1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * z3fold.c
4 *
5 * Author: Vitaly Wool <vitaly.wool@konsulko.com>
6 * Copyright (C) 2016, Sony Mobile Communications Inc.
7 *
8 * This implementation is based on zbud written by Seth Jennings.
9 *
10 * z3fold is an special purpose allocator for storing compressed pages. It
11 * can store up to three compressed pages per page which improves the
12 * compression ratio of zbud while retaining its main concepts (e. g. always
13 * storing an integral number of objects per page) and simplicity.
14 * It still has simple and deterministic reclaim properties that make it
15 * preferable to a higher density approach (with no requirement on integral
16 * number of object per page) when reclaim is used.
17 *
18 * As in zbud, pages are divided into "chunks". The size of the chunks is
19 * fixed at compile time and is determined by NCHUNKS_ORDER below.
20 *
21 * z3fold doesn't export any API and is meant to be used via zpool API.
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/atomic.h>
27 #include <linux/sched.h>
28 #include <linux/cpumask.h>
29 #include <linux/list.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/page-flags.h>
33 #include <linux/migrate.h>
34 #include <linux/node.h>
35 #include <linux/compaction.h>
36 #include <linux/percpu.h>
37 #include <linux/mount.h>
38 #include <linux/pseudo_fs.h>
39 #include <linux/fs.h>
40 #include <linux/preempt.h>
41 #include <linux/workqueue.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/zpool.h>
45 #include <linux/magic.h>
46 #include <linux/kmemleak.h>
47
48 /*
49 * NCHUNKS_ORDER determines the internal allocation granularity, effectively
50 * adjusting internal fragmentation. It also determines the number of
51 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
52 * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
53 * in the beginning of an allocated page are occupied by z3fold header, so
54 * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
55 * which shows the max number of free chunks in z3fold page, also there will
56 * be 63, or 62, respectively, freelists per pool.
57 */
58 #define NCHUNKS_ORDER 6
59
60 #define CHUNK_SHIFT (PAGE_SHIFT - NCHUNKS_ORDER)
61 #define CHUNK_SIZE (1 << CHUNK_SHIFT)
62 #define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
63 #define ZHDR_CHUNKS (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
64 #define TOTAL_CHUNKS (PAGE_SIZE >> CHUNK_SHIFT)
65 #define NCHUNKS ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
66
67 #define BUDDY_MASK (0x3)
68 #define BUDDY_SHIFT 2
69 #define SLOTS_ALIGN (0x40)
70
71 /*****************
72 * Structures
73 *****************/
74 struct z3fold_pool;
75 struct z3fold_ops {
76 int (*evict)(struct z3fold_pool *pool, unsigned long handle);
77 };
78
79 enum buddy {
80 HEADLESS = 0,
81 FIRST,
82 MIDDLE,
83 LAST,
84 BUDDIES_MAX = LAST
85 };
86
87 struct z3fold_buddy_slots {
88 /*
89 * we are using BUDDY_MASK in handle_to_buddy etc. so there should
90 * be enough slots to hold all possible variants
91 */
92 unsigned long slot[BUDDY_MASK + 1];
93 unsigned long pool; /* back link */
94 rwlock_t lock;
95 };
96 #define HANDLE_FLAG_MASK (0x03)
97
98 /*
99 * struct z3fold_header - z3fold page metadata occupying first chunks of each
100 * z3fold page, except for HEADLESS pages
101 * @buddy: links the z3fold page into the relevant list in the
102 * pool
103 * @page_lock: per-page lock
104 * @refcount: reference count for the z3fold page
105 * @work: work_struct for page layout optimization
106 * @slots: pointer to the structure holding buddy slots
107 * @pool: pointer to the containing pool
108 * @cpu: CPU which this page "belongs" to
109 * @first_chunks: the size of the first buddy in chunks, 0 if free
110 * @middle_chunks: the size of the middle buddy in chunks, 0 if free
111 * @last_chunks: the size of the last buddy in chunks, 0 if free
112 * @first_num: the starting number (for the first handle)
113 * @mapped_count: the number of objects currently mapped
114 */
115 struct z3fold_header {
116 struct list_head buddy;
117 spinlock_t page_lock;
118 struct kref refcount;
119 struct work_struct work;
120 struct z3fold_buddy_slots *slots;
121 struct z3fold_pool *pool;
122 short cpu;
123 unsigned short first_chunks;
124 unsigned short middle_chunks;
125 unsigned short last_chunks;
126 unsigned short start_middle;
127 unsigned short first_num:2;
128 unsigned short mapped_count:2;
129 unsigned short foreign_handles:2;
130 };
131
132 /**
133 * struct z3fold_pool - stores metadata for each z3fold pool
134 * @name: pool name
135 * @lock: protects pool unbuddied/lru lists
136 * @stale_lock: protects pool stale page list
137 * @unbuddied: per-cpu array of lists tracking z3fold pages that contain 2-
138 * buddies; the list each z3fold page is added to depends on
139 * the size of its free region.
140 * @lru: list tracking the z3fold pages in LRU order by most recently
141 * added buddy.
142 * @stale: list of pages marked for freeing
143 * @pages_nr: number of z3fold pages in the pool.
144 * @c_handle: cache for z3fold_buddy_slots allocation
145 * @ops: pointer to a structure of user defined operations specified at
146 * pool creation time.
147 * @compact_wq: workqueue for page layout background optimization
148 * @release_wq: workqueue for safe page release
149 * @work: work_struct for safe page release
150 * @inode: inode for z3fold pseudo filesystem
151 *
152 * This structure is allocated at pool creation time and maintains metadata
153 * pertaining to a particular z3fold pool.
154 */
155 struct z3fold_pool {
156 const char *name;
157 spinlock_t lock;
158 spinlock_t stale_lock;
159 struct list_head *unbuddied;
160 struct list_head lru;
161 struct list_head stale;
162 atomic64_t pages_nr;
163 struct kmem_cache *c_handle;
164 const struct z3fold_ops *ops;
165 struct zpool *zpool;
166 const struct zpool_ops *zpool_ops;
167 struct workqueue_struct *compact_wq;
168 struct workqueue_struct *release_wq;
169 struct work_struct work;
170 struct inode *inode;
171 };
172
173 /*
174 * Internal z3fold page flags
175 */
176 enum z3fold_page_flags {
177 PAGE_HEADLESS = 0,
178 MIDDLE_CHUNK_MAPPED,
179 NEEDS_COMPACTING,
180 PAGE_STALE,
181 PAGE_CLAIMED, /* by either reclaim or free */
182 };
183
184 /*
185 * handle flags, go under HANDLE_FLAG_MASK
186 */
187 enum z3fold_handle_flags {
188 HANDLES_NOFREE = 0,
189 };
190
191 /*
192 * Forward declarations
193 */
194 static struct z3fold_header *__z3fold_alloc(struct z3fold_pool *, size_t, bool);
195 static void compact_page_work(struct work_struct *w);
196
197 /*****************
198 * Helpers
199 *****************/
200
201 /* Converts an allocation size in bytes to size in z3fold chunks */
size_to_chunks(size_t size)202 static int size_to_chunks(size_t size)
203 {
204 return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
205 }
206
207 #define for_each_unbuddied_list(_iter, _begin) \
208 for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
209
alloc_slots(struct z3fold_pool * pool,gfp_t gfp)210 static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
211 gfp_t gfp)
212 {
213 struct z3fold_buddy_slots *slots;
214
215 slots = kmem_cache_zalloc(pool->c_handle,
216 (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE)));
217
218 if (slots) {
219 /* It will be freed separately in free_handle(). */
220 kmemleak_not_leak(slots);
221 slots->pool = (unsigned long)pool;
222 rwlock_init(&slots->lock);
223 }
224
225 return slots;
226 }
227
slots_to_pool(struct z3fold_buddy_slots * s)228 static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
229 {
230 return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
231 }
232
handle_to_slots(unsigned long handle)233 static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
234 {
235 return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
236 }
237
