• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  linux/mm/vmscan.c
4   *
5   *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6   *
7   *  Swap reorganised 29.12.95, Stephen Tweedie.
8   *  kswapd added: 7.1.96  sct
9   *  Removed kswapd_ctl limits, and swap out as many pages as needed
10   *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11   *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12   *  Multiqueue VM started 5.8.00, Rik van Riel.
13   */
14  
15  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16  
17  #include <linux/mm.h>
18  #include <linux/sched/mm.h>
19  #include <linux/module.h>
20  #include <linux/gfp.h>
21  #include <linux/kernel_stat.h>
22  #include <linux/swap.h>
23  #include <linux/pagemap.h>
24  #include <linux/init.h>
25  #include <linux/highmem.h>
26  #include <linux/vmpressure.h>
27  #include <linux/vmstat.h>
28  #include <linux/file.h>
29  #include <linux/writeback.h>
30  #include <linux/blkdev.h>
31  #include <linux/buffer_head.h>	/* for try_to_release_page(),
32  					buffer_heads_over_limit */
33  #include <linux/mm_inline.h>
34  #include <linux/backing-dev.h>
35  #include <linux/rmap.h>
36  #include <linux/topology.h>
37  #include <linux/cpu.h>
38  #include <linux/cpuset.h>
39  #include <linux/compaction.h>
40  #include <linux/notifier.h>
41  #include <linux/rwsem.h>
42  #include <linux/delay.h>
43  #include <linux/kthread.h>
44  #include <linux/freezer.h>
45  #include <linux/memcontrol.h>
46  #include <linux/delayacct.h>
47  #include <linux/sysctl.h>
48  #include <linux/oom.h>
49  #include <linux/pagevec.h>
50  #include <linux/prefetch.h>
51  #include <linux/printk.h>
52  #include <linux/dax.h>
53  #include <linux/psi.h>
54  
55  #include <asm/tlbflush.h>
56  #include <asm/div64.h>
57  
58  #include <linux/swapops.h>
59  #include <linux/balloon_compaction.h>
60  
61  #include "internal.h"
62  
63  #define CREATE_TRACE_POINTS
64  #include <trace/events/vmscan.h>
65  
66  #ifdef CONFIG_HYPERHOLD_FILE_LRU
67  #include <linux/memcg_policy.h>
68  #endif
69  
70  #ifdef CONFIG_RECLAIM_ACCT
71  #include <linux/reclaim_acct.h>
72  #endif
73  
74  #ifdef ARCH_HAS_PREFETCHW
75  #define prefetchw_prev_lru_page(_page, _base, _field)			\
76  	do {								\
77  		if ((_page)->lru.prev != _base) {			\
78  			struct page *prev;				\
79  									\
80  			prev = lru_to_page(&(_page->lru));		\
81  			prefetchw(&prev->_field);			\
82  		}							\
83  	} while (0)
84  #else
85  #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
86  #endif
87  
88  #ifdef CONFIG_HYPERHOLD_FILE_LRU
89  unsigned int enough_inactive_file = 1;
90  #endif
91  
92  /*
93   * From 0 .. 200.  Higher means more swappy.
94   */
95  int vm_swappiness = 60;
96  
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)97  static void set_task_reclaim_state(struct task_struct *task,
98  				   struct reclaim_state *rs)
99  {
100  	/* Check for an overwrite */
101  	WARN_ON_ONCE(rs && task->reclaim_state);
102  
103  	/* Check for the nulling of an already-nulled member */
104  	WARN_ON_ONCE(!rs && !task->reclaim_state);
105  
106  	task->reclaim_state = rs;
107  }
108  
109  static LIST_HEAD(shrinker_list);
110  static DECLARE_RWSEM(shrinker_rwsem);
111  
112  #ifdef CONFIG_MEMCG
113  
114  static DEFINE_IDR(shrinker_idr);
115  static int shrinker_nr_max;
116  
prealloc_memcg_shrinker(struct shrinker * shrinker)117  static int prealloc_memcg_shrinker(struct shrinker *shrinker)
118  {
119  	int id, ret = -ENOMEM;
120  
121  	down_write(&shrinker_rwsem);
122  	/* This may call shrinker, so it must use down_read_trylock() */
123  	id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
124  	if (id < 0)
125  		goto unlock;
126  
127  	if (id >= shrinker_nr_max) {
128  		if (memcg_expand_shrinker_maps(id)) {
129  			idr_remove(&shrinker_idr, id);
130  			goto unlock;
131  		}
132  
133  		shrinker_nr_max = id + 1;
134  	}
135  	shrinker->id = id;
136  	ret = 0;
137  unlock:
138  	up_write(&shrinker_rwsem);
139  	return ret;
140  }
141  
unregister_memcg_shrinker(struct shrinker * shrinker)142  static void unregister_memcg_shrinker(struct shrinker *shrinker)
143  {
144  	int id = shrinker->id;
145  
146  	BUG_ON(id < 0);
147  
148  	lockdep_assert_held(&shrinker_rwsem);
149  
150  	idr_remove(&shrinker_idr, id);
151  }
152  
cgroup_reclaim(struct scan_control * sc)153  bool cgroup_reclaim(struct scan_control *sc)
154  {
155  	return sc->target_mem_cgroup;
156  }
157  
158  /**
159   * writeback_throttling_sane - is the usual dirty throttling mechanism available?
160   * @sc: scan_control in question
161   *
162   * The normal page dirty throttling mechanism in balance_dirty_pages() is
163   * completely broken with the legacy memcg and direct stalling in
164   * shrink_page_list() is used for throttling instead, which lacks all the
165   * niceties such as fairness, adaptive pausing, bandwidth proportional
166   * allocation and configurability.
167   *
168   * This function tests whether the vmscan currently in progress can assume
169   * that the normal dirty throttling mechanism is operational.
170   */
writeback_throttling_sane(struct scan_control * sc)171  bool writeback_throttling_sane(struct scan_control *sc)
172  {
173  	if (!cgroup_reclaim(sc))
174  		return true;
175  #ifdef CONFIG_CGROUP_WRITEBACK
176  	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
177  		return true;
178  #endif
179  	return false;
180  }
181  #else
prealloc_memcg_shrinker(struct shrinker * shrinker)182  static int prealloc_memcg_shrinker(struct shrinker *shrinker)
183  {
184  	return 0;
185  }
186  
unregister_memcg_shrinker(struct shrinker * shrinker)187  static void unregister_memcg_shrinker(struct shrinker *shrinker)
188  {
189  }
190  
cgroup_reclaim(struct scan_control * sc)191  bool cgroup_reclaim(struct scan_control *sc)
192  {
193  	return false;
194  }
195  
writeback_throttling_sane(struct scan_control * sc)196  bool writeback_throttling_sane(struct scan_control *sc)
197  {
198  	return true;
199  }
200  #endif
201  
202  /*
203   * This misses isolated pages which are not accounted for to save counters.
204   * As the data only determines if reclaim or compaction continues, it is
205   * not expected that isolated pages will be a dominating factor.
206   */
zone_reclaimable_pages(struct zone * zone)207  unsigned long zone_reclaimable_pages(struct zone *zone)
208  {
209  	unsigned long nr;
210  
211  	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
212  		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
213  	if (get_nr_swap_pages() > 0)
214  		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
215  			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
216  
217  	return nr;
218  }
219  
220  /**
221   * lruvec_lru_size -  Returns the number of pages on the given LRU list.
222   * @lruvec: lru vector
223   * @lru: lru to use
224   * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
225   */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)226  unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
227  {
228  	unsigned long size = 0;
229  	int zid;
230  
231  #ifdef CONFIG_HYPERHOLD_FILE_LRU
232  	if (!mem_cgroup_disabled() && is_node_lruvec(lruvec)) {
233  		for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
234  			struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
235  
236  			if (!managed_zone(zone))
237  				continue;
238  
239  			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
240  		}
241  
242  		return size;
243  	}
244  #endif
245  	for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
246  		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
247  
248  		if (!managed_zone(zone))
249  			continue;
250  
251  		if (!mem_cgroup_disabled())
252  			size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
253  		else
254  			size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
255  	}
256  	return size;
257  }
258  
259  /*
260   * Add a shrinker callback to be called from the vm.
261   */
prealloc_shrinker(struct shrinker * shrinker)262  int prealloc_shrinker(struct shrinker *shrinker)
263  {
264  	unsigned int size = sizeof(*shrinker->nr_deferred);
265  
266  	if (shrinker->flags & SHRINKER_NUMA_AWARE)
267  		size *= nr_node_ids;
268  
269  	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
270  	if (!shrinker->nr_deferred)
271  		return -ENOMEM;
272  
273  	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
274  		if (prealloc_memcg_shrinker(shrinker))
275  			goto free_deferred;
276  	}
277  
278  	return 0;
279  
280  free_deferred:
281  	kfree(shrinker->nr_deferred);
282  	shrinker->nr_deferred = NULL;
283  	return -ENOMEM;
284  }
285  
free_prealloced_shrinker(struct shrinker * shrinker)286  void free_prealloced_shrinker(struct shrinker *shrinker)
287  {
288  	if (!shrinker->nr_deferred)
289  		return;
290  
291  	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
292  		down_write(&shrinker_rwsem);
293  		unregister_memcg_shrinker(shrinker);
294  		up_write(&shrinker_rwsem);
295  	}
296  
297  	kfree(shrinker->nr_deferred);
298  	shrinker->nr_deferred = NULL;
299  }
300  
register_shrinker_prepared(struct shrinker * shrinker)301  void register_shrinker_prepared(struct shrinker *shrinker)
302  {
303  	down_write(&shrinker_rwsem);
304  	list_add_tail(&shrinker->list, &shrinker_list);
305  	shrinker->flags |= SHRINKER_REGISTERED;
306  	up_write(&shrinker_rwsem);
307  }
308  
register_shrinker(struct shrinker * shrinker)309  int register_shrinker(struct shrinker *shrinker)
310  {
311  	int err = prealloc_shrinker(shrinker);
312  
313  	if (err)
314  		return err;
315  	register_shrinker_prepared(shrinker);
316  	return 0;
317  }
318  EXPORT_SYMBOL(register_shrinker);
319  
320  /*
321   * Remove one
322   */
unregister_shrinker(struct shrinker * shrinker)323  void unregister_shrinker(struct shrinker *shrinker)
324  {
325  	if (!(shrinker->flags & SHRINKER_REGISTERED))
326  		return;
327  
328  	down_write(&shrinker_rwsem);
329  	list_del(&shrinker->list);
330  	shrinker->flags &= ~SHRINKER_REGISTERED;
331  	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
332  		unregister_memcg_shrinker(shrinker);
333  	up_write(&shrinker_rwsem);
334  
335  	kfree(shrinker->nr_deferred);
336  	shrinker->nr_deferred = NULL;
337  }
338  EXPORT_SYMBOL(unregister_shrinker);
339  
340  #define SHRINK_BATCH 128
341  
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,int priority)342  static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
343  				    struct shrinker *shrinker, int priority)
344  {
345  	unsigned long freed = 0;
346  	unsigned long long delta;
347  	long total_scan;
348  	long freeable;
349  	long nr;
350  	long new_nr;
351  	int nid = shrinkctl->nid;
352  	long batch_size = shrinker->batch ? shrinker->batch
353  					  : SHRINK_BATCH;
354  	long scanned = 0, next_deferred;
355  
356  	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
357  		nid = 0;
358  
359  	freeable = shrinker->count_objects(shrinker, shrinkctl);
360  	if (freeable == 0 || freeable == SHRINK_EMPTY)
361  		return freeable;
362  
363  	/*
364  	 * copy the current shrinker scan count into a local variable
365  	 * and zero it so that other concurrent shrinker invocations
366  	 * don't also do this scanning work.
367  	 */
368  	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
369  
370  	total_scan = nr;
371  	if (shrinker->seeks) {
372  		delta = freeable >> priority;
373  		delta *= 4;
374  		do_div(delta, shrinker->seeks);
375  	} else {
376  		/*
377  		 * These objects don't require any IO to create. Trim
378  		 * them aggressively under memory pressure to keep
379  		 * them from causing refetches in the IO caches.
380  		 */
381  		delta = freeable / 2;
382  	}
383  
384  	total_scan += delta;
385  	if (total_scan < 0) {
386  		pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
387  		       shrinker->scan_objects, total_scan);
388  		total_scan = freeable;
389  		next_deferred = nr;
390  	} else
391  		next_deferred = total_scan;
392  
393  	/*
394  	 * We need to avoid excessive windup on filesystem shrinkers
395  	 * due to large numbers of GFP_NOFS allocations causing the
396  	 * shrinkers to return -1 all the time. This results in a large
397  	 * nr being built up so when a shrink that can do some work
398  	 * comes along it empties the entire cache due to nr >>>
399  	 * freeable. This is bad for sustaining a working set in
400  	 * memory.
401  	 *
402  	 * Hence only allow the shrinker to scan the entire cache when
403  	 * a large delta change is calculated directly.
404  	 */
405  	if (delta < freeable / 4)
406  		total_scan = min(total_scan, freeable / 2);
407  
408  	/*
409  	 * Avoid risking looping forever due to too large nr value:
410  	 * never try to free more than twice the estimate number of
411  	 * freeable entries.
412  	 */
413  	if (total_scan > freeable * 2)
414  		total_scan = freeable * 2;
415  
416  	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
417  				   freeable, delta, total_scan, priority);
418  
419  	/*
420  	 * Normally, we should not scan less than batch_size objects in one
421  	 * pass to avoid too frequent shrinker calls, but if the slab has less
422  	 * than batch_size objects in total and we are really tight on memory,
423  	 * we will try to reclaim all available objects, otherwise we can end
424  	 * up failing allocations although there are plenty of reclaimable
425  	 * objects spread over several slabs with usage less than the
426  	 * batch_size.
427  	 *
428  	 * We detect the "tight on memory" situations by looking at the total
429  	 * number of objects we want to scan (total_scan). If it is greater
430  	 * than the total number of objects on slab (freeable), we must be
431  	 * scanning at high prio and therefore should try to reclaim as much as
432  	 * possible.
433  	 */
434  	while (total_scan >= batch_size ||
435  	       total_scan >= freeable) {
436  		unsigned long ret;
437  		unsigned long nr_to_scan = min(batch_size, total_scan);
438  
439  		shrinkctl->nr_to_scan = nr_to_scan;
440  		shrinkctl->nr_scanned = nr_to_scan;
441  		ret = shrinker->scan_objects(shrinker, shrinkctl);
442  		if (ret == SHRINK_STOP)
443  			break;
444  		freed += ret;
445  
446  		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
447  		total_scan -= shrinkctl->nr_scanned;
448  		scanned += shrinkctl->nr_scanned;
449  
450  		cond_resched();
451  	}
452  
453  	if (next_deferred >= scanned)
454  		next_deferred -= scanned;
455  	else
456  		next_deferred = 0;
457  	/*
458  	 * move the unused scan count back into the shrinker in a
459  	 * manner that handles concurrent updates. If we exhausted the
460  	 * scan, there is no need to do an update.
461  	 */
462  	if (next_deferred > 0)
463  		new_nr = atomic_long_add_return(next_deferred,
464  						&shrinker->nr_deferred[nid]);
465  	else
466  		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
467  
468  	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
469  	return freed;
470  }
471  
472  #ifdef CONFIG_MEMCG
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)473  static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
474  			struct mem_cgroup *memcg, int priority)
475  {
476  	struct memcg_shrinker_map *map;
477  	unsigned long ret, freed = 0;
478  	int i;
479  
480  	if (!mem_cgroup_online(memcg))
481  		return 0;
482  
483  	if (!down_read_trylock(&shrinker_rwsem))
484  		return 0;
485  
486  	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
487  					true);
488  	if (unlikely(!map))
489  		goto unlock;
490  
491  	for_each_set_bit(i, map->map, shrinker_nr_max) {
492  		struct shrink_control sc = {
493  			.gfp_mask = gfp_mask,
494  			.nid = nid,
495  			.memcg = memcg,
496  		};
497  		struct shrinker *shrinker;
498  
499  		shrinker = idr_find(&shrinker_idr, i);
500  		if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
501  			if (!shrinker)
502  				clear_bit(i, map->map);
503  			continue;
504  		}
505  
506  		/* Call non-slab shrinkers even though kmem is disabled */
507  		if (!memcg_kmem_enabled() &&
508  		    !(shrinker->flags & SHRINKER_NONSLAB))
509  			continue;
510  
511  		ret = do_shrink_slab(&sc, shrinker, priority);
512  		if (ret == SHRINK_EMPTY) {
513  			clear_bit(i, map->map);
514  			/*
515  			 * After the shrinker reported that it had no objects to
516  			 * free, but before we cleared the corresponding bit in
517  			 * the memcg shrinker map, a new object might have been
518  			 * added. To make sure, we have the bit set in this
519  			 * case, we invoke the shrinker one more time and reset
520  			 * the bit if it reports that it is not empty anymore.
521  			 * The memory barrier here pairs with the barrier in
522  			 * memcg_set_shrinker_bit():
523  			 *
524  			 * list_lru_add()     shrink_slab_memcg()
525  			 *   list_add_tail()    clear_bit()
526  			 *   <MB>               <MB>
527  			 *   set_bit()          do_shrink_slab()
528  			 */
529  			smp_mb__after_atomic();
530  			ret = do_shrink_slab(&sc, shrinker, priority);
531  			if (ret == SHRINK_EMPTY)
532  				ret = 0;
533  			else
534  				memcg_set_shrinker_bit(memcg, nid, i);
535  		}
536  		freed += ret;
537  
538  		if (rwsem_is_contended(&shrinker_rwsem)) {
539  			freed = freed ? : 1;
540  			break;
541  		}
542  	}
543  unlock:
544  	up_read(&shrinker_rwsem);
545  	return freed;
546  }
547  #else /* CONFIG_MEMCG */
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)548  static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
549  			struct mem_cgroup *memcg, int priority)
550  {
551  	return 0;
552  }
553  #endif /* CONFIG_MEMCG */
554  
555  /**
556   * shrink_slab - shrink slab caches
557   * @gfp_mask: allocation context
558   * @nid: node whose slab caches to target
559   * @memcg: memory cgroup whose slab caches to target
560   * @priority: the reclaim priority
561   *
562   * Call the shrink functions to age shrinkable caches.
563   *
564   * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
565   * unaware shrinkers will receive a node id of 0 instead.
566   *
567   * @memcg specifies the memory cgroup to target. Unaware shrinkers
568   * are called only if it is the root cgroup.
569   *
570   * @priority is sc->priority, we take the number of objects and >> by priority
571   * in order to get the scan target.
572   *
573   * Returns the number of reclaimed slab objects.
574   */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)575  unsigned long shrink_slab(gfp_t gfp_mask, int nid,
576  			  struct mem_cgroup *memcg,
577  			  int priority)
578  {
579  	unsigned long ret, freed = 0;
580  	struct shrinker *shrinker;
581  
582  	/*
583  	 * The root memcg might be allocated even though memcg is disabled
584  	 * via "cgroup_disable=memory" boot parameter.  This could make
585  	 * mem_cgroup_is_root() return false, then just run memcg slab
586  	 * shrink, but skip global shrink.  This may result in premature
587  	 * oom.
