there is no need to do an update. 461 */ 462 if (next_deferred > 0) 463 new_nr = atomic_long_add_return(next_deferred, 464 &shrinker->nr_deferred[nid]); 465 else 466 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 467 468 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 469 return freed; 470 } 471 472 #ifdef CONFIG_MEMCG shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)473 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 474 struct mem_cgroup *memcg, int priority) 475 { 476 struct memcg_shrinker_map *map; 477 unsigned long ret, freed = 0; 478 int i; 479 480 if (!mem_cgroup_online(memcg)) 481 return 0; 482 483 if (!down_read_trylock(&shrinker_rwsem)) 484 return 0; 485 486 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, 487 true); 488 if (unlikely(!map)) 489 goto unlock; 490 491 for_each_set_bit(i, map->map, shrinker_nr_max) { 492 struct shrink_control sc = { 493 .gfp_mask = gfp_mask, 494 .nid = nid, 495 .memcg = memcg, 496 }; 497 struct shrinker *shrinker; 498 499 shrinker = idr_find(&shrinker_idr, i); 500 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) { 501 if (!shrinker) 502 clear_bit(i, map->map); 503 continue; 504 } 505 506 /* Call non-slab shrinkers even though kmem is disabled */ 507 if (!memcg_kmem_enabled() && 508 !(shrinker->flags & SHRINKER_NONSLAB)) 509 continue; 510 511 ret = do_shrink_slab(&sc, shrinker, priority); 512 if (ret == SHRINK_EMPTY) { 513 clear_bit(i, map->map); 514 /* 515 * After the shrinker reported that it had no objects to 516 * free, but before we cleared the corresponding bit in 517 * the memcg shrinker map, a new object might have been 518 * added. To make sure, we have the bit set in this 519 * case, we invoke the shrinker one more time and reset 520 * the bit if it reports that it is not empty anymore. 521 * The memory barrier here pairs with the barrier in 522 * memcg_set_shrinker_bit(): 523 * 524 * list_lru_add() shrink_slab_memcg() 525 * list_add_tail() clear_bit() 526 * <MB> <MB> 527 * set_bit() do_shrink_slab() 528 */ 529 smp_mb__after_atomic(); 530 ret = do_shrink_slab(&sc, shrinker, priority); 531 if (ret == SHRINK_EMPTY) 532 ret = 0; 533 else 534 memcg_set_shrinker_bit(memcg, nid, i); 535 } 536 freed += ret; 537 538 if (rwsem_is_contended(&shrinker_rwsem)) { 539 freed = freed ? : 1; 540 break; 541 } 542 } 543 unlock: 544 up_read(&shrinker_rwsem); 545 return freed; 546 } 547 #else /* CONFIG_MEMCG */ shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)548 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, 549 struct mem_cgroup *memcg, int priority) 550 { 551 return 0; 552 } 553 #endif /* CONFIG_MEMCG */ 554 555 /** 556 * shrink_slab - shrink slab caches 557 * @gfp_mask: allocation context 558 * @nid: node whose slab caches to target 559 * @memcg: memory cgroup whose slab caches to target 560 * @priority: the reclaim priority 561 * 562 * Call the shrink functions to age shrinkable caches. 563 * 564 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 565 * unaware shrinkers will receive a node id of 0 instead. 566 * 567 * @memcg specifies the memory cgroup to target. Unaware shrinkers 568 * are called only if it is the root cgroup. 569 * 570 * @priority is sc->priority, we take the number of objects and >> by priority 571 * in order to get the scan target. 572 * 573 * Returns the number of reclaimed slab objects. 574 */ shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)575 unsigned long shrink_slab(gfp_t gfp_mask, int nid, 576 struct mem_cgroup *memcg, 577 int priority) 578 { 579 unsigned long ret, freed = 0; 580 struct shrinker *shrinker; 581 582 /* 583 * The root memcg might be allocated even though memcg is disabled 584 * via "cgroup_disable=memory" boot parameter. This could make 585 * mem_cgroup_is_root() return false, then just run memcg slab 586 * shrink, but skip global shrink. This may result in premature 587 * oom. 588 */ 589 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg)) 590 return shrink_slab_memcg(gfp_mask, nid, memcg, priority); 591 592 if (!down_read_trylock(&shrinker_rwsem)) 593 goto out; 594 595 list_for_each_entry(shrinker, &shrinker_list, list) { 596 struct shrink_control sc = { 597 .gfp_mask = gfp_mask, 598 .nid = nid, 599 .memcg = memcg, 600 }; 601 602 #ifdef CONFIG_RECLAIM_ACCT 603 reclaimacct_substage_start(RA_SHRINKSLAB); 604 #endif 605 ret = do_shrink_slab(&sc, shrinker, priority); 606 if (ret == SHRINK_EMPTY) 607 ret = 0; 608 freed += ret; 609 #ifdef CONFIG_RECLAIM_ACCT 610 reclaimacct_substage_end(RA_SHRINKSLAB, ret, shrinker); 611 #endif 612 /* 613 * Bail out if someone want to register a new shrinker to 614 * prevent the registration from being stalled for long periods 615 * by parallel ongoing shrinking. 616 */ 617 if (rwsem_is_contended(&shrinker_rwsem)) { 618 freed = freed ? : 1; 619 break; 620 } 621 } 622 623 up_read(&shrinker_rwsem); 624 out: 625 cond_resched(); 626 return freed; 627 } 628 drop_slab_node(int nid)629 void drop_slab_node(int nid) 630 { 631 unsigned long freed; 632 int shift = 0; 633 634 do { 635 struct mem_cgroup *memcg = NULL; 636 637 if (fatal_signal_pending(current)) 638 return; 639 640 freed = 0; 641 memcg = mem_cgroup_iter(NULL, NULL, NULL); 642 do { 643 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); 644 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 645 } while ((freed >> shift++) > 1); 646 } 647 drop_slab(void)648 void drop_slab(void) 649 { 650 int nid; 651 652 for_each_online_node(nid) 653 drop_slab_node(nid); 654 } 655 is_page_cache_freeable(struct page * page)656 static inline int is_page_cache_freeable(struct page *page) 657 { 658 /* 659 * A freeable page cache page is referenced only by the caller 660 * that isolated the page, the page cache and optional buffer 661 * heads at page->private. 662 */ 663 int page_cache_pins = thp_nr_pages(page); 664 return page_count(page) - page_has_private(page) == 1 + page_cache_pins; 665 } 666 may_write_to_inode(struct inode * inode)667 static int may_write_to_inode(struct inode *inode) 668 { 669 if (current->flags & PF_SWAPWRITE) 670 return 1; 671 if (!inode_write_congested(inode)) 672 return 1; 673 if (inode_to_bdi(inode) == current->backing_dev_info) 674 return 1; 675 return 0; 676 } 677 678 /* 679 * We detected a synchronous write error writing a page out. Probably 680 * -ENOSPC. We need to propagate that into the address_space for a subsequent 681 * fsync(), msync() or close(). 682 * 683 * The tricky part is that after writepage we cannot touch the mapping: nothing 684 * prevents it from being freed up. But we have a ref on the page and once 685 * that page is locked, the mapping is pinned. 686 * 687 * We're allowed to run sleeping lock_page() here because we know the caller has 688 * __GFP_FS. 689 */ handle_write_error(struct address_space * mapping,struct page * page,int error)690 static void handle_write_error(struct address_space *mapping, 691 struct page *page, int error) 692 { 693 lock_page(page); 694 if (page_mapping(page) == mapping) 695 mapping_set_error(mapping, error); 696 unlock_page(page); 697 } 698 699 /* possible outcome of pageout() */ 700 typedef enum { 701 /* failed to write page out, page is locked */ 702 PAGE_KEEP, 703 /* move page to the active list, page is locked */ 704 PAGE_ACTIVATE, 705 /* page has been sent to the disk successfully, page is unlocked */ 706 PAGE_SUCCESS, 707 /* page is clean and locked */ 708 PAGE_CLEAN, 709 } pageout_t; 710 711 /* 712 * pageout is called by shrink_page_list() for each dirty page. 713 * Calls ->writepage(). 714 */ pageout(struct page * page,struct address_space * mapping)715 static pageout_t pageout(struct page *page, struct address_space *mapping) 716 { 717 /* 718 * If the page is dirty, only perform writeback if that write 719 * will be non-blocking. To prevent this allocation from being 720 * stalled by pagecache activity. But note that there may be 721 * stalls if we need to run get_block(). We could test 722 * PagePrivate for that. 723 * 724 * If this process is currently in __generic_file_write_iter() against 725 * this page's queue, we can perform writeback even if that 726 * will block. 727 * 728 * If the page is swapcache, write it back even if that would 729 * block, for some throttling. This happens by accident, because 730 * swap_backing_dev_info is bust: it doesn't reflect the 731 * congestion state of the swapdevs. Easy to fix, if needed. 732 */ 733 if (!is_page_cache_freeable(page)) 734 return PAGE_KEEP; 735 if (!mapping) { 736 /* 737 * Some data journaling orphaned pages can have 738 * page->mapping == NULL while being dirty with clean buffers. 739 */ 740 if (page_has_private(page)) { 741 if (try_to_free_buffers(page)) { 742 ClearPageDirty(page); 743 pr_info("%s: orphaned page\n", __func__); 744 return PAGE_CLEAN; 745 } 746 } 747 return PAGE_KEEP; 748 } 749 if (mapping->a_ops->writepage == NULL) 750 return PAGE_ACTIVATE; 751 if (!may_write_to_inode(mapping->host)) 752 return PAGE_KEEP; 753 754 if (clear_page_dirty_for_io(page)) { 755 int res; 756 struct writeback_control wbc = { 757 .sync_mode = WB_SYNC_NONE, 758 .nr_to_write = SWAP_CLUSTER_MAX, 759 .range_start = 0, 760 .range_end = LLONG_MAX, 761 .for_reclaim = 1, 762 }; 763 764 SetPageReclaim(page); 765 res = mapping->a_ops->writepage(page, &wbc); 766 if (res < 0) 767 handle_write_error(mapping, page, res); 768 if (res == AOP_WRITEPAGE_ACTIVATE) { 769 ClearPageReclaim(page); 770 return PAGE_ACTIVATE; 771 } 772 773 if (!PageWriteback(page)) { 774 /* synchronous write or broken a_ops? */ 775 ClearPageReclaim(page); 776 } 777 trace_mm_vmscan_writepage(page); 778 inc_node_page_state(page, NR_VMSCAN_WRITE); 779 return PAGE_SUCCESS; 780 } 781 782 return PAGE_CLEAN; 783 } 784 785 /* 786 * Same as remove_mapping, but if the page is removed from the mapping, it 787 * gets returned with a refcount of 0. 788 */ __remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed,struct mem_cgroup * target_memcg)789 static int __remove_mapping(struct address_space *mapping, struct page *page, 790 bool reclaimed, struct mem_cgroup *target_memcg) 791 { 792 unsigned long flags; 793 int refcount; 794 void *shadow = NULL; 795 796 BUG_ON(!PageLocked(page)); 797 BUG_ON(mapping != page_mapping(page)); 798 799 xa_lock_irqsave(&mapping->i_pages, flags); 800 /* 801 * The non racy check for a busy page. 802 * 803 * Must be careful with the order of the tests. When someone has 804 * a ref to the page, it may be possible that they dirty it then 805 * drop the reference. So if PageDirty is tested before page_count 806 * here, then the following race may occur: 807 * 808 * get_user_pages(&page); 809 * [user mapping goes away] 810 * write_to(page); 811 * !PageDirty(page) [good] 812 * SetPageDirty(page); 813 * put_page(page); 814 * !page_count(page) [good, discard it] 815 * 816 * [oops, our write_to data is lost] 817 * 818 * Reversing the order of the tests ensures such a situation cannot 819 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 820 * load is not satisfied before that of page->_refcount. 821 * 822 * Note that if SetPageDirty is always performed via set_page_dirty, 823 * and thus under the i_pages lock, then this ordering is not required. 824 */ 825 refcount = 1 + compound_nr(page); 826 if (!page_ref_freeze(page, refcount)) 827 goto cannot_free; 828 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ 829 if (unlikely(PageDirty(page))) { 830 page_ref_unfreeze(page, refcount); 831 goto cannot_free; 832 } 833 834 if (PageSwapCache(page)) { 835 swp_entry_t swap = { .val = page_private(page) }; 836 mem_cgroup_swapout(page, swap); 837 if (reclaimed && !mapping_exiting(mapping)) 838 shadow = workingset_eviction(page, target_memcg); 839 __delete_from_swap_cache(page, swap, shadow); 840 xa_unlock_irqrestore(&mapping->i_pages, flags); 841 put_swap_page(page, swap); 842 } else { 843 void (*freepage)(struct page *); 844 845 freepage = mapping->a_ops->freepage; 846 /* 847 * Remember a shadow entry for reclaimed file cache in 848 * order to detect refaults, thus thrashing, later on. 849 * 850 * But don't store shadows in an address space that is 851 * already exiting. This is not just an optimization, 852 * inode reclaim needs to empty out the radix tree or 853 * the nodes are lost. Don't plant shadows behind its 854 * back. 855 * 856 * We also don't store shadows for DAX mappings because the 857 * only page cache pages found in these are zero pages 858 * covering holes, and because we don't want to mix DAX 859 * exceptional entries and shadow exceptional entries in the 860 * same address_space. 861 */ 862 if (reclaimed && page_is_file_lru(page) && 863 !mapping_exiting(mapping) && !dax_mapping(mapping)) 864 shadow = workingset_eviction(page, target_memcg); 865 __delete_from_page_cache(page, shadow); 866 xa_unlock_irqrestore(&mapping->i_pages, flags); 867 868 if (freepage != NULL) 869 freepage(page); 870 } 871 872 return 1; 873 874 cannot_free: 875 xa_unlock_irqrestore(&mapping->i_pages, flags); 876 return 0; 877 } 878 879 /* 880 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 881 * someone else has a ref on the page, abort and return 0. If it was 882 * successfully detached, return 1. Assumes the caller has a single ref on 883 * this page. 884 */ remove_mapping(struct address_space * mapping,struct page * page)885 int remove_mapping(struct address_space *mapping, struct page *page) 886 { 887 if (__remove_mapping(mapping, page, false, NULL)) { 888 /* 889 * Unfreezing the refcount with 1 rather than 2 effectively 890 * drops the pagecache ref for us without requiring another 891 * atomic operation. 892 */ 893 page_ref_unfreeze(page, 1); 894 return 1; 895 } 896 return 0; 897 } 898 899 /** 900 * putback_lru_page - put previously isolated page onto appropriate LRU list 901 * @page: page to be put back to appropriate lru list 902 * 903 * Add previously isolated @page to appropriate LRU list. 904 * Page may still be unevictable for other reasons. 905 * 906 * lru_lock must not be held, interrupts must be enabled. 907 */ putback_lru_page(struct page * page)908 void putback_lru_page(struct page *page) 909 { 910 lru_cache_add(page); 911 put_page(page); /* drop ref from isolate */ 912 } 913 914 enum page_references { 915 PAGEREF_RECLAIM, 916 PAGEREF_RECLAIM_CLEAN, 917 PAGEREF_RECLAIM_PURGEABLE, 918 PAGEREF_KEEP, 919 PAGEREF_ACTIVATE, 920 }; 921 page_check_references(struct page * page,struct scan_control * sc)922 static enum page_references page_check_references(struct page *page, 923 struct scan_control *sc) 924 { 925 int referenced_ptes, referenced_page; 926 unsigned long vm_flags; 927 928 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 929 &vm_flags); 930 referenced_page = TestClearPageReferenced(page); 931 932 /* 933 * Mlock lost the isolation race with us. Let try_to_unmap() 934 * move the page to the unevictable list. 935 */ 936 if (vm_flags & VM_LOCKED) 937 return PAGEREF_RECLAIM; 938 939 #ifdef CONFIG_MEM_PURGEABLE 940 if (vm_flags & VM_PURGEABLE) 941 return PAGEREF_RECLAIM_PURGEABLE; 942 #endif 943 if (referenced_ptes) { 944 /* 945 * All mapped pages start out with page table 946 * references from the instantiating fault, so we need 947 * to look twice if a mapped file page is used more 948 * than once. 949 * 950 * Mark it and spare it for another trip around the 951 * inactive list. Another page table reference will 952 * lead to its activation. 953 * 954 * Note: the mark is set for activated pages as well 955 * so that recently deactivated but used pages are 956 * quickly recovered. 957 */ 958 SetPageReferenced(page); 959 960 if (referenced_page || referenced_ptes > 1) 961 return PAGEREF_ACTIVATE; 962 963 /* 964 * Activate file-backed executable pages after first usage. 