238 /* Lock a z3fold page */
z3fold_page_lock(struct z3fold_header * zhdr)239 static inline void z3fold_page_lock(struct z3fold_header *zhdr)
240 {
241 spin_lock(&zhdr->page_lock);
242 }
243
244 /* Try to lock a z3fold page */
z3fold_page_trylock(struct z3fold_header * zhdr)245 static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
246 {
247 return spin_trylock(&zhdr->page_lock);
248 }
249
250 /* Unlock a z3fold page */
z3fold_page_unlock(struct z3fold_header * zhdr)251 static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
252 {
253 spin_unlock(&zhdr->page_lock);
254 }
255
256
__get_z3fold_header(unsigned long handle,bool lock)257 static inline struct z3fold_header *__get_z3fold_header(unsigned long handle,
258 bool lock)
259 {
260 struct z3fold_buddy_slots *slots;
261 struct z3fold_header *zhdr;
262 int locked = 0;
263
264 if (!(handle & (1 << PAGE_HEADLESS))) {
265 slots = handle_to_slots(handle);
266 do {
267 unsigned long addr;
268
269 read_lock(&slots->lock);
270 addr = *(unsigned long *)handle;
271 zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
272 if (lock)
273 locked = z3fold_page_trylock(zhdr);
274 read_unlock(&slots->lock);
275 if (locked)
276 break;
277 cpu_relax();
278 } while (lock);
279 } else {
280 zhdr = (struct z3fold_header *)(handle & PAGE_MASK);
281 }
282
283 return zhdr;
284 }
285
286 /* Returns the z3fold page where a given handle is stored */
handle_to_z3fold_header(unsigned long h)287 static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
288 {
289 return __get_z3fold_header(h, false);
290 }
291
292 /* return locked z3fold page if it's not headless */
get_z3fold_header(unsigned long h)293 static inline struct z3fold_header *get_z3fold_header(unsigned long h)
294 {
295 return __get_z3fold_header(h, true);
296 }
297
put_z3fold_header(struct z3fold_header * zhdr)298 static inline void put_z3fold_header(struct z3fold_header *zhdr)
299 {
300 struct page *page = virt_to_page(zhdr);
301
302 if (!test_bit(PAGE_HEADLESS, &page->private))
303 z3fold_page_unlock(zhdr);
304 }
305
free_handle(unsigned long handle,struct z3fold_header * zhdr)306 static inline void free_handle(unsigned long handle, struct z3fold_header *zhdr)
307 {
308 struct z3fold_buddy_slots *slots;
309 int i;
310 bool is_free;
311
312 if (handle & (1 << PAGE_HEADLESS))
313 return;
314
315 if (WARN_ON(*(unsigned long *)handle == 0))
316 return;
317
318 slots = handle_to_slots(handle);
319 write_lock(&slots->lock);
320 *(unsigned long *)handle = 0;
321
322 if (test_bit(HANDLES_NOFREE, &slots->pool)) {
323 write_unlock(&slots->lock);
324 return; /* simple case, nothing else to do */
325 }
326
327 if (zhdr->slots != slots)
328 zhdr->foreign_handles--;
329
330 is_free = true;
331 for (i = 0; i <= BUDDY_MASK; i++) {
332 if (slots->slot[i]) {
333 is_free = false;
334 break;
335 }
336 }
337 write_unlock(&slots->lock);
338
339 if (is_free) {
340 struct z3fold_pool *pool = slots_to_pool(slots);
341
342 if (zhdr->slots == slots)
343 zhdr->slots = NULL;
344 kmem_cache_free(pool->c_handle, slots);
345 }
346 }
347
z3fold_init_fs_context(struct fs_context * fc)348 static int z3fold_init_fs_context(struct fs_context *fc)
349 {
350 return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM;
351 }
352
353 static struct file_system_type z3fold_fs = {
354 .name = "z3fold",
355 .init_fs_context = z3fold_init_fs_context,
356 .kill_sb = kill_anon_super,
357 };
358
359 static struct vfsmount *z3fold_mnt;
z3fold_mount(void)360 static int z3fold_mount(void)
361 {
362 int ret = 0;
363
364 z3fold_mnt = kern_mount(&z3fold_fs);
365 if (IS_ERR(z3fold_mnt))
366 ret = PTR_ERR(z3fold_mnt);
367
368 return ret;
369 }
370
z3fold_unmount(void)371 static void z3fold_unmount(void)
372 {
373 kern_unmount(z3fold_mnt);
374 }
375
376 static const struct address_space_operations z3fold_aops;
z3fold_register_migration(struct z3fold_pool * pool)377 static int z3fold_register_migration(struct z3fold_pool *pool)
378 {
379 pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
380 if (IS_ERR(pool->inode)) {
381 pool->inode = NULL;
382 return 1;
383 }
384
385 pool->inode->i_mapping->private_data = pool;
386 pool->inode->i_mapping->a_ops = &z3fold_aops;
387 return 0;
388 }
389
z3fold_unregister_migration(struct z3fold_pool * pool)390 static void z3fold_unregister_migration(struct z3fold_pool *pool)
391 {
392 if (pool->inode)
393 iput(pool->inode);
394 }
395
396 /* Initializes the z3fold header of a newly allocated z3fold page */
init_z3fold_page(struct page * page,bool headless,struct z3fold_pool * pool,gfp_t gfp)397 static struct z3fold_header *init_z3fold_page(struct page *page, bool headless,
398 struct z3fold_pool *pool, gfp_t gfp)
399 {
400 struct z3fold_header *zhdr = page_address(page);
401 struct z3fold_buddy_slots *slots;
402
403 INIT_LIST_HEAD(&page->lru);
404 clear_bit(PAGE_HEADLESS, &page->private);
405 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
406 clear_bit(NEEDS_COMPACTING, &page->private);
407 clear_bit(PAGE_STALE, &page->private);
408 clear_bit(PAGE_CLAIMED, &page->private);
409 if (headless)
410 return zhdr;
411
412 slots = alloc_slots(pool, gfp);
413 if (!slots)
414 return NULL;
415
416 spin_lock_init(&zhdr->page_lock);
417 kref_init(&zhdr->refcount);
418 zhdr->first_chunks = 0;
419 zhdr->middle_chunks = 0;
420 zhdr->last_chunks = 0;
421 zhdr->first_num = 0;
422 zhdr->start_middle = 0;
423 zhdr->cpu = -1;
424 zhdr->foreign_handles = 0;
425 zhdr->mapped_count = 0;
426 zhdr->slots = slots;
427 zhdr->pool = pool;
428 INIT_LIST_HEAD(&zhdr->buddy);
429 INIT_WORK(&zhdr->work, compact_page_work);
430 return zhdr;
431 }
432
433 /* Resets the struct page fields and frees the page */
free_z3fold_page(struct page * page,bool headless)434 static void free_z3fold_page(struct page *page, bool headless)
435 {
436 if (!headless) {
437 lock_page(page);
438 __ClearPageMovable(page);
439 unlock_page(page);
440 }
441 ClearPagePrivate(page);
442 __free_page(page);
443 }
444
445 /* Helper function to build the index */
__idx(struct z3fold_header * zhdr,enum buddy bud)446 static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
447 {
448 return (bud + zhdr->first_num) & BUDDY_MASK;
449 }
450
451 /*
452 * Encodes the handle of a particular buddy within a z3fold page
453 * Pool lock should be held as this function accesses first_num
454 */
__encode_handle(struct z3fold_header * zhdr,struct z3fold_buddy_slots * slots,enum buddy bud)455 static unsigned long __encode_handle(struct z3fold_header *zhdr,
456 struct z3fold_buddy_slots *slots,
457 enum buddy bud)
458 {
459 unsigned long h = (unsigned long)zhdr;
460 int idx = 0;
461
462 /*
463 * For a headless page, its handle is its pointer with the extra
464 * PAGE_HEADLESS bit set
465 */
466 if (bud == HEADLESS)
467 return h | (1 << PAGE_HEADLESS);
468
469 /* otherwise, return pointer to encoded handle */
470 idx = __idx(zhdr, bud);
471 h += idx;
472 if (bud == LAST)
473 h |= (zhdr->last_chunks << BUDDY_SHIFT);
474
475 write_lock(&slots->lock);
476 slots->slot[idx] = h;
477 write_unlock(&slots->lock);
478 return (unsigned long)&slots->slot[idx];
479 }
480
encode_handle(struct z3fold_header * zhdr,enum buddy bud)481 static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
482 {
483 return __encode_handle(zhdr, zhdr->slots, bud);
484 }
485
486 /* only for LAST bud, returns zero otherwise */
handle_to_chunks(unsigned long handle)487 static unsigned short handle_to_chunks(unsigned long handle)
488 {
489 struct z3fold_buddy_slots *slots = handle_to_slots(handle);
490 unsigned long addr;
491
492 read_lock(&slots->lock);
493 addr = *(unsigned long *)handle;
494 read_unlock(&slots->lock);
495 return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
496 }
497
498 /*
499 * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
500 * but that doesn't matter. because the masking will result in the
501 * correct buddy number.