588  	 */
589  	if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
590  		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
591  
592  	if (!down_read_trylock(&shrinker_rwsem))
593  		goto out;
594  
595  	list_for_each_entry(shrinker, &shrinker_list, list) {
596  		struct shrink_control sc = {
597  			.gfp_mask = gfp_mask,
598  			.nid = nid,
599  			.memcg = memcg,
600  		};
601  
602  #ifdef CONFIG_RECLAIM_ACCT
603  		reclaimacct_substage_start(RA_SHRINKSLAB);
604  #endif
605  		ret = do_shrink_slab(&sc, shrinker, priority);
606  		if (ret == SHRINK_EMPTY)
607  			ret = 0;
608  		freed += ret;
609  #ifdef CONFIG_RECLAIM_ACCT
610  		reclaimacct_substage_end(RA_SHRINKSLAB, ret, shrinker);
611  #endif
612  		/*
613  		 * Bail out if someone want to register a new shrinker to
614  		 * prevent the registration from being stalled for long periods
615  		 * by parallel ongoing shrinking.
616  		 */
617  		if (rwsem_is_contended(&shrinker_rwsem)) {
618  			freed = freed ? : 1;
619  			break;
620  		}
621  	}
622  
623  	up_read(&shrinker_rwsem);
624  out:
625  	cond_resched();
626  	return freed;
627  }
628  
drop_slab_node(int nid)629  void drop_slab_node(int nid)
630  {
631  	unsigned long freed;
632  	int shift = 0;
633  
634  	do {
635  		struct mem_cgroup *memcg = NULL;
636  
637  		if (fatal_signal_pending(current))
638  			return;
639  
640  		freed = 0;
641  		memcg = mem_cgroup_iter(NULL, NULL, NULL);
642  		do {
643  			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
644  		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
645  	} while ((freed >> shift++) > 1);
646  }
647  
drop_slab(void)648  void drop_slab(void)
649  {
650  	int nid;
651  
652  	for_each_online_node(nid)
653  		drop_slab_node(nid);
654  }
655  
is_page_cache_freeable(struct page * page)656  static inline int is_page_cache_freeable(struct page *page)
657  {
658  	/*
659  	 * A freeable page cache page is referenced only by the caller
660  	 * that isolated the page, the page cache and optional buffer
661  	 * heads at page->private.
662  	 */
663  	int page_cache_pins = thp_nr_pages(page);
664  	return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
665  }
666  
may_write_to_inode(struct inode * inode)667  static int may_write_to_inode(struct inode *inode)
668  {
669  	if (current->flags & PF_SWAPWRITE)
670  		return 1;
671  	if (!inode_write_congested(inode))
672  		return 1;
673  	if (inode_to_bdi(inode) == current->backing_dev_info)
674  		return 1;
675  	return 0;
676  }
677  
678  /*
679   * We detected a synchronous write error writing a page out.  Probably
680   * -ENOSPC.  We need to propagate that into the address_space for a subsequent
681   * fsync(), msync() or close().
682   *
683   * The tricky part is that after writepage we cannot touch the mapping: nothing
684   * prevents it from being freed up.  But we have a ref on the page and once
685   * that page is locked, the mapping is pinned.
686   *
687   * We're allowed to run sleeping lock_page() here because we know the caller has
688   * __GFP_FS.
689   */
handle_write_error(struct address_space * mapping,struct page * page,int error)690  static void handle_write_error(struct address_space *mapping,
691  				struct page *page, int error)
692  {
693  	lock_page(page);
694  	if (page_mapping(page) == mapping)
695  		mapping_set_error(mapping, error);
696  	unlock_page(page);
697  }
698  
699  /* possible outcome of pageout() */
700  typedef enum {
701  	/* failed to write page out, page is locked */
702  	PAGE_KEEP,
703  	/* move page to the active list, page is locked */
704  	PAGE_ACTIVATE,
705  	/* page has been sent to the disk successfully, page is unlocked */
706  	PAGE_SUCCESS,
707  	/* page is clean and locked */
708  	PAGE_CLEAN,
709  } pageout_t;
710  
711  /*
712   * pageout is called by shrink_page_list() for each dirty page.
713   * Calls ->writepage().
714   */
pageout(struct page * page,struct address_space * mapping)715  static pageout_t pageout(struct page *page, struct address_space *mapping)
716  {
717  	/*
718  	 * If the page is dirty, only perform writeback if that write
719  	 * will be non-blocking.  To prevent this allocation from being
720  	 * stalled by pagecache activity.  But note that there may be
721  	 * stalls if we need to run get_block().  We could test
722  	 * PagePrivate for that.
723  	 *
724  	 * If this process is currently in __generic_file_write_iter() against
725  	 * this page's queue, we can perform writeback even if that
726  	 * will block.
727  	 *
728  	 * If the page is swapcache, write it back even if that would
729  	 * block, for some throttling. This happens by accident, because
730  	 * swap_backing_dev_info is bust: it doesn't reflect the
731  	 * congestion state of the swapdevs.  Easy to fix, if needed.
732  	 */
733  	if (!is_page_cache_freeable(page))
734  		return PAGE_KEEP;
735  	if (!mapping) {
736  		/*
737  		 * Some data journaling orphaned pages can have
738  		 * page->mapping == NULL while being dirty with clean buffers.
739  		 */
740  		if (page_has_private(page)) {
741  			if (try_to_free_buffers(page)) {
742  				ClearPageDirty(page);
743  				pr_info("%s: orphaned page\n", __func__);
744  				return PAGE_CLEAN;
745  			}
746  		}
747  		return PAGE_KEEP;
748  	}
749  	if (mapping->a_ops->writepage == NULL)
750  		return PAGE_ACTIVATE;
751  	if (!may_write_to_inode(mapping->host))
752  		return PAGE_KEEP;
753  
754  	if (clear_page_dirty_for_io(page)) {
755  		int res;
756  		struct writeback_control wbc = {
757  			.sync_mode = WB_SYNC_NONE,
758  			.nr_to_write = SWAP_CLUSTER_MAX,
759  			.range_start = 0,
760  			.range_end = LLONG_MAX,
761  			.for_reclaim = 1,
762  		};
763  
764  		SetPageReclaim(page);
765  		res = mapping->a_ops->writepage(page, &wbc);
766  		if (res < 0)
767  			handle_write_error(mapping, page, res);
768  		if (res == AOP_WRITEPAGE_ACTIVATE) {
769  			ClearPageReclaim(page);
770  			return PAGE_ACTIVATE;
771  		}
772  
773  		if (!PageWriteback(page)) {
774  			/* synchronous write or broken a_ops? */
775  			ClearPageReclaim(page);
776  		}
777  		trace_mm_vmscan_writepage(page);
778  		inc_node_page_state(page, NR_VMSCAN_WRITE);
779  		return PAGE_SUCCESS;
780  	}
781  
782  	return PAGE_CLEAN;
783  }
784  
785  /*
786   * Same as remove_mapping, but if the page is removed from the mapping, it
787   * gets returned with a refcount of 0.
788   */
__remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed,struct mem_cgroup * target_memcg)789  static int __remove_mapping(struct address_space *mapping, struct page *page,
790  			    bool reclaimed, struct mem_cgroup *target_memcg)
791  {
792  	unsigned long flags;
793  	int refcount;
794  	void *shadow = NULL;
795  
796  	BUG_ON(!PageLocked(page));
797  	BUG_ON(mapping != page_mapping(page));
798  
799  	xa_lock_irqsave(&mapping->i_pages, flags);
800  	/*
801  	 * The non racy check for a busy page.
802  	 *
803  	 * Must be careful with the order of the tests. When someone has
804  	 * a ref to the page, it may be possible that they dirty it then
805  	 * drop the reference. So if PageDirty is tested before page_count
806  	 * here, then the following race may occur:
807  	 *
808  	 * get_user_pages(&page);
809  	 * [user mapping goes away]
810  	 * write_to(page);
811  	 *				!PageDirty(page)    [good]
812  	 * SetPageDirty(page);
813  	 * put_page(page);
814  	 *				!page_count(page)   [good, discard it]
815  	 *
816  	 * [oops, our write_to data is lost]
817  	 *
818  	 * Reversing the order of the tests ensures such a situation cannot
819  	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
820  	 * load is not satisfied before that of page->_refcount.
821  	 *
822  	 * Note that if SetPageDirty is always performed via set_page_dirty,
823  	 * and thus under the i_pages lock, then this ordering is not required.
824  	 */
825  	refcount = 1 + compound_nr(page);
826  	if (!page_ref_freeze(page, refcount))
827  		goto cannot_free;
828  	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
829  	if (unlikely(PageDirty(page))) {
830  		page_ref_unfreeze(page, refcount);
831  		goto cannot_free;
832  	}
833  
834  	if (PageSwapCache(page)) {
835  		swp_entry_t swap = { .val = page_private(page) };
836  		mem_cgroup_swapout(page, swap);
837  		if (reclaimed && !mapping_exiting(mapping))
838  			shadow = workingset_eviction(page, target_memcg);
839  		__delete_from_swap_cache(page, swap, shadow);
840  		xa_unlock_irqrestore(&mapping->i_pages, flags);
841  		put_swap_page(page, swap);
842  	} else {
843  		void (*freepage)(struct page *);
844  
845  		freepage = mapping->a_ops->freepage;
846  		/*
847  		 * Remember a shadow entry for reclaimed file cache in
848  		 * order to detect refaults, thus thrashing, later on.
849  		 *
850  		 * But don't store shadows in an address space that is
851  		 * already exiting.  This is not just an optimization,
852  		 * inode reclaim needs to empty out the radix tree or
853  		 * the nodes are lost.  Don't plant shadows behind its
854  		 * back.
855  		 *
856  		 * We also don't store shadows for DAX mappings because the
857  		 * only page cache pages found in these are zero pages
858  		 * covering holes, and because we don't want to mix DAX
859  		 * exceptional entries and shadow exceptional entries in the
860  		 * same address_space.
861  		 */
862  		if (reclaimed && page_is_file_lru(page) &&
863  		    !mapping_exiting(mapping) && !dax_mapping(mapping))
864  			shadow = workingset_eviction(page, target_memcg);
865  		__delete_from_page_cache(page, shadow);
866  		xa_unlock_irqrestore(&mapping->i_pages, flags);
867  
868  		if (freepage != NULL)
869  			freepage(page);
870  	}
871  
872  	return 1;
873  
874  cannot_free:
875  	xa_unlock_irqrestore(&mapping->i_pages, flags);
876  	return 0;
877  }
878  
879  /*
880   * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
881   * someone else has a ref on the page, abort and return 0.  If it was
882   * successfully detached, return 1.  Assumes the caller has a single ref on
883   * this page.
884   */
remove_mapping(struct address_space * mapping,struct page * page)885  int remove_mapping(struct address_space *mapping, struct page *page)
886  {
887  	if (__remove_mapping(mapping, page, false, NULL)) {
888  		/*
889  		 * Unfreezing the refcount with 1 rather than 2 effectively
890  		 * drops the pagecache ref for us without requiring another
891  		 * atomic operation.
892  		 */
893  		page_ref_unfreeze(page, 1);
894  		return 1;
895  	}
896  	return 0;
897  }
898  
899  /**
900   * putback_lru_page - put previously isolated page onto appropriate LRU list
901   * @page: page to be put back to appropriate lru list
902   *
903   * Add previously isolated @page to appropriate LRU list.
904   * Page may still be unevictable for other reasons.
905   *
906   * lru_lock must not be held, interrupts must be enabled.
907   */
putback_lru_page(struct page * page)908  void putback_lru_page(struct page *page)
909  {
910  	lru_cache_add(page);
911  	put_page(page);		/* drop ref from isolate */
912  }
913  
914  enum page_references {
915  	PAGEREF_RECLAIM,
916  	PAGEREF_RECLAIM_CLEAN,
917  	PAGEREF_RECLAIM_PURGEABLE,
918  	PAGEREF_KEEP,
919  	PAGEREF_ACTIVATE,
920  };
921  
page_check_references(struct page * page,struct scan_control * sc)922  static enum page_references page_check_references(struct page *page,
923  						  struct scan_control *sc)
924  {
925  	int referenced_ptes, referenced_page;
926  	unsigned long vm_flags;
927  
928  	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
929  					  &vm_flags);
930  	referenced_page = TestClearPageReferenced(page);
931  
932  	/*
933  	 * Mlock lost the isolation race with us.  Let try_to_unmap()
934  	 * move the page to the unevictable list.
935  	 */
936  	if (vm_flags & VM_LOCKED)
937  		return PAGEREF_RECLAIM;
938  
939  #ifdef CONFIG_MEM_PURGEABLE
940  	if (vm_flags & VM_PURGEABLE)
941  		return PAGEREF_RECLAIM_PURGEABLE;
942  #endif
943  	if (referenced_ptes) {
944  		/*
945  		 * All mapped pages start out with page table
946  		 * references from the instantiating fault, so we need
947  		 * to look twice if a mapped file page is used more
948  		 * than once.
949  		 *
950  		 * Mark it and spare it for another trip around the
951  		 * inactive list.  Another page table reference will
952  		 * lead to its activation.
953  		 *
954  		 * Note: the mark is set for activated pages as well
955  		 * so that recently deactivated but used pages are
956  		 * quickly recovered.
957  		 */
958  		SetPageReferenced(page);
959  
960  		if (referenced_page || referenced_ptes > 1)
961  			return PAGEREF_ACTIVATE;
962  
963  		/*
964  		 * Activate file-backed executable pages after first usage.
965  		 */
966  		if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
967  			return PAGEREF_ACTIVATE;
968  
969  		return PAGEREF_KEEP;
970  	}
971  
972  	/* Reclaim if clean, defer dirty pages to writeback */
973  	if (referenced_page && !PageSwapBacked(page))
974  		return PAGEREF_RECLAIM_CLEAN;
975  
976  	return PAGEREF_RECLAIM;
977  }
978  
979  /* Check if a page is dirty or under writeback */
page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)980  static void page_check_dirty_writeback(struct page *page,
981  				       bool *dirty, bool *writeback)
982  {
983  	struct address_space *mapping;
984  
985  	/*
986  	 * Anonymous pages are not handled by flushers and must be written
987  	 * from reclaim context. Do not stall reclaim based on them
988  	 */
989  	if (!page_is_file_lru(page) ||
990  	    (PageAnon(page) && !PageSwapBacked(page))) {
991  		*dirty = false;
992  		*writeback = false;
993  		return;
994  	}
995  
996  	/* By default assume that the page flags are accurate */
997  	*dirty = PageDirty(page);
998  	*writeback = PageWriteback(page);
999  
1000  	/* Verify dirty/writeback state if the filesystem supports it */
1001  	if (!page_has_private(page))
1002  		return;
1003  
1004  	mapping = page_mapping(page);
1005  	if (mapping && mapping->a_ops->is_dirty_writeback)
1006  		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1007  }
1008  
1009  /*
1010   * shrink_page_list() returns the number of reclaimed pages
1011   */
shrink_page_list(struct list_head * page_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references)1012  unsigned int shrink_page_list(struct list_head *page_list,
1013  			      struct pglist_data *pgdat,
1014  			      struct scan_control *sc,
1015  			      struct reclaim_stat *stat,
1016  			      bool ignore_references)
1017  {
1018  	LIST_HEAD(ret_pages);
1019  	LIST_HEAD(free_pages);
1020  	unsigned int nr_reclaimed = 0;
1021  	unsigned int pgactivate = 0;
1022  
1023  	memset(stat, 0, sizeof(*stat));
1024  	cond_resched();
1025  
1026  	while (!list_empty(page_list)) {
1027  		struct address_space *mapping;
1028  		struct page *page;
1029  		enum page_references references = PAGEREF_RECLAIM;
1030  		bool dirty, writeback, may_enter_fs;
1031  		unsigned int nr_pages;
1032  
1033  		cond_resched();
1034  
1035  		page = lru_to_page(page_list);
1036  		list_del(&page->lru);
1037  
1038  		if (!trylock_page(page))
1039  			goto keep;
1040  
1041  		VM_BUG_ON_PAGE(PageActive(page), page);
1042  
1043  		nr_pages = compound_nr(page);
1044  
1045  		/* Account the number of base pages even though THP */
1046  		sc->nr_scanned += nr_pages;
1047  
1048  		if (unlikely(!page_evictable(page)))
1049  			goto activate_locked;
1050  
1051  		if (!sc->may_unmap && page_mapped(page))
1052  			goto keep_locked;
1053  
1054  		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1055  			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1056  
1057  		/*
1058  		 * The number of dirty pages determines if a node is marked
1059  		 * reclaim_congested which affects wait_iff_congested. kswapd
1060  		 * will stall and start writing pages if the tail of the LRU
1061  		 * is all dirty unqueued pages.
1062  		 */
1063  		page_check_dirty_writeback(page, &dirty, &writeback);
1064  		if (dirty || writeback)
1065  			stat->nr_dirty++;
1066  
1067  		if (dirty && !writeback)
1068  			stat->nr_unqueued_dirty++;
1069  
1070  		/*
1071  		 * Treat this page as congested if the underlying BDI is or if
1072  		 * pages are cycling through the LRU so quickly that the
1073  		 * pages marked for immediate reclaim are making it to the
1074  		 * end of the LRU a second time.
1075  		 */
1076  		mapping = page_mapping(page);
1077  		if (((dirty || writeback) && mapping &&
1078  		     inode_write_congested(mapping->host)) ||
1079  		    (writeback && PageReclaim(page)))
1080  			stat->nr_congested++;
1081  
1082  		/*
1083  		 * If a page at the tail of the LRU is under writeback, there
1084  		 * are three cases to consider.
1085  		 *
1086  		 * 1) If reclaim is encountering an excessive number of pages
1087  		 *    under writeback and this page is both under writeback and
1088  		 *    PageReclaim then it indicates that pages are being queued
1089  		 *    for IO but are being recycled through the LRU before the
1090  		 *    IO can complete. Waiting on the page itself risks an
1091  		 *    indefinite stall if it is impossible to writeback the
1092  		 *    page due to IO error or disconnected storage so instead
1093  		 *    note that the LRU is being scanned too quickly and the
1094  		 *    caller can stall after page list has been processed.
1095  		 *
1096  		 * 2) Global or new memcg reclaim encounters a page that is
1097  		 *    not marked for immediate reclaim, or the caller does not
1098  		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1099  		 *    not to fs). In this case mark the page for immediate
1100  		 *    reclaim and continue scanning.
1101  		 *
1102  		 *    Require may_enter_fs because we would wait on fs, which
1103  		 *    may not have submitted IO yet. And the loop driver might
1104  		 *    enter reclaim, and deadlock if it waits on a page for
1105  		 *    which it is needed to do the write (loop masks off
1106  		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1107  		 *    would probably show more reasons.
1108  		 *
1109  		 * 3) Legacy memcg encounters a page that is already marked
1110  		 *    PageReclaim. memcg does not have any dirty pages
1111  		 *    throttling so we could easily OOM just because too many
1112  		 *    pages are in writeback and there is nothing else to
1113  		 *    reclaim. Wait for the writeback to complete.
1114  		 *
1115  		 * In cases 1) and 2) we activate the pages to get them out of
1116  		 * the way while we continue scanning for clean pages on the
1117  		 * inactive list and refilling from the active list. The
1118  		 * observation here is that waiting for disk writes is more
1119  		 * expensive than potentially causing reloads down the line.
1120  		 * Since they're marked for immediate reclaim, they won't put
1121  		 * memory pressure on the cache working set any longer than it
1122  		 * takes to write them to disk.