965 */ 966 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page)) 967 return PAGEREF_ACTIVATE; 968 969 return PAGEREF_KEEP; 970 } 971 972 /* Reclaim if clean, defer dirty pages to writeback */ 973 if (referenced_page && !PageSwapBacked(page)) 974 return PAGEREF_RECLAIM_CLEAN; 975 976 return PAGEREF_RECLAIM; 977 } 978 979 /* Check if a page is dirty or under writeback */ page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)980 static void page_check_dirty_writeback(struct page *page, 981 bool *dirty, bool *writeback) 982 { 983 struct address_space *mapping; 984 985 /* 986 * Anonymous pages are not handled by flushers and must be written 987 * from reclaim context. Do not stall reclaim based on them 988 */ 989 if (!page_is_file_lru(page) || 990 (PageAnon(page) && !PageSwapBacked(page))) { 991 *dirty = false; 992 *writeback = false; 993 return; 994 } 995 996 /* By default assume that the page flags are accurate */ 997 *dirty = PageDirty(page); 998 *writeback = PageWriteback(page); 999 1000 /* Verify dirty/writeback state if the filesystem supports it */ 1001 if (!page_has_private(page)) 1002 return; 1003 1004 mapping = page_mapping(page); 1005 if (mapping && mapping->a_ops->is_dirty_writeback) 1006 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 1007 } 1008 1009 /* 1010 * shrink_page_list() returns the number of reclaimed pages 1011 */ shrink_page_list(struct list_head * page_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references)1012 unsigned int shrink_page_list(struct list_head *page_list, 1013 struct pglist_data *pgdat, 1014 struct scan_control *sc, 1015 struct reclaim_stat *stat, 1016 bool ignore_references) 1017 { 1018 LIST_HEAD(ret_pages); 1019 LIST_HEAD(free_pages); 1020 unsigned int nr_reclaimed = 0; 1021 unsigned int pgactivate = 0; 1022 1023 memset(stat, 0, sizeof(*stat)); 1024 cond_resched(); 1025 1026 while (!list_empty(page_list)) { 1027 struct address_space *mapping; 1028 struct page *page; 1029 enum page_references references = PAGEREF_RECLAIM; 1030 bool dirty, writeback, may_enter_fs; 1031 unsigned int nr_pages; 1032 1033 cond_resched(); 1034 1035 page = lru_to_page(page_list); 1036 list_del(&page->lru); 1037 1038 if (!trylock_page(page)) 1039 goto keep; 1040 1041 VM_BUG_ON_PAGE(PageActive(page), page); 1042 1043 nr_pages = compound_nr(page); 1044 1045 /* Account the number of base pages even though THP */ 1046 sc->nr_scanned += nr_pages; 1047 1048 if (unlikely(!page_evictable(page))) 1049 goto activate_locked; 1050 1051 if (!sc->may_unmap && page_mapped(page)) 1052 goto keep_locked; 1053 1054 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1055 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1056 1057 /* 1058 * The number of dirty pages determines if a node is marked 1059 * reclaim_congested which affects wait_iff_congested. kswapd 1060 * will stall and start writing pages if the tail of the LRU 1061 * is all dirty unqueued pages. 1062 */ 1063 page_check_dirty_writeback(page, &dirty, &writeback); 1064 if (dirty || writeback) 1065 stat->nr_dirty++; 1066 1067 if (dirty && !writeback) 1068 stat->nr_unqueued_dirty++; 1069 1070 /* 1071 * Treat this page as congested if the underlying BDI is or if 1072 * pages are cycling through the LRU so quickly that the 1073 * pages marked for immediate reclaim are making it to the 1074 * end of the LRU a second time. 1075 */ 1076 mapping = page_mapping(page); 1077 if (((dirty || writeback) && mapping && 1078 inode_write_congested(mapping->host)) || 1079 (writeback && PageReclaim(page))) 1080 stat->nr_congested++; 1081 1082 /* 1083 * If a page at the tail of the LRU is under writeback, there 1084 * are three cases to consider. 1085 * 1086 * 1) If reclaim is encountering an excessive number of pages 1087 * under writeback and this page is both under writeback and 1088 * PageReclaim then it indicates that pages are being queued 1089 * for IO but are being recycled through the LRU before the 1090 * IO can complete. Waiting on the page itself risks an 1091 * indefinite stall if it is impossible to writeback the 1092 * page due to IO error or disconnected storage so instead 1093 * note that the LRU is being scanned too quickly and the 1094 * caller can stall after page list has been processed. 1095 * 1096 * 2) Global or new memcg reclaim encounters a page that is 1097 * not marked for immediate reclaim, or the caller does not 1098 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1099 * not to fs). In this case mark the page for immediate 1100 * reclaim and continue scanning. 1101 * 1102 * Require may_enter_fs because we would wait on fs, which 1103 * may not have submitted IO yet. And the loop driver might 1104 * enter reclaim, and deadlock if it waits on a page for 1105 * which it is needed to do the write (loop masks off 1106 * __GFP_IO|__GFP_FS for this reason); but more thought 1107 * would probably show more reasons. 1108 * 1109 * 3) Legacy memcg encounters a page that is already marked 1110 * PageReclaim. memcg does not have any dirty pages 1111 * throttling so we could easily OOM just because too many 1112 * pages are in writeback and there is nothing else to 1113 * reclaim. Wait for the writeback to complete. 1114 * 1115 * In cases 1) and 2) we activate the pages to get them out of 1116 * the way while we continue scanning for clean pages on the 1117 * inactive list and refilling from the active list. The 1118 * observation here is that waiting for disk writes is more 1119 * expensive than potentially causing reloads down the line. 1120 * Since they're marked for immediate reclaim, they won't put 1121 * memory pressure on the cache working set any longer than it 1122 * takes to write them to disk. 1123 */ 1124 if (PageWriteback(page)) { 1125 /* Case 1 above */ 1126 if (current_is_kswapd() && 1127 PageReclaim(page) && 1128 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1129 stat->nr_immediate++; 1130 goto activate_locked; 1131 1132 /* Case 2 above */ 1133 } else if (writeback_throttling_sane(sc) || 1134 !PageReclaim(page) || !may_enter_fs) { 1135 /* 1136 * This is slightly racy - end_page_writeback() 1137 * might have just cleared PageReclaim, then 1138 * setting PageReclaim here end up interpreted 1139 * as PageReadahead - but that does not matter 1140 * enough to care. What we do want is for this 1141 * page to have PageReclaim set next time memcg 1142 * reclaim reaches the tests above, so it will 1143 * then wait_on_page_writeback() to avoid OOM; 1144 * and it's also appropriate in global reclaim. 1145 */ 1146 SetPageReclaim(page); 1147 stat->nr_writeback++; 1148 goto activate_locked; 1149 1150 /* Case 3 above */ 1151 } else { 1152 unlock_page(page); 1153 wait_on_page_writeback(page); 1154 /* then go back and try same page again */ 1155 list_add_tail(&page->lru, page_list); 1156 continue; 1157 } 1158 } 1159 1160 if (!ignore_references) 1161 references = page_check_references(page, sc); 1162 1163 switch (references) { 1164 case PAGEREF_ACTIVATE: 1165 goto activate_locked; 1166 case PAGEREF_KEEP: 1167 stat->nr_ref_keep += nr_pages; 1168 goto keep_locked; 1169 case PAGEREF_RECLAIM: 1170 case PAGEREF_RECLAIM_CLEAN: 1171 case PAGEREF_RECLAIM_PURGEABLE: 1172 ; /* try to reclaim the page below */ 1173 } 1174 1175 /* 1176 * Anonymous process memory has backing store? 1177 * Try to allocate it some swap space here. 1178 * Lazyfree page could be freed directly 1179 */ 1180 if (PageAnon(page) && PageSwapBacked(page)) { 1181 if (!PageSwapCache(page) && references != PAGEREF_RECLAIM_PURGEABLE) { 1182 if (!(sc->gfp_mask & __GFP_IO)) 1183 goto keep_locked; 1184 if (page_maybe_dma_pinned(page)) 1185 goto keep_locked; 1186 if (PageTransHuge(page)) { 1187 /* cannot split THP, skip it */ 1188 if (!can_split_huge_page(page, NULL)) 1189 goto activate_locked; 1190 /* 1191 * Split pages without a PMD map right 1192 * away. Chances are some or all of the 1193 * tail pages can be freed without IO. 1194 */ 1195 if (!compound_mapcount(page) && 1196 split_huge_page_to_list(page, 1197 page_list)) 1198 goto activate_locked; 1199 } 1200 if (!add_to_swap(page)) { 1201 if (!PageTransHuge(page)) 1202 goto activate_locked_split; 1203 /* Fallback to swap normal pages */ 1204 if (split_huge_page_to_list(page, 1205 page_list)) 1206 goto activate_locked; 1207 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1208 count_vm_event(THP_SWPOUT_FALLBACK); 1209 #endif 1210 if (!add_to_swap(page)) 1211 goto activate_locked_split; 1212 } 1213 1214 may_enter_fs = true; 1215 1216 /* Adding to swap updated mapping */ 1217 mapping = page_mapping(page); 1218 } 1219 } else if (unlikely(PageTransHuge(page))) { 1220 /* Split file THP */ 1221 if (split_huge_page_to_list(page, page_list)) 1222 goto keep_locked; 1223 } 1224 1225 /* 1226 * THP may get split above, need minus tail pages and update 1227 * nr_pages to avoid accounting tail pages twice. 1228 * 1229 * The tail pages that are added into swap cache successfully 1230 * reach here. 1231 */ 1232 if ((nr_pages > 1) && !PageTransHuge(page)) { 1233 sc->nr_scanned -= (nr_pages - 1); 1234 nr_pages = 1; 1235 } 1236 1237 /* 1238 * The page is mapped into the page tables of one or more 1239 * processes. Try to unmap it here. 1240 */ 1241 if (page_mapped(page)) { 1242 enum ttu_flags flags = TTU_BATCH_FLUSH; 1243 bool was_swapbacked = PageSwapBacked(page); 1244 1245 if (unlikely(PageTransHuge(page))) 1246 flags |= TTU_SPLIT_HUGE_PMD; 1247 1248 if (!try_to_unmap(page, flags)) { 1249 stat->nr_unmap_fail += nr_pages; 1250 if (!was_swapbacked && PageSwapBacked(page)) 1251 stat->nr_lazyfree_fail += nr_pages; 1252 goto activate_locked; 1253 } 1254 } 1255 1256 if (PageDirty(page) && references != PAGEREF_RECLAIM_PURGEABLE) { 1257 /* 1258 * Only kswapd can writeback filesystem pages 1259 * to avoid risk of stack overflow. But avoid 1260 * injecting inefficient single-page IO into 1261 * flusher writeback as much as possible: only 1262 * write pages when we've encountered many 1263 * dirty pages, and when we've already scanned 1264 * the rest of the LRU for clean pages and see 1265 * the same dirty pages again (PageReclaim). 1266 */ 1267 if (page_is_file_lru(page) && 1268 (!current_is_kswapd() || !PageReclaim(page) || 1269 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1270 /* 1271 * Immediately reclaim when written back. 1272 * Similar in principal to deactivate_page() 1273 * except we already have the page isolated 1274 * and know it's dirty 1275 */ 1276 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1277 SetPageReclaim(page); 1278 1279 goto activate_locked; 1280 } 1281 1282 if (references == PAGEREF_RECLAIM_CLEAN) 1283 goto keep_locked; 1284 if (!may_enter_fs) 1285 goto keep_locked; 1286 if (!sc->may_writepage) 1287 goto keep_locked; 1288 1289 /* 1290 * Page is dirty. Flush the TLB if a writable entry 1291 * potentially exists to avoid CPU writes after IO 1292 * starts and then write it out here. 1293 */ 1294 try_to_unmap_flush_dirty(); 1295 switch (pageout(page, mapping)) { 1296 case PAGE_KEEP: 1297 goto keep_locked; 1298 case PAGE_ACTIVATE: 1299 goto activate_locked; 1300 case PAGE_SUCCESS: 1301 stat->nr_pageout += thp_nr_pages(page); 1302 1303 if (PageWriteback(page)) 1304 goto keep; 1305 if (PageDirty(page)) 1306 goto keep; 1307 1308 /* 1309 * A synchronous write - probably a ramdisk. Go 1310 * ahead and try to reclaim the page. 1311 */ 1312 if (!trylock_page(page)) 1313 goto keep; 1314 if (PageDirty(page) || PageWriteback(page)) 1315 goto keep_locked; 1316 mapping = page_mapping(page); 1317 case PAGE_CLEAN: 1318 ; /* try to free the page below */ 1319 } 1320 } 1321 1322 /* 1323 * If the page has buffers, try to free the buffer mappings 1324 * associated with this page. If we succeed we try to free 1325 * the page as well. 1326 * 1327 * We do this even if the page is PageDirty(). 1328 * try_to_release_page() does not perform I/O, but it is 1329 * possible for a page to have PageDirty set, but it is actually 1330 * clean (all its buffers are clean). This happens if the 1331 * buffers were written out directly, with submit_bh(). ext3 1332 * will do this, as well as the blockdev mapping. 1333 * try_to_release_page() will discover that cleanness and will 1334 * drop the buffers and mark the page clean - it can be freed. 1335 * 1336 * Rarely, pages can have buffers and no ->mapping. These are 1337 * the pages which were not successfully invalidated in 1338 * truncate_complete_page(). We try to drop those buffers here 1339 * and if that worked, and the page is no longer mapped into 1340 * process address space (page_count == 1) it can be freed. 1341 * Otherwise, leave the page on the LRU so it is swappable. 1342 */ 1343 if (page_has_private(page)) { 1344 if (!try_to_release_page(page, sc->gfp_mask)) 1345 goto activate_locked; 1346 if (!mapping && page_count(page) == 1) { 1347 unlock_page(page); 1348 if (put_page_testzero(page)) 1349 goto free_it; 1350 else { 1351 /* 1352 * rare race with speculative reference. 1353 * the speculative reference will free 1354 * this page shortly, so we may 1355 * increment nr_reclaimed here (and 1356 * leave it off the LRU). 1357 */ 1358 nr_reclaimed++; 1359 continue; 1360 } 1361 } 1362 } 1363 1364 if (PageAnon(page) && 1365 (!PageSwapBacked(page) || 1366 references == PAGEREF_RECLAIM_PURGEABLE)) { 1367 /* follow __remove_mapping for reference */ 1368 if (!page_ref_freeze(page, 1)) 1369 goto keep_locked; 1370 if (PageDirty(page) && references != PAGEREF_RECLAIM_PURGEABLE) { 1371 page_ref_unfreeze(page, 1); 1372 goto keep_locked; 1373 } 1374 1375 count_vm_event(PGLAZYFREED); 1376 count_memcg_page_event(page, PGLAZYFREED); 1377 } else if (!mapping || !__remove_mapping(mapping, page, true, 1378 sc->target_mem_cgroup)) 1379 goto keep_locked; 1380 1381 unlock_page(page); 1382 free_it: 1383 /* 1384 * THP may get swapped out in a whole, need account 1385 * all base pages. 1386 */ 1387 nr_reclaimed += nr_pages; 1388 1389 /* 1390 * Is there need to periodically free_page_list? It would 1391 * appear not as the counts should be low 1392 */ 1393 if (unlikely(PageTransHuge(page))) 1394 destroy_compound_page(page); 1395 else 1396 list_add(&page->lru, &free_pages); 1397 continue; 1398 1399 activate_locked_split: 1400 /* 1401 * The tail pages that are failed to add into swap cache 1402 * reach here. Fixup nr_scanned and nr_pages. 1403 */ 1404 if (nr_pages > 1) { 1405 sc->nr_scanned -= (nr_pages - 1); 1406 nr_pages = 1; 1407 } 1408 activate_locked: 1409 /* Not a candidate for swapping, so reclaim swap space. */ 1410 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1411 PageMlocked(page))) 1412 try_to_free_swap(page); 1413 VM_BUG_ON_PAGE(PageActive(page), page); 1414 if (!PageMlocked(page)) { 1415 int type = page_is_file_lru(page); 1416 SetPageActive(page); 1417 stat->nr_activate[type] += nr_pages; 1418 count_memcg_page_event(page, PGACTIVATE); 1419 } 1420 keep_locked: 1421 unlock_page(page); 1422 keep: 1423 list_add(&page->lru, &ret_pages); 1424 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1425 } 1426 1427 pgactivate = stat->nr_activate[0] + stat->nr_activate[1]; 1428 1429 mem_cgroup_uncharge_list(&free_pages); 1430 try_to_unmap_flush(); 1431 free_unref_page_list(&free_pages); 1432 1433 list_splice(&ret_pages, page_list); 1434 count_vm_events(PGACTIVATE, pgactivate); 1435 1436 return nr_reclaimed; 1437 } 1438 reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1439 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 1440 struct list_head *page_list) 1441 { 1442 struct scan_control sc = { 1443 .gfp_mask = GFP_KERNEL, 1444 .priority = DEF_PRIORITY, 1445 .may_unmap = 1, 1446 }; 1447 struct reclaim_stat stat; 1448 unsigned int nr_reclaimed; 1449 struct page *page, *next; 1450 LIST_HEAD(clean_pages); 1451 1452 list_for_each_entry_safe(page, next, page_list, lru) { 1453 if (page_is_file_lru(page) && !PageDirty(page) && 1454 !__PageMovable(page) && !PageUnevictable(page)) { 1455 ClearPageActive(page); 1456 list_move(&page->lru, &clean_pages); 1457 } 1458 } 1459 1460 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1461 &stat, true); 1462 list_splice(&clean_pages, page_list); 1463 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1464 -(long)nr_reclaimed); 1465 /* 1466 * Since lazyfree pages are isolated from file LRU from the beginning, 1467 * they will rotate back to anonymous LRU in the end if it failed to 1468 * discard so isolated count will be mismatched. 1469 * Compensate the isolated count for both LRU lists. 1470 */ 1471 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON, 1472 stat.nr_lazyfree_fail); 1473 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, 1474 -(long)stat.nr_lazyfree_fail); 1475 return nr_reclaimed; 1476 } 1477 1478 /* 1479 * Attempt to remove the specified page from its LRU. Only take this page 1480 * if it is of the appropriate PageActive status. Pages which are being 1481 * freed elsewhere are also ignored. 1482 * 1483 * page: page to consider 1484 * mode: one of the LRU isolation modes defined above 1485 * 1486 * returns 0 on success, -ve errno on failure. 