502 */
handle_to_buddy(unsigned long handle)503 static enum buddy handle_to_buddy(unsigned long handle)
504 {
505 struct z3fold_header *zhdr;
506 struct z3fold_buddy_slots *slots = handle_to_slots(handle);
507 unsigned long addr;
508
509 read_lock(&slots->lock);
510 WARN_ON(handle & (1 << PAGE_HEADLESS));
511 addr = *(unsigned long *)handle;
512 read_unlock(&slots->lock);
513 zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
514 return (addr - zhdr->first_num) & BUDDY_MASK;
515 }
516
zhdr_to_pool(struct z3fold_header * zhdr)517 static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
518 {
519 return zhdr->pool;
520 }
521
__release_z3fold_page(struct z3fold_header * zhdr,bool locked)522 static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
523 {
524 struct page *page = virt_to_page(zhdr);
525 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
526
527 WARN_ON(!list_empty(&zhdr->buddy));
528 set_bit(PAGE_STALE, &page->private);
529 clear_bit(NEEDS_COMPACTING, &page->private);
530 spin_lock(&pool->lock);
531 if (!list_empty(&page->lru))
532 list_del_init(&page->lru);
533 spin_unlock(&pool->lock);
534
535 if (locked)
536 z3fold_page_unlock(zhdr);
537
538 spin_lock(&pool->stale_lock);
539 list_add(&zhdr->buddy, &pool->stale);
540 queue_work(pool->release_wq, &pool->work);
541 spin_unlock(&pool->stale_lock);
542 }
543
544 static void __attribute__((__unused__))
release_z3fold_page(struct kref * ref)545 release_z3fold_page(struct kref *ref)
546 {
547 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
548 refcount);
549 __release_z3fold_page(zhdr, false);
550 }
551
release_z3fold_page_locked(struct kref * ref)552 static void release_z3fold_page_locked(struct kref *ref)
553 {
554 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
555 refcount);
556 WARN_ON(z3fold_page_trylock(zhdr));
557 __release_z3fold_page(zhdr, true);
558 }
559
release_z3fold_page_locked_list(struct kref * ref)560 static void release_z3fold_page_locked_list(struct kref *ref)
561 {
562 struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
563 refcount);
564 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
565
566 spin_lock(&pool->lock);
567 list_del_init(&zhdr->buddy);
568 spin_unlock(&pool->lock);
569
570 WARN_ON(z3fold_page_trylock(zhdr));
571 __release_z3fold_page(zhdr, true);
572 }
573
free_pages_work(struct work_struct * w)574 static void free_pages_work(struct work_struct *w)
575 {
576 struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
577
578 spin_lock(&pool->stale_lock);
579 while (!list_empty(&pool->stale)) {
580 struct z3fold_header *zhdr = list_first_entry(&pool->stale,
581 struct z3fold_header, buddy);
582 struct page *page = virt_to_page(zhdr);
583
584 list_del(&zhdr->buddy);
585 if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
586 continue;
587 spin_unlock(&pool->stale_lock);
588 cancel_work_sync(&zhdr->work);
589 free_z3fold_page(page, false);
590 cond_resched();
591 spin_lock(&pool->stale_lock);
592 }
593 spin_unlock(&pool->stale_lock);
594 }
595
596 /*
597 * Returns the number of free chunks in a z3fold page.
598 * NB: can't be used with HEADLESS pages.
599 */
num_free_chunks(struct z3fold_header * zhdr)600 static int num_free_chunks(struct z3fold_header *zhdr)
601 {
602 int nfree;
603 /*
604 * If there is a middle object, pick up the bigger free space
605 * either before or after it. Otherwise just subtract the number
606 * of chunks occupied by the first and the last objects.
607 */
608 if (zhdr->middle_chunks != 0) {
609 int nfree_before = zhdr->first_chunks ?
610 0 : zhdr->start_middle - ZHDR_CHUNKS;
611 int nfree_after = zhdr->last_chunks ?
612 0 : TOTAL_CHUNKS -
613 (zhdr->start_middle + zhdr->middle_chunks);
614 nfree = max(nfree_before, nfree_after);
615 } else
616 nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
617 return nfree;
618 }
619
620 /* Add to the appropriate unbuddied list */
add_to_unbuddied(struct z3fold_pool * pool,struct z3fold_header * zhdr)621 static inline void add_to_unbuddied(struct z3fold_pool *pool,
622 struct z3fold_header *zhdr)
623 {
624 if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
625 zhdr->middle_chunks == 0) {
626 struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
627
628 int freechunks = num_free_chunks(zhdr);
629 spin_lock(&pool->lock);
630 list_add(&zhdr->buddy, &unbuddied[freechunks]);
631 spin_unlock(&pool->lock);
632 zhdr->cpu = smp_processor_id();
633 put_cpu_ptr(pool->unbuddied);
634 }
635 }
636
get_free_buddy(struct z3fold_header * zhdr,int chunks)637 static inline enum buddy get_free_buddy(struct z3fold_header *zhdr, int chunks)
638 {
639 enum buddy bud = HEADLESS;
640
641 if (zhdr->middle_chunks) {
642 if (!zhdr->first_chunks &&
643 chunks <= zhdr->start_middle - ZHDR_CHUNKS)
644 bud = FIRST;
645 else if (!zhdr->last_chunks)
646 bud = LAST;
647 } else {
648 if (!zhdr->first_chunks)
649 bud = FIRST;
650 else if (!zhdr->last_chunks)
651 bud = LAST;
652 else
653 bud = MIDDLE;
654 }
655
656 return bud;
657 }
658
mchunk_memmove(struct z3fold_header * zhdr,unsigned short dst_chunk)659 static inline void *mchunk_memmove(struct z3fold_header *zhdr,
660 unsigned short dst_chunk)
661 {
662 void *beg = zhdr;
663 return memmove(beg + (dst_chunk << CHUNK_SHIFT),
664 beg + (zhdr->start_middle << CHUNK_SHIFT),
665 zhdr->middle_chunks << CHUNK_SHIFT);
666 }
667
buddy_single(struct z3fold_header * zhdr)668 static inline bool buddy_single(struct z3fold_header *zhdr)
669 {
670 return !((zhdr->first_chunks && zhdr->middle_chunks) ||
671 (zhdr->first_chunks && zhdr->last_chunks) ||
672 (zhdr->middle_chunks && zhdr->last_chunks));
673 }
674
compact_single_buddy(struct z3fold_header * zhdr)675 static struct z3fold_header *compact_single_buddy(struct z3fold_header *zhdr)
676 {
677 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
678 void *p = zhdr;
679 unsigned long old_handle = 0;
680 size_t sz = 0;
681 struct z3fold_header *new_zhdr = NULL;
682 int first_idx = __idx(zhdr, FIRST);
683 int middle_idx = __idx(zhdr, MIDDLE);
684 int last_idx = __idx(zhdr, LAST);
685 unsigned short *moved_chunks = NULL;
686
687 /*
688 * No need to protect slots here -- all the slots are "local" and
689 * the page lock is already taken
690 */
691 if (zhdr->first_chunks && zhdr->slots->slot[first_idx]) {
692 p += ZHDR_SIZE_ALIGNED;
693 sz = zhdr->first_chunks << CHUNK_SHIFT;
694 old_handle = (unsigned long)&zhdr->slots->slot[first_idx];
695 moved_chunks = &zhdr->first_chunks;
696 } else if (zhdr->middle_chunks && zhdr->slots->slot[middle_idx]) {
697 p += zhdr->start_middle << CHUNK_SHIFT;
698 sz = zhdr->middle_chunks << CHUNK_SHIFT;
699 old_handle = (unsigned long)&zhdr->slots->slot[middle_idx];
700 moved_chunks = &zhdr->middle_chunks;
701 } else if (zhdr->last_chunks && zhdr->slots->slot[last_idx]) {
702 p += PAGE_SIZE - (zhdr->last_chunks << CHUNK_SHIFT);
703 sz = zhdr->last_chunks << CHUNK_SHIFT;
704 old_handle = (unsigned long)&zhdr->slots->slot[last_idx];
705 moved_chunks = &zhdr->last_chunks;
706 }
707
708 if (sz > 0) {
709 enum buddy new_bud = HEADLESS;
710 short chunks = size_to_chunks(sz);
711 void *q;
712
713 new_zhdr = __z3fold_alloc(pool, sz, false);
714 if (!new_zhdr)
715 return NULL;
716
717 if (WARN_ON(new_zhdr == zhdr))
718 goto out_fail;
719
720 new_bud = get_free_buddy(new_zhdr, chunks);
721 q = new_zhdr;