1123  		 */
1124  		if (PageWriteback(page)) {
1125  			/* Case 1 above */
1126  			if (current_is_kswapd() &&
1127  			    PageReclaim(page) &&
1128  			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1129  				stat->nr_immediate++;
1130  				goto activate_locked;
1131  
1132  			/* Case 2 above */
1133  			} else if (writeback_throttling_sane(sc) ||
1134  			    !PageReclaim(page) || !may_enter_fs) {
1135  				/*
1136  				 * This is slightly racy - end_page_writeback()
1137  				 * might have just cleared PageReclaim, then
1138  				 * setting PageReclaim here end up interpreted
1139  				 * as PageReadahead - but that does not matter
1140  				 * enough to care.  What we do want is for this
1141  				 * page to have PageReclaim set next time memcg
1142  				 * reclaim reaches the tests above, so it will
1143  				 * then wait_on_page_writeback() to avoid OOM;
1144  				 * and it's also appropriate in global reclaim.
1145  				 */
1146  				SetPageReclaim(page);
1147  				stat->nr_writeback++;
1148  				goto activate_locked;
1149  
1150  			/* Case 3 above */
1151  			} else {
1152  				unlock_page(page);
1153  				wait_on_page_writeback(page);
1154  				/* then go back and try same page again */
1155  				list_add_tail(&page->lru, page_list);
1156  				continue;
1157  			}
1158  		}
1159  
1160  		if (!ignore_references)
1161  			references = page_check_references(page, sc);
1162  
1163  		switch (references) {
1164  		case PAGEREF_ACTIVATE:
1165  			goto activate_locked;
1166  		case PAGEREF_KEEP:
1167  			stat->nr_ref_keep += nr_pages;
1168  			goto keep_locked;
1169  		case PAGEREF_RECLAIM:
1170  		case PAGEREF_RECLAIM_CLEAN:
1171  		case PAGEREF_RECLAIM_PURGEABLE:
1172  			; /* try to reclaim the page below */
1173  		}
1174  
1175  		/*
1176  		 * Anonymous process memory has backing store?
1177  		 * Try to allocate it some swap space here.
1178  		 * Lazyfree page could be freed directly
1179  		 */
1180  		if (PageAnon(page) && PageSwapBacked(page)) {
1181  			if (!PageSwapCache(page) && references != PAGEREF_RECLAIM_PURGEABLE) {
1182  				if (!(sc->gfp_mask & __GFP_IO))
1183  					goto keep_locked;
1184  				if (page_maybe_dma_pinned(page))
1185  					goto keep_locked;
1186  				if (PageTransHuge(page)) {
1187  					/* cannot split THP, skip it */
1188  					if (!can_split_huge_page(page, NULL))
1189  						goto activate_locked;
1190  					/*
1191  					 * Split pages without a PMD map right
1192  					 * away. Chances are some or all of the
1193  					 * tail pages can be freed without IO.
1194  					 */
1195  					if (!compound_mapcount(page) &&
1196  					    split_huge_page_to_list(page,
1197  								    page_list))
1198  						goto activate_locked;
1199  				}
1200  				if (!add_to_swap(page)) {
1201  					if (!PageTransHuge(page))
1202  						goto activate_locked_split;
1203  					/* Fallback to swap normal pages */
1204  					if (split_huge_page_to_list(page,
1205  								    page_list))
1206  						goto activate_locked;
1207  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1208  					count_vm_event(THP_SWPOUT_FALLBACK);
1209  #endif
1210  					if (!add_to_swap(page))
1211  						goto activate_locked_split;
1212  				}
1213  
1214  				may_enter_fs = true;
1215  
1216  				/* Adding to swap updated mapping */
1217  				mapping = page_mapping(page);
1218  			}
1219  		} else if (unlikely(PageTransHuge(page))) {
1220  			/* Split file THP */
1221  			if (split_huge_page_to_list(page, page_list))
1222  				goto keep_locked;
1223  		}
1224  
1225  		/*
1226  		 * THP may get split above, need minus tail pages and update
1227  		 * nr_pages to avoid accounting tail pages twice.
1228  		 *
1229  		 * The tail pages that are added into swap cache successfully
1230  		 * reach here.
1231  		 */
1232  		if ((nr_pages > 1) && !PageTransHuge(page)) {
1233  			sc->nr_scanned -= (nr_pages - 1);
1234  			nr_pages = 1;
1235  		}
1236  
1237  		/*
1238  		 * The page is mapped into the page tables of one or more
1239  		 * processes. Try to unmap it here.
1240  		 */
1241  		if (page_mapped(page)) {
1242  			enum ttu_flags flags = TTU_BATCH_FLUSH;
1243  			bool was_swapbacked = PageSwapBacked(page);
1244  
1245  			if (unlikely(PageTransHuge(page)))
1246  				flags |= TTU_SPLIT_HUGE_PMD;
1247  
1248  			if (!try_to_unmap(page, flags)) {
1249  				stat->nr_unmap_fail += nr_pages;
1250  				if (!was_swapbacked && PageSwapBacked(page))
1251  					stat->nr_lazyfree_fail += nr_pages;
1252  				goto activate_locked;
1253  			}
1254  		}
1255  
1256  		if (PageDirty(page) && references != PAGEREF_RECLAIM_PURGEABLE) {
1257  			/*
1258  			 * Only kswapd can writeback filesystem pages
1259  			 * to avoid risk of stack overflow. But avoid
1260  			 * injecting inefficient single-page IO into
1261  			 * flusher writeback as much as possible: only
1262  			 * write pages when we've encountered many
1263  			 * dirty pages, and when we've already scanned
1264  			 * the rest of the LRU for clean pages and see
1265  			 * the same dirty pages again (PageReclaim).
1266  			 */
1267  			if (page_is_file_lru(page) &&
1268  			    (!current_is_kswapd() || !PageReclaim(page) ||
1269  			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1270  				/*
1271  				 * Immediately reclaim when written back.
1272  				 * Similar in principal to deactivate_page()
1273  				 * except we already have the page isolated
1274  				 * and know it's dirty
1275  				 */
1276  				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1277  				SetPageReclaim(page);
1278  
1279  				goto activate_locked;
1280  			}
1281  
1282  			if (references == PAGEREF_RECLAIM_CLEAN)
1283  				goto keep_locked;
1284  			if (!may_enter_fs)
1285  				goto keep_locked;
1286  			if (!sc->may_writepage)
1287  				goto keep_locked;
1288  
1289  			/*
1290  			 * Page is dirty. Flush the TLB if a writable entry
1291  			 * potentially exists to avoid CPU writes after IO
1292  			 * starts and then write it out here.
1293  			 */
1294  			try_to_unmap_flush_dirty();
1295  			switch (pageout(page, mapping)) {
1296  			case PAGE_KEEP:
1297  				goto keep_locked;
1298  			case PAGE_ACTIVATE:
1299  				goto activate_locked;
1300  			case PAGE_SUCCESS:
1301  				stat->nr_pageout += thp_nr_pages(page);
1302  
1303  				if (PageWriteback(page))
1304  					goto keep;
1305  				if (PageDirty(page))
1306  					goto keep;
1307  
1308  				/*
1309  				 * A synchronous write - probably a ramdisk.  Go
1310  				 * ahead and try to reclaim the page.
1311  				 */
1312  				if (!trylock_page(page))
1313  					goto keep;
1314  				if (PageDirty(page) || PageWriteback(page))
1315  					goto keep_locked;
1316  				mapping = page_mapping(page);
1317  			case PAGE_CLEAN:
1318  				; /* try to free the page below */
1319  			}
1320  		}
1321  
1322  		/*
1323  		 * If the page has buffers, try to free the buffer mappings
1324  		 * associated with this page. If we succeed we try to free
1325  		 * the page as well.
1326  		 *
1327  		 * We do this even if the page is PageDirty().
1328  		 * try_to_release_page() does not perform I/O, but it is
1329  		 * possible for a page to have PageDirty set, but it is actually
1330  		 * clean (all its buffers are clean).  This happens if the
1331  		 * buffers were written out directly, with submit_bh(). ext3
1332  		 * will do this, as well as the blockdev mapping.
1333  		 * try_to_release_page() will discover that cleanness and will
1334  		 * drop the buffers and mark the page clean - it can be freed.
1335  		 *
1336  		 * Rarely, pages can have buffers and no ->mapping.  These are
1337  		 * the pages which were not successfully invalidated in
1338  		 * truncate_complete_page().  We try to drop those buffers here
1339  		 * and if that worked, and the page is no longer mapped into
1340  		 * process address space (page_count == 1) it can be freed.
1341  		 * Otherwise, leave the page on the LRU so it is swappable.
1342  		 */
1343  		if (page_has_private(page)) {
1344  			if (!try_to_release_page(page, sc->gfp_mask))
1345  				goto activate_locked;
1346  			if (!mapping && page_count(page) == 1) {
1347  				unlock_page(page);
1348  				if (put_page_testzero(page))
1349  					goto free_it;
1350  				else {
1351  					/*
1352  					 * rare race with speculative reference.
1353  					 * the speculative reference will free
1354  					 * this page shortly, so we may
1355  					 * increment nr_reclaimed here (and
1356  					 * leave it off the LRU).
1357  					 */
1358  					nr_reclaimed++;
1359  					continue;
1360  				}
1361  			}
1362  		}
1363  
1364  		if (PageAnon(page) &&
1365  			(!PageSwapBacked(page) ||
1366  			 references == PAGEREF_RECLAIM_PURGEABLE)) {
1367  			/* follow __remove_mapping for reference */
1368  			if (!page_ref_freeze(page, 1))
1369  				goto keep_locked;
1370  			if (PageDirty(page) && references != PAGEREF_RECLAIM_PURGEABLE) {
1371  				page_ref_unfreeze(page, 1);
1372  				goto keep_locked;
1373  			}
1374  
1375  			count_vm_event(PGLAZYFREED);
1376  			count_memcg_page_event(page, PGLAZYFREED);
1377  		} else if (!mapping || !__remove_mapping(mapping, page, true,
1378  							 sc->target_mem_cgroup))
1379  			goto keep_locked;
1380  
1381  		unlock_page(page);
1382  free_it:
1383  		/*
1384  		 * THP may get swapped out in a whole, need account
1385  		 * all base pages.
1386  		 */
1387  		nr_reclaimed += nr_pages;
1388  
1389  		/*
1390  		 * Is there need to periodically free_page_list? It would
1391  		 * appear not as the counts should be low
1392  		 */
1393  		if (unlikely(PageTransHuge(page)))
1394  			destroy_compound_page(page);
1395  		else
1396  			list_add(&page->lru, &free_pages);
1397  		continue;
1398  
1399  activate_locked_split:
1400  		/*
1401  		 * The tail pages that are failed to add into swap cache
1402  		 * reach here.  Fixup nr_scanned and nr_pages.
1403  		 */
1404  		if (nr_pages > 1) {
1405  			sc->nr_scanned -= (nr_pages - 1);
1406  			nr_pages = 1;
1407  		}
1408  activate_locked:
1409  		/* Not a candidate for swapping, so reclaim swap space. */
1410  		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1411  						PageMlocked(page)))
1412  			try_to_free_swap(page);
1413  		VM_BUG_ON_PAGE(PageActive(page), page);
1414  		if (!PageMlocked(page)) {
1415  			int type = page_is_file_lru(page);
1416  			SetPageActive(page);
1417  			stat->nr_activate[type] += nr_pages;
1418  			count_memcg_page_event(page, PGACTIVATE);
1419  		}
1420  keep_locked:
1421  		unlock_page(page);
1422  keep:
1423  		list_add(&page->lru, &ret_pages);
1424  		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1425  	}
1426  
1427  	pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1428  
1429  	mem_cgroup_uncharge_list(&free_pages);
1430  	try_to_unmap_flush();
1431  	free_unref_page_list(&free_pages);
1432  
1433  	list_splice(&ret_pages, page_list);
1434  	count_vm_events(PGACTIVATE, pgactivate);
1435  
1436  	return nr_reclaimed;
1437  }
1438  
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1439  unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1440  					    struct list_head *page_list)
1441  {
1442  	struct scan_control sc = {
1443  		.gfp_mask = GFP_KERNEL,
1444  		.priority = DEF_PRIORITY,
1445  		.may_unmap = 1,
1446  	};
1447  	struct reclaim_stat stat;
1448  	unsigned int nr_reclaimed;
1449  	struct page *page, *next;
1450  	LIST_HEAD(clean_pages);
1451  
1452  	list_for_each_entry_safe(page, next, page_list, lru) {
1453  		if (page_is_file_lru(page) && !PageDirty(page) &&
1454  		    !__PageMovable(page) && !PageUnevictable(page)) {
1455  			ClearPageActive(page);
1456  			list_move(&page->lru, &clean_pages);
1457  		}
1458  	}
1459  
1460  	nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1461  					&stat, true);
1462  	list_splice(&clean_pages, page_list);
1463  	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1464  			    -(long)nr_reclaimed);
1465  	/*
1466  	 * Since lazyfree pages are isolated from file LRU from the beginning,
1467  	 * they will rotate back to anonymous LRU in the end if it failed to
1468  	 * discard so isolated count will be mismatched.
1469  	 * Compensate the isolated count for both LRU lists.
1470  	 */
1471  	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1472  			    stat.nr_lazyfree_fail);
1473  	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1474  			    -(long)stat.nr_lazyfree_fail);
1475  	return nr_reclaimed;
1476  }
1477  
1478  /*
1479   * Attempt to remove the specified page from its LRU.  Only take this page
1480   * if it is of the appropriate PageActive status.  Pages which are being
1481   * freed elsewhere are also ignored.
1482   *
1483   * page:	page to consider
1484   * mode:	one of the LRU isolation modes defined above
1485   *
1486   * returns 0 on success, -ve errno on failure.
1487   */
__isolate_lru_page(struct page * page,isolate_mode_t mode)1488  int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1489  {
1490  	int ret = -EINVAL;
1491  
1492  	/* Only take pages on the LRU. */
1493  	if (!PageLRU(page))
1494  		return ret;
1495  
1496  	/* Compaction should not handle unevictable pages but CMA can do so */
1497  	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1498  		return ret;
1499  
1500  	ret = -EBUSY;
1501  
1502  	/*
1503  	 * To minimise LRU disruption, the caller can indicate that it only
1504  	 * wants to isolate pages it will be able to operate on without
1505  	 * blocking - clean pages for the most part.
1506  	 *
1507  	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1508  	 * that it is possible to migrate without blocking
1509  	 */
1510  	if (mode & ISOLATE_ASYNC_MIGRATE) {
1511  		/* All the caller can do on PageWriteback is block */
1512  		if (PageWriteback(page))
1513  			return ret;
1514  
1515  		if (PageDirty(page)) {
1516  			struct address_space *mapping;
1517  			bool migrate_dirty;
1518  
1519  			/*
1520  			 * Only pages without mappings or that have a
1521  			 * ->migratepage callback are possible to migrate
1522  			 * without blocking. However, we can be racing with
1523  			 * truncation so it's necessary to lock the page
1524  			 * to stabilise the mapping as truncation holds
1525  			 * the page lock until after the page is removed
1526  			 * from the page cache.
1527  			 */
1528  			if (!trylock_page(page))
1529  				return ret;
1530  
1531  			mapping = page_mapping(page);
1532  			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1533  			unlock_page(page);
1534  			if (!migrate_dirty)
1535  				return ret;
1536  		}
1537  	}
1538  
1539  	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1540  		return ret;
1541  
1542  	if (likely(get_page_unless_zero(page))) {
1543  		/*
1544  		 * Be careful not to clear PageLRU until after we're
1545  		 * sure the page is not being freed elsewhere -- the
1546  		 * page release code relies on it.
1547  		 */
1548  		ClearPageLRU(page);
1549  		ret = 0;
1550  	}
1551  
1552  	return ret;
1553  }
1554  
1555  
1556  /*
1557   * Update LRU sizes after isolating pages. The LRU size updates must
1558   * be complete before mem_cgroup_update_lru_size due to a sanity check.
1559   */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1560  static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1561  			enum lru_list lru, unsigned long *nr_zone_taken)
1562  {
1563  	int zid;
1564  
1565  	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1566  		if (!nr_zone_taken[zid])
1567  			continue;
1568  
1569  		update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1570  	}
1571  
1572  }
1573  
1574  /**
1575   * pgdat->lru_lock is heavily contended.  Some of the functions that
1576   * shrink the lists perform better by taking out a batch of pages
1577   * and working on them outside the LRU lock.
1578   *
1579   * For pagecache intensive workloads, this function is the hottest
1580   * spot in the kernel (apart from copy_*_user functions).
1581   *
1582   * Appropriate locks must be held before calling this function.
1583   *
1584   * @nr_to_scan:	The number of eligible pages to look through on the list.
1585   * @lruvec:	The LRU vector to pull pages from.
1586   * @dst:	The temp list to put pages on to.
1587   * @nr_scanned:	The number of pages that were scanned.
1588   * @sc:		The scan_control struct for this reclaim session
1589   * @lru:	LRU list id for isolating
1590   *
1591   * returns how many pages were moved onto *@dst.
1592   */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1593  unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1594  		struct lruvec *lruvec, struct list_head *dst,
1595  		unsigned long *nr_scanned, struct scan_control *sc,
1596  		enum lru_list lru)
1597  {
1598  	struct list_head *src = &lruvec->lists[lru];
1599  	unsigned long nr_taken = 0;
1600  	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1601  	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1602  	unsigned long skipped = 0;
1603  	unsigned long scan, total_scan, nr_pages;
1604  	LIST_HEAD(pages_skipped);
1605  	isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1606  
1607  	total_scan = 0;
1608  	scan = 0;
1609  	while (scan < nr_to_scan && !list_empty(src)) {
1610  		struct page *page;
1611  
1612  		page = lru_to_page(src);
1613  		prefetchw_prev_lru_page(page, src, flags);
1614  
1615  		VM_BUG_ON_PAGE(!PageLRU(page), page);
1616  
1617  		nr_pages = compound_nr(page);
1618  		total_scan += nr_pages;
1619  
1620  		if (page_zonenum(page) > sc->reclaim_idx) {
1621  			list_move(&page->lru, &pages_skipped);
1622  			nr_skipped[page_zonenum(page)] += nr_pages;
1623  			continue;
1624  		}
1625  
1626  		/*
1627  		 * Do not count skipped pages because that makes the function
1628  		 * return with no isolated pages if the LRU mostly contains
1629  		 * ineligible pages.  This causes the VM to not reclaim any
1630  		 * pages, triggering a premature OOM.
1631  		 *
1632  		 * Account all tail pages of THP.  This would not cause
1633  		 * premature OOM since __isolate_lru_page() returns -EBUSY
1634  		 * only when the page is being freed somewhere else.
1635  		 */
1636  		scan += nr_pages;
1637  		switch (__isolate_lru_page(page, mode)) {
1638  		case 0:
1639  			nr_taken += nr_pages;
1640  			nr_zone_taken[page_zonenum(page)] += nr_pages;
1641  			list_move(&page->lru, dst);
1642  			break;
1643  
1644  		case -EBUSY:
1645  			/* else it is being freed elsewhere */
1646  			list_move(&page->lru, src);
1647  			continue;
1648  
1649  		default:
1650  			BUG();
1651  		}
1652  	}
1653  
1654  	/*
1655  	 * Splice any skipped pages to the start of the LRU list. Note that
1656  	 * this disrupts the LRU order when reclaiming for lower zones but
1657  	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1658  	 * scanning would soon rescan the same pages to skip and put the
1659  	 * system at risk of premature OOM.