1487 */ __isolate_lru_page(struct page * page,isolate_mode_t mode)1488 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1489 { 1490 int ret = -EINVAL; 1491 1492 /* Only take pages on the LRU. */ 1493 if (!PageLRU(page)) 1494 return ret; 1495 1496 /* Compaction should not handle unevictable pages but CMA can do so */ 1497 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1498 return ret; 1499 1500 ret = -EBUSY; 1501 1502 /* 1503 * To minimise LRU disruption, the caller can indicate that it only 1504 * wants to isolate pages it will be able to operate on without 1505 * blocking - clean pages for the most part. 1506 * 1507 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1508 * that it is possible to migrate without blocking 1509 */ 1510 if (mode & ISOLATE_ASYNC_MIGRATE) { 1511 /* All the caller can do on PageWriteback is block */ 1512 if (PageWriteback(page)) 1513 return ret; 1514 1515 if (PageDirty(page)) { 1516 struct address_space *mapping; 1517 bool migrate_dirty; 1518 1519 /* 1520 * Only pages without mappings or that have a 1521 * ->migratepage callback are possible to migrate 1522 * without blocking. However, we can be racing with 1523 * truncation so it's necessary to lock the page 1524 * to stabilise the mapping as truncation holds 1525 * the page lock until after the page is removed 1526 * from the page cache. 1527 */ 1528 if (!trylock_page(page)) 1529 return ret; 1530 1531 mapping = page_mapping(page); 1532 migrate_dirty = !mapping || mapping->a_ops->migratepage; 1533 unlock_page(page); 1534 if (!migrate_dirty) 1535 return ret; 1536 } 1537 } 1538 1539 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1540 return ret; 1541 1542 if (likely(get_page_unless_zero(page))) { 1543 /* 1544 * Be careful not to clear PageLRU until after we're 1545 * sure the page is not being freed elsewhere -- the 1546 * page release code relies on it. 1547 */ 1548 ClearPageLRU(page); 1549 ret = 0; 1550 } 1551 1552 return ret; 1553 } 1554 1555 1556 /* 1557 * Update LRU sizes after isolating pages. The LRU size updates must 1558 * be complete before mem_cgroup_update_lru_size due to a sanity check. 1559 */ update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1560 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1561 enum lru_list lru, unsigned long *nr_zone_taken) 1562 { 1563 int zid; 1564 1565 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1566 if (!nr_zone_taken[zid]) 1567 continue; 1568 1569 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1570 } 1571 1572 } 1573 1574 /** 1575 * pgdat->lru_lock is heavily contended. Some of the functions that 1576 * shrink the lists perform better by taking out a batch of pages 1577 * and working on them outside the LRU lock. 1578 * 1579 * For pagecache intensive workloads, this function is the hottest 1580 * spot in the kernel (apart from copy_*_user functions). 1581 * 1582 * Appropriate locks must be held before calling this function. 1583 * 1584 * @nr_to_scan: The number of eligible pages to look through on the list. 1585 * @lruvec: The LRU vector to pull pages from. 1586 * @dst: The temp list to put pages on to. 1587 * @nr_scanned: The number of pages that were scanned. 1588 * @sc: The scan_control struct for this reclaim session 1589 * @lru: LRU list id for isolating 1590 * 1591 * returns how many pages were moved onto *@dst. 1592 */ isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1593 unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1594 struct lruvec *lruvec, struct list_head *dst, 1595 unsigned long *nr_scanned, struct scan_control *sc, 1596 enum lru_list lru) 1597 { 1598 struct list_head *src = &lruvec->lists[lru]; 1599 unsigned long nr_taken = 0; 1600 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1601 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1602 unsigned long skipped = 0; 1603 unsigned long scan, total_scan, nr_pages; 1604 LIST_HEAD(pages_skipped); 1605 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); 1606 1607 total_scan = 0; 1608 scan = 0; 1609 while (scan < nr_to_scan && !list_empty(src)) { 1610 struct page *page; 1611 1612 page = lru_to_page(src); 1613 prefetchw_prev_lru_page(page, src, flags); 1614 1615 VM_BUG_ON_PAGE(!PageLRU(page), page); 1616 1617 nr_pages = compound_nr(page); 1618 total_scan += nr_pages; 1619 1620 if (page_zonenum(page) > sc->reclaim_idx) { 1621 list_move(&page->lru, &pages_skipped); 1622 nr_skipped[page_zonenum(page)] += nr_pages; 1623 continue; 1624 } 1625 1626 /* 1627 * Do not count skipped pages because that makes the function 1628 * return with no isolated pages if the LRU mostly contains 1629 * ineligible pages. This causes the VM to not reclaim any 1630 * pages, triggering a premature OOM. 1631 * 1632 * Account all tail pages of THP. This would not cause 1633 * premature OOM since __isolate_lru_page() returns -EBUSY 1634 * only when the page is being freed somewhere else. 1635 */ 1636 scan += nr_pages; 1637 switch (__isolate_lru_page(page, mode)) { 1638 case 0: 1639 nr_taken += nr_pages; 1640 nr_zone_taken[page_zonenum(page)] += nr_pages; 1641 list_move(&page->lru, dst); 1642 break; 1643 1644 case -EBUSY: 1645 /* else it is being freed elsewhere */ 1646 list_move(&page->lru, src); 1647 continue; 1648 1649 default: 1650 BUG(); 1651 } 1652 } 1653 1654 /* 1655 * Splice any skipped pages to the start of the LRU list. Note that 1656 * this disrupts the LRU order when reclaiming for lower zones but 1657 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1658 * scanning would soon rescan the same pages to skip and put the 1659 * system at risk of premature OOM. 1660 */ 1661 if (!list_empty(&pages_skipped)) { 1662 int zid; 1663 1664 list_splice(&pages_skipped, src); 1665 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1666 if (!nr_skipped[zid]) 1667 continue; 1668 1669 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1670 skipped += nr_skipped[zid]; 1671 } 1672 } 1673 *nr_scanned = total_scan; 1674 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1675 total_scan, skipped, nr_taken, mode, lru); 1676 update_lru_sizes(lruvec, lru, nr_zone_taken); 1677 return nr_taken; 1678 } 1679 1680 /** 1681 * isolate_lru_page - tries to isolate a page from its LRU list 1682 * @page: page to isolate from its LRU list 1683 * 1684 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1685 * vmstat statistic corresponding to whatever LRU list the page was on. 1686 * 1687 * Returns 0 if the page was removed from an LRU list. 1688 * Returns -EBUSY if the page was not on an LRU list. 1689 * 1690 * The returned page will have PageLRU() cleared. If it was found on 1691 * the active list, it will have PageActive set. If it was found on 1692 * the unevictable list, it will have the PageUnevictable bit set. That flag 1693 * may need to be cleared by the caller before letting the page go. 1694 * 1695 * The vmstat statistic corresponding to the list on which the page was 1696 * found will be decremented. 1697 * 1698 * Restrictions: 1699 * 1700 * (1) Must be called with an elevated refcount on the page. This is a 1701 * fundamental difference from isolate_lru_pages (which is called 1702 * without a stable reference). 1703 * (2) the lru_lock must not be held. 1704 * (3) interrupts must be enabled. 1705 */ isolate_lru_page(struct page * page)1706 int isolate_lru_page(struct page *page) 1707 { 1708 int ret = -EBUSY; 1709 1710 VM_BUG_ON_PAGE(!page_count(page), page); 1711 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1712 1713 if (PageLRU(page)) { 1714 pg_data_t *pgdat = page_pgdat(page); 1715 struct lruvec *lruvec; 1716 1717 spin_lock_irq(&pgdat->lru_lock); 1718 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1719 if (PageLRU(page)) { 1720 int lru = page_lru(page); 1721 get_page(page); 1722 ClearPageLRU(page); 1723 del_page_from_lru_list(page, lruvec, lru); 1724 ret = 0; 1725 } 1726 spin_unlock_irq(&pgdat->lru_lock); 1727 } 1728 return ret; 1729 } 1730 1731 /* 1732 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1733 * then get rescheduled. When there are massive number of tasks doing page 1734 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1735 * the LRU list will go small and be scanned faster than necessary, leading to 1736 * unnecessary swapping, thrashing and OOM. 1737 */ too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1738 static int too_many_isolated(struct pglist_data *pgdat, int file, 1739 struct scan_control *sc) 1740 { 1741 unsigned long inactive, isolated; 1742 1743 if (current_is_kswapd()) 1744 return 0; 1745 1746 if (!writeback_throttling_sane(sc)) 1747 return 0; 1748 1749 if (file) { 1750 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1751 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1752 } else { 1753 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1754 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1755 } 1756 1757 /* 1758 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1759 * won't get blocked by normal direct-reclaimers, forming a circular 1760 * deadlock. 1761 */ 1762 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1763 inactive >>= 3; 1764 1765 return isolated > inactive; 1766 } 1767 1768 /* 1769 * This moves pages from @list to corresponding LRU list. 1770 * 1771 * We move them the other way if the page is referenced by one or more 1772 * processes, from rmap. 1773 * 1774 * If the pages are mostly unmapped, the processing is fast and it is 1775 * appropriate to hold zone_lru_lock across the whole operation. But if 1776 * the pages are mapped, the processing is slow (page_referenced()) so we 1777 * should drop zone_lru_lock around each page. It's impossible to balance 1778 * this, so instead we remove the pages from the LRU while processing them. 1779 * It is safe to rely on PG_active against the non-LRU pages in here because 1780 * nobody will play with that bit on a non-LRU page. 1781 * 1782 * The downside is that we have to touch page->_refcount against each page. 1783 * But we had to alter page->flags anyway. 1784 * 1785 * Returns the number of pages moved to the given lruvec. 1786 */ 1787 move_pages_to_lru(struct lruvec * lruvec,struct list_head * list)1788 unsigned move_pages_to_lru(struct lruvec *lruvec, struct list_head *list) 1789 { 1790 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1791 int nr_pages, nr_moved = 0; 1792 LIST_HEAD(pages_to_free); 1793 struct page *page; 1794 enum lru_list lru; 1795 #ifdef CONFIG_HYPERHOLD_FILE_LRU 1796 bool prot; 1797 bool file; 1798 #endif 1799 1800 while (!list_empty(list)) { 1801 page = lru_to_page(list); 1802 VM_BUG_ON_PAGE(PageLRU(page), page); 1803 if (unlikely(!page_evictable(page))) { 1804 list_del(&page->lru); 1805 spin_unlock_irq(&pgdat->lru_lock); 1806 putback_lru_page(page); 1807 spin_lock_irq(&pgdat->lru_lock); 1808 continue; 1809 } 1810 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1811 1812 SetPageLRU(page); 1813 lru = page_lru(page); 1814 1815 nr_pages = thp_nr_pages(page); 1816 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1817 list_move(&page->lru, &lruvec->lists[lru]); 1818 1819 if (put_page_testzero(page)) { 1820 __ClearPageLRU(page); 1821 __ClearPageActive(page); 1822 del_page_from_lru_list(page, lruvec, lru); 1823 1824 if (unlikely(PageCompound(page))) { 1825 spin_unlock_irq(&pgdat->lru_lock); 1826 destroy_compound_page(page); 1827 spin_lock_irq(&pgdat->lru_lock); 1828 } else 1829 list_add(&page->lru, &pages_to_free); 1830 } else { 1831 nr_moved += nr_pages; 1832 #ifdef CONFIG_HYPERHOLD_FILE_LRU 1833 if (PageActive(page)) { 1834 prot = is_prot_page(page); 1835 file = page_is_file_lru(page); 1836 if (!prot && file) { 1837 lruvec = node_lruvec(pgdat); 1838 workingset_age_nonresident(lruvec, 1839 nr_pages); 1840 } else { 1841 workingset_age_nonresident(lruvec, 1842 nr_pages); 1843 } 1844 } 1845 #else 1846 if (PageActive(page)) 1847 workingset_age_nonresident(lruvec, nr_pages); 1848 #endif 1849 } 1850 } 1851 1852 /* 1853 * To save our caller's stack, now use input list for pages to free. 1854 */ 1855 list_splice(&pages_to_free, list); 1856 1857 return nr_moved; 1858 } 1859 1860 /* 1861 * If a kernel thread (such as nfsd for loop-back mounts) services 1862 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE. 1863 * In that case we should only throttle if the backing device it is 1864 * writing to is congested. In other cases it is safe to throttle. 1865 */ current_may_throttle(void)1866 int current_may_throttle(void) 1867 { 1868 return !(current->flags & PF_LOCAL_THROTTLE) || 1869 current->backing_dev_info == NULL || 1870 bdi_write_congested(current->backing_dev_info); 1871 } 1872 1873 /* 1874 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1875 * of reclaimed pages 1876 */ shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1877 unsigned long shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1878 struct scan_control *sc, enum lru_list lru) 1879 { 1880 LIST_HEAD(page_list); 1881 unsigned long nr_scanned; 1882 unsigned int nr_reclaimed = 0; 1883 unsigned long nr_taken; 1884 struct reclaim_stat stat; 1885 bool file = is_file_lru(lru); 1886 enum vm_event_item item; 1887 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1888 bool stalled = false; 1889 1890 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1891 if (stalled) 1892 return 0; 1893 1894 #ifdef CONFIG_HYPERHOLD_FILE_LRU 1895 sc->isolate_count++; 1896 #endif 1897 /* wait a bit for the reclaimer. */ 1898 msleep(100); 1899 stalled = true; 1900 1901 /* We are about to die and free our memory. Return now. */ 1902 if (fatal_signal_pending(current)) 1903 return SWAP_CLUSTER_MAX; 1904 } 1905 1906 lru_add_drain(); 1907 1908 spin_lock_irq(&pgdat->lru_lock); 1909 1910 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1911 &nr_scanned, sc, lru); 1912 1913 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1914 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT; 1915 if (!cgroup_reclaim(sc)) 1916 __count_vm_events(item, nr_scanned); 1917 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned); 1918 __count_vm_events(PGSCAN_ANON + file, nr_scanned); 1919 1920 spin_unlock_irq(&pgdat->lru_lock); 1921 1922 if (nr_taken == 0) 1923 return 0; 1924 1925 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false); 1926 1927 spin_lock_irq(&pgdat->lru_lock); 1928 1929 move_pages_to_lru(lruvec, &page_list); 1930 1931 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1932 #ifdef CONFIG_HYPERHOLD_FILE_LRU 1933 if (file) 1934 lru_note_cost(node_lruvec(pgdat), file, stat.nr_pageout); 1935 else 1936 lru_note_cost(lruvec, file, stat.nr_pageout); 1937 #else 1938 lru_note_cost(lruvec, file, stat.nr_pageout); 1939 1940 #endif 1941 1942 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT; 1943 if (!cgroup_reclaim(sc)) 1944 __count_vm_events(item, nr_reclaimed); 1945 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed); 1946 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed); 1947 1948 spin_unlock_irq(&pgdat->lru_lock); 1949 1950 mem_cgroup_uncharge_list(&page_list); 1951 free_unref_page_list(&page_list); 1952 1953 /* 1954 * If dirty pages are scanned that are not queued for IO, it 1955 * implies that flushers are not doing their job. This can 1956 * happen when memory pressure pushes dirty pages to the end of 1957 * the LRU before the dirty limits are breached and the dirty 1958 * data has expired. It can also happen when the proportion of 1959 * dirty pages grows not through writes but through memory 1960 * pressure reclaiming all the clean cache. And in some cases, 1961 * the flushers simply cannot keep up with the allocation 1962 * rate. Nudge the flusher threads in case they are asleep. 