722 switch (new_bud) {
723 case FIRST:
724 new_zhdr->first_chunks = chunks;
725 q += ZHDR_SIZE_ALIGNED;
726 break;
727 case MIDDLE:
728 new_zhdr->middle_chunks = chunks;
729 new_zhdr->start_middle =
730 new_zhdr->first_chunks + ZHDR_CHUNKS;
731 q += new_zhdr->start_middle << CHUNK_SHIFT;
732 break;
733 case LAST:
734 new_zhdr->last_chunks = chunks;
735 q += PAGE_SIZE - (new_zhdr->last_chunks << CHUNK_SHIFT);
736 break;
737 default:
738 goto out_fail;
739 }
740 new_zhdr->foreign_handles++;
741 memcpy(q, p, sz);
742 write_lock(&zhdr->slots->lock);
743 *(unsigned long *)old_handle = (unsigned long)new_zhdr +
744 __idx(new_zhdr, new_bud);
745 if (new_bud == LAST)
746 *(unsigned long *)old_handle |=
747 (new_zhdr->last_chunks << BUDDY_SHIFT);
748 write_unlock(&zhdr->slots->lock);
749 add_to_unbuddied(pool, new_zhdr);
750 z3fold_page_unlock(new_zhdr);
751
752 *moved_chunks = 0;
753 }
754
755 return new_zhdr;
756
757 out_fail:
758 if (new_zhdr) {
759 if (kref_put(&new_zhdr->refcount, release_z3fold_page_locked))
760 atomic64_dec(&pool->pages_nr);
761 else {
762 add_to_unbuddied(pool, new_zhdr);
763 z3fold_page_unlock(new_zhdr);
764 }
765 }
766 return NULL;
767
768 }
769
770 #define BIG_CHUNK_GAP 3
771 /* Has to be called with lock held */
z3fold_compact_page(struct z3fold_header * zhdr)772 static int z3fold_compact_page(struct z3fold_header *zhdr)
773 {
774 struct page *page = virt_to_page(zhdr);
775
776 if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
777 return 0; /* can't move middle chunk, it's used */
778
779 if (unlikely(PageIsolated(page)))
780 return 0;
781
782 if (zhdr->middle_chunks == 0)
783 return 0; /* nothing to compact */
784
785 if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
786 /* move to the beginning */
787 mchunk_memmove(zhdr, ZHDR_CHUNKS);
788 zhdr->first_chunks = zhdr->middle_chunks;
789 zhdr->middle_chunks = 0;
790 zhdr->start_middle = 0;
791 zhdr->first_num++;
792 return 1;
793 }
794
795 /*
796 * moving data is expensive, so let's only do that if
797 * there's substantial gain (at least BIG_CHUNK_GAP chunks)
798 */
799 if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
800 zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
801 BIG_CHUNK_GAP) {
802 mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
803 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
804 return 1;
805 } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
806 TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
807 + zhdr->middle_chunks) >=
808 BIG_CHUNK_GAP) {
809 unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
810 zhdr->middle_chunks;
811 mchunk_memmove(zhdr, new_start);
812 zhdr->start_middle = new_start;
813 return 1;
814 }
815
816 return 0;
817 }
818
do_compact_page(struct z3fold_header * zhdr,bool locked)819 static void do_compact_page(struct z3fold_header *zhdr, bool locked)
820 {
821 struct z3fold_pool *pool = zhdr_to_pool(zhdr);
822 struct page *page;
823
824 page = virt_to_page(zhdr);
825 if (locked)
826 WARN_ON(z3fold_page_trylock(zhdr));
827 else
828 z3fold_page_lock(zhdr);
829 if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
830 z3fold_page_unlock(zhdr);
831 return;
832 }
833 spin_lock(&pool->lock);
834 list_del_init(&zhdr->buddy);
835 spin_unlock(&pool->lock);
836
837 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
838 atomic64_dec(&pool->pages_nr);
839 return;
840 }
841
842 if (test_bit(PAGE_STALE, &page->private) ||
843 test_and_set_bit(PAGE_CLAIMED, &page->private)) {
844 z3fold_page_unlock(zhdr);
845 return;
846 }
847
848 if (!zhdr->foreign_handles && buddy_single(zhdr) &&
849 zhdr->mapped_count == 0 && compact_single_buddy(zhdr)) {
850 if (kref_put(&zhdr->refcount, release_z3fold_page_locked))
851 atomic64_dec(&pool->pages_nr);
852 else {
853 clear_bit(PAGE_CLAIMED, &page->private);
854 z3fold_page_unlock(zhdr);
855 }
856 return;
857 }
858
859 z3fold_compact_page(zhdr);
860 add_to_unbuddied(pool, zhdr);
861 clear_bit(PAGE_CLAIMED, &page->private);
862 z3fold_page_unlock(zhdr);
863 }
864
compact_page_work(struct work_struct * w)865 static void compact_page_work(struct work_struct *w)
866 {
867 struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
868 work);
869
870 do_compact_page(zhdr, false);
871 }
872
873 /* returns _locked_ z3fold page header or NULL */
__z3fold_alloc(struct z3fold_pool * pool,size_t size,bool can_sleep)874 static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
875 size_t size, bool can_sleep)
876 {
877 struct z3fold_header *zhdr = NULL;
878 struct page *page;
879 struct list_head *unbuddied;
880 int chunks = size_to_chunks(size), i;
881
882 lookup:
883 /* First, try to find an unbuddied z3fold page. */
884 unbuddied = get_cpu_ptr(pool->unbuddied);
885 for_each_unbuddied_list(i, chunks) {
886 struct list_head *l = &unbuddied[i];
887
888 zhdr = list_first_entry_or_null(READ_ONCE(l),
889 struct z3fold_header, buddy);
890
891 if (!zhdr)
892 continue;
893
894 /* Re-check under lock. */
895 spin_lock(&pool->lock);
896 l = &unbuddied[i];
897 if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
898 struct z3fold_header, buddy)) ||
899 !z3fold_page_trylock(zhdr)) {
900 spin_unlock(&pool->lock);
901 zhdr = NULL;
902 put_cpu_ptr(pool->unbuddied);
903 if (can_sleep)
904 cond_resched();
905 goto lookup;
906 }
907 list_del_init(&zhdr->buddy);
908 zhdr->cpu = -1;
909 spin_unlock(&pool->lock);
910
911 page = virt_to_page(zhdr);
912 if (test_bit(NEEDS_COMPACTING, &page->private) ||
913 test_bit(PAGE_CLAIMED, &page->private)) {
914 z3fold_page_unlock(zhdr);
915 zhdr = NULL;
916 put_cpu_ptr(pool->unbuddied);
917 if (can_sleep)
918 cond_resched();
919 goto lookup;
920 }
921
922 /*
923 * this page could not be removed from its unbuddied
924 * list while pool lock was held, and then we've taken
925 * page lock so kref_put could not be called before
926 * we got here, so it's safe to just call kref_get()
927 */
928 kref_get(&zhdr->refcount);
929 break;
930 }
931 put_cpu_ptr(pool->unbuddied);
932
933 if (!zhdr) {
934 int cpu;
935
936 /* look for _exact_ match on other cpus' lists */
937 for_each_online_cpu(cpu) {
938 struct list_head *l;
939
940 unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
941 spin_lock(&pool->lock);
942 l = &unbuddied[chunks];
943
944 zhdr = list_first_entry_or_null(READ_ONCE(l),
945 struct z3fold_header, buddy);
946
947 if (!zhdr || !z3fold_page_trylock(zhdr)) {
948 spin_unlock(&pool->lock);
949 zhdr = NULL;
950 continue;
951 }
952 list_del_init(&zhdr->buddy);
953 zhdr->cpu = -1;
954 spin_unlock(&pool->lock);
955
956 page = virt_to_page(zhdr);
957 if (test_bit(NEEDS_COMPACTING, &page->private) ||
958 test_bit(PAGE_CLAIMED, &page->private)) {
959 z3fold_page_unlock(zhdr);
960 zhdr = NULL;
961 if (can_sleep)
962 cond_resched();
963 continue;
964 }
965 kref_get(&zhdr->refcount);
966 break;
967 }
968 }
969
970 if (zhdr && !zhdr->slots)
971 zhdr->slots = alloc_slots(pool,
972 can_sleep ? GFP_NOIO : GFP_ATOMIC);
973 return zhdr;
974 }
975
976 /*
977 * API Functions
978 */
979
980 /**
981 * z3fold_create_pool() - create a new z3fold pool
982 * @name: pool name
983 * @gfp: gfp flags when allocating the z3fold pool structure
984 * @ops: user-defined operations for the z3fold pool
985 *
986 * Return: pointer to the new z3fold pool or NULL if the metadata allocation
987 * failed.
