1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3 * (C) Copyright IBM Corp. 2001, 2004
4 * Copyright (c) 1999-2000 Cisco, Inc.
5 * Copyright (c) 1999-2001 Motorola, Inc.
6 * Copyright (c) 2001-2003 Intel Corp.
7 * Copyright (c) 2001-2002 Nokia, Inc.
8 * Copyright (c) 2001 La Monte H.P. Yarroll
9 *
10 * This file is part of the SCTP kernel implementation
11 *
12 * These functions interface with the sockets layer to implement the
13 * SCTP Extensions for the Sockets API.
14 *
15 * Note that the descriptions from the specification are USER level
16 * functions--this file is the functions which populate the struct proto
17 * for SCTP which is the BOTTOM of the sockets interface.
18 *
19 * Please send any bug reports or fixes you make to the
20 * email address(es):
21 * lksctp developers <linux-sctp@vger.kernel.org>
22 *
23 * Written or modified by:
24 * La Monte H.P. Yarroll <piggy@acm.org>
25 * Narasimha Budihal <narsi@refcode.org>
26 * Karl Knutson <karl@athena.chicago.il.us>
27 * Jon Grimm <jgrimm@us.ibm.com>
28 * Xingang Guo <xingang.guo@intel.com>
29 * Daisy Chang <daisyc@us.ibm.com>
30 * Sridhar Samudrala <samudrala@us.ibm.com>
31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
32 * Ardelle Fan <ardelle.fan@intel.com>
33 * Ryan Layer <rmlayer@us.ibm.com>
34 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
35 * Kevin Gao <kevin.gao@intel.com>
36 */
37
38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39
40 #include <crypto/hash.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/wait.h>
44 #include <linux/time.h>
45 #include <linux/sched/signal.h>
46 #include <linux/ip.h>
47 #include <linux/capability.h>
48 #include <linux/fcntl.h>
49 #include <linux/poll.h>
50 #include <linux/init.h>
51 #include <linux/slab.h>
52 #include <linux/file.h>
53 #include <linux/compat.h>
54 #include <linux/rhashtable.h>
55
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/route.h>
59 #include <net/ipv6.h>
60 #include <net/inet_common.h>
61 #include <net/busy_poll.h>
62
63 #include <linux/socket.h> /* for sa_family_t */
64 #include <linux/export.h>
65 #include <net/sock.h>
66 #include <net/sctp/sctp.h>
67 #include <net/sctp/sm.h>
68 #include <net/sctp/stream_sched.h>
69
70 /* Forward declarations for internal helper functions. */
71 static bool sctp_writeable(struct sock *sk);
72 static void sctp_wfree(struct sk_buff *skb);
73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
74 size_t msg_len);
75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
77 static int sctp_wait_for_accept(struct sock *sk, long timeo);
78 static void sctp_wait_for_close(struct sock *sk, long timeo);
79 static void sctp_destruct_sock(struct sock *sk);
80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
81 union sctp_addr *addr, int len);
82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
86 static int sctp_send_asconf(struct sctp_association *asoc,
87 struct sctp_chunk *chunk);
88 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
89 static int sctp_autobind(struct sock *sk);
90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
91 struct sctp_association *assoc,
92 enum sctp_socket_type type);
93
94 static unsigned long sctp_memory_pressure;
95 static atomic_long_t sctp_memory_allocated;
96 struct percpu_counter sctp_sockets_allocated;
97
sctp_enter_memory_pressure(struct sock * sk)98 static void sctp_enter_memory_pressure(struct sock *sk)
99 {
100 sctp_memory_pressure = 1;
101 }
102
103
104 /* Get the sndbuf space available at the time on the association. */
sctp_wspace(struct sctp_association * asoc)105 static inline int sctp_wspace(struct sctp_association *asoc)
106 {
107 struct sock *sk = asoc->base.sk;
108
109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
110 : sk_stream_wspace(sk);
111 }
112
113 /* Increment the used sndbuf space count of the corresponding association by
114 * the size of the outgoing data chunk.
115 * Also, set the skb destructor for sndbuf accounting later.
116 *
117 * Since it is always 1-1 between chunk and skb, and also a new skb is always
118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
119 * destructor in the data chunk skb for the purpose of the sndbuf space
120 * tracking.
121 */
sctp_set_owner_w(struct sctp_chunk * chunk)122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
123 {
124 struct sctp_association *asoc = chunk->asoc;
125 struct sock *sk = asoc->base.sk;
126
127 /* The sndbuf space is tracked per association. */
128 sctp_association_hold(asoc);
129
130 if (chunk->shkey)
131 sctp_auth_shkey_hold(chunk->shkey);
132
133 skb_set_owner_w(chunk->skb, sk);
134
135 chunk->skb->destructor = sctp_wfree;
136 /* Save the chunk pointer in skb for sctp_wfree to use later. */
137 skb_shinfo(chunk->skb)->destructor_arg = chunk;
138
139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
142 sk_mem_charge(sk, chunk->skb->truesize);
143 }
144
sctp_clear_owner_w(struct sctp_chunk * chunk)145 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
146 {
147 skb_orphan(chunk->skb);
148 }
149
150 #define traverse_and_process() \
151 do { \
152 msg = chunk->msg; \
153 if (msg == prev_msg) \
154 continue; \
155 list_for_each_entry(c, &msg->chunks, frag_list) { \
156 if ((clear && asoc->base.sk == c->skb->sk) || \
157 (!clear && asoc->base.sk != c->skb->sk)) \
158 cb(c); \
159 } \
160 prev_msg = msg; \
161 } while (0)
162
sctp_for_each_tx_datachunk(struct sctp_association * asoc,bool clear,void (* cb)(struct sctp_chunk *))163 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
164 bool clear,
165 void (*cb)(struct sctp_chunk *))
166
167 {
168 struct sctp_datamsg *msg, *prev_msg = NULL;
169 struct sctp_outq *q = &asoc->outqueue;
170 struct sctp_chunk *chunk, *c;
171 struct sctp_transport *t;
172
173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 traverse_and_process();
176
177 list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 traverse_and_process();
179
180 list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 traverse_and_process();
182
183 list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 traverse_and_process();
185
186 list_for_each_entry(chunk, &q->out_chunk_list, list)
187 traverse_and_process();
188 }
189
sctp_for_each_rx_skb(struct sctp_association * asoc,struct sock * sk,void (* cb)(struct sk_buff *,struct sock *))190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 void (*cb)(struct sk_buff *, struct sock *))
192
193 {
194 struct sk_buff *skb, *tmp;
195
196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 cb(skb, sk);
198
199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 cb(skb, sk);
201
202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 cb(skb, sk);
204 }
205
206 /* Verify that this is a valid address. */
sctp_verify_addr(struct sock * sk,union sctp_addr * addr,int len)207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 int len)
209 {
210 struct sctp_af *af;
211
212 /* Verify basic sockaddr. */
213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 if (!af)
215 return -EINVAL;
216
217 /* Is this a valid SCTP address? */
218 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 return -EINVAL;
220
221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 return -EINVAL;
223
224 return 0;
225 }
226
227 /* Look up the association by its id. If this is not a UDP-style
228 * socket, the ID field is always ignored.
229 */
sctp_id2assoc(struct sock * sk,sctp_assoc_t id)230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231 {
232 struct sctp_association *asoc = NULL;
233
234 /* If this is not a UDP-style socket, assoc id should be ignored. */
235 if (!sctp_style(sk, UDP)) {
236 /* Return NULL if the socket state is not ESTABLISHED. It
237 * could be a TCP-style listening socket or a socket which
238 * hasn't yet called connect() to establish an association.
239 */
240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 return NULL;
242
243 /* Get the first and the only association from the list. */
244 if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 struct sctp_association, asocs);
247 return asoc;
248 }
249
250 /* Otherwise this is a UDP-style socket. */
251 if (id <= SCTP_ALL_ASSOC)
252 return NULL;
253
254 spin_lock_bh(&sctp_assocs_id_lock);
255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 asoc = NULL;
258 spin_unlock_bh(&sctp_assocs_id_lock);
259
260 return asoc;
261 }
262
263 /* Look up the transport from an address and an assoc id. If both address and
264 * id are specified, the associations matching the address and the id should be
265 * the same.
266 */
sctp_addr_id2transport(struct sock * sk,struct sockaddr_storage * addr,sctp_assoc_t id)267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 struct sockaddr_storage *addr,
269 sctp_assoc_t id)
270 {
271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 union sctp_addr *laddr = (union sctp_addr *)addr;
274 struct sctp_transport *transport;
275
276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 return NULL;
278
279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 laddr,
281 &transport);
282
283 if (!addr_asoc)
284 return NULL;
285
286 id_asoc = sctp_id2assoc(sk, id);
287 if (id_asoc && (id_asoc != addr_asoc))
288 return NULL;
289
290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 (union sctp_addr *)addr);
292
293 return transport;
294 }
295
296 /* API 3.1.2 bind() - UDP Style Syntax
297 * The syntax of bind() is,
298 *
299 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
300 *
301 * sd - the socket descriptor returned by socket().
302 * addr - the address structure (struct sockaddr_in or struct
303 * sockaddr_in6 [RFC 2553]),
304 * addr_len - the size of the address structure.
305 */
sctp_bind(struct sock * sk,struct sockaddr * addr,int addr_len)306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307 {
308 int retval = 0;
309
310 lock_sock(sk);
311
312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 addr, addr_len);
314
315 /* Disallow binding twice. */
316 if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 addr_len);
319 else
320 retval = -EINVAL;
321
322 release_sock(sk);
323
324 return retval;
325 }
326
327 static int sctp_get_port_local(struct sock *, union sctp_addr *);
328
329 /* Verify this is a valid sockaddr. */
sctp_sockaddr_af(struct sctp_sock * opt,union sctp_addr * addr,int len)330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 union sctp_addr *addr, int len)
332 {
333 struct sctp_af *af;
334
335 /* Check minimum size. */
336 if (len < sizeof (struct sockaddr))
337 return NULL;
338
339 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 return NULL;
341
342 if (addr->sa.sa_family == AF_INET6) {
343 if (len < SIN6_LEN_RFC2133)
344 return NULL;
345 /* V4 mapped address are really of AF_INET family */
346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 !opt->pf->af_supported(AF_INET, opt))
348 return NULL;
349 }
350
351 /* If we get this far, af is valid. */
352 af = sctp_get_af_specific(addr->sa.sa_family);
353
354 if (len < af->sockaddr_len)
355 return NULL;
356
357 return af;
358 }
359
sctp_auto_asconf_init(struct sctp_sock * sp)360 static void sctp_auto_asconf_init(struct sctp_sock *sp)
361 {
362 struct net *net = sock_net(&sp->inet.sk);
363
364 if (net->sctp.default_auto_asconf) {
365 spin_lock_bh(&net->sctp.addr_wq_lock);
366 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist);
367 spin_unlock_bh(&net->sctp.addr_wq_lock);
368 sp->do_auto_asconf = 1;
369 }
370 }
371
372 /* Bind a local address either to an endpoint or to an association. */
sctp_do_bind(struct sock * sk,union sctp_addr * addr,int len)373 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
374 {
375 struct net *net = sock_net(sk);
376 struct sctp_sock *sp = sctp_sk(sk);
377 struct sctp_endpoint *ep = sp->ep;
378 struct sctp_bind_addr *bp = &ep->base.bind_addr;
379 struct sctp_af *af;
380 unsigned short snum;
381 int ret = 0;
382
383 /* Common sockaddr verification. */
384 af = sctp_sockaddr_af(sp, addr, len);
385 if (!af) {
386 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
387 __func__, sk, addr, len);
388 return -EINVAL;
389 }
390
391 snum = ntohs(addr->v4.sin_port);
392
393 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
394 __func__, sk, &addr->sa, bp->port, snum, len);
395
396 /* PF specific bind() address verification. */
397 if (!sp->pf->bind_verify(sp, addr))
398 return -EADDRNOTAVAIL;
399
400 /* We must either be unbound, or bind to the same port.
401 * It's OK to allow 0 ports if we are already bound.
402 * We'll just inhert an already bound port in this case
403 */
404 if (bp->port) {
405 if (!snum)
406 snum = bp->port;
407 else if (snum != bp->port) {
408 pr_debug("%s: new port %d doesn't match existing port "
409 "%d\n", __func__, snum, bp->port);
410 return -EINVAL;
411 }
412 }
413
414 if (snum && inet_port_requires_bind_service(net, snum) &&
415 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
416 return -EACCES;
417
418 /* See if the address matches any of the addresses we may have
419 * already bound before checking against other endpoints.
420 */
421 if (sctp_bind_addr_match(bp, addr, sp))
422 return -EINVAL;
423
424 /* Make sure we are allowed to bind here.
425 * The function sctp_get_port_local() does duplicate address
426 * detection.
427 */
428 addr->v4.sin_port = htons(snum);
429 if (sctp_get_port_local(sk, addr))
430 return -EADDRINUSE;
431
432 /* Refresh ephemeral port. */
433 if (!bp->port) {
434 bp->port = inet_sk(sk)->inet_num;
435 sctp_auto_asconf_init(sp);
436 }
437
438 /* Add the address to the bind address list.
439 * Use GFP_ATOMIC since BHs will be disabled.