1963 */ 1964 if (stat.nr_unqueued_dirty == nr_taken) 1965 wakeup_flusher_threads(WB_REASON_VMSCAN); 1966 1967 sc->nr.dirty += stat.nr_dirty; 1968 sc->nr.congested += stat.nr_congested; 1969 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; 1970 sc->nr.writeback += stat.nr_writeback; 1971 sc->nr.immediate += stat.nr_immediate; 1972 sc->nr.taken += nr_taken; 1973 if (file) 1974 sc->nr.file_taken += nr_taken; 1975 1976 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1977 nr_scanned, nr_reclaimed, &stat, sc->priority, file); 1978 return nr_reclaimed; 1979 } 1980 shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1981 void shrink_active_list(unsigned long nr_to_scan, 1982 struct lruvec *lruvec, 1983 struct scan_control *sc, 1984 enum lru_list lru) 1985 { 1986 unsigned long nr_taken; 1987 unsigned long nr_scanned; 1988 unsigned long vm_flags; 1989 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1990 LIST_HEAD(l_active); 1991 LIST_HEAD(l_inactive); 1992 struct page *page; 1993 unsigned nr_deactivate, nr_activate; 1994 unsigned nr_rotated = 0; 1995 int file = is_file_lru(lru); 1996 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1997 1998 lru_add_drain(); 1999 2000 spin_lock_irq(&pgdat->lru_lock); 2001 2002 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 2003 &nr_scanned, sc, lru); 2004 2005 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 2006 2007 if (!cgroup_reclaim(sc)) 2008 __count_vm_events(PGREFILL, nr_scanned); 2009 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); 2010 2011 spin_unlock_irq(&pgdat->lru_lock); 2012 2013 while (!list_empty(&l_hold)) { 2014 cond_resched(); 2015 page = lru_to_page(&l_hold); 2016 list_del(&page->lru); 2017 2018 if (unlikely(!page_evictable(page))) { 2019 putback_lru_page(page); 2020 continue; 2021 } 2022 2023 if (unlikely(buffer_heads_over_limit)) { 2024 if (page_has_private(page) && trylock_page(page)) { 2025 if (page_has_private(page)) 2026 try_to_release_page(page, 0); 2027 unlock_page(page); 2028 } 2029 } 2030 2031 if (page_referenced(page, 0, sc->target_mem_cgroup, 2032 &vm_flags)) { 2033 /* 2034 * Identify referenced, file-backed active pages and 2035 * give them one more trip around the active list. So 2036 * that executable code get better chances to stay in 2037 * memory under moderate memory pressure. Anon pages 2038 * are not likely to be evicted by use-once streaming 2039 * IO, plus JVM can create lots of anon VM_EXEC pages, 2040 * so we ignore them here. 2041 */ 2042 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) { 2043 nr_rotated += thp_nr_pages(page); 2044 list_add(&page->lru, &l_active); 2045 continue; 2046 } 2047 } 2048 2049 ClearPageActive(page); /* we are de-activating */ 2050 SetPageWorkingset(page); 2051 list_add(&page->lru, &l_inactive); 2052 } 2053 2054 /* 2055 * Move pages back to the lru list. 2056 */ 2057 spin_lock_irq(&pgdat->lru_lock); 2058 2059 nr_activate = move_pages_to_lru(lruvec, &l_active); 2060 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive); 2061 /* Keep all free pages in l_active list */ 2062 list_splice(&l_inactive, &l_active); 2063 2064 __count_vm_events(PGDEACTIVATE, nr_deactivate); 2065 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate); 2066 2067 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 2068 spin_unlock_irq(&pgdat->lru_lock); 2069 2070 mem_cgroup_uncharge_list(&l_active); 2071 free_unref_page_list(&l_active); 2072 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 2073 nr_deactivate, nr_rotated, sc->priority, file); 2074 } 2075 reclaim_pages(struct list_head * page_list)2076 unsigned long reclaim_pages(struct list_head *page_list) 2077 { 2078 int nid = NUMA_NO_NODE; 2079 unsigned int nr_reclaimed = 0; 2080 LIST_HEAD(node_page_list); 2081 struct reclaim_stat dummy_stat; 2082 struct page *page; 2083 struct scan_control sc = { 2084 .gfp_mask = GFP_KERNEL, 2085 .priority = DEF_PRIORITY, 2086 .may_writepage = 1, 2087 .may_unmap = 1, 2088 .may_swap = 1, 2089 }; 2090 2091 while (!list_empty(page_list)) { 2092 page = lru_to_page(page_list); 2093 if (nid == NUMA_NO_NODE) { 2094 nid = page_to_nid(page); 2095 INIT_LIST_HEAD(&node_page_list); 2096 } 2097 2098 if (nid == page_to_nid(page)) { 2099 ClearPageActive(page); 2100 list_move(&page->lru, &node_page_list); 2101 continue; 2102 } 2103 2104 nr_reclaimed += shrink_page_list(&node_page_list, 2105 NODE_DATA(nid), 2106 &sc, &dummy_stat, false); 2107 while (!list_empty(&node_page_list)) { 2108 page = lru_to_page(&node_page_list); 2109 list_del(&page->lru); 2110 putback_lru_page(page); 2111 } 2112 2113 nid = NUMA_NO_NODE; 2114 } 2115 2116 if (!list_empty(&node_page_list)) { 2117 nr_reclaimed += shrink_page_list(&node_page_list, 2118 NODE_DATA(nid), 2119 &sc, &dummy_stat, false); 2120 while (!list_empty(&node_page_list)) { 2121 page = lru_to_page(&node_page_list); 2122 list_del(&page->lru); 2123 putback_lru_page(page); 2124 } 2125 } 2126 2127 return nr_reclaimed; 2128 } 2129 shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2130 unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2131 struct lruvec *lruvec, struct scan_control *sc) 2132 { 2133 #ifdef CONFIG_RECLAIM_ACCT 2134 unsigned long nr_reclaimed; 2135 unsigned int stub; 2136 2137 stub = is_file_lru(lru) ? RA_SHRINKFILE : RA_SHRINKANON; 2138 reclaimacct_substage_start(stub); 2139 #endif 2140 if (is_active_lru(lru)) { 2141 if (sc->may_deactivate & (1 << is_file_lru(lru))) 2142 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2143 else 2144 sc->skipped_deactivate = 1; 2145 #ifdef CONFIG_RECLAIM_ACCT 2146 reclaimacct_substage_end(stub, 0, NULL); 2147 #endif 2148 return 0; 2149 } 2150 2151 #ifdef CONFIG_RECLAIM_ACCT 2152 nr_reclaimed = shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2153 reclaimacct_substage_end(stub, nr_reclaimed, NULL); 2154 return nr_reclaimed; 2155 #else 2156 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2157 #endif 2158 } 2159 2160 /* 2161 * The inactive anon list should be small enough that the VM never has 2162 * to do too much work. 2163 * 2164 * The inactive file list should be small enough to leave most memory 2165 * to the established workingset on the scan-resistant active list, 2166 * but large enough to avoid thrashing the aggregate readahead window. 2167 * 2168 * Both inactive lists should also be large enough that each inactive 2169 * page has a chance to be referenced again before it is reclaimed. 2170 * 2171 * If that fails and refaulting is observed, the inactive list grows. 2172 * 2173 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2174 * on this LRU, maintained by the pageout code. An inactive_ratio 2175 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2176 * 2177 * total target max 2178 * memory ratio inactive 2179 * ------------------------------------- 2180 * 10MB 1 5MB 2181 * 100MB 1 50MB 2182 * 1GB 3 250MB 2183 * 10GB 10 0.9GB 2184 * 100GB 31 3GB 2185 * 1TB 101 10GB 2186 * 10TB 320 32GB 2187 */ inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2188 bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru) 2189 { 2190 enum lru_list active_lru = inactive_lru + LRU_ACTIVE; 2191 unsigned long inactive, active; 2192 unsigned long inactive_ratio; 2193 unsigned long gb; 2194 2195 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru); 2196 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru); 2197 2198 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2199 if (gb) 2200 inactive_ratio = int_sqrt(10 * gb); 2201 else 2202 inactive_ratio = 1; 2203 2204 return inactive * inactive_ratio < active; 2205 } 2206 2207 /* 2208 * Determine how aggressively the anon and file LRU lists should be 2209 * scanned. The relative value of each set of LRU lists is determined 2210 * by looking at the fraction of the pages scanned we did rotate back 2211 * onto the active list instead of evict. 2212 * 2213 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2214 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2215 */ 2216 #ifndef CONFIG_HYPERHOLD_FILE_LRU get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2217 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, 2218 unsigned long *nr) 2219 { 2220 struct mem_cgroup *memcg = lruvec_memcg(lruvec); 2221 unsigned long anon_cost, file_cost, total_cost; 2222 int swappiness = mem_cgroup_swappiness(memcg); 2223 u64 fraction[ANON_AND_FILE]; 2224 u64 denominator = 0; /* gcc */ 2225 enum scan_balance scan_balance; 2226 unsigned long ap, fp; 2227 enum lru_list lru; 2228 2229 /* If we have no swap space, do not bother scanning anon pages. */ 2230 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2231 scan_balance = SCAN_FILE; 2232 goto out; 2233 } 2234 2235 /* 2236 * Global reclaim will swap to prevent OOM even with no 2237 * swappiness, but memcg users want to use this knob to 2238 * disable swapping for individual groups completely when 2239 * using the memory controller's swap limit feature would be 2240 * too expensive. 2241 */ 2242 if (cgroup_reclaim(sc) && !swappiness) { 2243 scan_balance = SCAN_FILE; 2244 goto out; 2245 } 2246 2247 /* 2248 * Do not apply any pressure balancing cleverness when the 2249 * system is close to OOM, scan both anon and file equally 2250 * (unless the swappiness setting disagrees with swapping). 2251 */ 2252 if (!sc->priority && swappiness) { 2253 scan_balance = SCAN_EQUAL; 2254 goto out; 2255 } 2256 2257 /* 2258 * If the system is almost out of file pages, force-scan anon. 2259 */ 2260 if (sc->file_is_tiny) { 2261 scan_balance = SCAN_ANON; 2262 goto out; 2263 } 2264 2265 /* 2266 * If there is enough inactive page cache, we do not reclaim 2267 * anything from the anonymous working right now. 2268 */ 2269 if (sc->cache_trim_mode) { 2270 scan_balance = SCAN_FILE; 2271 goto out; 2272 } 2273 2274 scan_balance = SCAN_FRACT; 2275 /* 2276 * Calculate the pressure balance between anon and file pages. 2277 * 2278 * The amount of pressure we put on each LRU is inversely 2279 * proportional to the cost of reclaiming each list, as 2280 * determined by the share of pages that are refaulting, times 2281 * the relative IO cost of bringing back a swapped out 2282 * anonymous page vs reloading a filesystem page (swappiness). 2283 * 2284 * Although we limit that influence to ensure no list gets 2285 * left behind completely: at least a third of the pressure is 2286 * applied, before swappiness. 2287 * 2288 * With swappiness at 100, anon and file have equal IO cost. 2289 */ 2290 total_cost = sc->anon_cost + sc->file_cost; 2291 anon_cost = total_cost + sc->anon_cost; 2292 file_cost = total_cost + sc->file_cost; 2293 total_cost = anon_cost + file_cost; 2294 2295 ap = swappiness * (total_cost + 1); 2296 ap /= anon_cost + 1; 2297 2298 fp = (200 - swappiness) * (total_cost + 1); 2299 fp /= file_cost + 1; 2300 2301 fraction[0] = ap; 2302 fraction[1] = fp; 2303 denominator = ap + fp; 2304 out: 2305 for_each_evictable_lru(lru) { 2306 int file = is_file_lru(lru); 2307 unsigned long lruvec_size; 2308 unsigned long low, min; 2309 unsigned long scan; 2310 2311 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2312 mem_cgroup_protection(sc->target_mem_cgroup, memcg, 2313 &min, &low); 2314 2315 if (min || low) { 2316 /* 2317 * Scale a cgroup's reclaim pressure by proportioning 2318 * its current usage to its memory.low or memory.min 2319 * setting. 2320 * 2321 * This is important, as otherwise scanning aggression 2322 * becomes extremely binary -- from nothing as we 2323 * approach the memory protection threshold, to totally 2324 * nominal as we exceed it. This results in requiring 2325 * setting extremely liberal protection thresholds. It 2326 * also means we simply get no protection at all if we 2327 * set it too low, which is not ideal. 2328 * 2329 * If there is any protection in place, we reduce scan 2330 * pressure by how much of the total memory used is 2331 * within protection thresholds. 2332 * 2333 * There is one special case: in the first reclaim pass, 2334 * we skip over all groups that are within their low 2335 * protection. If that fails to reclaim enough pages to 2336 * satisfy the reclaim goal, we come back and override 2337 * the best-effort low protection. However, we still 2338 * ideally want to honor how well-behaved groups are in 2339 * that case instead of simply punishing them all 2340 * equally. As such, we reclaim them based on how much 2341 * memory they are using, reducing the scan pressure 2342 * again by how much of the total memory used is under 2343 * hard protection. 2344 */ 2345 unsigned long cgroup_size = mem_cgroup_size(memcg); 2346 unsigned long protection; 2347 2348 /* memory.low scaling, make sure we retry before OOM */ 2349 if (!sc->memcg_low_reclaim && low > min) { 2350 protection = low; 2351 sc->memcg_low_skipped = 1; 2352 } else { 2353 protection = min; 2354 } 2355 2356 /* Avoid TOCTOU with earlier protection check */ 2357 cgroup_size = max(cgroup_size, protection); 2358 2359 scan = lruvec_size - lruvec_size * protection / 2360 (cgroup_size + 1); 2361 2362 /* 2363 * Minimally target SWAP_CLUSTER_MAX pages to keep 2364 * reclaim moving forwards, avoiding decrementing 2365 * sc->priority further than desirable. 2366 */ 2367 scan = max(scan, SWAP_CLUSTER_MAX); 2368 } else { 2369 scan = lruvec_size; 2370 } 2371 2372 scan >>= sc->priority; 2373 2374 /* 2375 * If the cgroup's already been deleted, make sure to 2376 * scrape out the remaining cache. 2377 */ 2378 if (!scan && !mem_cgroup_online(memcg)) 2379 scan = min(lruvec_size, SWAP_CLUSTER_MAX); 2380 2381 switch (scan_balance) { 2382 case SCAN_EQUAL: 2383 /* Scan lists relative to size */ 2384 break; 2385 case SCAN_FRACT: 2386 /* 2387 * Scan types proportional to swappiness and 2388 * their relative recent reclaim efficiency. 2389 * Make sure we don't miss the last page on 2390 * the offlined memory cgroups because of a 2391 * round-off error. 2392 */ 2393 scan = mem_cgroup_online(memcg) ? 2394 div64_u64(scan * fraction[file], denominator) : 2395 DIV64_U64_ROUND_UP(scan * fraction[file], 2396 denominator); 2397 break; 2398 case SCAN_FILE: 2399 case SCAN_ANON: 2400 /* Scan one type exclusively */ 2401 if ((scan_balance == SCAN_FILE) != file) 2402 scan = 0; 2403 break; 2404 default: 2405 /* Look ma, no brain */ 2406 BUG(); 2407 } 2408 2409 nr[lru] = scan; 2410 } 2411 } 2412 shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)2413 void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) 2414 { 2415 unsigned long nr[NR_LRU_LISTS]; 2416 unsigned long targets[NR_LRU_LISTS]; 2417 unsigned long nr_to_scan; 2418 enum lru_list lru; 2419 unsigned long nr_reclaimed = 0; 2420 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2421 bool proportional_reclaim; 2422 struct blk_plug plug; 2423 2424 get_scan_count(lruvec, sc, nr); 2425 2426 /* Record the original scan target for proportional adjustments later */ 2427 memcpy(targets, nr, sizeof(nr)); 2428 2429 /* 2430 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2431 * event that can occur when there is little memory pressure e.g. 2432 * multiple streaming readers/writers. Hence, we do not abort scanning 2433 * when the requested number of pages are reclaimed when scanning at 2434 * DEF_PRIORITY on the assumption that the fact we are direct 2435 * reclaiming implies that kswapd is not keeping up and it is best to 2436 * do a batch of work at once. For memcg reclaim one check is made to 2437 * abort proportional reclaim if either the file or anon lru has already 2438 * dropped to zero at the first pass. 2439 */ 2440 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() && 2441 sc->priority == DEF_PRIORITY); 2442 2443 blk_start_plug(&plug); 2444 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2445 nr[LRU_INACTIVE_FILE]) { 2446 unsigned long nr_anon, nr_file, percentage; 2447 unsigned long nr_scanned; 2448 2449 for_each_evictable_lru(lru) { 2450 if (nr[lru]) { 2451 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2452 nr[lru] -= nr_to_scan; 2453 2454 nr_reclaimed += shrink_list(lru, nr_to_scan, 2455 lruvec, sc); 2456 } 2457 } 2458 2459 cond_resched(); 2460 2461 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim) 2462 continue; 2463 2464 /* 2465 * For kswapd and memcg, reclaim at least the number of pages 2466 * requested. Ensure that the anon and file LRUs are scanned 2467 * proportionally what was requested by get_scan_count(). We 2468 * stop reclaiming one LRU and reduce the amount scanning 2469 * proportional to the original scan target. 2470 */ 2471 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2472 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2473 2474 /* 2475 * It's just vindictive to attack the larger once the smaller 2476 * has gone to zero. And given the way we stop scanning the 2477 * smaller below, this makes sure that we only make one nudge 2478 * towards proportionality once we've got nr_to_reclaim. 