988 */
z3fold_create_pool(const char * name,gfp_t gfp,const struct z3fold_ops * ops)989 static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
990 const struct z3fold_ops *ops)
991 {
992 struct z3fold_pool *pool = NULL;
993 int i, cpu;
994
995 pool = kzalloc(sizeof(struct z3fold_pool), gfp);
996 if (!pool)
997 goto out;
998 pool->c_handle = kmem_cache_create("z3fold_handle",
999 sizeof(struct z3fold_buddy_slots),
1000 SLOTS_ALIGN, 0, NULL);
1001 if (!pool->c_handle)
1002 goto out_c;
1003 spin_lock_init(&pool->lock);
1004 spin_lock_init(&pool->stale_lock);
1005 pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
1006 if (!pool->unbuddied)
1007 goto out_pool;
1008 for_each_possible_cpu(cpu) {
1009 struct list_head *unbuddied =
1010 per_cpu_ptr(pool->unbuddied, cpu);
1011 for_each_unbuddied_list(i, 0)
1012 INIT_LIST_HEAD(&unbuddied[i]);
1013 }
1014 INIT_LIST_HEAD(&pool->lru);
1015 INIT_LIST_HEAD(&pool->stale);
1016 atomic64_set(&pool->pages_nr, 0);
1017 pool->name = name;
1018 pool->compact_wq = create_singlethread_workqueue(pool->name);
1019 if (!pool->compact_wq)
1020 goto out_unbuddied;
1021 pool->release_wq = create_singlethread_workqueue(pool->name);
1022 if (!pool->release_wq)
1023 goto out_wq;
1024 if (z3fold_register_migration(pool))
1025 goto out_rwq;
1026 INIT_WORK(&pool->work, free_pages_work);
1027 pool->ops = ops;
1028 return pool;
1029
1030 out_rwq:
1031 destroy_workqueue(pool->release_wq);
1032 out_wq:
1033 destroy_workqueue(pool->compact_wq);
1034 out_unbuddied:
1035 free_percpu(pool->unbuddied);
1036 out_pool:
1037 kmem_cache_destroy(pool->c_handle);
1038 out_c:
1039 kfree(pool);
1040 out:
1041 return NULL;
1042 }
1043
1044 /**
1045 * z3fold_destroy_pool() - destroys an existing z3fold pool
1046 * @pool: the z3fold pool to be destroyed
1047 *
1048 * The pool should be emptied before this function is called.
1049 */
z3fold_destroy_pool(struct z3fold_pool * pool)1050 static void z3fold_destroy_pool(struct z3fold_pool *pool)
1051 {
1052 kmem_cache_destroy(pool->c_handle);
1053
1054 /*
1055 * We need to destroy pool->compact_wq before pool->release_wq,
1056 * as any pending work on pool->compact_wq will call
1057 * queue_work(pool->release_wq, &pool->work).
1058 *
1059 * There are still outstanding pages until both workqueues are drained,
1060 * so we cannot unregister migration until then.
1061 */
1062
1063 destroy_workqueue(pool->compact_wq);
1064 destroy_workqueue(pool->release_wq);
1065 z3fold_unregister_migration(pool);
1066 free_percpu(pool->unbuddied);
1067 kfree(pool);
1068 }
1069
1070 /**
1071 * z3fold_alloc() - allocates a region of a given size
1072 * @pool: z3fold pool from which to allocate
1073 * @size: size in bytes of the desired allocation
1074 * @gfp: gfp flags used if the pool needs to grow
1075 * @handle: handle of the new allocation
1076 *
1077 * This function will attempt to find a free region in the pool large enough to
1078 * satisfy the allocation request. A search of the unbuddied lists is
1079 * performed first. If no suitable free region is found, then a new page is
1080 * allocated and added to the pool to satisfy the request.
1081 *
1082 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
1083 * as z3fold pool pages.
1084 *
1085 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
1086 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
1087 * a new page.
1088 */
z3fold_alloc(struct z3fold_pool * pool,size_t size,gfp_t gfp,unsigned long * handle)1089 static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
1090 unsigned long *handle)
1091 {
1092 int chunks = size_to_chunks(size);
1093 struct z3fold_header *zhdr = NULL;
1094 struct page *page = NULL;
1095 enum buddy bud;
1096 bool can_sleep = gfpflags_allow_blocking(gfp);
1097
1098 if (!size)
1099 return -EINVAL;
1100
1101 if (size > PAGE_SIZE)
1102 return -ENOSPC;
1103
1104 if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
1105 bud = HEADLESS;
1106 else {
1107 retry:
1108 zhdr = __z3fold_alloc(pool, size, can_sleep);
1109 if (zhdr) {
1110 bud = get_free_buddy(zhdr, chunks);
1111 if (bud == HEADLESS) {
1112 if (kref_put(&zhdr->refcount,
1113 release_z3fold_page_locked))
1114 atomic64_dec(&pool->pages_nr);
1115 else
1116 z3fold_page_unlock(zhdr);
1117 pr_err("No free chunks in unbuddied\n");
1118 WARN_ON(1);
1119 goto retry;
1120 }
1121 page = virt_to_page(zhdr);
1122 goto found;
1123 }
1124 bud = FIRST;
1125 }
1126
1127 page = NULL;
1128 if (can_sleep) {
1129 spin_lock(&pool->stale_lock);
1130 zhdr = list_first_entry_or_null(&pool->stale,
1131 struct z3fold_header, buddy);
1132 /*
1133 * Before allocating a page, let's see if we can take one from
1134 * the stale pages list. cancel_work_sync() can sleep so we
1135 * limit this case to the contexts where we can sleep
1136 */
1137 if (zhdr) {
1138 list_del(&zhdr->buddy);
1139 spin_unlock(&pool->stale_lock);
1140 cancel_work_sync(&zhdr->work);
1141 page = virt_to_page(zhdr);
1142 } else {
1143 spin_unlock(&pool->stale_lock);
1144 }
1145 }
1146 if (!page)
1147 page = alloc_page(gfp);
1148
1149 if (!page)
1150 return -ENOMEM;
1151
1152 zhdr = init_z3fold_page(page, bud == HEADLESS, pool, gfp);
1153 if (!zhdr) {
1154 __free_page(page);
1155 return -ENOMEM;
1156 }
1157 atomic64_inc(&pool->pages_nr);
1158
1159 if (bud == HEADLESS) {
1160 set_bit(PAGE_HEADLESS, &page->private);
1161 goto headless;
1162 }
1163 if (can_sleep) {
1164 lock_page(page);
1165 __SetPageMovable(page, pool->inode->i_mapping);
1166 unlock_page(page);
1167 } else {
1168 if (trylock_page(page)) {
1169 __SetPageMovable(page, pool->inode->i_mapping);
1170 unlock_page(page);
1171 }
1172 }
1173 z3fold_page_lock(zhdr);
1174
1175 found:
1176 if (bud == FIRST)
1177 zhdr->first_chunks = chunks;
1178 else if (bud == LAST)
1179 zhdr->last_chunks = chunks;
1180 else {
1181 zhdr->middle_chunks = chunks;
1182 zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
1183 }
1184 add_to_unbuddied(pool, zhdr);
1185
1186 headless:
1187 spin_lock(&pool->lock);
1188 /* Add/move z3fold page to beginning of LRU */
1189 if (!list_empty(&page->lru))
1190 list_del(&page->lru);
1191
1192 list_add(&page->lru, &pool->lru);
1193
1194 *handle = encode_handle(zhdr, bud);
1195 spin_unlock(&pool->lock);
1196 if (bud != HEADLESS)
1197 z3fold_page_unlock(zhdr);
1198
1199 return 0;
1200 }
1201
1202 /**
1203 * z3fold_free() - frees the allocation associated with the given handle
1204 * @pool: pool in which the allocation resided
1205 * @handle: handle associated with the allocation returned by z3fold_alloc()
1206 *
1207 * In the case that the z3fold page in which the allocation resides is under
1208 * reclaim, as indicated by the PG_reclaim flag being set, this function
1209 * only sets the first|last_chunks to 0. The page is actually freed
1210 * once both buddies are evicted (see z3fold_reclaim_page() below).