440 */
441 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
442 SCTP_ADDR_SRC, GFP_ATOMIC);
443
444 if (ret) {
445 sctp_put_port(sk);
446 return ret;
447 }
448 /* Copy back into socket for getsockname() use. */
449 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
450 sp->pf->to_sk_saddr(addr, sk);
451
452 return ret;
453 }
454
455 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
456 *
457 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
458 * at any one time. If a sender, after sending an ASCONF chunk, decides
459 * it needs to transfer another ASCONF Chunk, it MUST wait until the
460 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
461 * subsequent ASCONF. Note this restriction binds each side, so at any
462 * time two ASCONF may be in-transit on any given association (one sent
463 * from each endpoint).
464 */
sctp_send_asconf(struct sctp_association * asoc,struct sctp_chunk * chunk)465 static int sctp_send_asconf(struct sctp_association *asoc,
466 struct sctp_chunk *chunk)
467 {
468 int retval = 0;
469
470 /* If there is an outstanding ASCONF chunk, queue it for later
471 * transmission.
472 */
473 if (asoc->addip_last_asconf) {
474 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
475 goto out;
476 }
477
478 /* Hold the chunk until an ASCONF_ACK is received. */
479 sctp_chunk_hold(chunk);
480 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk);
481 if (retval)
482 sctp_chunk_free(chunk);
483 else
484 asoc->addip_last_asconf = chunk;
485
486 out:
487 return retval;
488 }
489
490 /* Add a list of addresses as bind addresses to local endpoint or
491 * association.
492 *
493 * Basically run through each address specified in the addrs/addrcnt
494 * array/length pair, determine if it is IPv6 or IPv4 and call
495 * sctp_do_bind() on it.
496 *
497 * If any of them fails, then the operation will be reversed and the
498 * ones that were added will be removed.
499 *
500 * Only sctp_setsockopt_bindx() is supposed to call this function.
501 */
sctp_bindx_add(struct sock * sk,struct sockaddr * addrs,int addrcnt)502 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
503 {
504 int cnt;
505 int retval = 0;
506 void *addr_buf;
507 struct sockaddr *sa_addr;
508 struct sctp_af *af;
509
510 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
511 addrs, addrcnt);
512
513 addr_buf = addrs;
514 for (cnt = 0; cnt < addrcnt; cnt++) {
515 /* The list may contain either IPv4 or IPv6 address;
516 * determine the address length for walking thru the list.
517 */
518 sa_addr = addr_buf;
519 af = sctp_get_af_specific(sa_addr->sa_family);
520 if (!af) {
521 retval = -EINVAL;
522 goto err_bindx_add;
523 }
524
525 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
526 af->sockaddr_len);
527
528 addr_buf += af->sockaddr_len;
529
530 err_bindx_add:
531 if (retval < 0) {
532 /* Failed. Cleanup the ones that have been added */
533 if (cnt > 0)
534 sctp_bindx_rem(sk, addrs, cnt);
535 return retval;
536 }
537 }
538
539 return retval;
540 }
541
542 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
543 * associations that are part of the endpoint indicating that a list of local
544 * addresses are added to the endpoint.
545 *
546 * If any of the addresses is already in the bind address list of the
547 * association, we do not send the chunk for that association. But it will not
548 * affect other associations.
549 *
550 * Only sctp_setsockopt_bindx() is supposed to call this function.
551 */
sctp_send_asconf_add_ip(struct sock * sk,struct sockaddr * addrs,int addrcnt)552 static int sctp_send_asconf_add_ip(struct sock *sk,
553 struct sockaddr *addrs,
554 int addrcnt)
555 {
556 struct sctp_sock *sp;
557 struct sctp_endpoint *ep;
558 struct sctp_association *asoc;
559 struct sctp_bind_addr *bp;
560 struct sctp_chunk *chunk;
561 struct sctp_sockaddr_entry *laddr;
562 union sctp_addr *addr;
563 union sctp_addr saveaddr;
564 void *addr_buf;
565 struct sctp_af *af;
566 struct list_head *p;
567 int i;
568 int retval = 0;
569
570 sp = sctp_sk(sk);
571 ep = sp->ep;
572
573 if (!ep->asconf_enable)
574 return retval;
575
576 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
577 __func__, sk, addrs, addrcnt);
578
579 list_for_each_entry(asoc, &ep->asocs, asocs) {
580 if (!asoc->peer.asconf_capable)
581 continue;
582
583 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
584 continue;
585
586 if (!sctp_state(asoc, ESTABLISHED))
587 continue;
588
589 /* Check if any address in the packed array of addresses is
590 * in the bind address list of the association. If so,
591 * do not send the asconf chunk to its peer, but continue with
592 * other associations.
593 */
594 addr_buf = addrs;
595 for (i = 0; i < addrcnt; i++) {
596 addr = addr_buf;
597 af = sctp_get_af_specific(addr->v4.sin_family);
598 if (!af) {
599 retval = -EINVAL;
600 goto out;
601 }
602
603 if (sctp_assoc_lookup_laddr(asoc, addr))
604 break;
605
606 addr_buf += af->sockaddr_len;
607 }
608 if (i < addrcnt)
609 continue;
610
611 /* Use the first valid address in bind addr list of
612 * association as Address Parameter of ASCONF CHUNK.
613 */
614 bp = &asoc->base.bind_addr;
615 p = bp->address_list.next;
616 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
617 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
618 addrcnt, SCTP_PARAM_ADD_IP);
619 if (!chunk) {
620 retval = -ENOMEM;
621 goto out;
622 }
623
624 /* Add the new addresses to the bind address list with
625 * use_as_src set to 0.
626 */
627 addr_buf = addrs;
628 for (i = 0; i < addrcnt; i++) {
629 addr = addr_buf;
630 af = sctp_get_af_specific(addr->v4.sin_family);
631 memcpy(&saveaddr, addr, af->sockaddr_len);
632 retval = sctp_add_bind_addr(bp, &saveaddr,
633 sizeof(saveaddr),
634 SCTP_ADDR_NEW, GFP_ATOMIC);
635 addr_buf += af->sockaddr_len;
636 }
637 if (asoc->src_out_of_asoc_ok) {
638 struct sctp_transport *trans;
639
640 list_for_each_entry(trans,
641 &asoc->peer.transport_addr_list, transports) {
642 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
643 2*asoc->pathmtu, 4380));
644 trans->ssthresh = asoc->peer.i.a_rwnd;
645 trans->rto = asoc->rto_initial;
646 sctp_max_rto(asoc, trans);
647 trans->rtt = trans->srtt = trans->rttvar = 0;
648 /* Clear the source and route cache */
649 sctp_transport_route(trans, NULL,
650 sctp_sk(asoc->base.sk));
651 }
652 }
653 retval = sctp_send_asconf(asoc, chunk);
654 }
655
656 out:
657 return retval;
658 }
659
660 /* Remove a list of addresses from bind addresses list. Do not remove the
661 * last address.
662 *
663 * Basically run through each address specified in the addrs/addrcnt
664 * array/length pair, determine if it is IPv6 or IPv4 and call
665 * sctp_del_bind() on it.
666 *
667 * If any of them fails, then the operation will be reversed and the
668 * ones that were removed will be added back.
669 *
670 * At least one address has to be left; if only one address is
671 * available, the operation will return -EBUSY.
672 *
673 * Only sctp_setsockopt_bindx() is supposed to call this function.
674 */
sctp_bindx_rem(struct sock * sk,struct sockaddr * addrs,int addrcnt)675 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
676 {
677 struct sctp_sock *sp = sctp_sk(sk);
678 struct sctp_endpoint *ep = sp->ep;
679 int cnt;
680 struct sctp_bind_addr *bp = &ep->base.bind_addr;
681 int retval = 0;
682 void *addr_buf;
683 union sctp_addr *sa_addr;
684 struct sctp_af *af;
685
686 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
687 __func__, sk, addrs, addrcnt);
688
689 addr_buf = addrs;
690 for (cnt = 0; cnt < addrcnt; cnt++) {
691 /* If the bind address list is empty or if there is only one
692 * bind address, there is nothing more to be removed (we need
693 * at least one address here).
694 */
695 if (list_empty(&bp->address_list) ||
696 (sctp_list_single_entry(&bp->address_list))) {
697 retval = -EBUSY;
698 goto err_bindx_rem;
699 }
700
701 sa_addr = addr_buf;
702 af = sctp_get_af_specific(sa_addr->sa.sa_family);
703 if (!af) {
704 retval = -EINVAL;
705 goto err_bindx_rem;
706 }
707
708 if (!af->addr_valid(sa_addr, sp, NULL)) {
709 retval = -EADDRNOTAVAIL;
710 goto err_bindx_rem;
711 }
712
713 if (sa_addr->v4.sin_port &&
714 sa_addr->v4.sin_port != htons(bp->port)) {
715 retval = -EINVAL;
716 goto err_bindx_rem;
717 }
718
719 if (!sa_addr->v4.sin_port)
720 sa_addr->v4.sin_port = htons(bp->port);
721
722 /* FIXME - There is probably a need to check if sk->sk_saddr and
723 * sk->sk_rcv_addr are currently set to one of the addresses to
724 * be removed. This is something which needs to be looked into
725 * when we are fixing the outstanding issues with multi-homing
726 * socket routing and failover schemes. Refer to comments in
727 * sctp_do_bind(). -daisy
728 */
729 retval = sctp_del_bind_addr(bp, sa_addr);
730
731 addr_buf += af->sockaddr_len;
732 err_bindx_rem:
733 if (retval < 0) {
734 /* Failed. Add the ones that has been removed back */
735 if (cnt > 0)
736 sctp_bindx_add(sk, addrs, cnt);
737 return retval;
738 }
739 }
740
741 return retval;
742 }
743
744 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
745 * the associations that are part of the endpoint indicating that a list of
746 * local addresses are removed from the endpoint.
747 *
748 * If any of the addresses is already in the bind address list of the
749 * association, we do not send the chunk for that association. But it will not
750 * affect other associations.
751 *
752 * Only sctp_setsockopt_bindx() is supposed to call this function.
753 */
sctp_send_asconf_del_ip(struct sock * sk,struct sockaddr * addrs,int addrcnt)754 static int sctp_send_asconf_del_ip(struct sock *sk,
755 struct sockaddr *addrs,
756 int addrcnt)
757 {
758 struct sctp_sock *sp;
759 struct sctp_endpoint *ep;
760 struct sctp_association *asoc;
761 struct sctp_transport *transport;
762 struct sctp_bind_addr *bp;
763 struct sctp_chunk *chunk;
764 union sctp_addr *laddr;
765 void *addr_buf;
766 struct sctp_af *af;
767 struct sctp_sockaddr_entry *saddr;
768 int i;
769 int retval = 0;
770 int stored = 0;
771
772 chunk = NULL;
773 sp = sctp_sk(sk);
774 ep = sp->ep;
775
776 if (!ep->asconf_enable)
777 return retval;
778
779 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
780 __func__, sk, addrs, addrcnt);
781
782 list_for_each_entry(asoc, &ep->asocs, asocs) {
783
784 if (!asoc->peer.asconf_capable)
785 continue;
786
787 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
788 continue;
789
790 if (!sctp_state(asoc, ESTABLISHED))
791 continue;
792
793 /* Check if any address in the packed array of addresses is
794 * not present in the bind address list of the association.
795 * If so, do not send the asconf chunk to its peer, but
796 * continue with other associations.
797 */
798 addr_buf = addrs;
799 for (i = 0; i < addrcnt; i++) {
800 laddr = addr_buf;
801 af = sctp_get_af_specific(laddr->v4.sin_family);
802 if (!af) {
803 retval = -EINVAL;
804 goto out;
805 }
806
807 if (!sctp_assoc_lookup_laddr(asoc, laddr))
808 break;
809
810 addr_buf += af->sockaddr_len;
811 }
812 if (i < addrcnt)
813 continue;
814
815 /* Find one address in the association's bind address list
816 * that is not in the packed array of addresses. This is to
817 * make sure that we do not delete all the addresses in the
818 * association.
819 */
820 bp = &asoc->base.bind_addr;
821 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
822 addrcnt, sp);
823 if ((laddr == NULL) && (addrcnt == 1)) {
824 if (asoc->asconf_addr_del_pending)
825 continue;
826 asoc->asconf_addr_del_pending =
827 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
828 if (asoc->asconf_addr_del_pending == NULL) {
829 retval = -ENOMEM;
830 goto out;
831 }
832 asoc->asconf_addr_del_pending->sa.sa_family =
833 addrs->sa_family;
834 asoc->asconf_addr_del_pending->v4.sin_port =
835 htons(bp->port);
836 if (addrs->sa_family == AF_INET) {
837 struct sockaddr_in *sin;
838
839 sin = (struct sockaddr_in *)addrs;
840 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
841 } else if (addrs->sa_family == AF_INET6) {
842 struct sockaddr_in6 *sin6;
843
844 sin6 = (struct sockaddr_in6 *)addrs;
845 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
846 }
847
848 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
849 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
850 asoc->asconf_addr_del_pending);
851
852 asoc->src_out_of_asoc_ok = 1;
853 stored = 1;
854 goto skip_mkasconf;
855 }
856
857 if (laddr == NULL)
858 return -EINVAL;
859
860 /* We do not need RCU protection throughout this loop
861 * because this is done under a socket lock from the
862 * setsockopt call.
863 */
864 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
865 SCTP_PARAM_DEL_IP);
866 if (!chunk) {
867 retval = -ENOMEM;
868 goto out;
869 }
870
871 skip_mkasconf:
872 /* Reset use_as_src flag for the addresses in the bind address
873 * list that are to be deleted.