2479 */ 2480 if (!nr_file || !nr_anon) 2481 break; 2482 2483 if (nr_file > nr_anon) { 2484 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2485 targets[LRU_ACTIVE_ANON] + 1; 2486 lru = LRU_BASE; 2487 percentage = nr_anon * 100 / scan_target; 2488 } else { 2489 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2490 targets[LRU_ACTIVE_FILE] + 1; 2491 lru = LRU_FILE; 2492 percentage = nr_file * 100 / scan_target; 2493 } 2494 2495 /* Stop scanning the smaller of the LRU */ 2496 nr[lru] = 0; 2497 nr[lru + LRU_ACTIVE] = 0; 2498 2499 /* 2500 * Recalculate the other LRU scan count based on its original 2501 * scan target and the percentage scanning already complete 2502 */ 2503 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2504 nr_scanned = targets[lru] - nr[lru]; 2505 nr[lru] = targets[lru] * (100 - percentage) / 100; 2506 nr[lru] -= min(nr[lru], nr_scanned); 2507 2508 lru += LRU_ACTIVE; 2509 nr_scanned = targets[lru] - nr[lru]; 2510 nr[lru] = targets[lru] * (100 - percentage) / 100; 2511 nr[lru] -= min(nr[lru], nr_scanned); 2512 } 2513 blk_finish_plug(&plug); 2514 sc->nr_reclaimed += nr_reclaimed; 2515 2516 /* 2517 * Even if we did not try to evict anon pages at all, we want to 2518 * rebalance the anon lru active/inactive ratio. 2519 */ 2520 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 2521 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2522 sc, LRU_ACTIVE_ANON); 2523 } 2524 #endif 2525 2526 /* Use reclaim/compaction for costly allocs or under memory pressure */ in_reclaim_compaction(struct scan_control * sc)2527 static bool in_reclaim_compaction(struct scan_control *sc) 2528 { 2529 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2530 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2531 sc->priority < DEF_PRIORITY - 2)) 2532 return true; 2533 2534 return false; 2535 } 2536 2537 /* 2538 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2539 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2540 * true if more pages should be reclaimed such that when the page allocator 2541 * calls try_to_compact_pages() that it will have enough free pages to succeed. 2542 * It will give up earlier than that if there is difficulty reclaiming pages. 2543 */ should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)2544 inline bool should_continue_reclaim(struct pglist_data *pgdat, 2545 unsigned long nr_reclaimed, 2546 struct scan_control *sc) 2547 { 2548 unsigned long pages_for_compaction; 2549 unsigned long inactive_lru_pages; 2550 int z; 2551 2552 /* If not in reclaim/compaction mode, stop */ 2553 if (!in_reclaim_compaction(sc)) 2554 return false; 2555 2556 /* 2557 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX 2558 * number of pages that were scanned. This will return to the caller 2559 * with the risk reclaim/compaction and the resulting allocation attempt 2560 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL 2561 * allocations through requiring that the full LRU list has been scanned 2562 * first, by assuming that zero delta of sc->nr_scanned means full LRU 2563 * scan, but that approximation was wrong, and there were corner cases 2564 * where always a non-zero amount of pages were scanned. 2565 */ 2566 if (!nr_reclaimed) 2567 return false; 2568 2569 /* If compaction would go ahead or the allocation would succeed, stop */ 2570 for (z = 0; z <= sc->reclaim_idx; z++) { 2571 struct zone *zone = &pgdat->node_zones[z]; 2572 if (!managed_zone(zone)) 2573 continue; 2574 2575 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2576 case COMPACT_SUCCESS: 2577 case COMPACT_CONTINUE: 2578 return false; 2579 default: 2580 /* check next zone */ 2581 ; 2582 } 2583 } 2584 2585 /* 2586 * If we have not reclaimed enough pages for compaction and the 2587 * inactive lists are large enough, continue reclaiming 2588 */ 2589 pages_for_compaction = compact_gap(sc->order); 2590 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2591 if (get_nr_swap_pages() > 0) 2592 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2593 2594 return inactive_lru_pages > pages_for_compaction; 2595 } 2596 2597 #ifndef CONFIG_HYPERHOLD_FILE_LRU shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)2598 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc) 2599 { 2600 struct mem_cgroup *target_memcg = sc->target_mem_cgroup; 2601 struct mem_cgroup *memcg; 2602 2603 memcg = mem_cgroup_iter(target_memcg, NULL, NULL); 2604 do { 2605 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 2606 unsigned long reclaimed; 2607 unsigned long scanned; 2608 2609 /* 2610 * This loop can become CPU-bound when target memcgs 2611 * aren't eligible for reclaim - either because they 2612 * don't have any reclaimable pages, or because their 2613 * memory is explicitly protected. Avoid soft lockups. 2614 */ 2615 cond_resched(); 2616 2617 mem_cgroup_calculate_protection(target_memcg, memcg); 2618 2619 if (mem_cgroup_below_min(memcg)) { 2620 /* 2621 * Hard protection. 2622 * If there is no reclaimable memory, OOM. 2623 */ 2624 continue; 2625 } else if (mem_cgroup_below_low(memcg)) { 2626 /* 2627 * Soft protection. 2628 * Respect the protection only as long as 2629 * there is an unprotected supply 2630 * of reclaimable memory from other cgroups. 2631 */ 2632 if (!sc->memcg_low_reclaim) { 2633 sc->memcg_low_skipped = 1; 2634 continue; 2635 } 2636 memcg_memory_event(memcg, MEMCG_LOW); 2637 } 2638 2639 reclaimed = sc->nr_reclaimed; 2640 scanned = sc->nr_scanned; 2641 2642 shrink_lruvec(lruvec, sc); 2643 2644 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, 2645 sc->priority); 2646 2647 /* Record the group's reclaim efficiency */ 2648 vmpressure(sc->gfp_mask, memcg, false, 2649 sc->nr_scanned - scanned, 2650 sc->nr_reclaimed - reclaimed); 2651 2652 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL))); 2653 } 2654 shrink_node(pg_data_t * pgdat,struct scan_control * sc)2655 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2656 { 2657 struct reclaim_state *reclaim_state = current->reclaim_state; 2658 unsigned long nr_reclaimed, nr_scanned; 2659 struct lruvec *target_lruvec; 2660 bool reclaimable = false; 2661 unsigned long file; 2662 2663 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat); 2664 2665 again: 2666 memset(&sc->nr, 0, sizeof(sc->nr)); 2667 2668 nr_reclaimed = sc->nr_reclaimed; 2669 nr_scanned = sc->nr_scanned; 2670 2671 /* 2672 * Determine the scan balance between anon and file LRUs. 2673 */ 2674 spin_lock_irq(&pgdat->lru_lock); 2675 sc->anon_cost = target_lruvec->anon_cost; 2676 sc->file_cost = target_lruvec->file_cost; 2677 spin_unlock_irq(&pgdat->lru_lock); 2678 2679 /* 2680 * Target desirable inactive:active list ratios for the anon 2681 * and file LRU lists. 2682 */ 2683 if (!sc->force_deactivate) { 2684 unsigned long refaults; 2685 2686 refaults = lruvec_page_state(target_lruvec, 2687 WORKINGSET_ACTIVATE_ANON); 2688 if (refaults != target_lruvec->refaults[0] || 2689 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON)) 2690 sc->may_deactivate |= DEACTIVATE_ANON; 2691 else 2692 sc->may_deactivate &= ~DEACTIVATE_ANON; 2693 2694 /* 2695 * When refaults are being observed, it means a new 2696 * workingset is being established. Deactivate to get 2697 * rid of any stale active pages quickly. 2698 */ 2699 refaults = lruvec_page_state(target_lruvec, 2700 WORKINGSET_ACTIVATE_FILE); 2701 if (refaults != target_lruvec->refaults[1] || 2702 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE)) 2703 sc->may_deactivate |= DEACTIVATE_FILE; 2704 else 2705 sc->may_deactivate &= ~DEACTIVATE_FILE; 2706 } else 2707 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE; 2708 2709 /* 2710 * If we have plenty of inactive file pages that aren't 2711 * thrashing, try to reclaim those first before touching 2712 * anonymous pages. 2713 */ 2714 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE); 2715 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE)) 2716 sc->cache_trim_mode = 1; 2717 else 2718 sc->cache_trim_mode = 0; 2719 2720 /* 2721 * Prevent the reclaimer from falling into the cache trap: as 2722 * cache pages start out inactive, every cache fault will tip 2723 * the scan balance towards the file LRU. And as the file LRU 2724 * shrinks, so does the window for rotation from references. 2725 * This means we have a runaway feedback loop where a tiny 2726 * thrashing file LRU becomes infinitely more attractive than 2727 * anon pages. Try to detect this based on file LRU size. 2728 */ 2729 if (!cgroup_reclaim(sc)) { 2730 unsigned long total_high_wmark = 0; 2731 unsigned long free, anon; 2732 int z; 2733 2734 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2735 file = node_page_state(pgdat, NR_ACTIVE_FILE) + 2736 node_page_state(pgdat, NR_INACTIVE_FILE); 2737 2738 for (z = 0; z < MAX_NR_ZONES; z++) { 2739 struct zone *zone = &pgdat->node_zones[z]; 2740 if (!managed_zone(zone)) 2741 continue; 2742 2743 total_high_wmark += high_wmark_pages(zone); 2744 } 2745 2746 /* 2747 * Consider anon: if that's low too, this isn't a 2748 * runaway file reclaim problem, but rather just 2749 * extreme pressure. Reclaim as per usual then. 2750 */ 2751 anon = node_page_state(pgdat, NR_INACTIVE_ANON); 2752 2753 sc->file_is_tiny = 2754 file + free <= total_high_wmark && 2755 !(sc->may_deactivate & DEACTIVATE_ANON) && 2756 anon >> sc->priority; 2757 } 2758 2759 shrink_node_memcgs(pgdat, sc); 2760 2761 if (reclaim_state) { 2762 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2763 reclaim_state->reclaimed_slab = 0; 2764 } 2765 2766 /* Record the subtree's reclaim efficiency */ 2767 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2768 sc->nr_scanned - nr_scanned, 2769 sc->nr_reclaimed - nr_reclaimed); 2770 2771 if (sc->nr_reclaimed - nr_reclaimed) 2772 reclaimable = true; 2773 2774 if (current_is_kswapd()) { 2775 /* 2776 * If reclaim is isolating dirty pages under writeback, 2777 * it implies that the long-lived page allocation rate 2778 * is exceeding the page laundering rate. Either the 2779 * global limits are not being effective at throttling 2780 * processes due to the page distribution throughout 2781 * zones or there is heavy usage of a slow backing 2782 * device. The only option is to throttle from reclaim 2783 * context which is not ideal as there is no guarantee 2784 * the dirtying process is throttled in the same way 2785 * balance_dirty_pages() manages. 2786 * 2787 * Once a node is flagged PGDAT_WRITEBACK, kswapd will 2788 * count the number of pages under pages flagged for 2789 * immediate reclaim and stall if any are encountered 2790 * in the nr_immediate check below. 2791 */ 2792 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) 2793 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 2794 2795 /* Allow kswapd to start writing pages during reclaim.*/ 2796 if (sc->nr.unqueued_dirty == sc->nr.file_taken) 2797 set_bit(PGDAT_DIRTY, &pgdat->flags); 2798 2799 /* 2800 * If kswapd scans pages marked for immediate 2801 * reclaim and under writeback (nr_immediate), it 2802 * implies that pages are cycling through the LRU 2803 * faster than they are written so also forcibly stall. 2804 */ 2805 if (sc->nr.immediate) 2806 congestion_wait(BLK_RW_ASYNC, HZ/10); 2807 } 2808 2809 /* 2810 * Tag a node/memcg as congested if all the dirty pages 2811 * scanned were backed by a congested BDI and 2812 * wait_iff_congested will stall. 2813 * 2814 * Legacy memcg will stall in page writeback so avoid forcibly 2815 * stalling in wait_iff_congested(). 2816 */ 2817 if ((current_is_kswapd() || 2818 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) && 2819 sc->nr.dirty && sc->nr.dirty == sc->nr.congested) 2820 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags); 2821 2822 /* 2823 * Stall direct reclaim for IO completions if underlying BDIs 2824 * and node is congested. Allow kswapd to continue until it 2825 * starts encountering unqueued dirty pages or cycling through 2826 * the LRU too quickly. 2827 */ 2828 if (!current_is_kswapd() && current_may_throttle() && 2829 !sc->hibernation_mode && 2830 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags)) 2831 wait_iff_congested(BLK_RW_ASYNC, HZ/10); 2832 2833 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2834 sc)) 2835 goto again; 2836 2837 /* 2838 * Kswapd gives up on balancing particular nodes after too 2839 * many failures to reclaim anything from them and goes to 2840 * sleep. On reclaim progress, reset the failure counter. A 2841 * successful direct reclaim run will revive a dormant kswapd. 2842 */ 2843 if (reclaimable) 2844 pgdat->kswapd_failures = 0; 2845 } 2846 #endif 2847 2848 /* 2849 * Returns true if compaction should go ahead for a costly-order request, or 2850 * the allocation would already succeed without compaction. Return false if we 2851 * should reclaim first. 2852 */ compaction_ready(struct zone * zone,struct scan_control * sc)2853 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2854 { 2855 unsigned long watermark; 2856 enum compact_result suitable; 2857 2858 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2859 if (suitable == COMPACT_SUCCESS) 2860 /* Allocation should succeed already. Don't reclaim. */ 2861 return true; 2862 if (suitable == COMPACT_SKIPPED) 2863 /* Compaction cannot yet proceed. Do reclaim. */ 2864 return false; 2865 2866 /* 2867 * Compaction is already possible, but it takes time to run and there 2868 * are potentially other callers using the pages just freed. So proceed 2869 * with reclaim to make a buffer of free pages available to give 2870 * compaction a reasonable chance of completing and allocating the page. 2871 * Note that we won't actually reclaim the whole buffer in one attempt 2872 * as the target watermark in should_continue_reclaim() is lower. But if 2873 * we are already above the high+gap watermark, don't reclaim at all. 2874 */ 2875 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2876 2877 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2878 } 2879 2880 /* 2881 * This is the direct reclaim path, for page-allocating processes. We only 2882 * try to reclaim pages from zones which will satisfy the caller's allocation 2883 * request. 2884 * 2885 * If a zone is deemed to be full of pinned pages then just give it a light 2886 * scan then give up on it. 2887 */ shrink_zones(struct zonelist * zonelist,struct scan_control * sc)2888 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2889 { 2890 struct zoneref *z; 2891 struct zone *zone; 2892 unsigned long nr_soft_reclaimed; 2893 unsigned long nr_soft_scanned; 2894 gfp_t orig_mask; 2895 pg_data_t *last_pgdat = NULL; 2896 2897 /* 2898 * If the number of buffer_heads in the machine exceeds the maximum 2899 * allowed level, force direct reclaim to scan the highmem zone as 2900 * highmem pages could be pinning lowmem pages storing buffer_heads 2901 */ 2902 orig_mask = sc->gfp_mask; 2903 if (buffer_heads_over_limit) { 2904 sc->gfp_mask |= __GFP_HIGHMEM; 2905 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2906 } 2907 2908 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2909 sc->reclaim_idx, sc->nodemask) { 2910 /* 2911 * Take care memory controller reclaiming has small influence 2912 * to global LRU. 2913 */ 2914 if (!cgroup_reclaim(sc)) { 2915 if (!cpuset_zone_allowed(zone, 2916 GFP_KERNEL | __GFP_HARDWALL)) 2917 continue; 2918 2919 /* 2920 * If we already have plenty of memory free for 2921 * compaction in this zone, don't free any more. 2922 * Even though compaction is invoked for any 2923 * non-zero order, only frequent costly order 2924 * reclamation is disruptive enough to become a 2925 * noticeable problem, like transparent huge 2926 * page allocations. 2927 */ 2928 if (IS_ENABLED(CONFIG_COMPACTION) && 2929 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2930 compaction_ready(zone, sc)) { 2931 sc->compaction_ready = true; 2932 continue; 2933 } 2934 2935 /* 2936 * Shrink each node in the zonelist once. If the 2937 * zonelist is ordered by zone (not the default) then a 2938 * node may be shrunk multiple times but in that case 2939 * the user prefers lower zones being preserved. 2940 */ 2941 if (zone->zone_pgdat == last_pgdat) 2942 continue; 2943 2944 /* 2945 * This steals pages from memory cgroups over softlimit 2946 * and returns the number of reclaimed pages and 2947 * scanned pages. This works for global memory pressure 2948 * and balancing, not for a memcg's limit. 