1660  	 */
1661  	if (!list_empty(&pages_skipped)) {
1662  		int zid;
1663  
1664  		list_splice(&pages_skipped, src);
1665  		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1666  			if (!nr_skipped[zid])
1667  				continue;
1668  
1669  			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1670  			skipped += nr_skipped[zid];
1671  		}
1672  	}
1673  	*nr_scanned = total_scan;
1674  	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1675  				    total_scan, skipped, nr_taken, mode, lru);
1676  	update_lru_sizes(lruvec, lru, nr_zone_taken);
1677  	return nr_taken;
1678  }
1679  
1680  /**
1681   * isolate_lru_page - tries to isolate a page from its LRU list
1682   * @page: page to isolate from its LRU list
1683   *
1684   * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1685   * vmstat statistic corresponding to whatever LRU list the page was on.
1686   *
1687   * Returns 0 if the page was removed from an LRU list.
1688   * Returns -EBUSY if the page was not on an LRU list.
1689   *
1690   * The returned page will have PageLRU() cleared.  If it was found on
1691   * the active list, it will have PageActive set.  If it was found on
1692   * the unevictable list, it will have the PageUnevictable bit set. That flag
1693   * may need to be cleared by the caller before letting the page go.
1694   *
1695   * The vmstat statistic corresponding to the list on which the page was
1696   * found will be decremented.
1697   *
1698   * Restrictions:
1699   *
1700   * (1) Must be called with an elevated refcount on the page. This is a
1701   *     fundamental difference from isolate_lru_pages (which is called
1702   *     without a stable reference).
1703   * (2) the lru_lock must not be held.
1704   * (3) interrupts must be enabled.
1705   */
isolate_lru_page(struct page * page)1706  int isolate_lru_page(struct page *page)
1707  {
1708  	int ret = -EBUSY;
1709  
1710  	VM_BUG_ON_PAGE(!page_count(page), page);
1711  	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1712  
1713  	if (PageLRU(page)) {
1714  		pg_data_t *pgdat = page_pgdat(page);
1715  		struct lruvec *lruvec;
1716  
1717  		spin_lock_irq(&pgdat->lru_lock);
1718  		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1719  		if (PageLRU(page)) {
1720  			int lru = page_lru(page);
1721  			get_page(page);
1722  			ClearPageLRU(page);
1723  			del_page_from_lru_list(page, lruvec, lru);
1724  			ret = 0;
1725  		}
1726  		spin_unlock_irq(&pgdat->lru_lock);
1727  	}
1728  	return ret;
1729  }
1730  
1731  /*
1732   * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1733   * then get rescheduled. When there are massive number of tasks doing page
1734   * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1735   * the LRU list will go small and be scanned faster than necessary, leading to
1736   * unnecessary swapping, thrashing and OOM.
1737   */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1738  static int too_many_isolated(struct pglist_data *pgdat, int file,
1739  		struct scan_control *sc)
1740  {
1741  	unsigned long inactive, isolated;
1742  
1743  	if (current_is_kswapd())
1744  		return 0;
1745  
1746  	if (!writeback_throttling_sane(sc))
1747  		return 0;
1748  
1749  	if (file) {
1750  		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1751  		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1752  	} else {
1753  		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1754  		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1755  	}
1756  
1757  	/*
1758  	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1759  	 * won't get blocked by normal direct-reclaimers, forming a circular
1760  	 * deadlock.
1761  	 */
1762  	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1763  		inactive >>= 3;
1764  
1765  	return isolated > inactive;
1766  }
1767  
1768  /*
1769   * This moves pages from @list to corresponding LRU list.
1770   *
1771   * We move them the other way if the page is referenced by one or more
1772   * processes, from rmap.
1773   *
1774   * If the pages are mostly unmapped, the processing is fast and it is
1775   * appropriate to hold zone_lru_lock across the whole operation.  But if
1776   * the pages are mapped, the processing is slow (page_referenced()) so we
1777   * should drop zone_lru_lock around each page.  It's impossible to balance
1778   * this, so instead we remove the pages from the LRU while processing them.
1779   * It is safe to rely on PG_active against the non-LRU pages in here because
1780   * nobody will play with that bit on a non-LRU page.
1781   *
1782   * The downside is that we have to touch page->_refcount against each page.
1783   * But we had to alter page->flags anyway.
1784   *
1785   * Returns the number of pages moved to the given lruvec.
1786   */
1787  
move_pages_to_lru(struct lruvec * lruvec,struct list_head * list)1788  unsigned move_pages_to_lru(struct lruvec *lruvec, struct list_head *list)
1789  {
1790  	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1791  	int nr_pages, nr_moved = 0;
1792  	LIST_HEAD(pages_to_free);
1793  	struct page *page;
1794  	enum lru_list lru;
1795  #ifdef CONFIG_HYPERHOLD_FILE_LRU
1796  	bool prot;
1797  	bool file;
1798  #endif
1799  
1800  	while (!list_empty(list)) {
1801  		page = lru_to_page(list);
1802  		VM_BUG_ON_PAGE(PageLRU(page), page);
1803  		if (unlikely(!page_evictable(page))) {
1804  			list_del(&page->lru);
1805  			spin_unlock_irq(&pgdat->lru_lock);
1806  			putback_lru_page(page);
1807  			spin_lock_irq(&pgdat->lru_lock);
1808  			continue;
1809  		}
1810  		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1811  
1812  		SetPageLRU(page);
1813  		lru = page_lru(page);
1814  
1815  		nr_pages = thp_nr_pages(page);
1816  		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1817  		list_move(&page->lru, &lruvec->lists[lru]);
1818  
1819  		if (put_page_testzero(page)) {
1820  			__ClearPageLRU(page);
1821  			__ClearPageActive(page);
1822  			del_page_from_lru_list(page, lruvec, lru);
1823  
1824  			if (unlikely(PageCompound(page))) {
1825  				spin_unlock_irq(&pgdat->lru_lock);
1826  				destroy_compound_page(page);
1827  				spin_lock_irq(&pgdat->lru_lock);
1828  			} else
1829  				list_add(&page->lru, &pages_to_free);
1830  		} else {
1831  			nr_moved += nr_pages;
1832  #ifdef CONFIG_HYPERHOLD_FILE_LRU
1833  			if (PageActive(page)) {
1834  				prot = is_prot_page(page);
1835  				file = page_is_file_lru(page);
1836  				if (!prot && file) {
1837  					lruvec = node_lruvec(pgdat);
1838  					workingset_age_nonresident(lruvec,
1839  								   nr_pages);
1840  				} else {
1841  					workingset_age_nonresident(lruvec,
1842  								   nr_pages);
1843  				}
1844  			}
1845  #else
1846  			if (PageActive(page))
1847  				workingset_age_nonresident(lruvec, nr_pages);
1848  #endif
1849  		}
1850  	}
1851  
1852  	/*
1853  	 * To save our caller's stack, now use input list for pages to free.
1854  	 */
1855  	list_splice(&pages_to_free, list);
1856  
1857  	return nr_moved;
1858  }
1859  
1860  /*
1861   * If a kernel thread (such as nfsd for loop-back mounts) services
1862   * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
1863   * In that case we should only throttle if the backing device it is
1864   * writing to is congested.  In other cases it is safe to throttle.
1865   */
current_may_throttle(void)1866  int current_may_throttle(void)
1867  {
1868  	return !(current->flags & PF_LOCAL_THROTTLE) ||
1869  		current->backing_dev_info == NULL ||
1870  		bdi_write_congested(current->backing_dev_info);
1871  }
1872  
1873  /*
1874   * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1875   * of reclaimed pages
1876   */
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1877  unsigned long shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1878  		struct scan_control *sc, enum lru_list lru)
1879  {
1880  	LIST_HEAD(page_list);
1881  	unsigned long nr_scanned;
1882  	unsigned int nr_reclaimed = 0;
1883  	unsigned long nr_taken;
1884  	struct reclaim_stat stat;
1885  	bool file = is_file_lru(lru);
1886  	enum vm_event_item item;
1887  	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1888  	bool stalled = false;
1889  
1890  	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1891  		if (stalled)
1892  			return 0;
1893  
1894  #ifdef CONFIG_HYPERHOLD_FILE_LRU
1895  		sc->isolate_count++;
1896  #endif
1897  		/* wait a bit for the reclaimer. */
1898  		msleep(100);
1899  		stalled = true;
1900  
1901  		/* We are about to die and free our memory. Return now. */
1902  		if (fatal_signal_pending(current))
1903  			return SWAP_CLUSTER_MAX;
1904  	}
1905  
1906  	lru_add_drain();
1907  
1908  	spin_lock_irq(&pgdat->lru_lock);
1909  
1910  	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1911  				     &nr_scanned, sc, lru);
1912  
1913  	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1914  	item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1915  	if (!cgroup_reclaim(sc))
1916  		__count_vm_events(item, nr_scanned);
1917  	__count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1918  	__count_vm_events(PGSCAN_ANON + file, nr_scanned);
1919  
1920  	spin_unlock_irq(&pgdat->lru_lock);
1921  
1922  	if (nr_taken == 0)
1923  		return 0;
1924  
1925  	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
1926  
1927  	spin_lock_irq(&pgdat->lru_lock);
1928  
1929  	move_pages_to_lru(lruvec, &page_list);
1930  
1931  	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1932  #ifdef CONFIG_HYPERHOLD_FILE_LRU
1933  	if (file)
1934  		lru_note_cost(node_lruvec(pgdat), file, stat.nr_pageout);
1935  	else
1936  		lru_note_cost(lruvec, file, stat.nr_pageout);
1937  #else
1938  	lru_note_cost(lruvec, file, stat.nr_pageout);
1939  
1940  #endif
1941  
1942  	item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
1943  	if (!cgroup_reclaim(sc))
1944  		__count_vm_events(item, nr_reclaimed);
1945  	__count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1946  	__count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1947  
1948  	spin_unlock_irq(&pgdat->lru_lock);
1949  
1950  	mem_cgroup_uncharge_list(&page_list);
1951  	free_unref_page_list(&page_list);
1952  
1953  	/*
1954  	 * If dirty pages are scanned that are not queued for IO, it
1955  	 * implies that flushers are not doing their job. This can
1956  	 * happen when memory pressure pushes dirty pages to the end of
1957  	 * the LRU before the dirty limits are breached and the dirty
1958  	 * data has expired. It can also happen when the proportion of
1959  	 * dirty pages grows not through writes but through memory
1960  	 * pressure reclaiming all the clean cache. And in some cases,
1961  	 * the flushers simply cannot keep up with the allocation
1962  	 * rate. Nudge the flusher threads in case they are asleep.
1963  	 */
1964  	if (stat.nr_unqueued_dirty == nr_taken)
1965  		wakeup_flusher_threads(WB_REASON_VMSCAN);
1966  
1967  	sc->nr.dirty += stat.nr_dirty;
1968  	sc->nr.congested += stat.nr_congested;
1969  	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1970  	sc->nr.writeback += stat.nr_writeback;
1971  	sc->nr.immediate += stat.nr_immediate;
1972  	sc->nr.taken += nr_taken;
1973  	if (file)
1974  		sc->nr.file_taken += nr_taken;
1975  
1976  	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1977  			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1978  	return nr_reclaimed;
1979  }
1980  
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1981  void shrink_active_list(unsigned long nr_to_scan,
1982  			       struct lruvec *lruvec,
1983  			       struct scan_control *sc,
1984  			       enum lru_list lru)
1985  {
1986  	unsigned long nr_taken;
1987  	unsigned long nr_scanned;
1988  	unsigned long vm_flags;
1989  	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1990  	LIST_HEAD(l_active);
1991  	LIST_HEAD(l_inactive);
1992  	struct page *page;
1993  	unsigned nr_deactivate, nr_activate;
1994  	unsigned nr_rotated = 0;
1995  	int file = is_file_lru(lru);
1996  	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1997  
1998  	lru_add_drain();
1999  
2000  	spin_lock_irq(&pgdat->lru_lock);
2001  
2002  	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2003  				     &nr_scanned, sc, lru);
2004  
2005  	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2006  
2007  	if (!cgroup_reclaim(sc))
2008  		__count_vm_events(PGREFILL, nr_scanned);
2009  	__count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2010  
2011  	spin_unlock_irq(&pgdat->lru_lock);
2012  
2013  	while (!list_empty(&l_hold)) {
2014  		cond_resched();
2015  		page = lru_to_page(&l_hold);
2016  		list_del(&page->lru);
2017  
2018  		if (unlikely(!page_evictable(page))) {
2019  			putback_lru_page(page);
2020  			continue;
2021  		}
2022  
2023  		if (unlikely(buffer_heads_over_limit)) {
2024  			if (page_has_private(page) && trylock_page(page)) {
2025  				if (page_has_private(page))
2026  					try_to_release_page(page, 0);
2027  				unlock_page(page);
2028  			}
2029  		}
2030  
2031  		if (page_referenced(page, 0, sc->target_mem_cgroup,
2032  				    &vm_flags)) {
2033  			/*
2034  			 * Identify referenced, file-backed active pages and
2035  			 * give them one more trip around the active list. So
2036  			 * that executable code get better chances to stay in
2037  			 * memory under moderate memory pressure.  Anon pages
2038  			 * are not likely to be evicted by use-once streaming
2039  			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2040  			 * so we ignore them here.
2041  			 */
2042  			if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2043  				nr_rotated += thp_nr_pages(page);
2044  				list_add(&page->lru, &l_active);
2045  				continue;
2046  			}
2047  		}
2048  
2049  		ClearPageActive(page);	/* we are de-activating */
2050  		SetPageWorkingset(page);
2051  		list_add(&page->lru, &l_inactive);
2052  	}
2053  
2054  	/*
2055  	 * Move pages back to the lru list.
2056  	 */
2057  	spin_lock_irq(&pgdat->lru_lock);
2058  
2059  	nr_activate = move_pages_to_lru(lruvec, &l_active);
2060  	nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2061  	/* Keep all free pages in l_active list */
2062  	list_splice(&l_inactive, &l_active);
2063  
2064  	__count_vm_events(PGDEACTIVATE, nr_deactivate);
2065  	__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2066  
2067  	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2068  	spin_unlock_irq(&pgdat->lru_lock);
2069  
2070  	mem_cgroup_uncharge_list(&l_active);
2071  	free_unref_page_list(&l_active);
2072  	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2073  			nr_deactivate, nr_rotated, sc->priority, file);
2074  }
2075  
reclaim_pages(struct list_head * page_list)2076  unsigned long reclaim_pages(struct list_head *page_list)
2077  {
2078  	int nid = NUMA_NO_NODE;
2079  	unsigned int nr_reclaimed = 0;
2080  	LIST_HEAD(node_page_list);
2081  	struct reclaim_stat dummy_stat;
2082  	struct page *page;
2083  	struct scan_control sc = {
2084  		.gfp_mask = GFP_KERNEL,
2085  		.priority = DEF_PRIORITY,
2086  		.may_writepage = 1,
2087  		.may_unmap = 1,
2088  		.may_swap = 1,
2089  	};
2090  
2091  	while (!list_empty(page_list)) {
2092  		page = lru_to_page(page_list);
2093  		if (nid == NUMA_NO_NODE) {
2094  			nid = page_to_nid(page);
2095  			INIT_LIST_HEAD(&node_page_list);
2096  		}
2097  
2098  		if (nid == page_to_nid(page)) {
2099  			ClearPageActive(page);
2100  			list_move(&page->lru, &node_page_list);
2101  			continue;
2102  		}
2103  
2104  		nr_reclaimed += shrink_page_list(&node_page_list,
2105  						NODE_DATA(nid),
2106  						&sc, &dummy_stat, false);
2107  		while (!list_empty(&node_page_list)) {
2108  			page = lru_to_page(&node_page_list);
2109  			list_del(&page->lru);
2110  			putback_lru_page(page);
2111  		}
2112  
2113  		nid = NUMA_NO_NODE;
2114  	}
2115  
2116  	if (!list_empty(&node_page_list)) {
2117  		nr_reclaimed += shrink_page_list(&node_page_list,
2118  						NODE_DATA(nid),
2119  						&sc, &dummy_stat, false);
2120  		while (!list_empty(&node_page_list)) {
2121  			page = lru_to_page(&node_page_list);
2122  			list_del(&page->lru);
2123  			putback_lru_page(page);
2124  		}
2125  	}
2126  
2127  	return nr_reclaimed;
2128  }
2129  
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2130  unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2131  				 struct lruvec *lruvec, struct scan_control *sc)
2132  {
2133  #ifdef CONFIG_RECLAIM_ACCT
2134  	unsigned long nr_reclaimed;
2135  	unsigned int stub;
2136  
2137  	stub = is_file_lru(lru) ? RA_SHRINKFILE : RA_SHRINKANON;
2138  	reclaimacct_substage_start(stub);
2139  #endif
2140  	if (is_active_lru(lru)) {
2141  		if (sc->may_deactivate & (1 << is_file_lru(lru)))
2142  			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2143  		else
2144  			sc->skipped_deactivate = 1;
2145  #ifdef CONFIG_RECLAIM_ACCT
2146  		reclaimacct_substage_end(stub, 0, NULL);
2147  #endif
2148  		return 0;
2149  	}
2150  
2151  #ifdef CONFIG_RECLAIM_ACCT
2152  	nr_reclaimed = shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2153  	reclaimacct_substage_end(stub, nr_reclaimed, NULL);
2154  	return nr_reclaimed;
2155  #else
2156  	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2157  #endif
2158  }
2159  
2160  /*
2161   * The inactive anon list should be small enough that the VM never has
2162   * to do too much work.
2163   *
2164   * The inactive file list should be small enough to leave most memory
2165   * to the established workingset on the scan-resistant active list,
2166   * but large enough to avoid thrashing the aggregate readahead window.
2167   *
2168   * Both inactive lists should also be large enough that each inactive
2169   * page has a chance to be referenced again before it is reclaimed.
2170   *
2171   * If that fails and refaulting is observed, the inactive list grows.
2172   *
2173   * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2174   * on this LRU, maintained by the pageout code. An inactive_ratio
2175   * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2176   *
2177   * total     target    max
2178   * memory    ratio     inactive
2179   * -------------------------------------
2180   *   10MB       1         5MB
2181   *  100MB       1        50MB
2182   *    1GB       3       250MB
2183   *   10GB      10       0.9GB
2184   *  100GB      31         3GB
2185   *    1TB     101        10GB
2186   *   10TB     320        32GB
2187   */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2188  bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2189  {
2190  	enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2191  	unsigned long inactive, active;
2192  	unsigned long inactive_ratio;
2193  	unsigned long gb;
2194  
2195  	inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2196  	active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2197  
2198  	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2199  	if (gb)
2200  		inactive_ratio = int_sqrt(10 * gb);
2201  	else
2202  		inactive_ratio = 1;
2203  
2204  	return inactive * inactive_ratio < active;
2205  }
2206  
2207  /*
2208   * Determine how aggressively the anon and file LRU lists should be
2209   * scanned.  The relative value of each set of LRU lists is determined
2210   * by looking at the fraction of the pages scanned we did rotate back
2211   * onto the active list instead of evict.