874 */
875 addr_buf = addrs;
876 for (i = 0; i < addrcnt; i++) {
877 laddr = addr_buf;
878 af = sctp_get_af_specific(laddr->v4.sin_family);
879 list_for_each_entry(saddr, &bp->address_list, list) {
880 if (sctp_cmp_addr_exact(&saddr->a, laddr))
881 saddr->state = SCTP_ADDR_DEL;
882 }
883 addr_buf += af->sockaddr_len;
884 }
885
886 /* Update the route and saddr entries for all the transports
887 * as some of the addresses in the bind address list are
888 * about to be deleted and cannot be used as source addresses.
889 */
890 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
891 transports) {
892 sctp_transport_route(transport, NULL,
893 sctp_sk(asoc->base.sk));
894 }
895
896 if (stored)
897 /* We don't need to transmit ASCONF */
898 continue;
899 retval = sctp_send_asconf(asoc, chunk);
900 }
901 out:
902 return retval;
903 }
904
905 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
sctp_asconf_mgmt(struct sctp_sock * sp,struct sctp_sockaddr_entry * addrw)906 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
907 {
908 struct sock *sk = sctp_opt2sk(sp);
909 union sctp_addr *addr;
910 struct sctp_af *af;
911
912 /* It is safe to write port space in caller. */
913 addr = &addrw->a;
914 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
915 af = sctp_get_af_specific(addr->sa.sa_family);
916 if (!af)
917 return -EINVAL;
918 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
919 return -EINVAL;
920
921 if (addrw->state == SCTP_ADDR_NEW)
922 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
923 else
924 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
925 }
926
927 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
928 *
929 * API 8.1
930 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
931 * int flags);
932 *
933 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
934 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
935 * or IPv6 addresses.
936 *
937 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
938 * Section 3.1.2 for this usage.
939 *
940 * addrs is a pointer to an array of one or more socket addresses. Each
941 * address is contained in its appropriate structure (i.e. struct
942 * sockaddr_in or struct sockaddr_in6) the family of the address type
943 * must be used to distinguish the address length (note that this
944 * representation is termed a "packed array" of addresses). The caller
945 * specifies the number of addresses in the array with addrcnt.
946 *
947 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
948 * -1, and sets errno to the appropriate error code.
949 *
950 * For SCTP, the port given in each socket address must be the same, or
951 * sctp_bindx() will fail, setting errno to EINVAL.
952 *
953 * The flags parameter is formed from the bitwise OR of zero or more of
954 * the following currently defined flags:
955 *
956 * SCTP_BINDX_ADD_ADDR
957 *
958 * SCTP_BINDX_REM_ADDR
959 *
960 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
961 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
962 * addresses from the association. The two flags are mutually exclusive;
963 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
964 * not remove all addresses from an association; sctp_bindx() will
965 * reject such an attempt with EINVAL.
966 *
967 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
968 * additional addresses with an endpoint after calling bind(). Or use
969 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
970 * socket is associated with so that no new association accepted will be
971 * associated with those addresses. If the endpoint supports dynamic
972 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
973 * endpoint to send the appropriate message to the peer to change the
974 * peers address lists.
975 *
976 * Adding and removing addresses from a connected association is
977 * optional functionality. Implementations that do not support this
978 * functionality should return EOPNOTSUPP.
979 *
980 * Basically do nothing but copying the addresses from user to kernel
981 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
982 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
983 * from userspace.
984 *
985 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
986 * it.
987 *
988 * sk The sk of the socket
989 * addrs The pointer to the addresses
990 * addrssize Size of the addrs buffer
991 * op Operation to perform (add or remove, see the flags of
992 * sctp_bindx)
993 *
994 * Returns 0 if ok, <0 errno code on error.
995 */
sctp_setsockopt_bindx(struct sock * sk,struct sockaddr * addrs,int addrs_size,int op)996 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs,
997 int addrs_size, int op)
998 {
999 int err;
1000 int addrcnt = 0;
1001 int walk_size = 0;
1002 struct sockaddr *sa_addr;
1003 void *addr_buf = addrs;
1004 struct sctp_af *af;
1005
1006 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
1007 __func__, sk, addr_buf, addrs_size, op);
1008
1009 if (unlikely(addrs_size <= 0))
1010 return -EINVAL;
1011
1012 /* Walk through the addrs buffer and count the number of addresses. */
1013 while (walk_size < addrs_size) {
1014 if (walk_size + sizeof(sa_family_t) > addrs_size)
1015 return -EINVAL;
1016
1017 sa_addr = addr_buf;
1018 af = sctp_get_af_specific(sa_addr->sa_family);
1019
1020 /* If the address family is not supported or if this address
1021 * causes the address buffer to overflow return EINVAL.
1022 */
1023 if (!af || (walk_size + af->sockaddr_len) > addrs_size)
1024 return -EINVAL;
1025 addrcnt++;
1026 addr_buf += af->sockaddr_len;
1027 walk_size += af->sockaddr_len;
1028 }
1029
1030 /* Do the work. */
1031 switch (op) {
1032 case SCTP_BINDX_ADD_ADDR:
1033 /* Allow security module to validate bindx addresses. */
1034 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1035 addrs, addrs_size);
1036 if (err)
1037 return err;
1038 err = sctp_bindx_add(sk, addrs, addrcnt);
1039 if (err)
1040 return err;
1041 return sctp_send_asconf_add_ip(sk, addrs, addrcnt);
1042 case SCTP_BINDX_REM_ADDR:
1043 err = sctp_bindx_rem(sk, addrs, addrcnt);
1044 if (err)
1045 return err;
1046 return sctp_send_asconf_del_ip(sk, addrs, addrcnt);
1047
1048 default:
1049 return -EINVAL;
1050 }
1051 }
1052
sctp_bind_add(struct sock * sk,struct sockaddr * addrs,int addrlen)1053 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs,
1054 int addrlen)
1055 {
1056 int err;
1057
1058 lock_sock(sk);
1059 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR);
1060 release_sock(sk);
1061 return err;
1062 }
1063
sctp_connect_new_asoc(struct sctp_endpoint * ep,const union sctp_addr * daddr,const struct sctp_initmsg * init,struct sctp_transport ** tp)1064 static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1065 const union sctp_addr *daddr,
1066 const struct sctp_initmsg *init,
1067 struct sctp_transport **tp)
1068 {
1069 struct sctp_association *asoc;
1070 struct sock *sk = ep->base.sk;
1071 struct net *net = sock_net(sk);
1072 enum sctp_scope scope;
1073 int err;
1074
1075 if (sctp_endpoint_is_peeled_off(ep, daddr))
1076 return -EADDRNOTAVAIL;
1077
1078 if (!ep->base.bind_addr.port) {
1079 if (sctp_autobind(sk))
1080 return -EAGAIN;
1081 } else {
1082 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) &&
1083 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1084 return -EACCES;
1085 }
1086
1087 scope = sctp_scope(daddr);
1088 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1089 if (!asoc)
1090 return -ENOMEM;
1091
1092 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1093 if (err < 0)
1094 goto free;
1095
1096 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1097 if (!*tp) {
1098 err = -ENOMEM;
1099 goto free;
1100 }
1101
1102 if (!init)
1103 return 0;
1104
1105 if (init->sinit_num_ostreams) {
1106 __u16 outcnt = init->sinit_num_ostreams;
1107
1108 asoc->c.sinit_num_ostreams = outcnt;
1109 /* outcnt has been changed, need to re-init stream */
1110 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
1111 if (err)
1112 goto free;
1113 }
1114
1115 if (init->sinit_max_instreams)
1116 asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1117
1118 if (init->sinit_max_attempts)
1119 asoc->max_init_attempts = init->sinit_max_attempts;
1120
1121 if (init->sinit_max_init_timeo)
1122 asoc->max_init_timeo =
1123 msecs_to_jiffies(init->sinit_max_init_timeo);
1124
1125 return 0;
1126 free:
1127 sctp_association_free(asoc);
1128 return err;
1129 }
1130
sctp_connect_add_peer(struct sctp_association * asoc,union sctp_addr * daddr,int addr_len)1131 static int sctp_connect_add_peer(struct sctp_association *asoc,
1132 union sctp_addr *daddr, int addr_len)
1133 {
1134 struct sctp_endpoint *ep = asoc->ep;
1135 struct sctp_association *old;
1136 struct sctp_transport *t;
1137 int err;
1138
1139 err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
1140 if (err)
1141 return err;
1142
1143 old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
1144 if (old && old != asoc)
1145 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1146 : -EALREADY;
1147
1148 if (sctp_endpoint_is_peeled_off(ep, daddr))
1149 return -EADDRNOTAVAIL;
1150
1151 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1152 if (!t)
1153 return -ENOMEM;
1154
1155 return 0;
1156 }
1157
1158 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1159 *
1160 * Common routine for handling connect() and sctp_connectx().
1161 * Connect will come in with just a single address.
1162 */
__sctp_connect(struct sock * sk,struct sockaddr * kaddrs,int addrs_size,int flags,sctp_assoc_t * assoc_id)1163 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1164 int addrs_size, int flags, sctp_assoc_t *assoc_id)
1165 {
1166 struct sctp_sock *sp = sctp_sk(sk);
1167 struct sctp_endpoint *ep = sp->ep;
1168 struct sctp_transport *transport;
1169 struct sctp_association *asoc;
1170 void *addr_buf = kaddrs;
1171 union sctp_addr *daddr;
1172 struct sctp_af *af;
1173 int walk_size, err;
1174 long timeo;
1175
1176 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1177 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1178 return -EISCONN;
1179
1180 daddr = addr_buf;
1181 af = sctp_get_af_specific(daddr->sa.sa_family);
1182 if (!af || af->sockaddr_len > addrs_size)
1183 return -EINVAL;
1184
1185 err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
1186 if (err)
1187 return err;
1188
1189 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1190 if (asoc)
1191 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1192 : -EALREADY;
1193
1194 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
1195 if (err)
1196 return err;
1197 asoc = transport->asoc;
1198
1199 addr_buf += af->sockaddr_len;
1200 walk_size = af->sockaddr_len;
1201 while (walk_size < addrs_size) {
1202 err = -EINVAL;
1203 if (walk_size + sizeof(sa_family_t) > addrs_size)
1204 goto out_free;
1205
1206 daddr = addr_buf;
1207 af = sctp_get_af_specific(daddr->sa.sa_family);
1208 if (!af || af->sockaddr_len + walk_size > addrs_size)
1209 goto out_free;
1210
1211 if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1212 goto out_free;
1213
1214 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
1215 if (err)
1216 goto out_free;
1217
1218 addr_buf += af->sockaddr_len;
1219 walk_size += af->sockaddr_len;
1220 }
1221
1222 /* In case the user of sctp_connectx() wants an association
1223 * id back, assign one now.
1224 */
1225 if (assoc_id) {
1226 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1227 if (err < 0)
1228 goto out_free;
1229 }
1230
1231 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1232 if (err < 0)
1233 goto out_free;
1234
1235 /* Initialize sk's dport and daddr for getpeername() */
1236 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1237 sp->pf->to_sk_daddr(daddr, sk);
1238 sk->sk_err = 0;
1239
1240 if (assoc_id)
1241 *assoc_id = asoc->assoc_id;
1242
1243 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1244 return sctp_wait_for_connect(asoc, &timeo);
1245
1246 out_free:
1247 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1248 __func__, asoc, kaddrs, err);
1249 sctp_association_free(asoc);
1250 return err;
1251 }
1252
1253 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1254 *
1255 * API 8.9
1256 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1257 * sctp_assoc_t *asoc);
1258 *
1259 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1260 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1261 * or IPv6 addresses.
1262 *
1263 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1264 * Section 3.1.2 for this usage.
1265 *
1266 * addrs is a pointer to an array of one or more socket addresses. Each
1267 * address is contained in its appropriate structure (i.e. struct
1268 * sockaddr_in or struct sockaddr_in6) the family of the address type
1269 * must be used to distengish the address length (note that this
1270 * representation is termed a "packed array" of addresses). The caller
1271 * specifies the number of addresses in the array with addrcnt.
1272 *
1273 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1274 * the association id of the new association. On failure, sctp_connectx()
1275 * returns -1, and sets errno to the appropriate error code. The assoc_id
1276 * is not touched by the kernel.
1277 *
1278 * For SCTP, the port given in each socket address must be the same, or
1279 * sctp_connectx() will fail, setting errno to EINVAL.
1280 *
1281 * An application can use sctp_connectx to initiate an association with
1282 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1283 * allows a caller to specify multiple addresses at which a peer can be
1284 * reached. The way the SCTP stack uses the list of addresses to set up
1285 * the association is implementation dependent. This function only
1286 * specifies that the stack will try to make use of all the addresses in
1287 * the list when needed.
1288 *
1289 * Note that the list of addresses passed in is only used for setting up
1290 * the association. It does not necessarily equal the set of addresses
1291 * the peer uses for the resulting association. If the caller wants to
1292 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1293 * retrieve them after the association has been set up.
1294 *
1295 * Basically do nothing but copying the addresses from user to kernel
1296 * land and invoking either sctp_connectx(). This is used for tunneling
1297 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1298 *
1299 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1300 * it.
1301 *
1302 * sk The sk of the socket
1303 * addrs The pointer to the addresses
1304 * addrssize Size of the addrs buffer
1305 *
1306 * Returns >=0 if ok, <0 errno code on error.