2949 */ 2950 nr_soft_scanned = 0; 2951 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2952 sc->order, sc->gfp_mask, 2953 &nr_soft_scanned); 2954 sc->nr_reclaimed += nr_soft_reclaimed; 2955 sc->nr_scanned += nr_soft_scanned; 2956 /* need some check for avoid more shrink_zone() */ 2957 } 2958 2959 /* See comment about same check for global reclaim above */ 2960 if (zone->zone_pgdat == last_pgdat) 2961 continue; 2962 last_pgdat = zone->zone_pgdat; 2963 #ifdef CONFIG_HYPERHOLD_FILE_LRU 2964 shrink_node_hyperhold(zone->zone_pgdat, sc); 2965 #else 2966 shrink_node(zone->zone_pgdat, sc); 2967 #endif 2968 } 2969 2970 /* 2971 * Restore to original mask to avoid the impact on the caller if we 2972 * promoted it to __GFP_HIGHMEM. 2973 */ 2974 sc->gfp_mask = orig_mask; 2975 } 2976 snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)2977 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat) 2978 { 2979 struct lruvec *target_lruvec; 2980 unsigned long refaults; 2981 2982 #ifdef CONFIG_HYPERHOLD_FILE_LRU 2983 struct lruvec *lruvec; 2984 2985 lruvec = node_lruvec(pgdat); 2986 lruvec->refaults[0] = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE_ANON); /* modified */ 2987 lruvec->refaults[1] = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE_FILE); /* modified */ 2988 #endif 2989 2990 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat); 2991 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON); 2992 target_lruvec->refaults[0] = refaults; 2993 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE); 2994 target_lruvec->refaults[1] = refaults; 2995 } 2996 2997 /* 2998 * This is the main entry point to direct page reclaim. 2999 * 3000 * If a full scan of the inactive list fails to free enough memory then we 3001 * are "out of memory" and something needs to be killed. 3002 * 3003 * If the caller is !__GFP_FS then the probability of a failure is reasonably 3004 * high - the zone may be full of dirty or under-writeback pages, which this 3005 * caller can't do much about. We kick the writeback threads and take explicit 3006 * naps in the hope that some of these pages can be written. But if the 3007 * allocating task holds filesystem locks which prevent writeout this might not 3008 * work, and the allocation attempt will fail. 3009 * 3010 * returns: 0, if no pages reclaimed 3011 * else, the number of pages reclaimed 3012 */ do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)3013 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 3014 struct scan_control *sc) 3015 { 3016 int initial_priority = sc->priority; 3017 pg_data_t *last_pgdat; 3018 struct zoneref *z; 3019 struct zone *zone; 3020 retry: 3021 delayacct_freepages_start(); 3022 3023 if (!cgroup_reclaim(sc)) 3024 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 3025 3026 do { 3027 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 3028 sc->priority); 3029 sc->nr_scanned = 0; 3030 shrink_zones(zonelist, sc); 3031 3032 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 3033 break; 3034 3035 if (sc->compaction_ready) 3036 break; 3037 3038 /* 3039 * If we're getting trouble reclaiming, start doing 3040 * writepage even in laptop mode. 3041 */ 3042 if (sc->priority < DEF_PRIORITY - 2) 3043 sc->may_writepage = 1; 3044 } while (--sc->priority >= 0); 3045 3046 last_pgdat = NULL; 3047 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 3048 sc->nodemask) { 3049 if (zone->zone_pgdat == last_pgdat) 3050 continue; 3051 last_pgdat = zone->zone_pgdat; 3052 3053 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 3054 3055 if (cgroup_reclaim(sc)) { 3056 struct lruvec *lruvec; 3057 3058 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, 3059 zone->zone_pgdat); 3060 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3061 } 3062 } 3063 3064 delayacct_freepages_end(); 3065 3066 if (sc->nr_reclaimed) 3067 return sc->nr_reclaimed; 3068 3069 /* Aborted reclaim to try compaction? don't OOM, then */ 3070 if (sc->compaction_ready) 3071 return 1; 3072 3073 /* 3074 * We make inactive:active ratio decisions based on the node's 3075 * composition of memory, but a restrictive reclaim_idx or a 3076 * memory.low cgroup setting can exempt large amounts of 3077 * memory from reclaim. Neither of which are very common, so 3078 * instead of doing costly eligibility calculations of the 3079 * entire cgroup subtree up front, we assume the estimates are 3080 * good, and retry with forcible deactivation if that fails. 3081 */ 3082 if (sc->skipped_deactivate) { 3083 sc->priority = initial_priority; 3084 sc->force_deactivate = 1; 3085 sc->skipped_deactivate = 0; 3086 goto retry; 3087 } 3088 3089 /* Untapped cgroup reserves? Don't OOM, retry. */ 3090 if (sc->memcg_low_skipped) { 3091 sc->priority = initial_priority; 3092 sc->force_deactivate = 0; 3093 sc->memcg_low_reclaim = 1; 3094 sc->memcg_low_skipped = 0; 3095 goto retry; 3096 } 3097 3098 return 0; 3099 } 3100 allow_direct_reclaim(pg_data_t * pgdat)3101 static bool allow_direct_reclaim(pg_data_t *pgdat) 3102 { 3103 struct zone *zone; 3104 unsigned long pfmemalloc_reserve = 0; 3105 unsigned long free_pages = 0; 3106 int i; 3107 bool wmark_ok; 3108 3109 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3110 return true; 3111 3112 for (i = 0; i <= ZONE_NORMAL; i++) { 3113 zone = &pgdat->node_zones[i]; 3114 if (!managed_zone(zone)) 3115 continue; 3116 3117 if (!zone_reclaimable_pages(zone)) 3118 continue; 3119 3120 pfmemalloc_reserve += min_wmark_pages(zone); 3121 free_pages += zone_page_state(zone, NR_FREE_PAGES); 3122 } 3123 3124 /* If there are no reserves (unexpected config) then do not throttle */ 3125 if (!pfmemalloc_reserve) 3126 return true; 3127 3128 wmark_ok = free_pages > pfmemalloc_reserve / 2; 3129 3130 /* kswapd must be awake if processes are being throttled */ 3131 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 3132 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL) 3133 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL); 3134 3135 wake_up_interruptible(&pgdat->kswapd_wait); 3136 } 3137 3138 return wmark_ok; 3139 } 3140 3141 /* 3142 * Throttle direct reclaimers if backing storage is backed by the network 3143 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 3144 * depleted. kswapd will continue to make progress and wake the processes 3145 * when the low watermark is reached. 3146 * 3147 * Returns true if a fatal signal was delivered during throttling. If this 3148 * happens, the page allocator should not consider triggering the OOM killer. 3149 */ throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)3150 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 3151 nodemask_t *nodemask) 3152 { 3153 struct zoneref *z; 3154 struct zone *zone; 3155 pg_data_t *pgdat = NULL; 3156 3157 /* 3158 * Kernel threads should not be throttled as they may be indirectly 3159 * responsible for cleaning pages necessary for reclaim to make forward 3160 * progress. kjournald for example may enter direct reclaim while 3161 * committing a transaction where throttling it could forcing other 3162 * processes to block on log_wait_commit(). 3163 */ 3164 if (current->flags & PF_KTHREAD) 3165 goto out; 3166 3167 /* 3168 * If a fatal signal is pending, this process should not throttle. 3169 * It should return quickly so it can exit and free its memory 3170 */ 3171 if (fatal_signal_pending(current)) 3172 goto out; 3173 3174 /* 3175 * Check if the pfmemalloc reserves are ok by finding the first node 3176 * with a usable ZONE_NORMAL or lower zone. The expectation is that 3177 * GFP_KERNEL will be required for allocating network buffers when 3178 * swapping over the network so ZONE_HIGHMEM is unusable. 3179 * 3180 * Throttling is based on the first usable node and throttled processes 3181 * wait on a queue until kswapd makes progress and wakes them. There 3182 * is an affinity then between processes waking up and where reclaim 3183 * progress has been made assuming the process wakes on the same node. 3184 * More importantly, processes running on remote nodes will not compete 3185 * for remote pfmemalloc reserves and processes on different nodes 3186 * should make reasonable progress. 3187 */ 3188 for_each_zone_zonelist_nodemask(zone, z, zonelist, 3189 gfp_zone(gfp_mask), nodemask) { 3190 if (zone_idx(zone) > ZONE_NORMAL) 3191 continue; 3192 3193 /* Throttle based on the first usable node */ 3194 pgdat = zone->zone_pgdat; 3195 if (allow_direct_reclaim(pgdat)) 3196 goto out; 3197 break; 3198 } 3199 3200 /* If no zone was usable by the allocation flags then do not throttle */ 3201 if (!pgdat) 3202 goto out; 3203 3204 /* Account for the throttling */ 3205 count_vm_event(PGSCAN_DIRECT_THROTTLE); 3206 3207 /* 3208 * If the caller cannot enter the filesystem, it's possible that it 3209 * is due to the caller holding an FS lock or performing a journal 3210 * transaction in the case of a filesystem like ext[3|4]. In this case, 3211 * it is not safe to block on pfmemalloc_wait as kswapd could be 3212 * blocked waiting on the same lock. Instead, throttle for up to a 3213 * second before continuing. 3214 */ 3215 if (!(gfp_mask & __GFP_FS)) { 3216 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 3217 allow_direct_reclaim(pgdat), HZ); 3218 3219 goto check_pending; 3220 } 3221 3222 /* Throttle until kswapd wakes the process */ 3223 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 3224 allow_direct_reclaim(pgdat)); 3225 3226 check_pending: 3227 if (fatal_signal_pending(current)) 3228 return true; 3229 3230 out: 3231 return false; 3232 } 3233 try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)3234 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 3235 gfp_t gfp_mask, nodemask_t *nodemask) 3236 { 3237 unsigned long nr_reclaimed; 3238 struct scan_control sc = { 3239 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3240 .gfp_mask = current_gfp_context(gfp_mask), 3241 .reclaim_idx = gfp_zone(gfp_mask), 3242 .order = order, 3243 .nodemask = nodemask, 3244 .priority = DEF_PRIORITY, 3245 .may_writepage = !laptop_mode, 3246 .may_unmap = 1, 3247 .may_swap = 1, 3248 }; 3249 3250 /* 3251 * scan_control uses s8 fields for order, priority, and reclaim_idx. 3252 * Confirm they are large enough for max values. 3253 */ 3254 BUILD_BUG_ON(MAX_ORDER > S8_MAX); 3255 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); 3256 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); 3257 3258 /* 3259 * Do not enter reclaim if fatal signal was delivered while throttled. 3260 * 1 is returned so that the page allocator does not OOM kill at this 3261 * point. 3262 */ 3263 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) 3264 return 1; 3265 3266 set_task_reclaim_state(current, &sc.reclaim_state); 3267 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask); 3268 3269 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3270 3271 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 3272 set_task_reclaim_state(current, NULL); 3273 3274 return nr_reclaimed; 3275 } 3276 3277 #ifdef CONFIG_MEMCG 3278 3279 /* Only used by soft limit reclaim. Do not reuse for anything else. */ mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)3280 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 3281 gfp_t gfp_mask, bool noswap, 3282 pg_data_t *pgdat, 3283 unsigned long *nr_scanned) 3284 { 3285 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat); 3286 struct scan_control sc = { 3287 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3288 .target_mem_cgroup = memcg, 3289 .may_writepage = !laptop_mode, 3290 .may_unmap = 1, 3291 .reclaim_idx = MAX_NR_ZONES - 1, 3292 .may_swap = !noswap, 3293 }; 3294 #ifdef CONFIG_HYPERHOLD_FILE_LRU 3295 unsigned long nr[NR_LRU_LISTS]; 3296 #endif 3297 3298 WARN_ON_ONCE(!current->reclaim_state); 3299 3300 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3301 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3302 3303 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3304 sc.gfp_mask); 3305 3306 /* 3307 * NOTE: Although we can get the priority field, using it 3308 * here is not a good idea, since it limits the pages we can scan. 3309 * if we don't reclaim here, the shrink_node from balance_pgdat 3310 * will pick up pages from other mem cgroup's as well. We hack 3311 * the priority and make it zero. 3312 */ 3313 #ifdef CONFIG_HYPERHOLD_FILE_LRU 3314 nr[LRU_ACTIVE_ANON] = lruvec_lru_size(lruvec, 3315 LRU_ACTIVE_ANON, MAX_NR_ZONES); 3316 nr[LRU_INACTIVE_ANON] = lruvec_lru_size(lruvec, 3317 LRU_INACTIVE_ANON, MAX_NR_ZONES); 3318 nr[LRU_ACTIVE_FILE] = 0; 3319 nr[LRU_INACTIVE_FILE] = 0; 3320 shrink_anon_memcg(pgdat, memcg, &sc, nr); 3321 #else 3322 shrink_lruvec(lruvec, &sc); 3323 #endif 3324 3325 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3326 3327 *nr_scanned = sc.nr_scanned; 3328 3329 return sc.nr_reclaimed; 3330 } 3331 try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)3332 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3333 unsigned long nr_pages, 3334 gfp_t gfp_mask, 3335 bool may_swap) 3336 { 3337 unsigned long nr_reclaimed; 3338 unsigned int noreclaim_flag; 3339 struct scan_control sc = { 3340 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3341 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3342 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3343 .reclaim_idx = MAX_NR_ZONES - 1, 3344 .target_mem_cgroup = memcg, 3345 .priority = DEF_PRIORITY, 3346 .may_writepage = !laptop_mode, 3347 .may_unmap = 1, 3348 .may_swap = may_swap, 3349 }; 3350 /* 3351 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put 3352 * equal pressure on all the nodes. This is based on the assumption that 3353 * the reclaim does not bail out early. 3354 */ 3355 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3356 3357 set_task_reclaim_state(current, &sc.reclaim_state); 3358 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask); 3359 noreclaim_flag = memalloc_noreclaim_save(); 3360 3361 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3362 3363 memalloc_noreclaim_restore(noreclaim_flag); 3364 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3365 set_task_reclaim_state(current, NULL); 3366 3367 return nr_reclaimed; 3368 } 3369 #endif 3370 age_active_anon(struct pglist_data * pgdat,struct scan_control * sc)3371 static void age_active_anon(struct pglist_data *pgdat, 3372 struct scan_control *sc) 3373 { 3374 struct mem_cgroup *memcg; 3375 struct lruvec *lruvec; 3376 3377 if (!total_swap_pages) 3378 return; 3379 3380 lruvec = mem_cgroup_lruvec(NULL, pgdat); 3381 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON)) 3382 return; 3383 3384 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3385 do { 3386 lruvec = mem_cgroup_lruvec(memcg, pgdat); 3387 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3388 sc, LRU_ACTIVE_ANON); 3389 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3390 } while (memcg); 3391 } 3392 pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)3393 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx) 3394 { 3395 int i; 3396 struct zone *zone; 3397 3398 /* 3399 * Check for watermark boosts top-down as the higher zones 3400 * are more likely to be boosted. Both watermarks and boosts 3401 * should not be checked at the same time as reclaim would 3402 * start prematurely when there is no boosting and a lower 3403 * zone is balanced. 3404 */ 3405 for (i = highest_zoneidx; i >= 0; i--) { 3406 zone = pgdat->node_zones + i; 3407 if (!managed_zone(zone)) 3408 continue; 3409 3410 if (zone->watermark_boost) 3411 return true; 3412 } 3413 3414 return false; 3415 } 3416 3417 /* 3418 * Returns true if there is an eligible zone balanced for the request order 3419 * and highest_zoneidx 3420 */ pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)3421 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx) 3422 { 3423 int i; 3424 unsigned long mark = -1; 3425 struct zone *zone; 3426 3427 /* 3428 * Check watermarks bottom-up as lower zones are more likely to 3429 * meet watermarks. 3430 */ 3431 for (i = 0; i <= highest_zoneidx; i++) { 3432 zone = pgdat->node_zones + i; 3433 3434 if (!managed_zone(zone)) 3435 continue; 3436 3437 mark = high_wmark_pages(zone); 3438 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx)) 3439 return true; 3440 } 3441 3442 /* 3443 * If a node has no populated zone within highest_zoneidx, it does not 3444 * need balancing by definition. This can happen if a zone-restricted 3445 * allocation tries to wake a remote kswapd. 