1211 */
z3fold_free(struct z3fold_pool * pool,unsigned long handle)1212 static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
1213 {
1214 struct z3fold_header *zhdr;
1215 struct page *page;
1216 enum buddy bud;
1217 bool page_claimed;
1218
1219 zhdr = get_z3fold_header(handle);
1220 page = virt_to_page(zhdr);
1221 page_claimed = test_and_set_bit(PAGE_CLAIMED, &page->private);
1222
1223 if (test_bit(PAGE_HEADLESS, &page->private)) {
1224 /* if a headless page is under reclaim, just leave.
1225 * NB: we use test_and_set_bit for a reason: if the bit
1226 * has not been set before, we release this page
1227 * immediately so we don't care about its value any more.
1228 */
1229 if (!page_claimed) {
1230 spin_lock(&pool->lock);
1231 list_del(&page->lru);
1232 spin_unlock(&pool->lock);
1233 put_z3fold_header(zhdr);
1234 free_z3fold_page(page, true);
1235 atomic64_dec(&pool->pages_nr);
1236 }
1237 return;
1238 }
1239
1240 /* Non-headless case */
1241 bud = handle_to_buddy(handle);
1242
1243 switch (bud) {
1244 case FIRST:
1245 zhdr->first_chunks = 0;
1246 break;
1247 case MIDDLE:
1248 zhdr->middle_chunks = 0;
1249 break;
1250 case LAST:
1251 zhdr->last_chunks = 0;
1252 break;
1253 default:
1254 pr_err("%s: unknown bud %d\n", __func__, bud);
1255 WARN_ON(1);
1256 put_z3fold_header(zhdr);
1257 return;
1258 }
1259
1260 if (!page_claimed)
1261 free_handle(handle, zhdr);
1262 if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1263 atomic64_dec(&pool->pages_nr);
1264 return;
1265 }
1266 if (page_claimed) {
1267 /* the page has not been claimed by us */
1268 z3fold_page_unlock(zhdr);
1269 return;
1270 }
1271 if (test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1272 put_z3fold_header(zhdr);
1273 clear_bit(PAGE_CLAIMED, &page->private);
1274 return;
1275 }
1276 if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1277 spin_lock(&pool->lock);
1278 list_del_init(&zhdr->buddy);
1279 spin_unlock(&pool->lock);
1280 zhdr->cpu = -1;
1281 kref_get(&zhdr->refcount);
1282 clear_bit(PAGE_CLAIMED, &page->private);
1283 do_compact_page(zhdr, true);
1284 return;
1285 }
1286 kref_get(&zhdr->refcount);
1287 clear_bit(PAGE_CLAIMED, &page->private);
1288 queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1289 put_z3fold_header(zhdr);
1290 }
1291
1292 /**
1293 * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1294 * @pool: pool from which a page will attempt to be evicted
1295 * @retries: number of pages on the LRU list for which eviction will
1296 * be attempted before failing
1297 *
1298 * z3fold reclaim is different from normal system reclaim in that it is done
1299 * from the bottom, up. This is because only the bottom layer, z3fold, has
1300 * information on how the allocations are organized within each z3fold page.
1301 * This has the potential to create interesting locking situations between
1302 * z3fold and the user, however.
1303 *
1304 * To avoid these, this is how z3fold_reclaim_page() should be called:
1305 *
1306 * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1307 * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1308 * call the user-defined eviction handler with the pool and handle as
1309 * arguments.
1310 *
1311 * If the handle can not be evicted, the eviction handler should return
1312 * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1313 * appropriate list and try the next z3fold page on the LRU up to
1314 * a user defined number of retries.
1315 *
1316 * If the handle is successfully evicted, the eviction handler should
1317 * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1318 * contains logic to delay freeing the page if the page is under reclaim,
1319 * as indicated by the setting of the PG_reclaim flag on the underlying page.
1320 *
1321 * If all buddies in the z3fold page are successfully evicted, then the
1322 * z3fold page can be freed.
1323 *
1324 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1325 * no pages to evict or an eviction handler is not registered, -EAGAIN if
1326 * the retry limit was hit.
1327 */
z3fold_reclaim_page(struct z3fold_pool * pool,unsigned int retries)1328 static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1329 {
1330 int i, ret = -1;
1331 struct z3fold_header *zhdr = NULL;
1332 struct page *page = NULL;
1333 struct list_head *pos;
1334 unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1335 struct z3fold_buddy_slots slots __attribute__((aligned(SLOTS_ALIGN)));
1336
1337 rwlock_init(&slots.lock);
1338 slots.pool = (unsigned long)pool | (1 << HANDLES_NOFREE);
1339
1340 spin_lock(&pool->lock);
1341 if (!pool->ops || !pool->ops->evict || retries == 0) {
1342 spin_unlock(&pool->lock);
1343 return -EINVAL;
1344 }
1345 for (i = 0; i < retries; i++) {
1346 if (list_empty(&pool->lru)) {
1347 spin_unlock(&pool->lock);
1348 return -EINVAL;
1349 }
1350 list_for_each_prev(pos, &pool->lru) {
1351 page = list_entry(pos, struct page, lru);
1352
1353 zhdr = page_address(page);
1354 if (test_bit(PAGE_HEADLESS, &page->private)) {
1355 /*
1356 * For non-headless pages, we wait to do this
1357 * until we have the page lock to avoid racing
1358 * with __z3fold_alloc(). Headless pages don't
1359 * have a lock (and __z3fold_alloc() will never
1360 * see them), but we still need to test and set
1361 * PAGE_CLAIMED to avoid racing with
1362 * z3fold_free(), so just do it now before
1363 * leaving the loop.