2212   *
2213   * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2214   * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2215   */
2216  #ifndef CONFIG_HYPERHOLD_FILE_LRU
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2217  static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2218  			   unsigned long *nr)
2219  {
2220  	struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2221  	unsigned long anon_cost, file_cost, total_cost;
2222  	int swappiness = mem_cgroup_swappiness(memcg);
2223  	u64 fraction[ANON_AND_FILE];
2224  	u64 denominator = 0;	/* gcc */
2225  	enum scan_balance scan_balance;
2226  	unsigned long ap, fp;
2227  	enum lru_list lru;
2228  
2229  	/* If we have no swap space, do not bother scanning anon pages. */
2230  	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2231  		scan_balance = SCAN_FILE;
2232  		goto out;
2233  	}
2234  
2235  	/*
2236  	 * Global reclaim will swap to prevent OOM even with no
2237  	 * swappiness, but memcg users want to use this knob to
2238  	 * disable swapping for individual groups completely when
2239  	 * using the memory controller's swap limit feature would be
2240  	 * too expensive.
2241  	 */
2242  	if (cgroup_reclaim(sc) && !swappiness) {
2243  		scan_balance = SCAN_FILE;
2244  		goto out;
2245  	}
2246  
2247  	/*
2248  	 * Do not apply any pressure balancing cleverness when the
2249  	 * system is close to OOM, scan both anon and file equally
2250  	 * (unless the swappiness setting disagrees with swapping).
2251  	 */
2252  	if (!sc->priority && swappiness) {
2253  		scan_balance = SCAN_EQUAL;
2254  		goto out;
2255  	}
2256  
2257  	/*
2258  	 * If the system is almost out of file pages, force-scan anon.
2259  	 */
2260  	if (sc->file_is_tiny) {
2261  		scan_balance = SCAN_ANON;
2262  		goto out;
2263  	}
2264  
2265  	/*
2266  	 * If there is enough inactive page cache, we do not reclaim
2267  	 * anything from the anonymous working right now.
2268  	 */
2269  	if (sc->cache_trim_mode) {
2270  		scan_balance = SCAN_FILE;
2271  		goto out;
2272  	}
2273  
2274  	scan_balance = SCAN_FRACT;
2275  	/*
2276  	 * Calculate the pressure balance between anon and file pages.
2277  	 *
2278  	 * The amount of pressure we put on each LRU is inversely
2279  	 * proportional to the cost of reclaiming each list, as
2280  	 * determined by the share of pages that are refaulting, times
2281  	 * the relative IO cost of bringing back a swapped out
2282  	 * anonymous page vs reloading a filesystem page (swappiness).
2283  	 *
2284  	 * Although we limit that influence to ensure no list gets
2285  	 * left behind completely: at least a third of the pressure is
2286  	 * applied, before swappiness.
2287  	 *
2288  	 * With swappiness at 100, anon and file have equal IO cost.
2289  	 */
2290  	total_cost = sc->anon_cost + sc->file_cost;
2291  	anon_cost = total_cost + sc->anon_cost;
2292  	file_cost = total_cost + sc->file_cost;
2293  	total_cost = anon_cost + file_cost;
2294  
2295  	ap = swappiness * (total_cost + 1);
2296  	ap /= anon_cost + 1;
2297  
2298  	fp = (200 - swappiness) * (total_cost + 1);
2299  	fp /= file_cost + 1;
2300  
2301  	fraction[0] = ap;
2302  	fraction[1] = fp;
2303  	denominator = ap + fp;
2304  out:
2305  	for_each_evictable_lru(lru) {
2306  		int file = is_file_lru(lru);
2307  		unsigned long lruvec_size;
2308  		unsigned long low, min;
2309  		unsigned long scan;
2310  
2311  		lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2312  		mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2313  				      &min, &low);
2314  
2315  		if (min || low) {
2316  			/*
2317  			 * Scale a cgroup's reclaim pressure by proportioning
2318  			 * its current usage to its memory.low or memory.min
2319  			 * setting.
2320  			 *
2321  			 * This is important, as otherwise scanning aggression
2322  			 * becomes extremely binary -- from nothing as we
2323  			 * approach the memory protection threshold, to totally
2324  			 * nominal as we exceed it.  This results in requiring
2325  			 * setting extremely liberal protection thresholds. It
2326  			 * also means we simply get no protection at all if we
2327  			 * set it too low, which is not ideal.
2328  			 *
2329  			 * If there is any protection in place, we reduce scan
2330  			 * pressure by how much of the total memory used is
2331  			 * within protection thresholds.
2332  			 *
2333  			 * There is one special case: in the first reclaim pass,
2334  			 * we skip over all groups that are within their low
2335  			 * protection. If that fails to reclaim enough pages to
2336  			 * satisfy the reclaim goal, we come back and override
2337  			 * the best-effort low protection. However, we still
2338  			 * ideally want to honor how well-behaved groups are in
2339  			 * that case instead of simply punishing them all
2340  			 * equally. As such, we reclaim them based on how much
2341  			 * memory they are using, reducing the scan pressure
2342  			 * again by how much of the total memory used is under
2343  			 * hard protection.
2344  			 */
2345  			unsigned long cgroup_size = mem_cgroup_size(memcg);
2346  			unsigned long protection;
2347  
2348  			/* memory.low scaling, make sure we retry before OOM */
2349  			if (!sc->memcg_low_reclaim && low > min) {
2350  				protection = low;
2351  				sc->memcg_low_skipped = 1;
2352  			} else {
2353  				protection = min;
2354  			}
2355  
2356  			/* Avoid TOCTOU with earlier protection check */
2357  			cgroup_size = max(cgroup_size, protection);
2358  
2359  			scan = lruvec_size - lruvec_size * protection /
2360  				(cgroup_size + 1);
2361  
2362  			/*
2363  			 * Minimally target SWAP_CLUSTER_MAX pages to keep
2364  			 * reclaim moving forwards, avoiding decrementing
2365  			 * sc->priority further than desirable.
2366  			 */
2367  			scan = max(scan, SWAP_CLUSTER_MAX);
2368  		} else {
2369  			scan = lruvec_size;
2370  		}
2371  
2372  		scan >>= sc->priority;
2373  
2374  		/*
2375  		 * If the cgroup's already been deleted, make sure to
2376  		 * scrape out the remaining cache.
2377  		 */
2378  		if (!scan && !mem_cgroup_online(memcg))
2379  			scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2380  
2381  		switch (scan_balance) {
2382  		case SCAN_EQUAL:
2383  			/* Scan lists relative to size */
2384  			break;
2385  		case SCAN_FRACT:
2386  			/*
2387  			 * Scan types proportional to swappiness and
2388  			 * their relative recent reclaim efficiency.
2389  			 * Make sure we don't miss the last page on
2390  			 * the offlined memory cgroups because of a
2391  			 * round-off error.
2392  			 */
2393  			scan = mem_cgroup_online(memcg) ?
2394  			       div64_u64(scan * fraction[file], denominator) :
2395  			       DIV64_U64_ROUND_UP(scan * fraction[file],
2396  						  denominator);
2397  			break;
2398  		case SCAN_FILE:
2399  		case SCAN_ANON:
2400  			/* Scan one type exclusively */
2401  			if ((scan_balance == SCAN_FILE) != file)
2402  				scan = 0;
2403  			break;
2404  		default:
2405  			/* Look ma, no brain */
2406  			BUG();
2407  		}
2408  
2409  		nr[lru] = scan;
2410  	}
2411  }
2412  
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)2413  void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2414  {
2415  	unsigned long nr[NR_LRU_LISTS];
2416  	unsigned long targets[NR_LRU_LISTS];
2417  	unsigned long nr_to_scan;
2418  	enum lru_list lru;
2419  	unsigned long nr_reclaimed = 0;
2420  	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2421  	bool proportional_reclaim;
2422  	struct blk_plug plug;
2423  
2424  	get_scan_count(lruvec, sc, nr);
2425  
2426  	/* Record the original scan target for proportional adjustments later */
2427  	memcpy(targets, nr, sizeof(nr));
2428  
2429  	/*
2430  	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2431  	 * event that can occur when there is little memory pressure e.g.
2432  	 * multiple streaming readers/writers. Hence, we do not abort scanning
2433  	 * when the requested number of pages are reclaimed when scanning at
2434  	 * DEF_PRIORITY on the assumption that the fact we are direct
2435  	 * reclaiming implies that kswapd is not keeping up and it is best to
2436  	 * do a batch of work at once. For memcg reclaim one check is made to
2437  	 * abort proportional reclaim if either the file or anon lru has already
2438  	 * dropped to zero at the first pass.
2439  	 */
2440  	proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2441  				sc->priority == DEF_PRIORITY);
2442  
2443  	blk_start_plug(&plug);
2444  	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2445  					nr[LRU_INACTIVE_FILE]) {
2446  		unsigned long nr_anon, nr_file, percentage;
2447  		unsigned long nr_scanned;
2448  
2449  		for_each_evictable_lru(lru) {
2450  			if (nr[lru]) {
2451  				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2452  				nr[lru] -= nr_to_scan;
2453  
2454  				nr_reclaimed += shrink_list(lru, nr_to_scan,
2455  							    lruvec, sc);
2456  			}
2457  		}
2458  
2459  		cond_resched();
2460  
2461  		if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
2462  			continue;
2463  
2464  		/*
2465  		 * For kswapd and memcg, reclaim at least the number of pages
2466  		 * requested. Ensure that the anon and file LRUs are scanned
2467  		 * proportionally what was requested by get_scan_count(). We
2468  		 * stop reclaiming one LRU and reduce the amount scanning
2469  		 * proportional to the original scan target.
2470  		 */
2471  		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2472  		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2473  
2474  		/*
2475  		 * It's just vindictive to attack the larger once the smaller
2476  		 * has gone to zero.  And given the way we stop scanning the
2477  		 * smaller below, this makes sure that we only make one nudge
2478  		 * towards proportionality once we've got nr_to_reclaim.
2479  		 */
2480  		if (!nr_file || !nr_anon)
2481  			break;
2482  
2483  		if (nr_file > nr_anon) {
2484  			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2485  						targets[LRU_ACTIVE_ANON] + 1;
2486  			lru = LRU_BASE;
2487  			percentage = nr_anon * 100 / scan_target;
2488  		} else {
2489  			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2490  						targets[LRU_ACTIVE_FILE] + 1;
2491  			lru = LRU_FILE;
2492  			percentage = nr_file * 100 / scan_target;
2493  		}
2494  
2495  		/* Stop scanning the smaller of the LRU */
2496  		nr[lru] = 0;
2497  		nr[lru + LRU_ACTIVE] = 0;
2498  
2499  		/*
2500  		 * Recalculate the other LRU scan count based on its original
2501  		 * scan target and the percentage scanning already complete
2502  		 */
2503  		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2504  		nr_scanned = targets[lru] - nr[lru];
2505  		nr[lru] = targets[lru] * (100 - percentage) / 100;
2506  		nr[lru] -= min(nr[lru], nr_scanned);
2507  
2508  		lru += LRU_ACTIVE;
2509  		nr_scanned = targets[lru] - nr[lru];
2510  		nr[lru] = targets[lru] * (100 - percentage) / 100;
2511  		nr[lru] -= min(nr[lru], nr_scanned);
2512  	}
2513  	blk_finish_plug(&plug);
2514  	sc->nr_reclaimed += nr_reclaimed;
2515  
2516  	/*
2517  	 * Even if we did not try to evict anon pages at all, we want to
2518  	 * rebalance the anon lru active/inactive ratio.
2519  	 */
2520  	if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2521  		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2522  				   sc, LRU_ACTIVE_ANON);
2523  }
2524  #endif
2525  
2526  /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)2527  static bool in_reclaim_compaction(struct scan_control *sc)
2528  {
2529  	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2530  			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2531  			 sc->priority < DEF_PRIORITY - 2))
2532  		return true;
2533  
2534  	return false;
2535  }
2536  
2537  /*
2538   * Reclaim/compaction is used for high-order allocation requests. It reclaims
2539   * order-0 pages before compacting the zone. should_continue_reclaim() returns
2540   * true if more pages should be reclaimed such that when the page allocator
2541   * calls try_to_compact_pages() that it will have enough free pages to succeed.
2542   * It will give up earlier than that if there is difficulty reclaiming pages.
2543   */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)2544  inline bool should_continue_reclaim(struct pglist_data *pgdat,
2545  				    unsigned long nr_reclaimed,
2546  				    struct scan_control *sc)
2547  {
2548  	unsigned long pages_for_compaction;
2549  	unsigned long inactive_lru_pages;
2550  	int z;
2551  
2552  	/* If not in reclaim/compaction mode, stop */
2553  	if (!in_reclaim_compaction(sc))
2554  		return false;
2555  
2556  	/*
2557  	 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
2558  	 * number of pages that were scanned. This will return to the caller
2559  	 * with the risk reclaim/compaction and the resulting allocation attempt
2560  	 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
2561  	 * allocations through requiring that the full LRU list has been scanned
2562  	 * first, by assuming that zero delta of sc->nr_scanned means full LRU
2563  	 * scan, but that approximation was wrong, and there were corner cases
2564  	 * where always a non-zero amount of pages were scanned.
2565  	 */
2566  	if (!nr_reclaimed)
2567  		return false;
2568  
2569  	/* If compaction would go ahead or the allocation would succeed, stop */
2570  	for (z = 0; z <= sc->reclaim_idx; z++) {
2571  		struct zone *zone = &pgdat->node_zones[z];
2572  		if (!managed_zone(zone))
2573  			continue;
2574  
2575  		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2576  		case COMPACT_SUCCESS:
2577  		case COMPACT_CONTINUE:
2578  			return false;
2579  		default:
2580  			/* check next zone */
2581  			;
2582  		}
2583  	}
2584  
2585  	/*
2586  	 * If we have not reclaimed enough pages for compaction and the
2587  	 * inactive lists are large enough, continue reclaiming
2588  	 */
2589  	pages_for_compaction = compact_gap(sc->order);
2590  	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2591  	if (get_nr_swap_pages() > 0)
2592  		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2593  
2594  	return inactive_lru_pages > pages_for_compaction;
2595  }
2596  
2597  #ifndef CONFIG_HYPERHOLD_FILE_LRU
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)2598  static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
2599  {
2600  	struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
2601  	struct mem_cgroup *memcg;
2602  
2603  	memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
2604  	do {
2605  		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
2606  		unsigned long reclaimed;
2607  		unsigned long scanned;
2608  
2609  		/*
2610  		 * This loop can become CPU-bound when target memcgs
2611  		 * aren't eligible for reclaim - either because they
2612  		 * don't have any reclaimable pages, or because their
2613  		 * memory is explicitly protected. Avoid soft lockups.
2614  		 */
2615  		cond_resched();
2616  
2617  		mem_cgroup_calculate_protection(target_memcg, memcg);
2618  
2619  		if (mem_cgroup_below_min(memcg)) {
2620  			/*
2621  			 * Hard protection.
2622  			 * If there is no reclaimable memory, OOM.
2623  			 */
2624  			continue;
2625  		} else if (mem_cgroup_below_low(memcg)) {
2626  			/*
2627  			 * Soft protection.
2628  			 * Respect the protection only as long as
2629  			 * there is an unprotected supply
2630  			 * of reclaimable memory from other cgroups.
2631  			 */
2632  			if (!sc->memcg_low_reclaim) {
2633  				sc->memcg_low_skipped = 1;
2634  				continue;
2635  			}
2636  			memcg_memory_event(memcg, MEMCG_LOW);
2637  		}
2638  
2639  		reclaimed = sc->nr_reclaimed;
2640  		scanned = sc->nr_scanned;
2641  
2642  		shrink_lruvec(lruvec, sc);
2643  
2644  		shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2645  			    sc->priority);
2646  
2647  		/* Record the group's reclaim efficiency */
2648  		vmpressure(sc->gfp_mask, memcg, false,
2649  			   sc->nr_scanned - scanned,
2650  			   sc->nr_reclaimed - reclaimed);
2651  
2652  	} while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
2653  }
2654  
shrink_node(pg_data_t * pgdat,struct scan_control * sc)2655  static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2656  {
2657  	struct reclaim_state *reclaim_state = current->reclaim_state;
2658  	unsigned long nr_reclaimed, nr_scanned;
2659  	struct lruvec *target_lruvec;
2660  	bool reclaimable = false;
2661  	unsigned long file;
2662  
2663  	target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2664  
2665  again:
2666  	memset(&sc->nr, 0, sizeof(sc->nr));
2667  
2668  	nr_reclaimed = sc->nr_reclaimed;
2669  	nr_scanned = sc->nr_scanned;
2670  
2671  	/*
2672  	 * Determine the scan balance between anon and file LRUs.
2673  	 */
2674  	spin_lock_irq(&pgdat->lru_lock);
2675  	sc->anon_cost = target_lruvec->anon_cost;
2676  	sc->file_cost = target_lruvec->file_cost;
2677  	spin_unlock_irq(&pgdat->lru_lock);
2678  
2679  	/*
2680  	 * Target desirable inactive:active list ratios for the anon
2681  	 * and file LRU lists.
2682  	 */
2683  	if (!sc->force_deactivate) {
2684  		unsigned long refaults;
2685  
2686  		refaults = lruvec_page_state(target_lruvec,
2687  				WORKINGSET_ACTIVATE_ANON);
2688  		if (refaults != target_lruvec->refaults[0] ||
2689  			inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2690  			sc->may_deactivate |= DEACTIVATE_ANON;
2691  		else
2692  			sc->may_deactivate &= ~DEACTIVATE_ANON;
2693  
2694  		/*
2695  		 * When refaults are being observed, it means a new
2696  		 * workingset is being established. Deactivate to get
2697  		 * rid of any stale active pages quickly.
2698  		 */
2699  		refaults = lruvec_page_state(target_lruvec,
2700  				WORKINGSET_ACTIVATE_FILE);
2701  		if (refaults != target_lruvec->refaults[1] ||
2702  		    inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2703  			sc->may_deactivate |= DEACTIVATE_FILE;
2704  		else
2705  			sc->may_deactivate &= ~DEACTIVATE_FILE;
2706  	} else
2707  		sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2708  
2709  	/*
2710  	 * If we have plenty of inactive file pages that aren't
2711  	 * thrashing, try to reclaim those first before touching
2712  	 * anonymous pages.
2713  	 */
2714  	file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2715  	if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2716  		sc->cache_trim_mode = 1;
2717  	else
2718  		sc->cache_trim_mode = 0;
2719  
2720  	/*
2721  	 * Prevent the reclaimer from falling into the cache trap: as
2722  	 * cache pages start out inactive, every cache fault will tip
2723  	 * the scan balance towards the file LRU.  And as the file LRU
2724  	 * shrinks, so does the window for rotation from references.
2725  	 * This means we have a runaway feedback loop where a tiny
2726  	 * thrashing file LRU becomes infinitely more attractive than
2727  	 * anon pages.  Try to detect this based on file LRU size.
2728  	 */
2729  	if (!cgroup_reclaim(sc)) {
2730  		unsigned long total_high_wmark = 0;
2731  		unsigned long free, anon;
2732  		int z;
2733  
2734  		free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2735  		file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2736  			   node_page_state(pgdat, NR_INACTIVE_FILE);
2737  
2738  		for (z = 0; z < MAX_NR_ZONES; z++) {
2739  			struct zone *zone = &pgdat->node_zones[z];
2740  			if (!managed_zone(zone))
2741  				continue;
2742  
2743  			total_high_wmark += high_wmark_pages(zone);
2744  		}
2745  
2746  		/*
2747  		 * Consider anon: if that's low too, this isn't a
2748  		 * runaway file reclaim problem, but rather just
2749  		 * extreme pressure. Reclaim as per usual then.