3446 */ 3447 if (mark == -1) 3448 return true; 3449 3450 return false; 3451 } 3452 3453 /* Clear pgdat state for congested, dirty or under writeback. */ clear_pgdat_congested(pg_data_t * pgdat)3454 static void clear_pgdat_congested(pg_data_t *pgdat) 3455 { 3456 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat); 3457 3458 clear_bit(LRUVEC_CONGESTED, &lruvec->flags); 3459 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3460 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3461 } 3462 3463 /* 3464 * Prepare kswapd for sleeping. This verifies that there are no processes 3465 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3466 * 3467 * Returns true if kswapd is ready to sleep 3468 */ prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)3469 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, 3470 int highest_zoneidx) 3471 { 3472 /* 3473 * The throttled processes are normally woken up in balance_pgdat() as 3474 * soon as allow_direct_reclaim() is true. But there is a potential 3475 * race between when kswapd checks the watermarks and a process gets 3476 * throttled. There is also a potential race if processes get 3477 * throttled, kswapd wakes, a large process exits thereby balancing the 3478 * zones, which causes kswapd to exit balance_pgdat() before reaching 3479 * the wake up checks. If kswapd is going to sleep, no process should 3480 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3481 * the wake up is premature, processes will wake kswapd and get 3482 * throttled again. The difference from wake ups in balance_pgdat() is 3483 * that here we are under prepare_to_wait(). 3484 */ 3485 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3486 wake_up_all(&pgdat->pfmemalloc_wait); 3487 3488 /* Hopeless node, leave it to direct reclaim */ 3489 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3490 return true; 3491 3492 if (pgdat_balanced(pgdat, order, highest_zoneidx)) { 3493 clear_pgdat_congested(pgdat); 3494 return true; 3495 } 3496 3497 return false; 3498 } 3499 3500 /* 3501 * kswapd shrinks a node of pages that are at or below the highest usable 3502 * zone that is currently unbalanced. 3503 * 3504 * Returns true if kswapd scanned at least the requested number of pages to 3505 * reclaim or if the lack of progress was due to pages under writeback. 3506 * This is used to determine if the scanning priority needs to be raised. 3507 */ kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)3508 static bool kswapd_shrink_node(pg_data_t *pgdat, 3509 struct scan_control *sc) 3510 { 3511 struct zone *zone; 3512 int z; 3513 3514 /* Reclaim a number of pages proportional to the number of zones */ 3515 sc->nr_to_reclaim = 0; 3516 for (z = 0; z <= sc->reclaim_idx; z++) { 3517 zone = pgdat->node_zones + z; 3518 if (!managed_zone(zone)) 3519 continue; 3520 3521 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3522 } 3523 3524 /* 3525 * Historically care was taken to put equal pressure on all zones but 3526 * now pressure is applied based on node LRU order. 3527 */ 3528 #ifdef CONFIG_HYPERHOLD_FILE_LRU 3529 shrink_node_hyperhold(pgdat, sc); 3530 #else 3531 shrink_node(pgdat, sc); 3532 #endif 3533 3534 /* 3535 * Fragmentation may mean that the system cannot be rebalanced for 3536 * high-order allocations. If twice the allocation size has been 3537 * reclaimed then recheck watermarks only at order-0 to prevent 3538 * excessive reclaim. Assume that a process requested a high-order 3539 * can direct reclaim/compact. 3540 */ 3541 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3542 sc->order = 0; 3543 3544 return sc->nr_scanned >= sc->nr_to_reclaim; 3545 } 3546 3547 /* 3548 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3549 * that are eligible for use by the caller until at least one zone is 3550 * balanced. 3551 * 3552 * Returns the order kswapd finished reclaiming at. 3553 * 3554 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3555 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3556 * found to have free_pages <= high_wmark_pages(zone), any page in that zone 3557 * or lower is eligible for reclaim until at least one usable zone is 3558 * balanced. 3559 */ balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)3560 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx) 3561 { 3562 int i; 3563 unsigned long nr_soft_reclaimed; 3564 unsigned long nr_soft_scanned; 3565 unsigned long pflags; 3566 unsigned long nr_boost_reclaim; 3567 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; 3568 bool boosted; 3569 struct zone *zone; 3570 struct scan_control sc = { 3571 .gfp_mask = GFP_KERNEL, 3572 .order = order, 3573 .may_unmap = 1, 3574 }; 3575 3576 set_task_reclaim_state(current, &sc.reclaim_state); 3577 psi_memstall_enter(&pflags); 3578 __fs_reclaim_acquire(); 3579 3580 count_vm_event(PAGEOUTRUN); 3581 3582 /* 3583 * Account for the reclaim boost. Note that the zone boost is left in 3584 * place so that parallel allocations that are near the watermark will 3585 * stall or direct reclaim until kswapd is finished. 3586 */ 3587 nr_boost_reclaim = 0; 3588 for (i = 0; i <= highest_zoneidx; i++) { 3589 zone = pgdat->node_zones + i; 3590 if (!managed_zone(zone)) 3591 continue; 3592 3593 nr_boost_reclaim += zone->watermark_boost; 3594 zone_boosts[i] = zone->watermark_boost; 3595 } 3596 boosted = nr_boost_reclaim; 3597 3598 restart: 3599 sc.priority = DEF_PRIORITY; 3600 do { 3601 unsigned long nr_reclaimed = sc.nr_reclaimed; 3602 bool raise_priority = true; 3603 bool balanced; 3604 bool ret; 3605 3606 sc.reclaim_idx = highest_zoneidx; 3607 3608 /* 3609 * If the number of buffer_heads exceeds the maximum allowed 3610 * then consider reclaiming from all zones. This has a dual 3611 * purpose -- on 64-bit systems it is expected that 3612 * buffer_heads are stripped during active rotation. On 32-bit 3613 * systems, highmem pages can pin lowmem memory and shrinking 3614 * buffers can relieve lowmem pressure. Reclaim may still not 3615 * go ahead if all eligible zones for the original allocation 3616 * request are balanced to avoid excessive reclaim from kswapd. 3617 */ 3618 if (buffer_heads_over_limit) { 3619 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3620 zone = pgdat->node_zones + i; 3621 if (!managed_zone(zone)) 3622 continue; 3623 3624 sc.reclaim_idx = i; 3625 break; 3626 } 3627 } 3628 3629 /* 3630 * If the pgdat is imbalanced then ignore boosting and preserve 3631 * the watermarks for a later time and restart. Note that the 3632 * zone watermarks will be still reset at the end of balancing 3633 * on the grounds that the normal reclaim should be enough to 3634 * re-evaluate if boosting is required when kswapd next wakes. 3635 */ 3636 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx); 3637 if (!balanced && nr_boost_reclaim) { 3638 nr_boost_reclaim = 0; 3639 goto restart; 3640 } 3641 3642 /* 3643 * If boosting is not active then only reclaim if there are no 3644 * eligible zones. Note that sc.reclaim_idx is not used as 3645 * buffer_heads_over_limit may have adjusted it. 3646 */ 3647 if (!nr_boost_reclaim && balanced) 3648 goto out; 3649 3650 /* Limit the priority of boosting to avoid reclaim writeback */ 3651 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) 3652 raise_priority = false; 3653 3654 /* 3655 * Do not writeback or swap pages for boosted reclaim. The 3656 * intent is to relieve pressure not issue sub-optimal IO 3657 * from reclaim context. If no pages are reclaimed, the 3658 * reclaim will be aborted. 3659 */ 3660 sc.may_writepage = !laptop_mode && !nr_boost_reclaim; 3661 sc.may_swap = !nr_boost_reclaim; 3662 3663 /* 3664 * Do some background aging of the anon list, to give 3665 * pages a chance to be referenced before reclaiming. All 3666 * pages are rotated regardless of classzone as this is 3667 * about consistent aging. 3668 */ 3669 age_active_anon(pgdat, &sc); 3670 3671 /* 3672 * If we're getting trouble reclaiming, start doing writepage 3673 * even in laptop mode. 3674 */ 3675 if (sc.priority < DEF_PRIORITY - 2) 3676 sc.may_writepage = 1; 3677 3678 /* Call soft limit reclaim before calling shrink_node. */ 3679 sc.nr_scanned = 0; 3680 nr_soft_scanned = 0; 3681 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3682 sc.gfp_mask, &nr_soft_scanned); 3683 sc.nr_reclaimed += nr_soft_reclaimed; 3684 3685 /* 3686 * There should be no need to raise the scanning priority if 3687 * enough pages are already being scanned that that high 3688 * watermark would be met at 100% efficiency. 3689 */ 3690 if (kswapd_shrink_node(pgdat, &sc)) 3691 raise_priority = false; 3692 3693 /* 3694 * If the low watermark is met there is no need for processes 3695 * to be throttled on pfmemalloc_wait as they should not be 3696 * able to safely make forward progress. Wake them 3697 */ 3698 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3699 allow_direct_reclaim(pgdat)) 3700 wake_up_all(&pgdat->pfmemalloc_wait); 3701 3702 /* Check if kswapd should be suspending */ 3703 __fs_reclaim_release(); 3704 ret = try_to_freeze(); 3705 __fs_reclaim_acquire(); 3706 if (ret || kthread_should_stop()) 3707 break; 3708 3709 /* 3710 * Raise priority if scanning rate is too low or there was no 3711 * progress in reclaiming pages 3712 */ 3713 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3714 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); 3715 3716 /* 3717 * If reclaim made no progress for a boost, stop reclaim as 3718 * IO cannot be queued and it could be an infinite loop in 3719 * extreme circumstances. 3720 */ 3721 if (nr_boost_reclaim && !nr_reclaimed) 3722 break; 3723 3724 if (raise_priority || !nr_reclaimed) 3725 sc.priority--; 3726 } while (sc.priority >= 1); 3727 3728 if (!sc.nr_reclaimed) 3729 pgdat->kswapd_failures++; 3730 3731 out: 3732 /* If reclaim was boosted, account for the reclaim done in this pass */ 3733 if (boosted) { 3734 unsigned long flags; 3735 3736 for (i = 0; i <= highest_zoneidx; i++) { 3737 if (!zone_boosts[i]) 3738 continue; 3739 3740 /* Increments are under the zone lock */ 3741 zone = pgdat->node_zones + i; 3742 spin_lock_irqsave(&zone->lock, flags); 3743 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); 3744 spin_unlock_irqrestore(&zone->lock, flags); 3745 } 3746 3747 /* 3748 * As there is now likely space, wakeup kcompact to defragment 3749 * pageblocks. 3750 */ 3751 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx); 3752 } 3753 3754 snapshot_refaults(NULL, pgdat); 3755 __fs_reclaim_release(); 3756 psi_memstall_leave(&pflags); 3757 set_task_reclaim_state(current, NULL); 3758 3759 /* 3760 * Return the order kswapd stopped reclaiming at as 3761 * prepare_kswapd_sleep() takes it into account. If another caller 3762 * entered the allocator slow path while kswapd was awake, order will 3763 * remain at the higher level. 3764 */ 3765 return sc.order; 3766 } 3767 3768 /* 3769 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to 3770 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is 3771 * not a valid index then either kswapd runs for first time or kswapd couldn't 3772 * sleep after previous reclaim attempt (node is still unbalanced). In that 3773 * case return the zone index of the previous kswapd reclaim cycle. 3774 */ kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)3775 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat, 3776 enum zone_type prev_highest_zoneidx) 3777 { 3778 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 3779 3780 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx; 3781 } 3782 kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)3783 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3784 unsigned int highest_zoneidx) 3785 { 3786 long remaining = 0; 3787 DEFINE_WAIT(wait); 3788 3789 if (freezing(current) || kthread_should_stop()) 3790 return; 3791 3792 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3793 3794 /* 3795 * Try to sleep for a short interval. Note that kcompactd will only be 3796 * woken if it is possible to sleep for a short interval. This is 3797 * deliberate on the assumption that if reclaim cannot keep an 3798 * eligible zone balanced that it's also unlikely that compaction will 3799 * succeed. 3800 */ 3801 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 3802 /* 3803 * Compaction records what page blocks it recently failed to 3804 * isolate pages from and skips them in the future scanning. 3805 * When kswapd is going to sleep, it is reasonable to assume 3806 * that pages and compaction may succeed so reset the cache. 3807 */ 3808 reset_isolation_suitable(pgdat); 3809 3810 /* 3811 * We have freed the memory, now we should compact it to make 3812 * allocation of the requested order possible. 3813 */ 3814 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx); 3815 3816 remaining = schedule_timeout(HZ/10); 3817 3818 /* 3819 * If woken prematurely then reset kswapd_highest_zoneidx and 3820 * order. The values will either be from a wakeup request or 3821 * the previous request that slept prematurely. 3822 */ 3823 if (remaining) { 3824 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, 3825 kswapd_highest_zoneidx(pgdat, 3826 highest_zoneidx)); 3827 3828 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order) 3829 WRITE_ONCE(pgdat->kswapd_order, reclaim_order); 3830 } 3831 3832 finish_wait(&pgdat->kswapd_wait, &wait); 3833 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3834 } 3835 3836 /* 3837 * After a short sleep, check if it was a premature sleep. If not, then 3838 * go fully to sleep until explicitly woken up. 3839 */ 3840 if (!remaining && 3841 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) { 3842 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3843 3844 /* 3845 * vmstat counters are not perfectly accurate and the estimated 3846 * value for counters such as NR_FREE_PAGES can deviate from the 3847 * true value by nr_online_cpus * threshold. To avoid the zone 3848 * watermarks being breached while under pressure, we reduce the 3849 * per-cpu vmstat threshold while kswapd is awake and restore 3850 * them before going back to sleep. 3851 */ 3852 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3853 3854 if (!kthread_should_stop()) 3855 schedule(); 3856 3857 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3858 } else { 3859 if (remaining) 3860 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3861 else 3862 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3863 } 3864 finish_wait(&pgdat->kswapd_wait, &wait); 3865 } 3866 3867 /* 3868 * The background pageout daemon, started as a kernel thread 3869 * from the init process. 3870 * 3871 * This basically trickles out pages so that we have _some_ 3872 * free memory available even if there is no other activity 3873 * that frees anything up. This is needed for things like routing 3874 * etc, where we otherwise might have all activity going on in 3875 * asynchronous contexts that cannot page things out. 3876 * 3877 * If there are applications that are active memory-allocators 3878 * (most normal use), this basically shouldn't matter. 3879 */ kswapd(void * p)3880 static int kswapd(void *p) 3881 { 3882 unsigned int alloc_order, reclaim_order; 3883 unsigned int highest_zoneidx = MAX_NR_ZONES - 1; 3884 pg_data_t *pgdat = (pg_data_t*)p; 3885 struct task_struct *tsk = current; 3886 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3887 #ifdef CONFIG_RECLAIM_ACCT 3888 struct reclaim_acct ra = {0}; 3889 #endif 3890 3891 if (!cpumask_empty(cpumask)) 3892 set_cpus_allowed_ptr(tsk, cpumask); 3893 3894 /* 3895 * Tell the memory management that we're a "memory allocator", 3896 * and that if we need more memory we should get access to it 3897 * regardless (see "__alloc_pages()"). "kswapd" should 3898 * never get caught in the normal page freeing logic. 3899 * 3900 * (Kswapd normally doesn't need memory anyway, but sometimes 3901 * you need a small amount of memory in order to be able to 3902 * page out something else, and this flag essentially protects 3903 * us from recursively trying to free more memory as we're 3904 * trying to free the first piece of memory in the first place). 