1307 */
__sctp_setsockopt_connectx(struct sock * sk,struct sockaddr * kaddrs,int addrs_size,sctp_assoc_t * assoc_id)1308 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs,
1309 int addrs_size, sctp_assoc_t *assoc_id)
1310 {
1311 int err = 0, flags = 0;
1312
1313 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1314 __func__, sk, kaddrs, addrs_size);
1315
1316 /* make sure the 1st addr's sa_family is accessible later */
1317 if (unlikely(addrs_size < sizeof(sa_family_t)))
1318 return -EINVAL;
1319
1320 /* Allow security module to validate connectx addresses. */
1321 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1322 (struct sockaddr *)kaddrs,
1323 addrs_size);
1324 if (err)
1325 return err;
1326
1327 /* in-kernel sockets don't generally have a file allocated to them
1328 * if all they do is call sock_create_kern().
1329 */
1330 if (sk->sk_socket->file)
1331 flags = sk->sk_socket->file->f_flags;
1332
1333 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1334 }
1335
1336 /*
1337 * This is an older interface. It's kept for backward compatibility
1338 * to the option that doesn't provide association id.
1339 */
sctp_setsockopt_connectx_old(struct sock * sk,struct sockaddr * kaddrs,int addrs_size)1340 static int sctp_setsockopt_connectx_old(struct sock *sk,
1341 struct sockaddr *kaddrs,
1342 int addrs_size)
1343 {
1344 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL);
1345 }
1346
1347 /*
1348 * New interface for the API. The since the API is done with a socket
1349 * option, to make it simple we feed back the association id is as a return
1350 * indication to the call. Error is always negative and association id is
1351 * always positive.
1352 */
sctp_setsockopt_connectx(struct sock * sk,struct sockaddr * kaddrs,int addrs_size)1353 static int sctp_setsockopt_connectx(struct sock *sk,
1354 struct sockaddr *kaddrs,
1355 int addrs_size)
1356 {
1357 sctp_assoc_t assoc_id = 0;
1358 int err = 0;
1359
1360 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id);
1361
1362 if (err)
1363 return err;
1364 else
1365 return assoc_id;
1366 }
1367
1368 /*
1369 * New (hopefully final) interface for the API.
1370 * We use the sctp_getaddrs_old structure so that use-space library
1371 * can avoid any unnecessary allocations. The only different part
1372 * is that we store the actual length of the address buffer into the
1373 * addrs_num structure member. That way we can re-use the existing
1374 * code.
1375 */
1376 #ifdef CONFIG_COMPAT
1377 struct compat_sctp_getaddrs_old {
1378 sctp_assoc_t assoc_id;
1379 s32 addr_num;
1380 compat_uptr_t addrs; /* struct sockaddr * */
1381 };
1382 #endif
1383
sctp_getsockopt_connectx3(struct sock * sk,int len,char __user * optval,int __user * optlen)1384 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1385 char __user *optval,
1386 int __user *optlen)
1387 {
1388 struct sctp_getaddrs_old param;
1389 sctp_assoc_t assoc_id = 0;
1390 struct sockaddr *kaddrs;
1391 int err = 0;
1392
1393 #ifdef CONFIG_COMPAT
1394 if (in_compat_syscall()) {
1395 struct compat_sctp_getaddrs_old param32;
1396
1397 if (len < sizeof(param32))
1398 return -EINVAL;
1399 if (copy_from_user(¶m32, optval, sizeof(param32)))
1400 return -EFAULT;
1401
1402 param.assoc_id = param32.assoc_id;
1403 param.addr_num = param32.addr_num;
1404 param.addrs = compat_ptr(param32.addrs);
1405 } else
1406 #endif
1407 {
1408 if (len < sizeof(param))
1409 return -EINVAL;
1410 if (copy_from_user(¶m, optval, sizeof(param)))
1411 return -EFAULT;
1412 }
1413
1414 kaddrs = memdup_user(param.addrs, param.addr_num);
1415 if (IS_ERR(kaddrs))
1416 return PTR_ERR(kaddrs);
1417
1418 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id);
1419 kfree(kaddrs);
1420 if (err == 0 || err == -EINPROGRESS) {
1421 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1422 return -EFAULT;
1423 if (put_user(sizeof(assoc_id), optlen))
1424 return -EFAULT;
1425 }
1426
1427 return err;
1428 }
1429
1430 /* API 3.1.4 close() - UDP Style Syntax
1431 * Applications use close() to perform graceful shutdown (as described in
1432 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1433 * by a UDP-style socket.
1434 *
1435 * The syntax is
1436 *
1437 * ret = close(int sd);
1438 *
1439 * sd - the socket descriptor of the associations to be closed.
1440 *
1441 * To gracefully shutdown a specific association represented by the
1442 * UDP-style socket, an application should use the sendmsg() call,
1443 * passing no user data, but including the appropriate flag in the
1444 * ancillary data (see Section xxxx).
1445 *
1446 * If sd in the close() call is a branched-off socket representing only
1447 * one association, the shutdown is performed on that association only.
1448 *
1449 * 4.1.6 close() - TCP Style Syntax
1450 *
1451 * Applications use close() to gracefully close down an association.
1452 *
1453 * The syntax is:
1454 *
1455 * int close(int sd);
1456 *
1457 * sd - the socket descriptor of the association to be closed.
1458 *
1459 * After an application calls close() on a socket descriptor, no further
1460 * socket operations will succeed on that descriptor.
1461 *
1462 * API 7.1.4 SO_LINGER
1463 *
1464 * An application using the TCP-style socket can use this option to
1465 * perform the SCTP ABORT primitive. The linger option structure is:
1466 *
1467 * struct linger {
1468 * int l_onoff; // option on/off
1469 * int l_linger; // linger time
1470 * };
1471 *
1472 * To enable the option, set l_onoff to 1. If the l_linger value is set
1473 * to 0, calling close() is the same as the ABORT primitive. If the
1474 * value is set to a negative value, the setsockopt() call will return
1475 * an error. If the value is set to a positive value linger_time, the
1476 * close() can be blocked for at most linger_time ms. If the graceful
1477 * shutdown phase does not finish during this period, close() will
1478 * return but the graceful shutdown phase continues in the system.
1479 */
sctp_close(struct sock * sk,long timeout)1480 static void sctp_close(struct sock *sk, long timeout)
1481 {
1482 struct net *net = sock_net(sk);
1483 struct sctp_endpoint *ep;
1484 struct sctp_association *asoc;
1485 struct list_head *pos, *temp;
1486 unsigned int data_was_unread;
1487
1488 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1489
1490 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1491 sk->sk_shutdown = SHUTDOWN_MASK;
1492 inet_sk_set_state(sk, SCTP_SS_CLOSING);
1493
1494 ep = sctp_sk(sk)->ep;
1495
1496 /* Clean up any skbs sitting on the receive queue. */
1497 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1498 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1499
1500 /* Walk all associations on an endpoint. */
1501 list_for_each_safe(pos, temp, &ep->asocs) {
1502 asoc = list_entry(pos, struct sctp_association, asocs);
1503
1504 if (sctp_style(sk, TCP)) {
1505 /* A closed association can still be in the list if
1506 * it belongs to a TCP-style listening socket that is
1507 * not yet accepted. If so, free it. If not, send an
1508 * ABORT or SHUTDOWN based on the linger options.
1509 */
1510 if (sctp_state(asoc, CLOSED)) {
1511 sctp_association_free(asoc);
1512 continue;
1513 }
1514 }
1515
1516 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1517 !skb_queue_empty(&asoc->ulpq.reasm) ||
1518 !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1519 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1520 struct sctp_chunk *chunk;
1521
1522 chunk = sctp_make_abort_user(asoc, NULL, 0);
1523 sctp_primitive_ABORT(net, asoc, chunk);
1524 } else
1525 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1526 }
1527
1528 /* On a TCP-style socket, block for at most linger_time if set. */
1529 if (sctp_style(sk, TCP) && timeout)
1530 sctp_wait_for_close(sk, timeout);
1531
1532 /* This will run the backlog queue. */
1533 release_sock(sk);
1534
1535 /* Supposedly, no process has access to the socket, but
1536 * the net layers still may.
1537 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1538 * held and that should be grabbed before socket lock.
1539 */
1540 spin_lock_bh(&net->sctp.addr_wq_lock);
1541 bh_lock_sock_nested(sk);
1542
1543 /* Hold the sock, since sk_common_release() will put sock_put()
1544 * and we have just a little more cleanup.
1545 */
1546 sock_hold(sk);
1547 sk_common_release(sk);
1548
1549 bh_unlock_sock(sk);
1550 spin_unlock_bh(&net->sctp.addr_wq_lock);
1551
1552 sock_put(sk);
1553
1554 SCTP_DBG_OBJCNT_DEC(sock);
1555 }
1556
1557 /* Handle EPIPE error. */
sctp_error(struct sock * sk,int flags,int err)1558 static int sctp_error(struct sock *sk, int flags, int err)
1559 {
1560 if (err == -EPIPE)
1561 err = sock_error(sk) ? : -EPIPE;
1562 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1563 send_sig(SIGPIPE, current, 0);
1564 return err;
1565 }
1566
1567 /* API 3.1.3 sendmsg() - UDP Style Syntax
1568 *
1569 * An application uses sendmsg() and recvmsg() calls to transmit data to
1570 * and receive data from its peer.
1571 *
1572 * ssize_t sendmsg(int socket, const struct msghdr *message,
1573 * int flags);
1574 *
1575 * socket - the socket descriptor of the endpoint.
1576 * message - pointer to the msghdr structure which contains a single
1577 * user message and possibly some ancillary data.
1578 *
1579 * See Section 5 for complete description of the data
1580 * structures.
1581 *
1582 * flags - flags sent or received with the user message, see Section
1583 * 5 for complete description of the flags.
1584 *
1585 * Note: This function could use a rewrite especially when explicit
1586 * connect support comes in.
1587 */
1588 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1589
1590 static int sctp_msghdr_parse(const struct msghdr *msg,
1591 struct sctp_cmsgs *cmsgs);
1592
sctp_sendmsg_parse(struct sock * sk,struct sctp_cmsgs * cmsgs,struct sctp_sndrcvinfo * srinfo,const struct msghdr * msg,size_t msg_len)1593 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1594 struct sctp_sndrcvinfo *srinfo,
1595 const struct msghdr *msg, size_t msg_len)
1596 {
1597 __u16 sflags;
1598 int err;
1599
1600 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1601 return -EPIPE;
1602
1603 if (msg_len > sk->sk_sndbuf)
1604 return -EMSGSIZE;
1605
1606 memset(cmsgs, 0, sizeof(*cmsgs));
1607 err = sctp_msghdr_parse(msg, cmsgs);
1608 if (err) {
1609 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1610 return err;
1611 }
1612
1613 memset(srinfo, 0, sizeof(*srinfo));
1614 if (cmsgs->srinfo) {
1615 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1616 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1617 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1618 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1619 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1620 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1621 }
1622
1623 if (cmsgs->sinfo) {
1624 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1625 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1626 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1627 srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1628 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1629 }
1630
1631 if (cmsgs->prinfo) {
1632 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1633 SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1634 cmsgs->prinfo->pr_policy);
1635 }
1636
1637 sflags = srinfo->sinfo_flags;
1638 if (!sflags && msg_len)
1639 return 0;
1640
1641 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1642 return -EINVAL;
1643
1644 if (((sflags & SCTP_EOF) && msg_len > 0) ||
1645 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1646 return -EINVAL;
1647
1648 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1649 return -EINVAL;
1650
1651 return 0;
1652 }
1653
sctp_sendmsg_new_asoc(struct sock * sk,__u16 sflags,struct sctp_cmsgs * cmsgs,union sctp_addr * daddr,struct sctp_transport ** tp)1654 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1655 struct sctp_cmsgs *cmsgs,
1656 union sctp_addr *daddr,
1657 struct sctp_transport **tp)
1658 {
1659 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1660 struct sctp_association *asoc;
1661 struct cmsghdr *cmsg;
1662 __be32 flowinfo = 0;
1663 struct sctp_af *af;
1664 int err;
1665
1666 *tp = NULL;
1667
1668 if (sflags & (SCTP_EOF | SCTP_ABORT))
1669 return -EINVAL;
1670
1671 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1672 sctp_sstate(sk, CLOSING)))
1673 return -EADDRNOTAVAIL;
1674
1675 /* Label connection socket for first association 1-to-many
1676 * style for client sequence socket()->sendmsg(). This
1677 * needs to be done before sctp_assoc_add_peer() as that will
1678 * set up the initial packet that needs to account for any
1679 * security ip options (CIPSO/CALIPSO) added to the packet.