2750  		 */
2751  		anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2752  
2753  		sc->file_is_tiny =
2754  			file + free <= total_high_wmark &&
2755  			!(sc->may_deactivate & DEACTIVATE_ANON) &&
2756  			anon >> sc->priority;
2757  	}
2758  
2759  	shrink_node_memcgs(pgdat, sc);
2760  
2761  	if (reclaim_state) {
2762  		sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2763  		reclaim_state->reclaimed_slab = 0;
2764  	}
2765  
2766  	/* Record the subtree's reclaim efficiency */
2767  	vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2768  		   sc->nr_scanned - nr_scanned,
2769  		   sc->nr_reclaimed - nr_reclaimed);
2770  
2771  	if (sc->nr_reclaimed - nr_reclaimed)
2772  		reclaimable = true;
2773  
2774  	if (current_is_kswapd()) {
2775  		/*
2776  		 * If reclaim is isolating dirty pages under writeback,
2777  		 * it implies that the long-lived page allocation rate
2778  		 * is exceeding the page laundering rate. Either the
2779  		 * global limits are not being effective at throttling
2780  		 * processes due to the page distribution throughout
2781  		 * zones or there is heavy usage of a slow backing
2782  		 * device. The only option is to throttle from reclaim
2783  		 * context which is not ideal as there is no guarantee
2784  		 * the dirtying process is throttled in the same way
2785  		 * balance_dirty_pages() manages.
2786  		 *
2787  		 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2788  		 * count the number of pages under pages flagged for
2789  		 * immediate reclaim and stall if any are encountered
2790  		 * in the nr_immediate check below.
2791  		 */
2792  		if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2793  			set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2794  
2795  		/* Allow kswapd to start writing pages during reclaim.*/
2796  		if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2797  			set_bit(PGDAT_DIRTY, &pgdat->flags);
2798  
2799  		/*
2800  		 * If kswapd scans pages marked for immediate
2801  		 * reclaim and under writeback (nr_immediate), it
2802  		 * implies that pages are cycling through the LRU
2803  		 * faster than they are written so also forcibly stall.
2804  		 */
2805  		if (sc->nr.immediate)
2806  			congestion_wait(BLK_RW_ASYNC, HZ/10);
2807  	}
2808  
2809  	/*
2810  	 * Tag a node/memcg as congested if all the dirty pages
2811  	 * scanned were backed by a congested BDI and
2812  	 * wait_iff_congested will stall.
2813  	 *
2814  	 * Legacy memcg will stall in page writeback so avoid forcibly
2815  	 * stalling in wait_iff_congested().
2816  	 */
2817  	if ((current_is_kswapd() ||
2818  	     (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
2819  	    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2820  		set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
2821  
2822  	/*
2823  	 * Stall direct reclaim for IO completions if underlying BDIs
2824  	 * and node is congested. Allow kswapd to continue until it
2825  	 * starts encountering unqueued dirty pages or cycling through
2826  	 * the LRU too quickly.
2827  	 */
2828  	if (!current_is_kswapd() && current_may_throttle() &&
2829  	    !sc->hibernation_mode &&
2830  	    test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
2831  		wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2832  
2833  	if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2834  				    sc))
2835  		goto again;
2836  
2837  	/*
2838  	 * Kswapd gives up on balancing particular nodes after too
2839  	 * many failures to reclaim anything from them and goes to
2840  	 * sleep. On reclaim progress, reset the failure counter. A
2841  	 * successful direct reclaim run will revive a dormant kswapd.
2842  	 */
2843  	if (reclaimable)
2844  		pgdat->kswapd_failures = 0;
2845  }
2846  #endif
2847  
2848  /*
2849   * Returns true if compaction should go ahead for a costly-order request, or
2850   * the allocation would already succeed without compaction. Return false if we
2851   * should reclaim first.
2852   */
compaction_ready(struct zone * zone,struct scan_control * sc)2853  static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2854  {
2855  	unsigned long watermark;
2856  	enum compact_result suitable;
2857  
2858  	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2859  	if (suitable == COMPACT_SUCCESS)
2860  		/* Allocation should succeed already. Don't reclaim. */
2861  		return true;
2862  	if (suitable == COMPACT_SKIPPED)
2863  		/* Compaction cannot yet proceed. Do reclaim. */
2864  		return false;
2865  
2866  	/*
2867  	 * Compaction is already possible, but it takes time to run and there
2868  	 * are potentially other callers using the pages just freed. So proceed
2869  	 * with reclaim to make a buffer of free pages available to give
2870  	 * compaction a reasonable chance of completing and allocating the page.
2871  	 * Note that we won't actually reclaim the whole buffer in one attempt
2872  	 * as the target watermark in should_continue_reclaim() is lower. But if
2873  	 * we are already above the high+gap watermark, don't reclaim at all.
2874  	 */
2875  	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2876  
2877  	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2878  }
2879  
2880  /*
2881   * This is the direct reclaim path, for page-allocating processes.  We only
2882   * try to reclaim pages from zones which will satisfy the caller's allocation
2883   * request.
2884   *
2885   * If a zone is deemed to be full of pinned pages then just give it a light
2886   * scan then give up on it.
2887   */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)2888  static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2889  {
2890  	struct zoneref *z;
2891  	struct zone *zone;
2892  	unsigned long nr_soft_reclaimed;
2893  	unsigned long nr_soft_scanned;
2894  	gfp_t orig_mask;
2895  	pg_data_t *last_pgdat = NULL;
2896  
2897  	/*
2898  	 * If the number of buffer_heads in the machine exceeds the maximum
2899  	 * allowed level, force direct reclaim to scan the highmem zone as
2900  	 * highmem pages could be pinning lowmem pages storing buffer_heads
2901  	 */
2902  	orig_mask = sc->gfp_mask;
2903  	if (buffer_heads_over_limit) {
2904  		sc->gfp_mask |= __GFP_HIGHMEM;
2905  		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2906  	}
2907  
2908  	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2909  					sc->reclaim_idx, sc->nodemask) {
2910  		/*
2911  		 * Take care memory controller reclaiming has small influence
2912  		 * to global LRU.
2913  		 */
2914  		if (!cgroup_reclaim(sc)) {
2915  			if (!cpuset_zone_allowed(zone,
2916  						 GFP_KERNEL | __GFP_HARDWALL))
2917  				continue;
2918  
2919  			/*
2920  			 * If we already have plenty of memory free for
2921  			 * compaction in this zone, don't free any more.
2922  			 * Even though compaction is invoked for any
2923  			 * non-zero order, only frequent costly order
2924  			 * reclamation is disruptive enough to become a
2925  			 * noticeable problem, like transparent huge
2926  			 * page allocations.
2927  			 */
2928  			if (IS_ENABLED(CONFIG_COMPACTION) &&
2929  			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2930  			    compaction_ready(zone, sc)) {
2931  				sc->compaction_ready = true;
2932  				continue;
2933  			}
2934  
2935  			/*
2936  			 * Shrink each node in the zonelist once. If the
2937  			 * zonelist is ordered by zone (not the default) then a
2938  			 * node may be shrunk multiple times but in that case
2939  			 * the user prefers lower zones being preserved.
2940  			 */
2941  			if (zone->zone_pgdat == last_pgdat)
2942  				continue;
2943  
2944  			/*
2945  			 * This steals pages from memory cgroups over softlimit
2946  			 * and returns the number of reclaimed pages and
2947  			 * scanned pages. This works for global memory pressure
2948  			 * and balancing, not for a memcg's limit.
2949  			 */
2950  			nr_soft_scanned = 0;
2951  			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2952  						sc->order, sc->gfp_mask,
2953  						&nr_soft_scanned);
2954  			sc->nr_reclaimed += nr_soft_reclaimed;
2955  			sc->nr_scanned += nr_soft_scanned;
2956  			/* need some check for avoid more shrink_zone() */
2957  		}
2958  
2959  		/* See comment about same check for global reclaim above */
2960  		if (zone->zone_pgdat == last_pgdat)
2961  			continue;
2962  		last_pgdat = zone->zone_pgdat;
2963  #ifdef CONFIG_HYPERHOLD_FILE_LRU
2964  		shrink_node_hyperhold(zone->zone_pgdat, sc);
2965  #else
2966  		shrink_node(zone->zone_pgdat, sc);
2967  #endif
2968  	}
2969  
2970  	/*
2971  	 * Restore to original mask to avoid the impact on the caller if we
2972  	 * promoted it to __GFP_HIGHMEM.
2973  	 */
2974  	sc->gfp_mask = orig_mask;
2975  }
2976  
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)2977  static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
2978  {
2979  	struct lruvec *target_lruvec;
2980  	unsigned long refaults;
2981  
2982  #ifdef CONFIG_HYPERHOLD_FILE_LRU
2983  	struct lruvec *lruvec;
2984  
2985  	lruvec = node_lruvec(pgdat);
2986  	lruvec->refaults[0] = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE_ANON); /* modified */
2987  	lruvec->refaults[1] = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE_FILE); /* modified */
2988  #endif
2989  
2990  	target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
2991  	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
2992  	target_lruvec->refaults[0] = refaults;
2993  	refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
2994  	target_lruvec->refaults[1] = refaults;
2995  }
2996  
2997  /*
2998   * This is the main entry point to direct page reclaim.
2999   *
3000   * If a full scan of the inactive list fails to free enough memory then we
3001   * are "out of memory" and something needs to be killed.
3002   *
3003   * If the caller is !__GFP_FS then the probability of a failure is reasonably
3004   * high - the zone may be full of dirty or under-writeback pages, which this
3005   * caller can't do much about.  We kick the writeback threads and take explicit
3006   * naps in the hope that some of these pages can be written.  But if the
3007   * allocating task holds filesystem locks which prevent writeout this might not
3008   * work, and the allocation attempt will fail.
3009   *
3010   * returns:	0, if no pages reclaimed
3011   * 		else, the number of pages reclaimed
3012   */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)3013  static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3014  					  struct scan_control *sc)
3015  {
3016  	int initial_priority = sc->priority;
3017  	pg_data_t *last_pgdat;
3018  	struct zoneref *z;
3019  	struct zone *zone;
3020  retry:
3021  	delayacct_freepages_start();
3022  
3023  	if (!cgroup_reclaim(sc))
3024  		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3025  
3026  	do {
3027  		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3028  				sc->priority);
3029  		sc->nr_scanned = 0;
3030  		shrink_zones(zonelist, sc);
3031  
3032  		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3033  			break;
3034  
3035  		if (sc->compaction_ready)
3036  			break;
3037  
3038  		/*
3039  		 * If we're getting trouble reclaiming, start doing
3040  		 * writepage even in laptop mode.
3041  		 */
3042  		if (sc->priority < DEF_PRIORITY - 2)
3043  			sc->may_writepage = 1;
3044  	} while (--sc->priority >= 0);
3045  
3046  	last_pgdat = NULL;
3047  	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3048  					sc->nodemask) {
3049  		if (zone->zone_pgdat == last_pgdat)
3050  			continue;
3051  		last_pgdat = zone->zone_pgdat;
3052  
3053  		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3054  
3055  		if (cgroup_reclaim(sc)) {
3056  			struct lruvec *lruvec;
3057  
3058  			lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3059  						   zone->zone_pgdat);
3060  			clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3061  		}
3062  	}
3063  
3064  	delayacct_freepages_end();
3065  
3066  	if (sc->nr_reclaimed)
3067  		return sc->nr_reclaimed;
3068  
3069  	/* Aborted reclaim to try compaction? don't OOM, then */
3070  	if (sc->compaction_ready)
3071  		return 1;
3072  
3073  	/*
3074  	 * We make inactive:active ratio decisions based on the node's
3075  	 * composition of memory, but a restrictive reclaim_idx or a
3076  	 * memory.low cgroup setting can exempt large amounts of
3077  	 * memory from reclaim. Neither of which are very common, so
3078  	 * instead of doing costly eligibility calculations of the
3079  	 * entire cgroup subtree up front, we assume the estimates are
3080  	 * good, and retry with forcible deactivation if that fails.
3081  	 */
3082  	if (sc->skipped_deactivate) {
3083  		sc->priority = initial_priority;
3084  		sc->force_deactivate = 1;
3085  		sc->skipped_deactivate = 0;
3086  		goto retry;
3087  	}
3088  
3089  	/* Untapped cgroup reserves?  Don't OOM, retry. */
3090  	if (sc->memcg_low_skipped) {
3091  		sc->priority = initial_priority;
3092  		sc->force_deactivate = 0;
3093  		sc->memcg_low_reclaim = 1;
3094  		sc->memcg_low_skipped = 0;
3095  		goto retry;
3096  	}
3097  
3098  	return 0;
3099  }
3100  
allow_direct_reclaim(pg_data_t * pgdat)3101  static bool allow_direct_reclaim(pg_data_t *pgdat)
3102  {
3103  	struct zone *zone;
3104  	unsigned long pfmemalloc_reserve = 0;
3105  	unsigned long free_pages = 0;
3106  	int i;
3107  	bool wmark_ok;
3108  
3109  	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3110  		return true;
3111  
3112  	for (i = 0; i <= ZONE_NORMAL; i++) {
3113  		zone = &pgdat->node_zones[i];
3114  		if (!managed_zone(zone))
3115  			continue;
3116  
3117  		if (!zone_reclaimable_pages(zone))
3118  			continue;
3119  
3120  		pfmemalloc_reserve += min_wmark_pages(zone);
3121  		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3122  	}
3123  
3124  	/* If there are no reserves (unexpected config) then do not throttle */
3125  	if (!pfmemalloc_reserve)
3126  		return true;
3127  
3128  	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3129  
3130  	/* kswapd must be awake if processes are being throttled */
3131  	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3132  		if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3133  			WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3134  
3135  		wake_up_interruptible(&pgdat->kswapd_wait);
3136  	}
3137  
3138  	return wmark_ok;
3139  }
3140  
3141  /*
3142   * Throttle direct reclaimers if backing storage is backed by the network
3143   * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3144   * depleted. kswapd will continue to make progress and wake the processes
3145   * when the low watermark is reached.
3146   *
3147   * Returns true if a fatal signal was delivered during throttling. If this
3148   * happens, the page allocator should not consider triggering the OOM killer.
3149   */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)3150  static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3151  					nodemask_t *nodemask)
3152  {
3153  	struct zoneref *z;
3154  	struct zone *zone;
3155  	pg_data_t *pgdat = NULL;
3156  
3157  	/*
3158  	 * Kernel threads should not be throttled as they may be indirectly
3159  	 * responsible for cleaning pages necessary for reclaim to make forward
3160  	 * progress. kjournald for example may enter direct reclaim while
3161  	 * committing a transaction where throttling it could forcing other
3162  	 * processes to block on log_wait_commit().
3163  	 */
3164  	if (current->flags & PF_KTHREAD)
3165  		goto out;
3166  
3167  	/*
3168  	 * If a fatal signal is pending, this process should not throttle.
3169  	 * It should return quickly so it can exit and free its memory
3170  	 */
3171  	if (fatal_signal_pending(current))
3172  		goto out;
3173  
3174  	/*
3175  	 * Check if the pfmemalloc reserves are ok by finding the first node
3176  	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3177  	 * GFP_KERNEL will be required for allocating network buffers when
3178  	 * swapping over the network so ZONE_HIGHMEM is unusable.
3179  	 *
3180  	 * Throttling is based on the first usable node and throttled processes
3181  	 * wait on a queue until kswapd makes progress and wakes them. There
3182  	 * is an affinity then between processes waking up and where reclaim
3183  	 * progress has been made assuming the process wakes on the same node.
3184  	 * More importantly, processes running on remote nodes will not compete
3185  	 * for remote pfmemalloc reserves and processes on different nodes
3186  	 * should make reasonable progress.
3187  	 */
3188  	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3189  					gfp_zone(gfp_mask), nodemask) {
3190  		if (zone_idx(zone) > ZONE_NORMAL)
3191  			continue;
3192  
3193  		/* Throttle based on the first usable node */
3194  		pgdat = zone->zone_pgdat;
3195  		if (allow_direct_reclaim(pgdat))
3196  			goto out;
3197  		break;
3198  	}
3199  
3200  	/* If no zone was usable by the allocation flags then do not throttle */
3201  	if (!pgdat)
3202  		goto out;
3203  
3204  	/* Account for the throttling */
3205  	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3206  
3207  	/*
3208  	 * If the caller cannot enter the filesystem, it's possible that it
3209  	 * is due to the caller holding an FS lock or performing a journal
3210  	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3211  	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3212  	 * blocked waiting on the same lock. Instead, throttle for up to a
3213  	 * second before continuing.
3214  	 */
3215  	if (!(gfp_mask & __GFP_FS)) {
3216  		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3217  			allow_direct_reclaim(pgdat), HZ);
3218  
3219  		goto check_pending;
3220  	}
3221  
3222  	/* Throttle until kswapd wakes the process */
3223  	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3224  		allow_direct_reclaim(pgdat));
3225  
3226  check_pending:
3227  	if (fatal_signal_pending(current))
3228  		return true;
3229  
3230  out:
3231  	return false;
3232  }
3233  
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)3234  unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3235  				gfp_t gfp_mask, nodemask_t *nodemask)
3236  {
3237  	unsigned long nr_reclaimed;
3238  	struct scan_control sc = {
3239  		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3240  		.gfp_mask = current_gfp_context(gfp_mask),
3241  		.reclaim_idx = gfp_zone(gfp_mask),
3242  		.order = order,
3243  		.nodemask = nodemask,
3244  		.priority = DEF_PRIORITY,
3245  		.may_writepage = !laptop_mode,
3246  		.may_unmap = 1,
3247  		.may_swap = 1,
3248  	};
3249  
3250  	/*
3251  	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3252  	 * Confirm they are large enough for max values.
3253  	 */
3254  	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3255  	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3256  	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3257  
3258  	/*
3259  	 * Do not enter reclaim if fatal signal was delivered while throttled.
3260  	 * 1 is returned so that the page allocator does not OOM kill at this
3261  	 * point.
3262  	 */
3263  	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3264  		return 1;
3265  
3266  	set_task_reclaim_state(current, &sc.reclaim_state);
3267  	trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3268  
3269  	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3270  
3271  	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3272  	set_task_reclaim_state(current, NULL);
3273  
3274  	return nr_reclaimed;
3275  }
3276  
3277  #ifdef CONFIG_MEMCG
3278  
3279  /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)3280  unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3281  						gfp_t gfp_mask, bool noswap,
3282  						pg_data_t *pgdat,
3283  						unsigned long *nr_scanned)
3284  {
3285  	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3286  	struct scan_control sc = {
3287  		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3288  		.target_mem_cgroup = memcg,
3289  		.may_writepage = !laptop_mode,
3290  		.may_unmap = 1,
3291  		.reclaim_idx = MAX_NR_ZONES - 1,
3292  		.may_swap = !noswap,
3293  	};
3294  #ifdef CONFIG_HYPERHOLD_FILE_LRU
3295  	unsigned long nr[NR_LRU_LISTS];
3296  #endif
3297  
3298  	WARN_ON_ONCE(!current->reclaim_state);
3299  
3300  	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3301  			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3302  
3303  	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3304  						      sc.gfp_mask);
3305  
3306  	/*
3307  	 * NOTE: Although we can get the priority field, using it
3308  	 * here is not a good idea, since it limits the pages we can scan.
3309  	 * if we don't reclaim here, the shrink_node from balance_pgdat
3310  	 * will pick up pages from other mem cgroup's as well. We hack
3311  	 * the priority and make it zero.