1364 */
1365 if (test_and_set_bit(PAGE_CLAIMED, &page->private))
1366 continue;
1367
1368 break;
1369 }
1370
1371 if (kref_get_unless_zero(&zhdr->refcount) == 0) {
1372 zhdr = NULL;
1373 break;
1374 }
1375 if (!z3fold_page_trylock(zhdr)) {
1376 if (kref_put(&zhdr->refcount,
1377 release_z3fold_page))
1378 atomic64_dec(&pool->pages_nr);
1379 zhdr = NULL;
1380 continue; /* can't evict at this point */
1381 }
1382
1383 /* test_and_set_bit is of course atomic, but we still
1384 * need to do it under page lock, otherwise checking
1385 * that bit in __z3fold_alloc wouldn't make sense
1386 */
1387 if (zhdr->foreign_handles ||
1388 test_and_set_bit(PAGE_CLAIMED, &page->private)) {
1389 if (kref_put(&zhdr->refcount,
1390 release_z3fold_page_locked))
1391 atomic64_dec(&pool->pages_nr);
1392 else
1393 z3fold_page_unlock(zhdr);
1394 zhdr = NULL;
1395 continue; /* can't evict such page */
1396 }
1397 list_del_init(&zhdr->buddy);
1398 zhdr->cpu = -1;
1399 break;
1400 }
1401
1402 if (!zhdr)
1403 break;
1404
1405 list_del_init(&page->lru);
1406 spin_unlock(&pool->lock);
1407
1408 if (!test_bit(PAGE_HEADLESS, &page->private)) {
1409 /*
1410 * We need encode the handles before unlocking, and
1411 * use our local slots structure because z3fold_free
1412 * can zero out zhdr->slots and we can't do much
1413 * about that
1414 */
1415 first_handle = 0;
1416 last_handle = 0;
1417 middle_handle = 0;
1418 memset(slots.slot, 0, sizeof(slots.slot));
1419 if (zhdr->first_chunks)
1420 first_handle = __encode_handle(zhdr, &slots,
1421 FIRST);
1422 if (zhdr->middle_chunks)
1423 middle_handle = __encode_handle(zhdr, &slots,
1424 MIDDLE);
1425 if (zhdr->last_chunks)
1426 last_handle = __encode_handle(zhdr, &slots,
1427 LAST);
1428 /*
1429 * it's safe to unlock here because we hold a
1430 * reference to this page
1431 */
1432 z3fold_page_unlock(zhdr);
1433 } else {
1434 first_handle = encode_handle(zhdr, HEADLESS);
1435 last_handle = middle_handle = 0;
1436 }
1437 /* Issue the eviction callback(s) */
1438 if (middle_handle) {
1439 ret = pool->ops->evict(pool, middle_handle);
1440 if (ret)
1441 goto next;
1442 }
1443 if (first_handle) {
1444 ret = pool->ops->evict(pool, first_handle);
1445 if (ret)
1446 goto next;
1447 }
1448 if (last_handle) {
1449 ret = pool->ops->evict(pool, last_handle);
1450 if (ret)
1451 goto next;
1452 }
1453 next:
1454 if (test_bit(PAGE_HEADLESS, &page->private)) {
1455 if (ret == 0) {
1456 free_z3fold_page(page, true);
1457 atomic64_dec(&pool->pages_nr);
1458 return 0;
1459 }
1460 spin_lock(&pool->lock);
1461 list_add(&page->lru, &pool->lru);
1462 spin_unlock(&pool->lock);
1463 clear_bit(PAGE_CLAIMED, &page->private);
1464 } else {
1465 struct z3fold_buddy_slots *slots = zhdr->slots;
1466 z3fold_page_lock(zhdr);
1467 if (kref_put(&zhdr->refcount,
1468 release_z3fold_page_locked)) {
1469 kmem_cache_free(pool->c_handle, slots);
1470 atomic64_dec(&pool->pages_nr);
1471 return 0;
1472 }
1473 /*
1474 * if we are here, the page is still not completely
1475 * free. Take the global pool lock then to be able
1476 * to add it back to the lru list
1477 */
1478 spin_lock(&pool->lock);
1479 list_add(&page->lru, &pool->lru);
1480 spin_unlock(&pool->lock);
1481 z3fold_page_unlock(zhdr);
1482 clear_bit(PAGE_CLAIMED, &page->private);
1483 }
1484
1485 /* We started off locked to we need to lock the pool back */
1486 spin_lock(&pool->lock);
1487 }
1488 spin_unlock(&pool->lock);
1489 return -EAGAIN;
1490 }
1491
1492 /**
1493 * z3fold_map() - maps the allocation associated with the given handle
1494 * @pool: pool in which the allocation resides
1495 * @handle: handle associated with the allocation to be mapped
1496 *
1497 * Extracts the buddy number from handle and constructs the pointer to the
1498 * correct starting chunk within the page.
1499 *
1500 * Returns: a pointer to the mapped allocation
1501 */
z3fold_map(struct z3fold_pool * pool,unsigned long handle)1502 static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1503 {
1504 struct z3fold_header *zhdr;
1505 struct page *page;
1506 void *addr;
1507 enum buddy buddy;
1508
1509 zhdr = get_z3fold_header(handle);
1510 addr = zhdr;
1511 page = virt_to_page(zhdr);
1512
1513 if (test_bit(PAGE_HEADLESS, &page->private))
1514 goto out;
1515
1516 buddy = handle_to_buddy(handle);
1517 switch (buddy) {
1518 case FIRST:
1519 addr += ZHDR_SIZE_ALIGNED;
1520 break;
1521 case MIDDLE:
1522 addr += zhdr->start_middle << CHUNK_SHIFT;
1523 set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1524 break;
1525 case LAST:
1526 addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1527 break;
1528 default:
1529 pr_err("unknown buddy id %d\n", buddy);
1530 WARN_ON(1);
1531 addr = NULL;
1532 break;
1533 }
1534
1535 if (addr)
1536 zhdr->mapped_count++;
1537 out:
1538 put_z3fold_header(zhdr);
1539 return addr;
1540 }
1541
1542 /**
1543 * z3fold_unmap() - unmaps the allocation associated with the given handle
1544 * @pool: pool in which the allocation resides
1545 * @handle: handle associated with the allocation to be unmapped
1546 */
z3fold_unmap(struct z3fold_pool * pool,unsigned long handle)1547 static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1548 {
1549 struct z3fold_header *zhdr;
1550 struct page *page;
1551 enum buddy buddy;
1552
1553 zhdr = get_z3fold_header(handle);
1554 page = virt_to_page(zhdr);
1555
1556 if (test_bit(PAGE_HEADLESS, &page->private))
1557 return;
1558
1559 buddy = handle_to_buddy(handle);
1560 if (buddy == MIDDLE)
1561 clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1562 zhdr->mapped_count--;
1563 put_z3fold_header(zhdr);
1564 }
1565
1566 /**
1567 * z3fold_get_pool_size() - gets the z3fold pool size in pages
1568 * @pool: pool whose size is being queried
1569 *
1570 * Returns: size in pages of the given pool.
1571 */
z3fold_get_pool_size(struct z3fold_pool * pool)1572 static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1573 {
1574 return atomic64_read(&pool->pages_nr);
1575 }
1576
z3fold_page_isolate(struct page * page,isolate_mode_t mode)1577 static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1578 {
1579 struct z3fold_header *zhdr;
1580 struct z3fold_pool *pool;
1581
1582 VM_BUG_ON_PAGE(!PageMovable(page), page);
1583 VM_BUG_ON_PAGE(PageIsolated(page), page);
1584
1585 if (test_bit(PAGE_HEADLESS, &page->private))
1586 return false;
1587
1588 zhdr = page_address(page);
1589 z3fold_page_lock(zhdr);
1590 if (test_bit(NEEDS_COMPACTING, &page->private) ||
1591 test_bit(PAGE_STALE, &page->private))
1592 goto out;
1593
1594 if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0)
1595 goto out;
1596
1597 if (test_and_set_bit(PAGE_CLAIMED, &page->private))
1598 goto out;
1599 pool = zhdr_to_pool(zhdr);
1600 spin_lock(&pool->lock);
1601 if (!list_empty(&zhdr->buddy))
1602 list_del_init(&zhdr->buddy);
1603 if (!list_empty(&page->lru))
1604 list_del_init(&page->lru);
1605 spin_unlock(&pool->lock);
1606
1607 kref_get(&zhdr->refcount);
1608 z3fold_page_unlock(zhdr);
1609 return true;
1610
1611 out:
1612 z3fold_page_unlock(zhdr);
1613 return false;
1614 }
1615
z3fold_page_migrate(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)1616 static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1617 struct page *page, enum migrate_mode mode)
1618 {
1619 struct z3fold_header *zhdr, *new_zhdr;
1620 struct z3fold_pool *pool;
1621 struct address_space *new_mapping;
1622
1623 VM_BUG_ON_PAGE(!PageMovable(page), page);
1624 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1625 VM_BUG_ON_PAGE(!test_bit(PAGE_CLAIMED, &page->private), page);
1626 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1627
1628 zhdr = page_address(page);
1629 pool = zhdr_to_pool(zhdr);
1630
1631 if (!z3fold_page_trylock(zhdr))
1632 return -EAGAIN;
1633 if (zhdr->mapped_count != 0 || zhdr->foreign_handles != 0) {
1634 z3fold_page_unlock(zhdr);
1635 clear_bit(PAGE_CLAIMED, &page->private);
1636 return -EBUSY;
1637 }
1638 if (work_pending(&zhdr->work)) {
1639 z3fold_page_unlock(zhdr);
1640 return -EAGAIN;
1641 }
1642 new_zhdr = page_address(newpage);
1643 memcpy(new_zhdr, zhdr, PAGE_SIZE);
1644 newpage->private = page->private;
1645 page->private = 0;
1646 z3fold_page_unlock(zhdr);
1647 spin_lock_init(&new_zhdr->page_lock);
1648 INIT_WORK(&new_zhdr->work, compact_page_work);
1649 /*
1650 * z3fold_page_isolate() ensures that new_zhdr->buddy is empty,
1651 * so we only have to reinitialize it.