1680 */
1681 af = sctp_get_af_specific(daddr->sa.sa_family);
1682 if (!af)
1683 return -EINVAL;
1684 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1685 (struct sockaddr *)daddr,
1686 af->sockaddr_len);
1687 if (err < 0)
1688 return err;
1689
1690 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
1691 if (err)
1692 return err;
1693 asoc = (*tp)->asoc;
1694
1695 if (!cmsgs->addrs_msg)
1696 return 0;
1697
1698 if (daddr->sa.sa_family == AF_INET6)
1699 flowinfo = daddr->v6.sin6_flowinfo;
1700
1701 /* sendv addr list parse */
1702 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1703 union sctp_addr _daddr;
1704 int dlen;
1705
1706 if (cmsg->cmsg_level != IPPROTO_SCTP ||
1707 (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1708 cmsg->cmsg_type != SCTP_DSTADDRV6))
1709 continue;
1710
1711 daddr = &_daddr;
1712 memset(daddr, 0, sizeof(*daddr));
1713 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1714 if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1715 if (dlen < sizeof(struct in_addr)) {
1716 err = -EINVAL;
1717 goto free;
1718 }
1719
1720 dlen = sizeof(struct in_addr);
1721 daddr->v4.sin_family = AF_INET;
1722 daddr->v4.sin_port = htons(asoc->peer.port);
1723 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1724 } else {
1725 if (dlen < sizeof(struct in6_addr)) {
1726 err = -EINVAL;
1727 goto free;
1728 }
1729
1730 dlen = sizeof(struct in6_addr);
1731 daddr->v6.sin6_flowinfo = flowinfo;
1732 daddr->v6.sin6_family = AF_INET6;
1733 daddr->v6.sin6_port = htons(asoc->peer.port);
1734 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1735 }
1736
1737 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
1738 if (err)
1739 goto free;
1740 }
1741
1742 return 0;
1743
1744 free:
1745 sctp_association_free(asoc);
1746 return err;
1747 }
1748
sctp_sendmsg_check_sflags(struct sctp_association * asoc,__u16 sflags,struct msghdr * msg,size_t msg_len)1749 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1750 __u16 sflags, struct msghdr *msg,
1751 size_t msg_len)
1752 {
1753 struct sock *sk = asoc->base.sk;
1754 struct net *net = sock_net(sk);
1755
1756 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1757 return -EPIPE;
1758
1759 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1760 !sctp_state(asoc, ESTABLISHED))
1761 return 0;
1762
1763 if (sflags & SCTP_EOF) {
1764 pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1765 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1766
1767 return 0;
1768 }
1769
1770 if (sflags & SCTP_ABORT) {
1771 struct sctp_chunk *chunk;
1772
1773 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1774 if (!chunk)
1775 return -ENOMEM;
1776
1777 pr_debug("%s: aborting association:%p\n", __func__, asoc);
1778 sctp_primitive_ABORT(net, asoc, chunk);
1779 iov_iter_revert(&msg->msg_iter, msg_len);
1780
1781 return 0;
1782 }
1783
1784 return 1;
1785 }
1786
sctp_sendmsg_to_asoc(struct sctp_association * asoc,struct msghdr * msg,size_t msg_len,struct sctp_transport * transport,struct sctp_sndrcvinfo * sinfo)1787 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1788 struct msghdr *msg, size_t msg_len,
1789 struct sctp_transport *transport,
1790 struct sctp_sndrcvinfo *sinfo)
1791 {
1792 struct sock *sk = asoc->base.sk;
1793 struct sctp_sock *sp = sctp_sk(sk);
1794 struct net *net = sock_net(sk);
1795 struct sctp_datamsg *datamsg;
1796 bool wait_connect = false;
1797 struct sctp_chunk *chunk;
1798 long timeo;
1799 int err;
1800
1801 if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1802 err = -EINVAL;
1803 goto err;
1804 }
1805
1806 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1807 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1808 if (err)
1809 goto err;
1810 }
1811
1812 if (sp->disable_fragments && msg_len > asoc->frag_point) {
1813 err = -EMSGSIZE;
1814 goto err;
1815 }
1816
1817 if (asoc->pmtu_pending) {
1818 if (sp->param_flags & SPP_PMTUD_ENABLE)
1819 sctp_assoc_sync_pmtu(asoc);
1820 asoc->pmtu_pending = 0;
1821 }
1822
1823 if (sctp_wspace(asoc) < (int)msg_len)
1824 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1825
1826 if (sk_under_memory_pressure(sk))
1827 sk_mem_reclaim(sk);
1828
1829 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1830 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1831 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1832 if (err)
1833 goto err;
1834 if (unlikely(sinfo->sinfo_stream >= asoc->stream.outcnt)) {
1835 err = -EINVAL;
1836 goto err;
1837 }
1838 }
1839
1840 if (sctp_state(asoc, CLOSED)) {
1841 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1842 if (err)
1843 goto err;
1844
1845 if (asoc->ep->intl_enable) {
1846 timeo = sock_sndtimeo(sk, 0);
1847 err = sctp_wait_for_connect(asoc, &timeo);
1848 if (err) {
1849 err = -ESRCH;
1850 goto err;
1851 }
1852 } else {
1853 wait_connect = true;
1854 }
1855
1856 pr_debug("%s: we associated primitively\n", __func__);
1857 }
1858
1859 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1860 if (IS_ERR(datamsg)) {
1861 err = PTR_ERR(datamsg);
1862 goto err;
1863 }
1864
1865 asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1866
1867 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1868 sctp_chunk_hold(chunk);
1869 sctp_set_owner_w(chunk);
1870 chunk->transport = transport;
1871 }
1872
1873 err = sctp_primitive_SEND(net, asoc, datamsg);
1874 if (err) {
1875 sctp_datamsg_free(datamsg);
1876 goto err;
1877 }
1878
1879 pr_debug("%s: we sent primitively\n", __func__);
1880
1881 sctp_datamsg_put(datamsg);
1882
1883 if (unlikely(wait_connect)) {
1884 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1885 sctp_wait_for_connect(asoc, &timeo);
1886 }
1887
1888 err = msg_len;
1889
1890 err:
1891 return err;
1892 }
1893
sctp_sendmsg_get_daddr(struct sock * sk,const struct msghdr * msg,struct sctp_cmsgs * cmsgs)1894 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1895 const struct msghdr *msg,
1896 struct sctp_cmsgs *cmsgs)
1897 {
1898 union sctp_addr *daddr = NULL;
1899 int err;
1900
1901 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1902 int len = msg->msg_namelen;
1903
1904 if (len > sizeof(*daddr))
1905 len = sizeof(*daddr);
1906
1907 daddr = (union sctp_addr *)msg->msg_name;
1908
1909 err = sctp_verify_addr(sk, daddr, len);
1910 if (err)
1911 return ERR_PTR(err);
1912 }
1913
1914 return daddr;
1915 }
1916
sctp_sendmsg_update_sinfo(struct sctp_association * asoc,struct sctp_sndrcvinfo * sinfo,struct sctp_cmsgs * cmsgs)1917 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1918 struct sctp_sndrcvinfo *sinfo,
1919 struct sctp_cmsgs *cmsgs)
1920 {
1921 if (!cmsgs->srinfo && !cmsgs->sinfo) {
1922 sinfo->sinfo_stream = asoc->default_stream;
1923 sinfo->sinfo_ppid = asoc->default_ppid;
1924 sinfo->sinfo_context = asoc->default_context;
1925 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1926
1927 if (!cmsgs->prinfo)
1928 sinfo->sinfo_flags = asoc->default_flags;
1929 }
1930
1931 if (!cmsgs->srinfo && !cmsgs->prinfo)
1932 sinfo->sinfo_timetolive = asoc->default_timetolive;
1933
1934 if (cmsgs->authinfo) {
1935 /* Reuse sinfo_tsn to indicate that authinfo was set and
1936 * sinfo_ssn to save the keyid on tx path.
1937 */
1938 sinfo->sinfo_tsn = 1;
1939 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1940 }
1941 }
1942
sctp_sendmsg(struct sock * sk,struct msghdr * msg,size_t msg_len)1943 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1944 {
1945 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1946 struct sctp_transport *transport = NULL;
1947 struct sctp_sndrcvinfo _sinfo, *sinfo;
1948 struct sctp_association *asoc, *tmp;
1949 struct sctp_cmsgs cmsgs;
1950 union sctp_addr *daddr;
1951 bool new = false;
1952 __u16 sflags;
1953 int err;
1954
1955 /* Parse and get snd_info */
1956 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
1957 if (err)
1958 goto out;
1959
1960 sinfo = &_sinfo;
1961 sflags = sinfo->sinfo_flags;
1962
1963 /* Get daddr from msg */
1964 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
1965 if (IS_ERR(daddr)) {
1966 err = PTR_ERR(daddr);
1967 goto out;
1968 }
1969
1970 lock_sock(sk);
1971
1972 /* SCTP_SENDALL process */
1973 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1974 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1975 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1976 msg_len);
1977 if (err == 0)
1978 continue;
1979 if (err < 0)
1980 goto out_unlock;
1981
1982 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
1983
1984 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1985 NULL, sinfo);
1986 if (err < 0)
1987 goto out_unlock;
1988
1989 iov_iter_revert(&msg->msg_iter, err);
1990 }
1991
1992 goto out_unlock;
1993 }
1994
1995 /* Get and check or create asoc */
1996 if (daddr) {
1997 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1998 if (asoc) {
1999 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2000 msg_len);
2001 if (err <= 0)
2002 goto out_unlock;
2003 } else {
2004 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2005 &transport);
2006 if (err)
2007 goto out_unlock;
2008
2009 asoc = transport->asoc;
2010 new = true;
2011 }
2012
2013 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2014 transport = NULL;
2015 } else {
2016 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2017 if (!asoc) {
2018 err = -EPIPE;
2019 goto out_unlock;
2020 }
2021
2022 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2023 if (err <= 0)
2024 goto out_unlock;
2025 }
2026
2027 /* Update snd_info with the asoc */
2028 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2029
2030 /* Send msg to the asoc */
2031 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2032 if (err < 0 && err != -ESRCH && new)
2033 sctp_association_free(asoc);
2034
2035 out_unlock:
2036 release_sock(sk);
2037 out:
2038 return sctp_error(sk, msg->msg_flags, err);
2039 }
2040
2041 /* This is an extended version of skb_pull() that removes the data from the
2042 * start of a skb even when data is spread across the list of skb's in the
2043 * frag_list. len specifies the total amount of data that needs to be removed.
2044 * when 'len' bytes could be removed from the skb, it returns 0.
2045 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2046 * could not be removed.
2047 */
sctp_skb_pull(struct sk_buff * skb,int len)2048 static int sctp_skb_pull(struct sk_buff *skb, int len)
2049 {
2050 struct sk_buff *list;
2051 int skb_len = skb_headlen(skb);
2052 int rlen;
2053
2054 if (len <= skb_len) {
2055 __skb_pull(skb, len);
2056 return 0;
2057 }
2058 len -= skb_len;
2059 __skb_pull(skb, skb_len);
2060
2061 skb_walk_frags(skb, list) {
2062 rlen = sctp_skb_pull(list, len);
2063 skb->len -= (len-rlen);
2064 skb->data_len -= (len-rlen);
2065
2066 if (!rlen)
2067 return 0;
2068
2069 len = rlen;
2070 }
2071
2072 return len;
2073 }
2074
2075 /* API 3.1.3 recvmsg() - UDP Style Syntax
2076 *
2077 * ssize_t recvmsg(int socket, struct msghdr *message,
2078 * int flags);
2079 *
2080 * socket - the socket descriptor of the endpoint.
2081 * message - pointer to the msghdr structure which contains a single
2082 * user message and possibly some ancillary data.
2083 *
2084 * See Section 5 for complete description of the data
2085 * structures.
2086 *
2087 * flags - flags sent or received with the user message, see Section
2088 * 5 for complete description of the flags.
2089 */
sctp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)2090 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2091 int noblock, int flags, int *addr_len)
2092 {
2093 struct sctp_ulpevent *event = NULL;
2094 struct sctp_sock *sp = sctp_sk(sk);
2095 struct sk_buff *skb, *head_skb;
2096 int copied;
2097 int err = 0;
2098 int skb_len;
2099
2100 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2101 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2102 addr_len);
2103
2104 lock_sock(sk);
2105
2106 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2107 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2108 err = -ENOTCONN;
2109 goto out;
2110 }
2111
2112 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2113 if (!skb)
2114 goto out;
2115
2116 /* Get the total length of the skb including any skb's in the
2117 * frag_list.
2118 */
2119 skb_len = skb->len;
2120
2121 copied = skb_len;
2122 if (copied > len)
2123 copied = len;
2124
2125 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2126
2127 event = sctp_skb2event(skb);
2128
2129 if (err)
2130 goto out_free;
2131
2132 if (event->chunk && event->chunk->head_skb)
2133 head_skb = event->chunk->head_skb;
2134 else
2135 head_skb = skb;
2136 sock_recv_ts_and_drops(msg, sk, head_skb);
2137 if (sctp_ulpevent_is_notification(event)) {
2138 msg->msg_flags |= MSG_NOTIFICATION;
2139 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2140 } else {
2141 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2142 }
2143
2144 /* Check if we allow SCTP_NXTINFO. */
2145 if (sp->recvnxtinfo)
2146 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2147 /* Check if we allow SCTP_RCVINFO. */
2148 if (sp->recvrcvinfo)
2149 sctp_ulpevent_read_rcvinfo(event, msg);
2150 /* Check if we allow SCTP_SNDRCVINFO. */
2151 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2152 sctp_ulpevent_read_sndrcvinfo(event, msg);
2153
2154 err = copied;
2155
2156 /* If skb's length exceeds the user's buffer, update the skb and
2157 * push it back to the receive_queue so that the next call to
2158 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2159 */
2160 if (skb_len > copied) {
2161 msg->msg_flags &= ~MSG_EOR;
2162 if (flags & MSG_PEEK)
2163 goto out_free;
2164 sctp_skb_pull(skb, copied);
2165 skb_queue_head(&sk->sk_receive_queue, skb);
2166
2167 /* When only partial message is copied to the user, increase
2168 * rwnd by that amount. If all the data in the skb is read,
2169 * rwnd is updated when the event is freed.