3312  	 */
3313  #ifdef CONFIG_HYPERHOLD_FILE_LRU
3314  	nr[LRU_ACTIVE_ANON] = lruvec_lru_size(lruvec,
3315  			LRU_ACTIVE_ANON, MAX_NR_ZONES);
3316  	nr[LRU_INACTIVE_ANON] = lruvec_lru_size(lruvec,
3317  			LRU_INACTIVE_ANON, MAX_NR_ZONES);
3318  	nr[LRU_ACTIVE_FILE] = 0;
3319  	nr[LRU_INACTIVE_FILE] = 0;
3320  	shrink_anon_memcg(pgdat, memcg, &sc, nr);
3321  #else
3322  	shrink_lruvec(lruvec, &sc);
3323  #endif
3324  
3325  	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3326  
3327  	*nr_scanned = sc.nr_scanned;
3328  
3329  	return sc.nr_reclaimed;
3330  }
3331  
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)3332  unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3333  					   unsigned long nr_pages,
3334  					   gfp_t gfp_mask,
3335  					   bool may_swap)
3336  {
3337  	unsigned long nr_reclaimed;
3338  	unsigned int noreclaim_flag;
3339  	struct scan_control sc = {
3340  		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3341  		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3342  				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3343  		.reclaim_idx = MAX_NR_ZONES - 1,
3344  		.target_mem_cgroup = memcg,
3345  		.priority = DEF_PRIORITY,
3346  		.may_writepage = !laptop_mode,
3347  		.may_unmap = 1,
3348  		.may_swap = may_swap,
3349  	};
3350  	/*
3351  	 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3352  	 * equal pressure on all the nodes. This is based on the assumption that
3353  	 * the reclaim does not bail out early.
3354  	 */
3355  	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3356  
3357  	set_task_reclaim_state(current, &sc.reclaim_state);
3358  	trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3359  	noreclaim_flag = memalloc_noreclaim_save();
3360  
3361  	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3362  
3363  	memalloc_noreclaim_restore(noreclaim_flag);
3364  	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3365  	set_task_reclaim_state(current, NULL);
3366  
3367  	return nr_reclaimed;
3368  }
3369  #endif
3370  
age_active_anon(struct pglist_data * pgdat,struct scan_control * sc)3371  static void age_active_anon(struct pglist_data *pgdat,
3372  				struct scan_control *sc)
3373  {
3374  	struct mem_cgroup *memcg;
3375  	struct lruvec *lruvec;
3376  
3377  	if (!total_swap_pages)
3378  		return;
3379  
3380  	lruvec = mem_cgroup_lruvec(NULL, pgdat);
3381  	if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3382  		return;
3383  
3384  	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3385  	do {
3386  		lruvec = mem_cgroup_lruvec(memcg, pgdat);
3387  		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3388  				   sc, LRU_ACTIVE_ANON);
3389  		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3390  	} while (memcg);
3391  }
3392  
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)3393  static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3394  {
3395  	int i;
3396  	struct zone *zone;
3397  
3398  	/*
3399  	 * Check for watermark boosts top-down as the higher zones
3400  	 * are more likely to be boosted. Both watermarks and boosts
3401  	 * should not be checked at the same time as reclaim would
3402  	 * start prematurely when there is no boosting and a lower
3403  	 * zone is balanced.
3404  	 */
3405  	for (i = highest_zoneidx; i >= 0; i--) {
3406  		zone = pgdat->node_zones + i;
3407  		if (!managed_zone(zone))
3408  			continue;
3409  
3410  		if (zone->watermark_boost)
3411  			return true;
3412  	}
3413  
3414  	return false;
3415  }
3416  
3417  /*
3418   * Returns true if there is an eligible zone balanced for the request order
3419   * and highest_zoneidx
3420   */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)3421  static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3422  {
3423  	int i;
3424  	unsigned long mark = -1;
3425  	struct zone *zone;
3426  
3427  	/*
3428  	 * Check watermarks bottom-up as lower zones are more likely to
3429  	 * meet watermarks.
3430  	 */
3431  	for (i = 0; i <= highest_zoneidx; i++) {
3432  		zone = pgdat->node_zones + i;
3433  
3434  		if (!managed_zone(zone))
3435  			continue;
3436  
3437  		mark = high_wmark_pages(zone);
3438  		if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3439  			return true;
3440  	}
3441  
3442  	/*
3443  	 * If a node has no populated zone within highest_zoneidx, it does not
3444  	 * need balancing by definition. This can happen if a zone-restricted
3445  	 * allocation tries to wake a remote kswapd.
3446  	 */
3447  	if (mark == -1)
3448  		return true;
3449  
3450  	return false;
3451  }
3452  
3453  /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)3454  static void clear_pgdat_congested(pg_data_t *pgdat)
3455  {
3456  	struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3457  
3458  	clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3459  	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3460  	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3461  }
3462  
3463  /*
3464   * Prepare kswapd for sleeping. This verifies that there are no processes
3465   * waiting in throttle_direct_reclaim() and that watermarks have been met.
3466   *
3467   * Returns true if kswapd is ready to sleep
3468   */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)3469  static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3470  				int highest_zoneidx)
3471  {
3472  	/*
3473  	 * The throttled processes are normally woken up in balance_pgdat() as
3474  	 * soon as allow_direct_reclaim() is true. But there is a potential
3475  	 * race between when kswapd checks the watermarks and a process gets
3476  	 * throttled. There is also a potential race if processes get
3477  	 * throttled, kswapd wakes, a large process exits thereby balancing the
3478  	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3479  	 * the wake up checks. If kswapd is going to sleep, no process should
3480  	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3481  	 * the wake up is premature, processes will wake kswapd and get
3482  	 * throttled again. The difference from wake ups in balance_pgdat() is
3483  	 * that here we are under prepare_to_wait().
3484  	 */
3485  	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3486  		wake_up_all(&pgdat->pfmemalloc_wait);
3487  
3488  	/* Hopeless node, leave it to direct reclaim */
3489  	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3490  		return true;
3491  
3492  	if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3493  		clear_pgdat_congested(pgdat);
3494  		return true;
3495  	}
3496  
3497  	return false;
3498  }
3499  
3500  /*
3501   * kswapd shrinks a node of pages that are at or below the highest usable
3502   * zone that is currently unbalanced.
3503   *
3504   * Returns true if kswapd scanned at least the requested number of pages to
3505   * reclaim or if the lack of progress was due to pages under writeback.
3506   * This is used to determine if the scanning priority needs to be raised.
3507   */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)3508  static bool kswapd_shrink_node(pg_data_t *pgdat,
3509  			       struct scan_control *sc)
3510  {
3511  	struct zone *zone;
3512  	int z;
3513  
3514  	/* Reclaim a number of pages proportional to the number of zones */
3515  	sc->nr_to_reclaim = 0;
3516  	for (z = 0; z <= sc->reclaim_idx; z++) {
3517  		zone = pgdat->node_zones + z;
3518  		if (!managed_zone(zone))
3519  			continue;
3520  
3521  		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3522  	}
3523  
3524  	/*
3525  	 * Historically care was taken to put equal pressure on all zones but
3526  	 * now pressure is applied based on node LRU order.
3527  	 */
3528  #ifdef CONFIG_HYPERHOLD_FILE_LRU
3529  	shrink_node_hyperhold(pgdat, sc);
3530  #else
3531  	shrink_node(pgdat, sc);
3532  #endif
3533  
3534  	/*
3535  	 * Fragmentation may mean that the system cannot be rebalanced for
3536  	 * high-order allocations. If twice the allocation size has been
3537  	 * reclaimed then recheck watermarks only at order-0 to prevent
3538  	 * excessive reclaim. Assume that a process requested a high-order
3539  	 * can direct reclaim/compact.
3540  	 */
3541  	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3542  		sc->order = 0;
3543  
3544  	return sc->nr_scanned >= sc->nr_to_reclaim;
3545  }
3546  
3547  /*
3548   * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3549   * that are eligible for use by the caller until at least one zone is
3550   * balanced.
3551   *
3552   * Returns the order kswapd finished reclaiming at.
3553   *
3554   * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3555   * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3556   * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3557   * or lower is eligible for reclaim until at least one usable zone is
3558   * balanced.
3559   */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)3560  static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
3561  {
3562  	int i;
3563  	unsigned long nr_soft_reclaimed;
3564  	unsigned long nr_soft_scanned;
3565  	unsigned long pflags;
3566  	unsigned long nr_boost_reclaim;
3567  	unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3568  	bool boosted;
3569  	struct zone *zone;
3570  	struct scan_control sc = {
3571  		.gfp_mask = GFP_KERNEL,
3572  		.order = order,
3573  		.may_unmap = 1,
3574  	};
3575  
3576  	set_task_reclaim_state(current, &sc.reclaim_state);
3577  	psi_memstall_enter(&pflags);
3578  	__fs_reclaim_acquire();
3579  
3580  	count_vm_event(PAGEOUTRUN);
3581  
3582  	/*
3583  	 * Account for the reclaim boost. Note that the zone boost is left in
3584  	 * place so that parallel allocations that are near the watermark will
3585  	 * stall or direct reclaim until kswapd is finished.
3586  	 */
3587  	nr_boost_reclaim = 0;
3588  	for (i = 0; i <= highest_zoneidx; i++) {
3589  		zone = pgdat->node_zones + i;
3590  		if (!managed_zone(zone))
3591  			continue;
3592  
3593  		nr_boost_reclaim += zone->watermark_boost;
3594  		zone_boosts[i] = zone->watermark_boost;
3595  	}
3596  	boosted = nr_boost_reclaim;
3597  
3598  restart:
3599  	sc.priority = DEF_PRIORITY;
3600  	do {
3601  		unsigned long nr_reclaimed = sc.nr_reclaimed;
3602  		bool raise_priority = true;
3603  		bool balanced;
3604  		bool ret;
3605  
3606  		sc.reclaim_idx = highest_zoneidx;
3607  
3608  		/*
3609  		 * If the number of buffer_heads exceeds the maximum allowed
3610  		 * then consider reclaiming from all zones. This has a dual
3611  		 * purpose -- on 64-bit systems it is expected that
3612  		 * buffer_heads are stripped during active rotation. On 32-bit
3613  		 * systems, highmem pages can pin lowmem memory and shrinking
3614  		 * buffers can relieve lowmem pressure. Reclaim may still not
3615  		 * go ahead if all eligible zones for the original allocation
3616  		 * request are balanced to avoid excessive reclaim from kswapd.
3617  		 */
3618  		if (buffer_heads_over_limit) {
3619  			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3620  				zone = pgdat->node_zones + i;
3621  				if (!managed_zone(zone))
3622  					continue;
3623  
3624  				sc.reclaim_idx = i;
3625  				break;
3626  			}
3627  		}
3628  
3629  		/*
3630  		 * If the pgdat is imbalanced then ignore boosting and preserve
3631  		 * the watermarks for a later time and restart. Note that the
3632  		 * zone watermarks will be still reset at the end of balancing
3633  		 * on the grounds that the normal reclaim should be enough to
3634  		 * re-evaluate if boosting is required when kswapd next wakes.
3635  		 */
3636  		balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
3637  		if (!balanced && nr_boost_reclaim) {
3638  			nr_boost_reclaim = 0;
3639  			goto restart;
3640  		}
3641  
3642  		/*
3643  		 * If boosting is not active then only reclaim if there are no
3644  		 * eligible zones. Note that sc.reclaim_idx is not used as
3645  		 * buffer_heads_over_limit may have adjusted it.
3646  		 */
3647  		if (!nr_boost_reclaim && balanced)
3648  			goto out;
3649  
3650  		/* Limit the priority of boosting to avoid reclaim writeback */
3651  		if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3652  			raise_priority = false;
3653  
3654  		/*
3655  		 * Do not writeback or swap pages for boosted reclaim. The
3656  		 * intent is to relieve pressure not issue sub-optimal IO
3657  		 * from reclaim context. If no pages are reclaimed, the
3658  		 * reclaim will be aborted.
3659  		 */
3660  		sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3661  		sc.may_swap = !nr_boost_reclaim;
3662  
3663  		/*
3664  		 * Do some background aging of the anon list, to give
3665  		 * pages a chance to be referenced before reclaiming. All
3666  		 * pages are rotated regardless of classzone as this is
3667  		 * about consistent aging.
3668  		 */
3669  		age_active_anon(pgdat, &sc);
3670  
3671  		/*
3672  		 * If we're getting trouble reclaiming, start doing writepage
3673  		 * even in laptop mode.
3674  		 */
3675  		if (sc.priority < DEF_PRIORITY - 2)
3676  			sc.may_writepage = 1;
3677  
3678  		/* Call soft limit reclaim before calling shrink_node. */
3679  		sc.nr_scanned = 0;
3680  		nr_soft_scanned = 0;
3681  		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3682  						sc.gfp_mask, &nr_soft_scanned);
3683  		sc.nr_reclaimed += nr_soft_reclaimed;
3684  
3685  		/*
3686  		 * There should be no need to raise the scanning priority if
3687  		 * enough pages are already being scanned that that high
3688  		 * watermark would be met at 100% efficiency.
3689  		 */
3690  		if (kswapd_shrink_node(pgdat, &sc))
3691  			raise_priority = false;
3692  
3693  		/*
3694  		 * If the low watermark is met there is no need for processes
3695  		 * to be throttled on pfmemalloc_wait as they should not be
3696  		 * able to safely make forward progress. Wake them
3697  		 */
3698  		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3699  				allow_direct_reclaim(pgdat))
3700  			wake_up_all(&pgdat->pfmemalloc_wait);
3701  
3702  		/* Check if kswapd should be suspending */
3703  		__fs_reclaim_release();
3704  		ret = try_to_freeze();
3705  		__fs_reclaim_acquire();
3706  		if (ret || kthread_should_stop())
3707  			break;
3708  
3709  		/*
3710  		 * Raise priority if scanning rate is too low or there was no
3711  		 * progress in reclaiming pages
3712  		 */
3713  		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3714  		nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3715  
3716  		/*
3717  		 * If reclaim made no progress for a boost, stop reclaim as
3718  		 * IO cannot be queued and it could be an infinite loop in
3719  		 * extreme circumstances.
3720  		 */
3721  		if (nr_boost_reclaim && !nr_reclaimed)
3722  			break;
3723  
3724  		if (raise_priority || !nr_reclaimed)
3725  			sc.priority--;
3726  	} while (sc.priority >= 1);
3727  
3728  	if (!sc.nr_reclaimed)
3729  		pgdat->kswapd_failures++;
3730  
3731  out:
3732  	/* If reclaim was boosted, account for the reclaim done in this pass */
3733  	if (boosted) {
3734  		unsigned long flags;
3735  
3736  		for (i = 0; i <= highest_zoneidx; i++) {
3737  			if (!zone_boosts[i])
3738  				continue;
3739  
3740  			/* Increments are under the zone lock */
3741  			zone = pgdat->node_zones + i;
3742  			spin_lock_irqsave(&zone->lock, flags);
3743  			zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3744  			spin_unlock_irqrestore(&zone->lock, flags);
3745  		}
3746  
3747  		/*
3748  		 * As there is now likely space, wakeup kcompact to defragment
3749  		 * pageblocks.
3750  		 */
3751  		wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
3752  	}
3753  
3754  	snapshot_refaults(NULL, pgdat);
3755  	__fs_reclaim_release();
3756  	psi_memstall_leave(&pflags);
3757  	set_task_reclaim_state(current, NULL);
3758  
3759  	/*
3760  	 * Return the order kswapd stopped reclaiming at as
3761  	 * prepare_kswapd_sleep() takes it into account. If another caller
3762  	 * entered the allocator slow path while kswapd was awake, order will
3763  	 * remain at the higher level.
3764  	 */
3765  	return sc.order;
3766  }
3767  
3768  /*
3769   * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
3770   * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
3771   * not a valid index then either kswapd runs for first time or kswapd couldn't
3772   * sleep after previous reclaim attempt (node is still unbalanced). In that
3773   * case return the zone index of the previous kswapd reclaim cycle.
3774   */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)3775  static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
3776  					   enum zone_type prev_highest_zoneidx)
3777  {
3778  	enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3779  
3780  	return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
3781  }
3782  
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)3783  static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3784  				unsigned int highest_zoneidx)
3785  {
3786  	long remaining = 0;
3787  	DEFINE_WAIT(wait);
3788  
3789  	if (freezing(current) || kthread_should_stop())
3790  		return;
3791  
3792  	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3793  
3794  	/*
3795  	 * Try to sleep for a short interval. Note that kcompactd will only be
3796  	 * woken if it is possible to sleep for a short interval. This is
3797  	 * deliberate on the assumption that if reclaim cannot keep an
3798  	 * eligible zone balanced that it's also unlikely that compaction will
3799  	 * succeed.
3800  	 */
3801  	if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3802  		/*
3803  		 * Compaction records what page blocks it recently failed to
3804  		 * isolate pages from and skips them in the future scanning.
3805  		 * When kswapd is going to sleep, it is reasonable to assume
3806  		 * that pages and compaction may succeed so reset the cache.
3807  		 */
3808  		reset_isolation_suitable(pgdat);
3809  
3810  		/*
3811  		 * We have freed the memory, now we should compact it to make
3812  		 * allocation of the requested order possible.
3813  		 */
3814  		wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
3815  
3816  		remaining = schedule_timeout(HZ/10);
3817  
3818  		/*
3819  		 * If woken prematurely then reset kswapd_highest_zoneidx and
3820  		 * order. The values will either be from a wakeup request or
3821  		 * the previous request that slept prematurely.
3822  		 */
3823  		if (remaining) {
3824  			WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
3825  					kswapd_highest_zoneidx(pgdat,
3826  							highest_zoneidx));
3827  
3828  			if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
3829  				WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
3830  		}
3831  
3832  		finish_wait(&pgdat->kswapd_wait, &wait);
3833  		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3834  	}
3835  
3836  	/*
3837  	 * After a short sleep, check if it was a premature sleep. If not, then
3838  	 * go fully to sleep until explicitly woken up.
3839  	 */
3840  	if (!remaining &&
3841  	    prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
3842  		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3843  
3844  		/*
3845  		 * vmstat counters are not perfectly accurate and the estimated
3846  		 * value for counters such as NR_FREE_PAGES can deviate from the
3847  		 * true value by nr_online_cpus * threshold. To avoid the zone
3848  		 * watermarks being breached while under pressure, we reduce the
3849  		 * per-cpu vmstat threshold while kswapd is awake and restore
3850  		 * them before going back to sleep.
3851  		 */
3852  		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3853  
3854  		if (!kthread_should_stop())
3855  			schedule();
3856  
3857  		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3858  	} else {
3859  		if (remaining)
3860  			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3861  		else
3862  			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3863  	}
3864  	finish_wait(&pgdat->kswapd_wait, &wait);
3865  }
3866  
3867  /*
3868   * The background pageout daemon, started as a kernel thread
3869   * from the init process.
3870   *
3871   * This basically trickles out pages so that we have _some_
3872   * free memory available even if there is no other activity
3873   * that frees anything up. This is needed for things like routing
3874   * etc, where we otherwise might have all activity going on in
3875   * asynchronous contexts that cannot page things out.
3876   *
3877   * If there are applications that are active memory-allocators
3878   * (most normal use), this basically shouldn't matter.