1652 */
1653 INIT_LIST_HEAD(&new_zhdr->buddy);
1654 new_mapping = page_mapping(page);
1655 __ClearPageMovable(page);
1656 ClearPagePrivate(page);
1657
1658 get_page(newpage);
1659 z3fold_page_lock(new_zhdr);
1660 if (new_zhdr->first_chunks)
1661 encode_handle(new_zhdr, FIRST);
1662 if (new_zhdr->last_chunks)
1663 encode_handle(new_zhdr, LAST);
1664 if (new_zhdr->middle_chunks)
1665 encode_handle(new_zhdr, MIDDLE);
1666 set_bit(NEEDS_COMPACTING, &newpage->private);
1667 new_zhdr->cpu = smp_processor_id();
1668 spin_lock(&pool->lock);
1669 list_add(&newpage->lru, &pool->lru);
1670 spin_unlock(&pool->lock);
1671 __SetPageMovable(newpage, new_mapping);
1672 z3fold_page_unlock(new_zhdr);
1673
1674 queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1675
1676 page_mapcount_reset(page);
1677 clear_bit(PAGE_CLAIMED, &page->private);
1678 put_page(page);
1679 return 0;
1680 }
1681
z3fold_page_putback(struct page * page)1682 static void z3fold_page_putback(struct page *page)
1683 {
1684 struct z3fold_header *zhdr;
1685 struct z3fold_pool *pool;
1686
1687 zhdr = page_address(page);
1688 pool = zhdr_to_pool(zhdr);
1689
1690 z3fold_page_lock(zhdr);
1691 if (!list_empty(&zhdr->buddy))
1692 list_del_init(&zhdr->buddy);
1693 INIT_LIST_HEAD(&page->lru);
1694 if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1695 atomic64_dec(&pool->pages_nr);
1696 return;
1697 }
1698 spin_lock(&pool->lock);
1699 list_add(&page->lru, &pool->lru);
1700 spin_unlock(&pool->lock);
1701 clear_bit(PAGE_CLAIMED, &page->private);
1702 z3fold_page_unlock(zhdr);
1703 }
1704
1705 static const struct address_space_operations z3fold_aops = {
1706 .isolate_page = z3fold_page_isolate,
1707 .migratepage = z3fold_page_migrate,
1708 .putback_page = z3fold_page_putback,
1709 };
1710
1711 /*****************
1712 * zpool
1713 ****************/
1714
z3fold_zpool_evict(struct z3fold_pool * pool,unsigned long handle)1715 static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1716 {
1717 if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1718 return pool->zpool_ops->evict(pool->zpool, handle);
1719 else
1720 return -ENOENT;
1721 }
1722
1723 static const struct z3fold_ops z3fold_zpool_ops = {
1724 .evict = z3fold_zpool_evict
1725 };
1726
z3fold_zpool_create(const char * name,gfp_t gfp,const struct zpool_ops * zpool_ops,struct zpool * zpool)1727 static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1728 const struct zpool_ops *zpool_ops,
1729 struct zpool *zpool)
1730 {
1731 struct z3fold_pool *pool;
1732
1733 pool = z3fold_create_pool(name, gfp,
1734 zpool_ops ? &z3fold_zpool_ops : NULL);
1735 if (pool) {
1736 pool->zpool = zpool;
1737 pool->zpool_ops = zpool_ops;
1738 }
1739 return pool;
1740 }
1741
z3fold_zpool_destroy(void * pool)1742 static void z3fold_zpool_destroy(void *pool)
1743 {
1744 z3fold_destroy_pool(pool);
1745 }
1746
z3fold_zpool_malloc(void * pool,size_t size,gfp_t gfp,unsigned long * handle)1747 static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1748 unsigned long *handle)
1749 {
1750 return z3fold_alloc(pool, size, gfp, handle);
1751 }
z3fold_zpool_free(void * pool,unsigned long handle)1752 static void z3fold_zpool_free(void *pool, unsigned long handle)
1753 {
1754 z3fold_free(pool, handle);
1755 }
1756
z3fold_zpool_shrink(void * pool,unsigned int pages,unsigned int * reclaimed)1757 static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1758 unsigned int *reclaimed)
1759 {
1760 unsigned int total = 0;
1761 int ret = -EINVAL;
1762
1763 while (total < pages) {
1764 ret = z3fold_reclaim_page(pool, 8);
1765 if (ret < 0)
1766 break;
1767 total++;
1768 }
1769
1770 if (reclaimed)
1771 *reclaimed = total;
1772
1773 return ret;
1774 }
1775
z3fold_zpool_map(void * pool,unsigned long handle,enum zpool_mapmode mm)1776 static void *z3fold_zpool_map(void *pool, unsigned long handle,
1777 enum zpool_mapmode mm)
1778 {
1779 return z3fold_map(pool, handle);
1780 }
z3fold_zpool_unmap(void * pool,unsigned long handle)1781 static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1782 {
1783 z3fold_unmap(pool, handle);
1784 }
1785
z3fold_zpool_total_size(void * pool)1786 static u64 z3fold_zpool_total_size(void *pool)
1787 {
1788 return z3fold_get_pool_size(pool) * PAGE_SIZE;
1789 }
1790
1791 static struct zpool_driver z3fold_zpool_driver = {
1792 .type = "z3fold",
1793 .sleep_mapped = true,
1794 .owner = THIS_MODULE,
1795 .create = z3fold_zpool_create,
1796 .destroy = z3fold_zpool_destroy,
1797 .malloc = z3fold_zpool_malloc,
1798 .free = z3fold_zpool_free,
1799 .shrink = z3fold_zpool_shrink,
1800 .map = z3fold_zpool_map,
1801 .unmap = z3fold_zpool_unmap,
1802 .total_size = z3fold_zpool_total_size,
1803 };
1804
1805 MODULE_ALIAS("zpool-z3fold");
1806
init_z3fold(void)1807 static int __init init_z3fold(void)
1808 {
1809 int ret;
1810
1811 /* Make sure the z3fold header is not larger than the page size */
1812 BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1813 ret = z3fold_mount();
1814 if (ret)
1815 return ret;
1816
1817 zpool_register_driver(&z3fold_zpool_driver);
1818
1819 return 0;
1820 }
1821
exit_z3fold(void)1822 static void __exit exit_z3fold(void)
1823 {
1824 z3fold_unmount();
1825 zpool_unregister_driver(&z3fold_zpool_driver);
1826 }
1827
1828 module_init(init_z3fold);
1829 module_exit(exit_z3fold);
1830
1831 MODULE_LICENSE("GPL");
1832 MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1833 MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");
1834