2170 */
2171 if (!sctp_ulpevent_is_notification(event))
2172 sctp_assoc_rwnd_increase(event->asoc, copied);
2173 goto out;
2174 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2175 (event->msg_flags & MSG_EOR))
2176 msg->msg_flags |= MSG_EOR;
2177 else
2178 msg->msg_flags &= ~MSG_EOR;
2179
2180 out_free:
2181 if (flags & MSG_PEEK) {
2182 /* Release the skb reference acquired after peeking the skb in
2183 * sctp_skb_recv_datagram().
2184 */
2185 kfree_skb(skb);
2186 } else {
2187 /* Free the event which includes releasing the reference to
2188 * the owner of the skb, freeing the skb and updating the
2189 * rwnd.
2190 */
2191 sctp_ulpevent_free(event);
2192 }
2193 out:
2194 release_sock(sk);
2195 return err;
2196 }
2197
2198 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2199 *
2200 * This option is a on/off flag. If enabled no SCTP message
2201 * fragmentation will be performed. Instead if a message being sent
2202 * exceeds the current PMTU size, the message will NOT be sent and
2203 * instead a error will be indicated to the user.
2204 */
sctp_setsockopt_disable_fragments(struct sock * sk,int * val,unsigned int optlen)2205 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val,
2206 unsigned int optlen)
2207 {
2208 if (optlen < sizeof(int))
2209 return -EINVAL;
2210 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1;
2211 return 0;
2212 }
2213
sctp_setsockopt_events(struct sock * sk,__u8 * sn_type,unsigned int optlen)2214 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type,
2215 unsigned int optlen)
2216 {
2217 struct sctp_sock *sp = sctp_sk(sk);
2218 struct sctp_association *asoc;
2219 int i;
2220
2221 if (optlen > sizeof(struct sctp_event_subscribe))
2222 return -EINVAL;
2223
2224 for (i = 0; i < optlen; i++)
2225 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2226 sn_type[i]);
2227
2228 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2229 asoc->subscribe = sctp_sk(sk)->subscribe;
2230
2231 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2232 * if there is no data to be sent or retransmit, the stack will
2233 * immediately send up this notification.
2234 */
2235 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2236 struct sctp_ulpevent *event;
2237
2238 asoc = sctp_id2assoc(sk, 0);
2239 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2240 event = sctp_ulpevent_make_sender_dry_event(asoc,
2241 GFP_USER | __GFP_NOWARN);
2242 if (!event)
2243 return -ENOMEM;
2244
2245 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2246 }
2247 }
2248
2249 return 0;
2250 }
2251
2252 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2253 *
2254 * This socket option is applicable to the UDP-style socket only. When
2255 * set it will cause associations that are idle for more than the
2256 * specified number of seconds to automatically close. An association
2257 * being idle is defined an association that has NOT sent or received
2258 * user data. The special value of '0' indicates that no automatic
2259 * close of any associations should be performed. The option expects an
2260 * integer defining the number of seconds of idle time before an
2261 * association is closed.
2262 */
sctp_setsockopt_autoclose(struct sock * sk,u32 * optval,unsigned int optlen)2263 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval,
2264 unsigned int optlen)
2265 {
2266 struct sctp_sock *sp = sctp_sk(sk);
2267 struct net *net = sock_net(sk);
2268
2269 /* Applicable to UDP-style socket only */
2270 if (sctp_style(sk, TCP))
2271 return -EOPNOTSUPP;
2272 if (optlen != sizeof(int))
2273 return -EINVAL;
2274
2275 sp->autoclose = *optval;
2276 if (sp->autoclose > net->sctp.max_autoclose)
2277 sp->autoclose = net->sctp.max_autoclose;
2278
2279 return 0;
2280 }
2281
2282 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2283 *
2284 * Applications can enable or disable heartbeats for any peer address of
2285 * an association, modify an address's heartbeat interval, force a
2286 * heartbeat to be sent immediately, and adjust the address's maximum
2287 * number of retransmissions sent before an address is considered
2288 * unreachable. The following structure is used to access and modify an
2289 * address's parameters:
2290 *
2291 * struct sctp_paddrparams {
2292 * sctp_assoc_t spp_assoc_id;
2293 * struct sockaddr_storage spp_address;
2294 * uint32_t spp_hbinterval;
2295 * uint16_t spp_pathmaxrxt;
2296 * uint32_t spp_pathmtu;
2297 * uint32_t spp_sackdelay;
2298 * uint32_t spp_flags;
2299 * uint32_t spp_ipv6_flowlabel;
2300 * uint8_t spp_dscp;
2301 * };
2302 *
2303 * spp_assoc_id - (one-to-many style socket) This is filled in the
2304 * application, and identifies the association for
2305 * this query.
2306 * spp_address - This specifies which address is of interest.
2307 * spp_hbinterval - This contains the value of the heartbeat interval,
2308 * in milliseconds. If a value of zero
2309 * is present in this field then no changes are to
2310 * be made to this parameter.
2311 * spp_pathmaxrxt - This contains the maximum number of
2312 * retransmissions before this address shall be
2313 * considered unreachable. If a value of zero
2314 * is present in this field then no changes are to
2315 * be made to this parameter.
2316 * spp_pathmtu - When Path MTU discovery is disabled the value
2317 * specified here will be the "fixed" path mtu.
2318 * Note that if the spp_address field is empty
2319 * then all associations on this address will
2320 * have this fixed path mtu set upon them.
2321 *
2322 * spp_sackdelay - When delayed sack is enabled, this value specifies
2323 * the number of milliseconds that sacks will be delayed
2324 * for. This value will apply to all addresses of an
2325 * association if the spp_address field is empty. Note
2326 * also, that if delayed sack is enabled and this
2327 * value is set to 0, no change is made to the last
2328 * recorded delayed sack timer value.
2329 *
2330 * spp_flags - These flags are used to control various features
2331 * on an association. The flag field may contain
2332 * zero or more of the following options.
2333 *
2334 * SPP_HB_ENABLE - Enable heartbeats on the
2335 * specified address. Note that if the address
2336 * field is empty all addresses for the association
2337 * have heartbeats enabled upon them.
2338 *
2339 * SPP_HB_DISABLE - Disable heartbeats on the
2340 * speicifed address. Note that if the address
2341 * field is empty all addresses for the association
2342 * will have their heartbeats disabled. Note also
2343 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2344 * mutually exclusive, only one of these two should
2345 * be specified. Enabling both fields will have
2346 * undetermined results.
2347 *
2348 * SPP_HB_DEMAND - Request a user initiated heartbeat
2349 * to be made immediately.
2350 *
2351 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2352 * heartbeat delayis to be set to the value of 0
2353 * milliseconds.
2354 *
2355 * SPP_PMTUD_ENABLE - This field will enable PMTU
2356 * discovery upon the specified address. Note that
2357 * if the address feild is empty then all addresses
2358 * on the association are effected.
2359 *
2360 * SPP_PMTUD_DISABLE - This field will disable PMTU
2361 * discovery upon the specified address. Note that
2362 * if the address feild is empty then all addresses
2363 * on the association are effected. Not also that
2364 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2365 * exclusive. Enabling both will have undetermined
2366 * results.
2367 *
2368 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2369 * on delayed sack. The time specified in spp_sackdelay
2370 * is used to specify the sack delay for this address. Note
2371 * that if spp_address is empty then all addresses will
2372 * enable delayed sack and take on the sack delay
2373 * value specified in spp_sackdelay.
2374 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2375 * off delayed sack. If the spp_address field is blank then
2376 * delayed sack is disabled for the entire association. Note
2377 * also that this field is mutually exclusive to
2378 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2379 * results.
2380 *
2381 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
2382 * setting of the IPV6 flow label value. The value is
2383 * contained in the spp_ipv6_flowlabel field.
2384 * Upon retrieval, this flag will be set to indicate that
2385 * the spp_ipv6_flowlabel field has a valid value returned.
2386 * If a specific destination address is set (in the
2387 * spp_address field), then the value returned is that of
2388 * the address. If just an association is specified (and
2389 * no address), then the association's default flow label
2390 * is returned. If neither an association nor a destination
2391 * is specified, then the socket's default flow label is
2392 * returned. For non-IPv6 sockets, this flag will be left
2393 * cleared.
2394 *
2395 * SPP_DSCP: Setting this flag enables the setting of the
2396 * Differentiated Services Code Point (DSCP) value
2397 * associated with either the association or a specific
2398 * address. The value is obtained in the spp_dscp field.
2399 * Upon retrieval, this flag will be set to indicate that
2400 * the spp_dscp field has a valid value returned. If a
2401 * specific destination address is set when called (in the
2402 * spp_address field), then that specific destination
2403 * address's DSCP value is returned. If just an association
2404 * is specified, then the association's default DSCP is
2405 * returned. If neither an association nor a destination is
2406 * specified, then the socket's default DSCP is returned.
2407 *
2408 * spp_ipv6_flowlabel
2409 * - This field is used in conjunction with the
2410 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2411 * The 20 least significant bits are used for the flow
2412 * label. This setting has precedence over any IPv6-layer
2413 * setting.
2414 *
2415 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
2416 * and contains the DSCP. The 6 most significant bits are
2417 * used for the DSCP. This setting has precedence over any
2418 * IPv4- or IPv6- layer setting.
2419 */
sctp_apply_peer_addr_params(struct sctp_paddrparams * params,struct sctp_transport * trans,struct sctp_association * asoc,struct sctp_sock * sp,int hb_change,int pmtud_change,int sackdelay_change)2420 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2421 struct sctp_transport *trans,
2422 struct sctp_association *asoc,
2423 struct sctp_sock *sp,
2424 int hb_change,
2425 int pmtud_change,
2426 int sackdelay_change)
2427 {
2428 int error;
2429
2430 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2431 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
2432 trans->asoc, trans);
2433 if (error)
2434 return error;
2435 }
2436
2437 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2438 * this field is ignored. Note also that a value of zero indicates
2439 * the current setting should be left unchanged.
2440 */
2441 if (params->spp_flags & SPP_HB_ENABLE) {
2442
2443 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2444 * set. This lets us use 0 value when this flag
2445 * is set.
2446 */
2447 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2448 params->spp_hbinterval = 0;
2449
2450 if (params->spp_hbinterval ||
2451 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2452 if (trans) {
2453 trans->hbinterval =
2454 msecs_to_jiffies(params->spp_hbinterval);
2455 } else if (asoc) {
2456 asoc->hbinterval =
2457 msecs_to_jiffies(params->spp_hbinterval);
2458 } else {
2459 sp->hbinterval = params->spp_hbinterval;
2460 }
2461 }
2462 }
2463
2464 if (hb_change) {
2465 if (trans) {
2466 trans->param_flags =
2467 (trans->param_flags & ~SPP_HB) | hb_change;
2468 } else if (asoc) {
2469 asoc->param_flags =
2470 (asoc->param_flags & ~SPP_HB) | hb_change;
2471 } else {
2472 sp->param_flags =
2473 (sp->param_flags & ~SPP_HB) | hb_change;
2474 }
2475 }
2476
2477 /* When Path MTU discovery is disabled the value specified here will
2478 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2479 * include the flag SPP_PMTUD_DISABLE for this field to have any
2480 * effect).
2481 */
2482 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2483 if (trans) {
2484 trans->pathmtu = params->spp_pathmtu;
2485 sctp_assoc_sync_pmtu(asoc);
2486 } else if (asoc) {
2487 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2488 } else {
2489 sp->pathmtu = params->spp_pathmtu;
2490 }
2491 }
2492
2493 if (pmtud_change) {
2494 if (trans) {
2495 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2496 (params->spp_flags & SPP_PMTUD_ENABLE);
2497 trans->param_flags =
2498 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2499 if (update) {
2500 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2501 sctp_assoc_sync_pmtu(asoc);
2502 }
2503 } else if (asoc) {
2504 asoc->param_flags =
2505 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2506 } else {
2507 sp->param_flags =
2508 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2509 }
2510 }
2511
2512 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2513 * value of this field is ignored. Note also that a value of zero
2514 * indicates the current setting should be left unchanged.
2515 */
2516 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2517 if (trans) {
2518 trans->sackdelay =
2519 msecs_to_jiffies(params->spp_sackdelay);
2520 } else if (asoc) {
2521 asoc->sackdelay =
2522 msecs_to_jiffies(params->spp_sackdelay);
2523 } else {
2524 sp->sackdelay = params->spp_sackdelay;
2525 }
2526 }
2527
2528 if (sackdelay_change) {
2529 if (trans) {
2530 trans->param_flags =
2531 (trans->param_flags & ~SPP_SACKDELAY) |
2532 sackdelay_change;
2533 } else if (asoc) {
2534 asoc->param_flags =
2535 (asoc->param_flags & ~SPP_SACKDELAY) |
2536 sackdelay_change;
2537 } else {
2538 sp->param_flags =
2539 (sp->param_flags & ~SPP_SACKDELAY) |
2540 sackdelay_change;
2541 }
2542 }
2543
2544 /* Note that a value of zero indicates the current setting should be
2545 left unchanged.