3879   */
kswapd(void * p)3880  static int kswapd(void *p)
3881  {
3882  	unsigned int alloc_order, reclaim_order;
3883  	unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
3884  	pg_data_t *pgdat = (pg_data_t*)p;
3885  	struct task_struct *tsk = current;
3886  	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3887  #ifdef CONFIG_RECLAIM_ACCT
3888  	struct reclaim_acct ra = {0};
3889  #endif
3890  
3891  	if (!cpumask_empty(cpumask))
3892  		set_cpus_allowed_ptr(tsk, cpumask);
3893  
3894  	/*
3895  	 * Tell the memory management that we're a "memory allocator",
3896  	 * and that if we need more memory we should get access to it
3897  	 * regardless (see "__alloc_pages()"). "kswapd" should
3898  	 * never get caught in the normal page freeing logic.
3899  	 *
3900  	 * (Kswapd normally doesn't need memory anyway, but sometimes
3901  	 * you need a small amount of memory in order to be able to
3902  	 * page out something else, and this flag essentially protects
3903  	 * us from recursively trying to free more memory as we're
3904  	 * trying to free the first piece of memory in the first place).
3905  	 */
3906  	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3907  	set_freezable();
3908  
3909  	WRITE_ONCE(pgdat->kswapd_order, 0);
3910  	WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3911  	for ( ; ; ) {
3912  		bool ret;
3913  
3914  		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3915  		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3916  							highest_zoneidx);
3917  
3918  kswapd_try_sleep:
3919  		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3920  					highest_zoneidx);
3921  
3922  		/* Read the new order and highest_zoneidx */
3923  		alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
3924  		highest_zoneidx = kswapd_highest_zoneidx(pgdat,
3925  							highest_zoneidx);
3926  		WRITE_ONCE(pgdat->kswapd_order, 0);
3927  		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
3928  
3929  		ret = try_to_freeze();
3930  		if (kthread_should_stop())
3931  			break;
3932  
3933  		/*
3934  		 * We can speed up thawing tasks if we don't call balance_pgdat
3935  		 * after returning from the refrigerator
3936  		 */
3937  		if (ret)
3938  			continue;
3939  
3940  		/*
3941  		 * Reclaim begins at the requested order but if a high-order
3942  		 * reclaim fails then kswapd falls back to reclaiming for
3943  		 * order-0. If that happens, kswapd will consider sleeping
3944  		 * for the order it finished reclaiming at (reclaim_order)
3945  		 * but kcompactd is woken to compact for the original
3946  		 * request (alloc_order).
3947  		 */
3948  		trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
3949  						alloc_order);
3950  #ifdef CONFIG_MEMORY_MONITOR
3951  		kswapd_monitor_wake_up_queue();
3952  #endif
3953  #ifdef CONFIG_RECLAIM_ACCT
3954  		reclaimacct_start(KSWAPD_RECLAIM, &ra);
3955  #endif
3956  		reclaim_order = balance_pgdat(pgdat, alloc_order,
3957  						highest_zoneidx);
3958  #ifdef CONFIG_RECLAIM_ACCT
3959  		reclaimacct_end(KSWAPD_RECLAIM);
3960  #endif
3961  		if (reclaim_order < alloc_order)
3962  			goto kswapd_try_sleep;
3963  	}
3964  
3965  	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3966  
3967  	return 0;
3968  }
3969  
3970  /*
3971   * A zone is low on free memory or too fragmented for high-order memory.  If
3972   * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3973   * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3974   * has failed or is not needed, still wake up kcompactd if only compaction is
3975   * needed.
3976   */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)3977  void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3978  		   enum zone_type highest_zoneidx)
3979  {
3980  	pg_data_t *pgdat;
3981  	enum zone_type curr_idx;
3982  
3983  	if (!managed_zone(zone))
3984  		return;
3985  
3986  	if (!cpuset_zone_allowed(zone, gfp_flags))
3987  		return;
3988  
3989  	pgdat = zone->zone_pgdat;
3990  	curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
3991  
3992  	if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
3993  		WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
3994  
3995  	if (READ_ONCE(pgdat->kswapd_order) < order)
3996  		WRITE_ONCE(pgdat->kswapd_order, order);
3997  
3998  	if (!waitqueue_active(&pgdat->kswapd_wait))
3999  		return;
4000  
4001  	/* Hopeless node, leave it to direct reclaim if possible */
4002  	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4003  	    (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4004  	     !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4005  		/*
4006  		 * There may be plenty of free memory available, but it's too
4007  		 * fragmented for high-order allocations.  Wake up kcompactd
4008  		 * and rely on compaction_suitable() to determine if it's
4009  		 * needed.  If it fails, it will defer subsequent attempts to
4010  		 * ratelimit its work.
4011  		 */
4012  		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4013  			wakeup_kcompactd(pgdat, order, highest_zoneidx);
4014  		return;
4015  	}
4016  
4017  	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4018  				      gfp_flags);
4019  	wake_up_interruptible(&pgdat->kswapd_wait);
4020  }
4021  
4022  #ifdef CONFIG_HIBERNATION
4023  /*
4024   * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4025   * freed pages.
4026   *
4027   * Rather than trying to age LRUs the aim is to preserve the overall
4028   * LRU order by reclaiming preferentially
4029   * inactive > active > active referenced > active mapped
4030   */
shrink_all_memory(unsigned long nr_to_reclaim)4031  unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4032  {
4033  	struct scan_control sc = {
4034  		.nr_to_reclaim = nr_to_reclaim,
4035  		.gfp_mask = GFP_HIGHUSER_MOVABLE,
4036  		.reclaim_idx = MAX_NR_ZONES - 1,
4037  		.priority = DEF_PRIORITY,
4038  		.may_writepage = 1,
4039  		.may_unmap = 1,
4040  		.may_swap = 1,
4041  		.hibernation_mode = 1,
4042  	};
4043  	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4044  	unsigned long nr_reclaimed;
4045  	unsigned int noreclaim_flag;
4046  
4047  	fs_reclaim_acquire(sc.gfp_mask);
4048  	noreclaim_flag = memalloc_noreclaim_save();
4049  	set_task_reclaim_state(current, &sc.reclaim_state);
4050  
4051  	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4052  
4053  	set_task_reclaim_state(current, NULL);
4054  	memalloc_noreclaim_restore(noreclaim_flag);
4055  	fs_reclaim_release(sc.gfp_mask);
4056  
4057  	return nr_reclaimed;
4058  }
4059  #endif /* CONFIG_HIBERNATION */
4060  
4061  /*
4062   * This kswapd start function will be called by init and node-hot-add.
4063   * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4064   */
kswapd_run(int nid)4065  int kswapd_run(int nid)
4066  {
4067  	pg_data_t *pgdat = NODE_DATA(nid);
4068  	int ret = 0;
4069  
4070  	if (pgdat->kswapd)
4071  		return 0;
4072  
4073  	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4074  	if (IS_ERR(pgdat->kswapd)) {
4075  		/* failure at boot is fatal */
4076  		BUG_ON(system_state < SYSTEM_RUNNING);
4077  		pr_err("Failed to start kswapd on node %d\n", nid);
4078  		ret = PTR_ERR(pgdat->kswapd);
4079  		pgdat->kswapd = NULL;
4080  	}
4081  	return ret;
4082  }
4083  
4084  /*
4085   * Called by memory hotplug when all memory in a node is offlined.  Caller must
4086   * hold mem_hotplug_begin/end().
4087   */
kswapd_stop(int nid)4088  void kswapd_stop(int nid)
4089  {
4090  	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4091  
4092  	if (kswapd) {
4093  		kthread_stop(kswapd);
4094  		NODE_DATA(nid)->kswapd = NULL;
4095  	}
4096  }
4097  
4098  #ifdef CONFIG_MEM_PURGEABLE_DEBUG
4099  static void __init purgeable_debugfs_init(void);
4100  #endif
4101  
kswapd_init(void)4102  static int __init kswapd_init(void)
4103  {
4104  	int nid;
4105  
4106  	swap_setup();
4107  	for_each_node_state(nid, N_MEMORY)
4108   		kswapd_run(nid);
4109  #ifdef CONFIG_MEM_PURGEABLE_DEBUG
4110  	purgeable_debugfs_init();
4111  #endif
4112  	return 0;
4113  }
4114  
4115  module_init(kswapd_init)
4116  
4117  #ifdef CONFIG_NUMA
4118  /*
4119   * Node reclaim mode
4120   *
4121   * If non-zero call node_reclaim when the number of free pages falls below
4122   * the watermarks.
4123   */
4124  int node_reclaim_mode __read_mostly;
4125  
4126  /*
4127   * These bit locations are exposed in the vm.zone_reclaim_mode sysctl
4128   * ABI.  New bits are OK, but existing bits can never change.
4129   */
4130  #define RECLAIM_ZONE  (1<<0)   /* Run shrink_inactive_list on the zone */
4131  #define RECLAIM_WRITE (1<<1)   /* Writeout pages during reclaim */
4132  #define RECLAIM_UNMAP (1<<2)   /* Unmap pages during reclaim */
4133  
4134  /*
4135   * Priority for NODE_RECLAIM. This determines the fraction of pages
4136   * of a node considered for each zone_reclaim. 4 scans 1/16th of
4137   * a zone.
4138   */
4139  #define NODE_RECLAIM_PRIORITY 4
4140  
4141  /*
4142   * Percentage of pages in a zone that must be unmapped for node_reclaim to
4143   * occur.
4144   */
4145  int sysctl_min_unmapped_ratio = 1;
4146  
4147  /*
4148   * If the number of slab pages in a zone grows beyond this percentage then
4149   * slab reclaim needs to occur.
4150   */
4151  int sysctl_min_slab_ratio = 5;
4152  
node_unmapped_file_pages(struct pglist_data * pgdat)4153  static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4154  {
4155  	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4156  	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4157  		node_page_state(pgdat, NR_ACTIVE_FILE);
4158  
4159  	/*
4160  	 * It's possible for there to be more file mapped pages than
4161  	 * accounted for by the pages on the file LRU lists because
4162  	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4163  	 */
4164  	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4165  }
4166  
4167  /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)4168  static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4169  {
4170  	unsigned long nr_pagecache_reclaimable;
4171  	unsigned long delta = 0;
4172  
4173  	/*
4174  	 * If RECLAIM_UNMAP is set, then all file pages are considered
4175  	 * potentially reclaimable. Otherwise, we have to worry about
4176  	 * pages like swapcache and node_unmapped_file_pages() provides
4177  	 * a better estimate
4178  	 */
4179  	if (node_reclaim_mode & RECLAIM_UNMAP)
4180  		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4181  	else
4182  		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4183  
4184  	/* If we can't clean pages, remove dirty pages from consideration */
4185  	if (!(node_reclaim_mode & RECLAIM_WRITE))
4186  		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4187  
4188  	/* Watch for any possible underflows due to delta */
4189  	if (unlikely(delta > nr_pagecache_reclaimable))
4190  		delta = nr_pagecache_reclaimable;
4191  
4192  	return nr_pagecache_reclaimable - delta;
4193  }
4194  
4195  /*
4196   * Try to free up some pages from this node through reclaim.
4197   */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4198  static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4199  {
4200  	/* Minimum pages needed in order to stay on node */
4201  	const unsigned long nr_pages = 1 << order;
4202  	struct task_struct *p = current;
4203  	unsigned int noreclaim_flag;
4204  	struct scan_control sc = {
4205  		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4206  		.gfp_mask = current_gfp_context(gfp_mask),
4207  		.order = order,
4208  		.priority = NODE_RECLAIM_PRIORITY,
4209  		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4210  		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4211  		.may_swap = 1,
4212  		.reclaim_idx = gfp_zone(gfp_mask),
4213  	};
4214  	unsigned long pflags;
4215  
4216  	trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4217  					   sc.gfp_mask);
4218  
4219  	cond_resched();
4220  	psi_memstall_enter(&pflags);
4221  	fs_reclaim_acquire(sc.gfp_mask);
4222  	/*
4223  	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4224  	 * and we also need to be able to write out pages for RECLAIM_WRITE
4225  	 * and RECLAIM_UNMAP.
4226  	 */
4227  	noreclaim_flag = memalloc_noreclaim_save();
4228  	p->flags |= PF_SWAPWRITE;
4229  	set_task_reclaim_state(p, &sc.reclaim_state);
4230  
4231  	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4232  		/*
4233  		 * Free memory by calling shrink node with increasing
4234  		 * priorities until we have enough memory freed.
4235  		 */
4236  		do {
4237  #ifdef CONFIG_HYPERHOLD_FILE_LRU
4238  			shrink_node_hyperhold(pgdat, &sc);
4239  #else
4240  			shrink_node(pgdat, &sc);
4241  #endif
4242  		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4243  	}
4244  
4245  	set_task_reclaim_state(p, NULL);
4246  	current->flags &= ~PF_SWAPWRITE;
4247  	memalloc_noreclaim_restore(noreclaim_flag);
4248  	fs_reclaim_release(sc.gfp_mask);
4249  	psi_memstall_leave(&pflags);
4250  
4251  	trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4252  
4253  	return sc.nr_reclaimed >= nr_pages;
4254  }
4255  
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4256  int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4257  {
4258  	int ret;
4259  
4260  	/*
4261  	 * Node reclaim reclaims unmapped file backed pages and
4262  	 * slab pages if we are over the defined limits.
4263  	 *
4264  	 * A small portion of unmapped file backed pages is needed for
4265  	 * file I/O otherwise pages read by file I/O will be immediately
4266  	 * thrown out if the node is overallocated. So we do not reclaim
4267  	 * if less than a specified percentage of the node is used by
4268  	 * unmapped file backed pages.
4269  	 */
4270  	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4271  	    node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4272  	    pgdat->min_slab_pages)
4273  		return NODE_RECLAIM_FULL;
4274  
4275  	/*
4276  	 * Do not scan if the allocation should not be delayed.
4277  	 */
4278  	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4279  		return NODE_RECLAIM_NOSCAN;
4280  
4281  	/*
4282  	 * Only run node reclaim on the local node or on nodes that do not
4283  	 * have associated processors. This will favor the local processor
4284  	 * over remote processors and spread off node memory allocations
4285  	 * as wide as possible.
4286  	 */
4287  	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4288  		return NODE_RECLAIM_NOSCAN;
4289  
4290  	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4291  		return NODE_RECLAIM_NOSCAN;
4292  
4293  	ret = __node_reclaim(pgdat, gfp_mask, order);
4294  	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4295  
4296  	if (!ret)
4297  		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4298  
4299  	return ret;
4300  }
4301  #endif
4302  
4303  /**
4304   * check_move_unevictable_pages - check pages for evictability and move to
4305   * appropriate zone lru list
4306   * @pvec: pagevec with lru pages to check
4307   *
4308   * Checks pages for evictability, if an evictable page is in the unevictable
4309   * lru list, moves it to the appropriate evictable lru list. This function
4310   * should be only used for lru pages.
4311   */
check_move_unevictable_pages(struct pagevec * pvec)4312  void check_move_unevictable_pages(struct pagevec *pvec)
4313  {
4314  	struct lruvec *lruvec;
4315  	struct pglist_data *pgdat = NULL;
4316  	int pgscanned = 0;
4317  	int pgrescued = 0;
4318  	int i;
4319  
4320  	for (i = 0; i < pvec->nr; i++) {
4321  		struct page *page = pvec->pages[i];
4322  		struct pglist_data *pagepgdat = page_pgdat(page);
4323  		int nr_pages;
4324  
4325  		if (PageTransTail(page))
4326  			continue;
4327  
4328  		nr_pages = thp_nr_pages(page);
4329  		pgscanned += nr_pages;
4330  
4331  		if (pagepgdat != pgdat) {
4332  			if (pgdat)
4333  				spin_unlock_irq(&pgdat->lru_lock);
4334  			pgdat = pagepgdat;
4335  			spin_lock_irq(&pgdat->lru_lock);
4336  		}
4337  		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4338  
4339  		if (!PageLRU(page) || !PageUnevictable(page))
4340  			continue;
4341  
4342  		if (page_evictable(page)) {
4343  			enum lru_list lru = page_lru_base_type(page);
4344  
4345  			VM_BUG_ON_PAGE(PageActive(page), page);
4346  			ClearPageUnevictable(page);
4347  			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4348  			add_page_to_lru_list(page, lruvec, lru);
4349  			pgrescued += nr_pages;
4350  		}
4351  	}
4352  
4353  	if (pgdat) {
4354  		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4355  		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4356  		spin_unlock_irq(&pgdat->lru_lock);
4357  	}
4358  }
4359  EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4360  
4361  #ifdef CONFIG_MEM_PURGEABLE_DEBUG
purgeable_node(pg_data_t * pgdata,struct scan_control * sc)4362  static unsigned long purgeable_node(pg_data_t *pgdata, struct scan_control *sc)
4363  {
4364  	struct mem_cgroup *memcg = NULL;
4365  	unsigned long nr = 0;
4366  #ifdef CONFIG_MEMCG
4367  	while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)))
4368  #endif
4369  	{
4370  		struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdata);
4371  
4372  		shrink_list(LRU_ACTIVE_PURGEABLE, -1, lruvec, sc);
4373  		nr += shrink_list(LRU_INACTIVE_PURGEABLE, -1, lruvec, sc);
4374  	}
4375  
4376  	pr_info("reclaim %lu purgeable pages.\n", nr);
4377  
4378  	return nr;
4379  }
4380  
purgeable(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4381  static int purgeable(struct ctl_table *table, int write, void *buffer,
4382  		size_t *lenp, loff_t *ppos)
4383  {
4384  	struct scan_control sc = {
4385  		.gfp_mask = GFP_KERNEL,
4386  		.order = 0,
4387  		.priority = DEF_PRIORITY,
4388  		.may_deactivate = DEACTIVATE_ANON,
4389  		.may_writepage = 1,
4390  		.may_unmap = 1,
4391  		.may_swap = 1,
4392  		.reclaim_idx = MAX_NR_ZONES - 1,
4393  	};
4394  	int nid = 0;
4395  	const struct cred *cred = current_cred();
4396  	if (!cred)
4397  		return 0;
4398  
4399  	if (!uid_eq(cred->euid, GLOBAL_MEMMGR_UID) &&
4400  			!uid_eq(cred->euid, GLOBAL_ROOT_UID)) {
4401  			pr_err("no permission to shrink purgeable heap!\n");
4402  			return -EINVAL;
4403  	}
4404  	for_each_node_state(nid, N_MEMORY)
4405  		purgeable_node(NODE_DATA(nid), &sc);
4406  	return 0;
4407  }
4408  
4409  static struct ctl_table ker_tab[] = {
4410  	{
4411  		.procname = "purgeable",
4412  		.mode = 0666,
4413  		.proc_handler = purgeable,
4414  	},
4415  	{},
4416  };
4417  
4418  static struct ctl_table sys_tab[] = {
4419  	{
4420  		.procname = "kernel",
4421  		.mode = 0555,
4422  		.child = ker_tab,
4423  	},
4424  	{},
4425  };
4426  
4427  static struct ctl_table_header *purgeable_header;
4428  
purgeable_debugfs_init(void)4429  static void __init purgeable_debugfs_init(void)
4430  {
4431  	purgeable_header = register_sysctl_table(sys_tab);
4432  	if (!purgeable_header)
4433  		pr_err("register purgeable sysctl table failed.\n");
4434  }
4435  
purgeable_debugfs_exit(void)4436  static void __exit purgeable_debugfs_exit(void)
4437  {
4438  	unregister_sysctl_table(purgeable_header);
4439  }
4440  #endif /* CONFIG_MEM_PURGEABLE_DEBUG */
4441