3905 */ 3906 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3907 set_freezable(); 3908 3909 WRITE_ONCE(pgdat->kswapd_order, 0); 3910 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 3911 for ( ; ; ) { 3912 bool ret; 3913 3914 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 3915 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 3916 highest_zoneidx); 3917 3918 kswapd_try_sleep: 3919 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3920 highest_zoneidx); 3921 3922 /* Read the new order and highest_zoneidx */ 3923 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order); 3924 highest_zoneidx = kswapd_highest_zoneidx(pgdat, 3925 highest_zoneidx); 3926 WRITE_ONCE(pgdat->kswapd_order, 0); 3927 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES); 3928 3929 ret = try_to_freeze(); 3930 if (kthread_should_stop()) 3931 break; 3932 3933 /* 3934 * We can speed up thawing tasks if we don't call balance_pgdat 3935 * after returning from the refrigerator 3936 */ 3937 if (ret) 3938 continue; 3939 3940 /* 3941 * Reclaim begins at the requested order but if a high-order 3942 * reclaim fails then kswapd falls back to reclaiming for 3943 * order-0. If that happens, kswapd will consider sleeping 3944 * for the order it finished reclaiming at (reclaim_order) 3945 * but kcompactd is woken to compact for the original 3946 * request (alloc_order). 3947 */ 3948 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx, 3949 alloc_order); 3950 #ifdef CONFIG_MEMORY_MONITOR 3951 kswapd_monitor_wake_up_queue(); 3952 #endif 3953 #ifdef CONFIG_RECLAIM_ACCT 3954 reclaimacct_start(KSWAPD_RECLAIM, &ra); 3955 #endif 3956 reclaim_order = balance_pgdat(pgdat, alloc_order, 3957 highest_zoneidx); 3958 #ifdef CONFIG_RECLAIM_ACCT 3959 reclaimacct_end(KSWAPD_RECLAIM); 3960 #endif 3961 if (reclaim_order < alloc_order) 3962 goto kswapd_try_sleep; 3963 } 3964 3965 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3966 3967 return 0; 3968 } 3969 3970 /* 3971 * A zone is low on free memory or too fragmented for high-order memory. If 3972 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's 3973 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim 3974 * has failed or is not needed, still wake up kcompactd if only compaction is 3975 * needed. 3976 */ wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)3977 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, 3978 enum zone_type highest_zoneidx) 3979 { 3980 pg_data_t *pgdat; 3981 enum zone_type curr_idx; 3982 3983 if (!managed_zone(zone)) 3984 return; 3985 3986 if (!cpuset_zone_allowed(zone, gfp_flags)) 3987 return; 3988 3989 pgdat = zone->zone_pgdat; 3990 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx); 3991 3992 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx) 3993 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx); 3994 3995 if (READ_ONCE(pgdat->kswapd_order) < order) 3996 WRITE_ONCE(pgdat->kswapd_order, order); 3997 3998 if (!waitqueue_active(&pgdat->kswapd_wait)) 3999 return; 4000 4001 /* Hopeless node, leave it to direct reclaim if possible */ 4002 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || 4003 (pgdat_balanced(pgdat, order, highest_zoneidx) && 4004 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) { 4005 /* 4006 * There may be plenty of free memory available, but it's too 4007 * fragmented for high-order allocations. Wake up kcompactd 4008 * and rely on compaction_suitable() to determine if it's 4009 * needed. If it fails, it will defer subsequent attempts to 4010 * ratelimit its work. 4011 */ 4012 if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) 4013 wakeup_kcompactd(pgdat, order, highest_zoneidx); 4014 return; 4015 } 4016 4017 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order, 4018 gfp_flags); 4019 wake_up_interruptible(&pgdat->kswapd_wait); 4020 } 4021 4022 #ifdef CONFIG_HIBERNATION 4023 /* 4024 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 4025 * freed pages. 4026 * 4027 * Rather than trying to age LRUs the aim is to preserve the overall 4028 * LRU order by reclaiming preferentially 4029 * inactive > active > active referenced > active mapped 4030 */ shrink_all_memory(unsigned long nr_to_reclaim)4031 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 4032 { 4033 struct scan_control sc = { 4034 .nr_to_reclaim = nr_to_reclaim, 4035 .gfp_mask = GFP_HIGHUSER_MOVABLE, 4036 .reclaim_idx = MAX_NR_ZONES - 1, 4037 .priority = DEF_PRIORITY, 4038 .may_writepage = 1, 4039 .may_unmap = 1, 4040 .may_swap = 1, 4041 .hibernation_mode = 1, 4042 }; 4043 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 4044 unsigned long nr_reclaimed; 4045 unsigned int noreclaim_flag; 4046 4047 fs_reclaim_acquire(sc.gfp_mask); 4048 noreclaim_flag = memalloc_noreclaim_save(); 4049 set_task_reclaim_state(current, &sc.reclaim_state); 4050 4051 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 4052 4053 set_task_reclaim_state(current, NULL); 4054 memalloc_noreclaim_restore(noreclaim_flag); 4055 fs_reclaim_release(sc.gfp_mask); 4056 4057 return nr_reclaimed; 4058 } 4059 #endif /* CONFIG_HIBERNATION */ 4060 4061 /* 4062 * This kswapd start function will be called by init and node-hot-add. 4063 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 4064 */ kswapd_run(int nid)4065 int kswapd_run(int nid) 4066 { 4067 pg_data_t *pgdat = NODE_DATA(nid); 4068 int ret = 0; 4069 4070 if (pgdat->kswapd) 4071 return 0; 4072 4073 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 4074 if (IS_ERR(pgdat->kswapd)) { 4075 /* failure at boot is fatal */ 4076 BUG_ON(system_state < SYSTEM_RUNNING); 4077 pr_err("Failed to start kswapd on node %d\n", nid); 4078 ret = PTR_ERR(pgdat->kswapd); 4079 pgdat->kswapd = NULL; 4080 } 4081 return ret; 4082 } 4083 4084 /* 4085 * Called by memory hotplug when all memory in a node is offlined. Caller must 4086 * hold mem_hotplug_begin/end(). 4087 */ kswapd_stop(int nid)4088 void kswapd_stop(int nid) 4089 { 4090 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 4091 4092 if (kswapd) { 4093 kthread_stop(kswapd); 4094 NODE_DATA(nid)->kswapd = NULL; 4095 } 4096 } 4097 4098 #ifdef CONFIG_MEM_PURGEABLE_DEBUG 4099 static void __init purgeable_debugfs_init(void); 4100 #endif 4101 kswapd_init(void)4102 static int __init kswapd_init(void) 4103 { 4104 int nid; 4105 4106 swap_setup(); 4107 for_each_node_state(nid, N_MEMORY) 4108 kswapd_run(nid); 4109 #ifdef CONFIG_MEM_PURGEABLE_DEBUG 4110 purgeable_debugfs_init(); 4111 #endif 4112 return 0; 4113 } 4114 4115 module_init(kswapd_init) 4116 4117 #ifdef CONFIG_NUMA 4118 /* 4119 * Node reclaim mode 4120 * 4121 * If non-zero call node_reclaim when the number of free pages falls below 4122 * the watermarks. 4123 */ 4124 int node_reclaim_mode __read_mostly; 4125 4126 /* 4127 * These bit locations are exposed in the vm.zone_reclaim_mode sysctl 4128 * ABI. New bits are OK, but existing bits can never change. 4129 */ 4130 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 4131 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 4132 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 4133 4134 /* 4135 * Priority for NODE_RECLAIM. This determines the fraction of pages 4136 * of a node considered for each zone_reclaim. 4 scans 1/16th of 4137 * a zone. 4138 */ 4139 #define NODE_RECLAIM_PRIORITY 4 4140 4141 /* 4142 * Percentage of pages in a zone that must be unmapped for node_reclaim to 4143 * occur. 4144 */ 4145 int sysctl_min_unmapped_ratio = 1; 4146 4147 /* 4148 * If the number of slab pages in a zone grows beyond this percentage then 4149 * slab reclaim needs to occur. 4150 */ 4151 int sysctl_min_slab_ratio = 5; 4152 node_unmapped_file_pages(struct pglist_data * pgdat)4153 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 4154 { 4155 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 4156 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 4157 node_page_state(pgdat, NR_ACTIVE_FILE); 4158 4159 /* 4160 * It's possible for there to be more file mapped pages than 4161 * accounted for by the pages on the file LRU lists because 4162 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 4163 */ 4164 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 4165 } 4166 4167 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ node_pagecache_reclaimable(struct pglist_data * pgdat)4168 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 4169 { 4170 unsigned long nr_pagecache_reclaimable; 4171 unsigned long delta = 0; 4172 4173 /* 4174 * If RECLAIM_UNMAP is set, then all file pages are considered 4175 * potentially reclaimable. Otherwise, we have to worry about 4176 * pages like swapcache and node_unmapped_file_pages() provides 4177 * a better estimate 4178 */ 4179 if (node_reclaim_mode & RECLAIM_UNMAP) 4180 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 4181 else 4182 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 4183 4184 /* If we can't clean pages, remove dirty pages from consideration */ 4185 if (!(node_reclaim_mode & RECLAIM_WRITE)) 4186 delta += node_page_state(pgdat, NR_FILE_DIRTY); 4187 4188 /* Watch for any possible underflows due to delta */ 4189 if (unlikely(delta > nr_pagecache_reclaimable)) 4190 delta = nr_pagecache_reclaimable; 4191 4192 return nr_pagecache_reclaimable - delta; 4193 } 4194 4195 /* 4196 * Try to free up some pages from this node through reclaim. 4197 */ __node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4198 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4199 { 4200 /* Minimum pages needed in order to stay on node */ 4201 const unsigned long nr_pages = 1 << order; 4202 struct task_struct *p = current; 4203 unsigned int noreclaim_flag; 4204 struct scan_control sc = { 4205 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 4206 .gfp_mask = current_gfp_context(gfp_mask), 4207 .order = order, 4208 .priority = NODE_RECLAIM_PRIORITY, 4209 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 4210 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 4211 .may_swap = 1, 4212 .reclaim_idx = gfp_zone(gfp_mask), 4213 }; 4214 unsigned long pflags; 4215 4216 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order, 4217 sc.gfp_mask); 4218 4219 cond_resched(); 4220 psi_memstall_enter(&pflags); 4221 fs_reclaim_acquire(sc.gfp_mask); 4222 /* 4223 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 4224 * and we also need to be able to write out pages for RECLAIM_WRITE 4225 * and RECLAIM_UNMAP. 4226 */ 4227 noreclaim_flag = memalloc_noreclaim_save(); 4228 p->flags |= PF_SWAPWRITE; 4229 set_task_reclaim_state(p, &sc.reclaim_state); 4230 4231 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 4232 /* 4233 * Free memory by calling shrink node with increasing 4234 * priorities until we have enough memory freed. 4235 */ 4236 do { 4237 #ifdef CONFIG_HYPERHOLD_FILE_LRU 4238 shrink_node_hyperhold(pgdat, &sc); 4239 #else 4240 shrink_node(pgdat, &sc); 4241 #endif 4242 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 4243 } 4244 4245 set_task_reclaim_state(p, NULL); 4246 current->flags &= ~PF_SWAPWRITE; 4247 memalloc_noreclaim_restore(noreclaim_flag); 4248 fs_reclaim_release(sc.gfp_mask); 4249 psi_memstall_leave(&pflags); 4250 4251 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed); 4252 4253 return sc.nr_reclaimed >= nr_pages; 4254 } 4255 node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4256 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 4257 { 4258 int ret; 4259 4260 /* 4261 * Node reclaim reclaims unmapped file backed pages and 4262 * slab pages if we are over the defined limits. 4263 * 4264 * A small portion of unmapped file backed pages is needed for 4265 * file I/O otherwise pages read by file I/O will be immediately 4266 * thrown out if the node is overallocated. So we do not reclaim 4267 * if less than a specified percentage of the node is used by 4268 * unmapped file backed pages. 4269 */ 4270 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 4271 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <= 4272 pgdat->min_slab_pages) 4273 return NODE_RECLAIM_FULL; 4274 4275 /* 4276 * Do not scan if the allocation should not be delayed. 4277 */ 4278 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 4279 return NODE_RECLAIM_NOSCAN; 4280 4281 /* 4282 * Only run node reclaim on the local node or on nodes that do not 4283 * have associated processors. This will favor the local processor 4284 * over remote processors and spread off node memory allocations 4285 * as wide as possible. 4286 */ 4287 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 4288 return NODE_RECLAIM_NOSCAN; 4289 4290 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 4291 return NODE_RECLAIM_NOSCAN; 4292 4293 ret = __node_reclaim(pgdat, gfp_mask, order); 4294 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 4295 4296 if (!ret) 4297 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 4298 4299 return ret; 4300 } 4301 #endif 4302 4303 /** 4304 * check_move_unevictable_pages - check pages for evictability and move to 4305 * appropriate zone lru list 4306 * @pvec: pagevec with lru pages to check 4307 * 4308 * Checks pages for evictability, if an evictable page is in the unevictable 4309 * lru list, moves it to the appropriate evictable lru list. This function 4310 * should be only used for lru pages. 4311 */ check_move_unevictable_pages(struct pagevec * pvec)4312 void check_move_unevictable_pages(struct pagevec *pvec) 4313 { 4314 struct lruvec *lruvec; 4315 struct pglist_data *pgdat = NULL; 4316 int pgscanned = 0; 4317 int pgrescued = 0; 4318 int i; 4319 4320 for (i = 0; i < pvec->nr; i++) { 4321 struct page *page = pvec->pages[i]; 4322 struct pglist_data *pagepgdat = page_pgdat(page); 4323 int nr_pages; 4324 4325 if (PageTransTail(page)) 4326 continue; 4327 4328 nr_pages = thp_nr_pages(page); 4329 pgscanned += nr_pages; 4330 4331 if (pagepgdat != pgdat) { 4332 if (pgdat) 4333 spin_unlock_irq(&pgdat->lru_lock); 4334 pgdat = pagepgdat; 4335 spin_lock_irq(&pgdat->lru_lock); 4336 } 4337 lruvec = mem_cgroup_page_lruvec(page, pgdat); 4338 4339 if (!PageLRU(page) || !PageUnevictable(page)) 4340 continue; 4341 4342 if (page_evictable(page)) { 4343 enum lru_list lru = page_lru_base_type(page); 4344 4345 VM_BUG_ON_PAGE(PageActive(page), page); 4346 ClearPageUnevictable(page); 4347 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 4348 add_page_to_lru_list(page, lruvec, lru); 4349 pgrescued += nr_pages; 4350 } 4351 } 4352 4353 if (pgdat) { 4354 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 4355 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 4356 spin_unlock_irq(&pgdat->lru_lock); 4357 } 4358 } 4359 EXPORT_SYMBOL_GPL(check_move_unevictable_pages); 4360 4361 #ifdef CONFIG_MEM_PURGEABLE_DEBUG purgeable_node(pg_data_t * pgdata,struct scan_control * sc)4362 static unsigned long purgeable_node(pg_data_t *pgdata, struct scan_control *sc) 4363 { 4364 struct mem_cgroup *memcg = NULL; 4365 unsigned long nr = 0; 4366 #ifdef CONFIG_MEMCG 4367 while ((memcg = mem_cgroup_iter(NULL, memcg, NULL))) 4368 #endif 4369 { 4370 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdata); 4371 4372 shrink_list(LRU_ACTIVE_PURGEABLE, -1, lruvec, sc); 4373 nr += shrink_list(LRU_INACTIVE_PURGEABLE, -1, lruvec, sc); 4374 } 4375 4376 pr_info("reclaim %lu purgeable pages.\n", nr); 4377 4378 return nr; 4379 } 4380 purgeable(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4381 static int purgeable(struct ctl_table *table, int write, void *buffer, 4382 size_t *lenp, loff_t *ppos) 4383 { 4384 struct scan_control sc = { 4385 .gfp_mask = GFP_KERNEL, 4386 .order = 0, 4387 .priority = DEF_PRIORITY, 4388 .may_deactivate = DEACTIVATE_ANON, 4389 .may_writepage = 1, 4390 .may_unmap = 1, 4391 .may_swap = 1, 4392 .reclaim_idx = MAX_NR_ZONES - 1, 4393 }; 4394 int nid = 0; 4395 const struct cred *cred = current_cred(); 4396 if (!cred) 4397 return 0; 4398 4399 if (!uid_eq(cred->euid, GLOBAL_MEMMGR_UID) && 4400 !uid_eq(cred->euid, GLOBAL_ROOT_UID)) { 4401 pr_err("no permission to shrink purgeable heap!\n"); 4402 return -EINVAL; 4403 } 4404 for_each_node_state(nid, N_MEMORY) 4405 purgeable_node(NODE_DATA(nid), &sc); 4406 return 0; 4407 } 4408 4409 static struct ctl_table ker_tab[] = { 4410 { 4411 .procname = "purgeable", 4412 .mode = 0666, 4413 .proc_handler = purgeable, 4414 }, 4415 {}, 4416 }; 4417 4418 static struct ctl_table sys_tab[] = { 4419 { 4420 .procname = "kernel", 4421 .mode = 0555, 4422 .child = ker_tab, 4423 }, 4424 {}, 4425 }; 4426 4427 static struct ctl_table_header *purgeable_header; 4428 purgeable_debugfs_init(void)4429 static void __init purgeable_debugfs_init(void) 4430 { 4431 purgeable_header = register_sysctl_table(sys_tab); 4432 if (!purgeable_header) 4433 pr_err("register purgeable sysctl table failed.\n"); 4434 } 4435 purgeable_debugfs_exit(void)4436 static void __exit purgeable_debugfs_exit(void) 4437 { 4438 unregister_sysctl_table(purgeable_header); 4439 } 4440 #endif /* CONFIG_MEM_PURGEABLE_DEBUG */ 4441