2546 */
2547 if (params->spp_pathmaxrxt) {
2548 if (trans) {
2549 trans->pathmaxrxt = params->spp_pathmaxrxt;
2550 } else if (asoc) {
2551 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2552 } else {
2553 sp->pathmaxrxt = params->spp_pathmaxrxt;
2554 }
2555 }
2556
2557 if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2558 if (trans) {
2559 if (trans->ipaddr.sa.sa_family == AF_INET6) {
2560 trans->flowlabel = params->spp_ipv6_flowlabel &
2561 SCTP_FLOWLABEL_VAL_MASK;
2562 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2563 }
2564 } else if (asoc) {
2565 struct sctp_transport *t;
2566
2567 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2568 transports) {
2569 if (t->ipaddr.sa.sa_family != AF_INET6)
2570 continue;
2571 t->flowlabel = params->spp_ipv6_flowlabel &
2572 SCTP_FLOWLABEL_VAL_MASK;
2573 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2574 }
2575 asoc->flowlabel = params->spp_ipv6_flowlabel &
2576 SCTP_FLOWLABEL_VAL_MASK;
2577 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2578 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2579 sp->flowlabel = params->spp_ipv6_flowlabel &
2580 SCTP_FLOWLABEL_VAL_MASK;
2581 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2582 }
2583 }
2584
2585 if (params->spp_flags & SPP_DSCP) {
2586 if (trans) {
2587 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2588 trans->dscp |= SCTP_DSCP_SET_MASK;
2589 } else if (asoc) {
2590 struct sctp_transport *t;
2591
2592 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2593 transports) {
2594 t->dscp = params->spp_dscp &
2595 SCTP_DSCP_VAL_MASK;
2596 t->dscp |= SCTP_DSCP_SET_MASK;
2597 }
2598 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2599 asoc->dscp |= SCTP_DSCP_SET_MASK;
2600 } else {
2601 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2602 sp->dscp |= SCTP_DSCP_SET_MASK;
2603 }
2604 }
2605
2606 return 0;
2607 }
2608
sctp_setsockopt_peer_addr_params(struct sock * sk,struct sctp_paddrparams * params,unsigned int optlen)2609 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2610 struct sctp_paddrparams *params,
2611 unsigned int optlen)
2612 {
2613 struct sctp_transport *trans = NULL;
2614 struct sctp_association *asoc = NULL;
2615 struct sctp_sock *sp = sctp_sk(sk);
2616 int error;
2617 int hb_change, pmtud_change, sackdelay_change;
2618
2619 if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2620 spp_ipv6_flowlabel), 4)) {
2621 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2622 return -EINVAL;
2623 } else if (optlen != sizeof(*params)) {
2624 return -EINVAL;
2625 }
2626
2627 /* Validate flags and value parameters. */
2628 hb_change = params->spp_flags & SPP_HB;
2629 pmtud_change = params->spp_flags & SPP_PMTUD;
2630 sackdelay_change = params->spp_flags & SPP_SACKDELAY;
2631
2632 if (hb_change == SPP_HB ||
2633 pmtud_change == SPP_PMTUD ||
2634 sackdelay_change == SPP_SACKDELAY ||
2635 params->spp_sackdelay > 500 ||
2636 (params->spp_pathmtu &&
2637 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2638 return -EINVAL;
2639
2640 /* If an address other than INADDR_ANY is specified, and
2641 * no transport is found, then the request is invalid.
2642 */
2643 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) {
2644 trans = sctp_addr_id2transport(sk, ¶ms->spp_address,
2645 params->spp_assoc_id);
2646 if (!trans)
2647 return -EINVAL;
2648 }
2649
2650 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2651 * socket is a one to many style socket, and an association
2652 * was not found, then the id was invalid.
2653 */
2654 asoc = sctp_id2assoc(sk, params->spp_assoc_id);
2655 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC &&
2656 sctp_style(sk, UDP))
2657 return -EINVAL;
2658
2659 /* Heartbeat demand can only be sent on a transport or
2660 * association, but not a socket.
2661 */
2662 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2663 return -EINVAL;
2664
2665 /* Process parameters. */
2666 error = sctp_apply_peer_addr_params(params, trans, asoc, sp,
2667 hb_change, pmtud_change,
2668 sackdelay_change);
2669
2670 if (error)
2671 return error;
2672
2673 /* If changes are for association, also apply parameters to each
2674 * transport.
2675 */
2676 if (!trans && asoc) {
2677 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2678 transports) {
2679 sctp_apply_peer_addr_params(params, trans, asoc, sp,
2680 hb_change, pmtud_change,
2681 sackdelay_change);
2682 }
2683 }
2684
2685 return 0;
2686 }
2687
sctp_spp_sackdelay_enable(__u32 param_flags)2688 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2689 {
2690 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2691 }
2692
sctp_spp_sackdelay_disable(__u32 param_flags)2693 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2694 {
2695 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2696 }
2697
sctp_apply_asoc_delayed_ack(struct sctp_sack_info * params,struct sctp_association * asoc)2698 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2699 struct sctp_association *asoc)
2700 {
2701 struct sctp_transport *trans;
2702
2703 if (params->sack_delay) {
2704 asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2705 asoc->param_flags =
2706 sctp_spp_sackdelay_enable(asoc->param_flags);
2707 }
2708 if (params->sack_freq == 1) {
2709 asoc->param_flags =
2710 sctp_spp_sackdelay_disable(asoc->param_flags);
2711 } else if (params->sack_freq > 1) {
2712 asoc->sackfreq = params->sack_freq;
2713 asoc->param_flags =
2714 sctp_spp_sackdelay_enable(asoc->param_flags);
2715 }
2716
2717 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2718 transports) {
2719 if (params->sack_delay) {
2720 trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2721 trans->param_flags =
2722 sctp_spp_sackdelay_enable(trans->param_flags);
2723 }
2724 if (params->sack_freq == 1) {
2725 trans->param_flags =
2726 sctp_spp_sackdelay_disable(trans->param_flags);
2727 } else if (params->sack_freq > 1) {
2728 trans->sackfreq = params->sack_freq;
2729 trans->param_flags =
2730 sctp_spp_sackdelay_enable(trans->param_flags);
2731 }
2732 }
2733 }
2734
2735 /*
2736 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2737 *
2738 * This option will effect the way delayed acks are performed. This
2739 * option allows you to get or set the delayed ack time, in
2740 * milliseconds. It also allows changing the delayed ack frequency.
2741 * Changing the frequency to 1 disables the delayed sack algorithm. If
2742 * the assoc_id is 0, then this sets or gets the endpoints default
2743 * values. If the assoc_id field is non-zero, then the set or get
2744 * effects the specified association for the one to many model (the
2745 * assoc_id field is ignored by the one to one model). Note that if
2746 * sack_delay or sack_freq are 0 when setting this option, then the
2747 * current values will remain unchanged.
2748 *
2749 * struct sctp_sack_info {
2750 * sctp_assoc_t sack_assoc_id;
2751 * uint32_t sack_delay;
2752 * uint32_t sack_freq;
2753 * };
2754 *
2755 * sack_assoc_id - This parameter, indicates which association the user
2756 * is performing an action upon. Note that if this field's value is
2757 * zero then the endpoints default value is changed (effecting future
2758 * associations only).
2759 *
2760 * sack_delay - This parameter contains the number of milliseconds that
2761 * the user is requesting the delayed ACK timer be set to. Note that
2762 * this value is defined in the standard to be between 200 and 500
2763 * milliseconds.
2764 *
2765 * sack_freq - This parameter contains the number of packets that must
2766 * be received before a sack is sent without waiting for the delay
2767 * timer to expire. The default value for this is 2, setting this
2768 * value to 1 will disable the delayed sack algorithm.
2769 */
__sctp_setsockopt_delayed_ack(struct sock * sk,struct sctp_sack_info * params)2770 static int __sctp_setsockopt_delayed_ack(struct sock *sk,
2771 struct sctp_sack_info *params)
2772 {
2773 struct sctp_sock *sp = sctp_sk(sk);
2774 struct sctp_association *asoc;
2775
2776 /* Validate value parameter. */
2777 if (params->sack_delay > 500)
2778 return -EINVAL;
2779
2780 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2781 * socket is a one to many style socket, and an association
2782 * was not found, then the id was invalid.
2783 */
2784 asoc = sctp_id2assoc(sk, params->sack_assoc_id);
2785 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC &&
2786 sctp_style(sk, UDP))
2787 return -EINVAL;
2788
2789 if (asoc) {
2790 sctp_apply_asoc_delayed_ack(params, asoc);
2791
2792 return 0;
2793 }
2794
2795 if (sctp_style(sk, TCP))
2796 params->sack_assoc_id = SCTP_FUTURE_ASSOC;
2797
2798 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC ||
2799 params->sack_assoc_id == SCTP_ALL_ASSOC) {
2800 if (params->sack_delay) {
2801 sp->sackdelay = params->sack_delay;
2802 sp->param_flags =
2803 sctp_spp_sackdelay_enable(sp->param_flags);
2804 }
2805 if (params->sack_freq == 1) {
2806 sp->param_flags =
2807 sctp_spp_sackdelay_disable(sp->param_flags);
2808 } else if (params->sack_freq > 1) {
2809 sp->sackfreq = params->sack_freq;
2810 sp->param_flags =
2811 sctp_spp_sackdelay_enable(sp->param_flags);
2812 }
2813 }
2814
2815 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC ||
2816 params->sack_assoc_id == SCTP_ALL_ASSOC)
2817 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2818 sctp_apply_asoc_delayed_ack(params, asoc);
2819
2820 return 0;
2821 }
2822
sctp_setsockopt_delayed_ack(struct sock * sk,struct sctp_sack_info * params,unsigned int optlen)2823 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2824 struct sctp_sack_info *params,
2825 unsigned int optlen)
2826 {
2827 if (optlen == sizeof(struct sctp_assoc_value)) {
2828 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params;
2829 struct sctp_sack_info p;
2830
2831 pr_warn_ratelimited(DEPRECATED
2832 "%s (pid %d) "
2833 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2834 "Use struct sctp_sack_info instead\n",
2835 current->comm, task_pid_nr(current));
2836
2837 p.sack_assoc_id = v->assoc_id;
2838 p.sack_delay = v->assoc_value;
2839 p.sack_freq = v->assoc_value ? 0 : 1;
2840 return __sctp_setsockopt_delayed_ack(sk, &p);
2841 }
2842
2843 if (optlen != sizeof(struct sctp_sack_info))
2844 return -EINVAL;
2845 if (params->sack_delay == 0 && params->sack_freq == 0)
2846 return 0;
2847 return __sctp_setsockopt_delayed_ack(sk, params);
2848 }
2849
2850 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2851 *
2852 * Applications can specify protocol parameters for the default association
2853 * initialization. The option name argument to setsockopt() and getsockopt()
2854 * is SCTP_INITMSG.
2855 *
2856 * Setting initialization parameters is effective only on an unconnected
2857 * socket (for UDP-style sockets only future associations are effected
2858 * by the change). With TCP-style sockets, this option is inherited by
2859 * sockets derived from a listener socket.
2860 */
sctp_setsockopt_initmsg(struct sock * sk,struct sctp_initmsg * sinit,unsigned int optlen)2861 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit,
2862 unsigned int optlen)
2863 {
2864 struct sctp_sock *sp = sctp_sk(sk);
2865
2866 if (optlen != sizeof(struct sctp_initmsg))
2867 return -EINVAL;
2868
2869 if (sinit->sinit_num_ostreams)
2870 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams;
2871 if (sinit->sinit_max_instreams)
2872 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams;
2873 if (sinit->sinit_max_attempts)
2874 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts;
2875 if (sinit->sinit_max_init_timeo)
2876 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo;
2877
2878 return 0;
2879 }
2880
2881 /*
2882 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2883 *
2884 * Applications that wish to use the sendto() system call may wish to
2885 * specify a default set of parameters that would normally be supplied
2886 * through the inclusion of ancillary data. This socket option allows
2887 * such an application to set the default sctp_sndrcvinfo structure.
2888 * The application that wishes to use this socket option simply passes
2889 * in to this call the sctp_sndrcvinfo structure defined in Section
2890 * 5.2.2) The input parameters accepted by this call include
2891 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2892 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2893 * to this call if the caller is using the UDP model.
2894 */
sctp_setsockopt_default_send_param(struct sock * sk,struct sctp_sndrcvinfo * info,unsigned int optlen)2895 static int sctp_setsockopt_default_send_param(struct sock *sk,
2896 struct sctp_sndrcvinfo *info,
2897 unsigned int optlen)
2898 {
2899 struct sctp_sock *sp = sctp_sk(sk);
2900 struct sctp_association *asoc;
2901
2902 if (optlen != sizeof(*info))
2903 return -EINVAL;
2904 if (info->sinfo_flags &
2905 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2906 SCTP_ABORT | SCTP_EOF))
2907 return -EINVAL;
2908
2909 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id);
2910 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC &&
2911 sctp_style(sk, UDP))
2912 return -EINVAL;
2913
2914 if (asoc) {
2915 asoc->default_stream = info->sinfo_stream;
2916 asoc->default_flags = info->sinfo_flags;
2917 asoc->default_ppid = info->sinfo_ppid;
2918 asoc->default_context = info->sinfo_context;
2919 asoc->default_timetolive = info->sinfo_timetolive;
2920
2921 return 0;
2922 }
2923
2924 if (sctp_style(sk, TCP))
2925 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2926
2927 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2928 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2929 sp->default_stream = info->sinfo_stream;
2930 sp->default_flags = info->sinfo_flags;
2931 sp->default_ppid = info->sinfo_ppid;
2932 sp->default_context = info->sinfo_context;
2933 sp->default_timetolive = info->sinfo_timetolive;
2934 }
2935
2936 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2937 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2938 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2939 asoc->default_stream = info->sinfo_stream;
2940 asoc->default_flags = info->sinfo_flags;
2941 asoc->default_ppid = info->sinfo_ppid;
2942 asoc->default_context = info->sinfo_context;
2943 asoc->default_timetolive = info->sinfo_timetolive;
2944 }
2945 }
2946
2947 return 0;
2948 }
2949
2950 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2951 * (SCTP_DEFAULT_SNDINFO)
2952 */
sctp_setsockopt_default_sndinfo(struct sock * sk,struct sctp_sndinfo * info,unsigned int optlen)2953 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2954 struct sctp_sndinfo *info,
2955 unsigned int optlen)
2956 {
2957 struct sctp_sock *sp = sctp_sk(sk);
2958 struct sctp_association *asoc;
2959
2960 if (optlen != sizeof(*info))
2961 return -EINVAL;
2962 if (info->snd_flags &
2963 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2964 SCTP_ABORT | SCTP_EOF))
2965 return -EINVAL;
2966
2967 asoc = sctp_id2assoc(sk, info->snd_assoc_id);
2968 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC &&
2969 sctp_style(sk, UDP))
2970 return -EINVAL;
2971
2972 if (asoc) {
2973 asoc->default_stream = info->snd_sid;
2974 asoc->default_flags = info->snd_flags;
2975 asoc->default_ppid = info->snd_ppid;
2976 asoc->default_context = info->snd_context;
2977
2978 return 0;
2979 }
2980
2981 if (sctp_style(sk, TCP))
2982 info->snd_assoc_id = SCTP_FUTURE_ASSOC;
2983
2984 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC ||
2985 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2986 sp->default_stream = info->snd_sid;
2987 sp->default_flags = info->snd_flags;
2988 sp->default_ppid = info->snd_ppid;
2989 sp->default_context = info->snd_context;
2990 }
2991
2992 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC ||
2993 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2994 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2995 asoc->default_stream = info->snd_sid;
2996 asoc->default_flags = info->snd_flags;
2997 asoc->default_ppid = info->snd_ppid;
2998 asoc->default_context = info->snd_context;
2999 }
3000 }
3001
3002 return 0;
3003 }
3004
3005 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3006 *
3007 * Requests that the local SCTP stack use the enclosed peer address as
3008 * the association primary. The enclosed address must be one of the
3009 * association peer's addresses.
3010 */
sctp_setsockopt_primary_addr(struct sock * sk,struct sctp_prim * prim,unsigned int optlen)3011 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim,
3012 unsigned int optlen)
3013 {
3014 struct sctp_transport *trans;
3015 struct sctp_af *af;
3016 int err;
3017
3018 if (optlen != sizeof(struct sctp_prim))
3019 return -EINVAL;
3020
3021 /* Allow security module to validate address but need address len. */
3022 af = sctp_get_af_specific(prim->ssp_addr.ss_family);
3023 if (!af)
3024 return -EINVAL;
3025
3026 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3027 (struct sockaddr *)&prim->ssp_addr,
3028 af->sockaddr_len);
3029 if (err)
3030 return err;
3031
3032 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id);
3033 if (!trans)
3034 return -EINVAL;
3035
3036 sctp_assoc_set_primary(trans->asoc, trans);
3037
3038 return 0;
3039 }
3040
3041 /*
3042 * 7.1.5 SCTP_NODELAY
3043 *
3044 * Turn on/off any Nagle-like algorithm. This means that packets are
3045 * generally sent as soon as possible and no unnecessary delays are
3046 * introduced, at the cost of more packets in the network. Expects an
3047 * integer boolean flag.
3048 */
sctp_setsockopt_nodelay(struct sock * sk,int * val,unsigned int optlen)3049 static int sctp_setsockopt_nodelay(struct sock *sk, int *val,
3050 unsigned int optlen)
3051 {
3052 if (optlen < sizeof(int))
3053 return -EINVAL;
3054 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1;
3055 return 0;
3056 }
3057
3058 /*
3059 *
3060 * 7.1.1 SCTP_RTOINFO
3061 *
3062 * The protocol parameters used to initialize and bound retransmission
3063 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3064 * and modify these parameters.
3065 * All parameters are time values, in milliseconds. A value of 0, when
3066 * modifying the parameters, indicates that the current value should not
3067 * be changed.
3068 *
3069 */
sctp_setsockopt_rtoinfo(struct sock * sk,struct sctp_rtoinfo * rtoinfo,unsigned int optlen)3070 static int sctp_setsockopt_rtoinfo(struct sock *sk,
3071 struct sctp_rtoinfo *rtoinfo,
3072 unsigned int optlen)
3073 {
3074 struct sctp_association *asoc;
3075 unsigned long rto_min, rto_max;
3076 struct sctp_sock *sp = sctp_sk(sk);
3077
3078 if (optlen != sizeof (struct sctp_rtoinfo))
3079 return -EINVAL;
3080
3081 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id);
3082
3083 /* Set the values to the specific association */
3084 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC &&
3085 sctp_style(sk, UDP))
3086 return -EINVAL;
3087
3088 rto_max = rtoinfo->srto_max;
3089 rto_min = rtoinfo->srto_min;
3090
3091 if (rto_max)
3092 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3093 else
3094 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3095
3096 if (rto_min)
3097 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3098 else
3099 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3100
3101 if (rto_min > rto_max)
3102 return -EINVAL;
3103
3104 if (asoc) {
3105 if (rtoinfo->srto_initial != 0)
3106 asoc->rto_initial =
3107 msecs_to_jiffies(rtoinfo->srto_initial);
3108 asoc->rto_max = rto_max;
3109 asoc->rto_min = rto_min;
3110 } else {
3111 /* If there is no association or the association-id = 0
3112 * set the values to the endpoint.
3113 */
3114 if (rtoinfo->srto_initial != 0)
3115 sp->rtoinfo.srto_initial = rtoinfo->srto_initial;
3116 sp->rtoinfo.srto_max = rto_max;
3117 sp->rtoinfo.srto_min = rto_min;
3118 }
3119
3120 return 0;
3121 }
3122
3123 /*
3124 *
3125 * 7.1.2 SCTP_ASSOCINFO
3126 *
3127 * This option is used to tune the maximum retransmission attempts
3128 * of the association.
3129 * Returns an error if the new association retransmission value is
3130 * greater than the sum of the retransmission value of the peer.
3131 * See [SCTP] for more information.
3132 *
3133 */
sctp_setsockopt_associnfo(struct sock * sk,struct sctp_assocparams * assocparams,unsigned int optlen)3134 static int sctp_setsockopt_associnfo(struct sock *sk,
3135 struct sctp_assocparams *assocparams,
3136 unsigned int optlen)
3137 {
3138
3139 struct sctp_association *asoc;
3140
3141 if (optlen != sizeof(struct sctp_assocparams))
3142 return -EINVAL;
3143
3144 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id);
3145
3146 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3147 sctp_style(sk, UDP))
3148 return -EINVAL;
3149
3150 /* Set the values to the specific association */
3151 if (asoc) {
3152 if (assocparams->sasoc_asocmaxrxt != 0) {
3153 __u32 path_sum = 0;
3154 int paths = 0;
3155 struct sctp_transport *peer_addr;
3156
3157 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3158 transports) {
3159 path_sum += peer_addr->pathmaxrxt;
3160 paths++;
3161 }
3162
3163 /* Only validate asocmaxrxt if we have more than
3164 * one path/transport. We do this because path
3165 * retransmissions are only counted when we have more
3166 * then one path.
3167 */
3168 if (paths > 1 &&
3169 assocparams->sasoc_asocmaxrxt > path_sum)
3170 return -EINVAL;
3171
3172 asoc->max_retrans = assocparams->sasoc_asocmaxrxt;
3173 }
3174
3175 if (assocparams->sasoc_cookie_life != 0)
3176 asoc->cookie_life =
3177 ms_to_ktime(assocparams->sasoc_cookie_life);
3178 } else {
3179 /* Set the values to the endpoint */
3180 struct sctp_sock *sp = sctp_sk(sk);
3181
3182 if (assocparams->sasoc_asocmaxrxt != 0)
3183 sp->assocparams.sasoc_asocmaxrxt =
3184 assocparams->sasoc_asocmaxrxt;
3185 if (assocparams->sasoc_cookie_life != 0)
3186 sp->assocparams.sasoc_cookie_life =
3187 assocparams->sasoc_cookie_life;
3188 }
3189 return 0;
3190 }
3191
3192 /*
3193 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3194 *
3195 * This socket option is a boolean flag which turns on or off mapped V4
3196 * addresses. If this option is turned on and the socket is type
3197 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3198 * If this option is turned off, then no mapping will be done of V4
3199 * addresses and a user will receive both PF_INET6 and PF_INET type
3200 * addresses on the socket.
3201 */
sctp_setsockopt_mappedv4(struct sock * sk,int * val,unsigned int optlen)3202 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val,
3203 unsigned int optlen)
3204 {
3205 struct sctp_sock *sp = sctp_sk(sk);
3206
3207 if (optlen < sizeof(int))
3208 return -EINVAL;
3209 if (*val)
3210 sp->v4mapped = 1;
3211 else
3212 sp->v4mapped = 0;
3213
3214 return 0;
3215 }
3216
3217 /*
3218 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3219 * This option will get or set the maximum size to put in any outgoing
3220 * SCTP DATA chunk. If a message is larger than this size it will be
3221 * fragmented by SCTP into the specified size. Note that the underlying
3222 * SCTP implementation may fragment into smaller sized chunks when the
3223 * PMTU of the underlying association is smaller than the value set by
3224 * the user. The default value for this option is '0' which indicates
3225 * the user is NOT limiting fragmentation and only the PMTU will effect
3226 * SCTP's choice of DATA chunk size. Note also that values set larger
3227 * than the maximum size of an IP datagram will effectively let SCTP
3228 * control fragmentation (i.e. the same as setting this option to 0).
3229 *
3230 * The following structure is used to access and modify this parameter:
3231 *
3232 * struct sctp_assoc_value {
3233 * sctp_assoc_t assoc_id;
3234 * uint32_t assoc_value;
3235 * };
3236 *
3237 * assoc_id: This parameter is ignored for one-to-one style sockets.
3238 * For one-to-many style sockets this parameter indicates which
3239 * association the user is performing an action upon. Note that if
3240 * this field's value is zero then the endpoints default value is
3241 * changed (effecting future associations only).
3242 * assoc_value: This parameter specifies the maximum size in bytes.
3243 */
sctp_setsockopt_maxseg(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3244 static int sctp_setsockopt_maxseg(struct sock *sk,
3245 struct sctp_assoc_value *params,
3246 unsigned int optlen)
3247 {
3248 struct sctp_sock *sp = sctp_sk(sk);
3249 struct sctp_association *asoc;
3250 sctp_assoc_t assoc_id;
3251 int val;
3252
3253 if (optlen == sizeof(int)) {
3254 pr_warn_ratelimited(DEPRECATED
3255 "%s (pid %d) "
3256 "Use of int in maxseg socket option.\n"
3257 "Use struct sctp_assoc_value instead\n",
3258 current->comm, task_pid_nr(current));
3259 assoc_id = SCTP_FUTURE_ASSOC;
3260 val = *(int *)params;
3261 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3262 assoc_id = params->assoc_id;
3263 val = params->assoc_value;
3264 } else {
3265 return -EINVAL;
3266 }
3267
3268 asoc = sctp_id2assoc(sk, assoc_id);
3269 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC &&
3270 sctp_style(sk, UDP))
3271 return -EINVAL;
3272
3273 if (val) {
3274 int min_len, max_len;
3275 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3276 sizeof(struct sctp_data_chunk);
3277
3278 min_len = sctp_min_frag_point(sp, datasize);
3279 max_len = SCTP_MAX_CHUNK_LEN - datasize;
3280
3281 if (val < min_len || val > max_len)
3282 return -EINVAL;
3283 }
3284
3285 if (asoc) {
3286 asoc->user_frag = val;
3287 sctp_assoc_update_frag_point(asoc);
3288 } else {
3289 sp->user_frag = val;
3290 }
3291
3292 return 0;
3293 }
3294
3295
3296 /*
3297 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3298 *
3299 * Requests that the peer mark the enclosed address as the association
3300 * primary. The enclosed address must be one of the association's
3301 * locally bound addresses. The following structure is used to make a
3302 * set primary request:
3303 */
sctp_setsockopt_peer_primary_addr(struct sock * sk,struct sctp_setpeerprim * prim,unsigned int optlen)3304 static int sctp_setsockopt_peer_primary_addr(struct sock *sk,
3305 struct sctp_setpeerprim *prim,
3306 unsigned int optlen)
3307 {
3308 struct sctp_sock *sp;
3309 struct sctp_association *asoc = NULL;
3310 struct sctp_chunk *chunk;
3311 struct sctp_af *af;
3312 int err;
3313
3314 sp = sctp_sk(sk);
3315
3316 if (!sp->ep->asconf_enable)
3317 return -EPERM;
3318
3319 if (optlen != sizeof(struct sctp_setpeerprim))
3320 return -EINVAL;
3321
3322 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id);
3323 if (!asoc)
3324 return -EINVAL;
3325
3326 if (!asoc->peer.asconf_capable)
3327 return -EPERM;
3328
3329 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3330 return -EPERM;
3331
3332 if (!sctp_state(asoc, ESTABLISHED))
3333 return -ENOTCONN;
3334
3335 af = sctp_get_af_specific(prim->sspp_addr.ss_family);
3336 if (!af)
3337 return -EINVAL;
3338
3339 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL))
3340 return -EADDRNOTAVAIL;
3341
3342 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr))
3343 return -EADDRNOTAVAIL;
3344
3345 /* Allow security module to validate address. */
3346 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3347 (struct sockaddr *)&prim->sspp_addr,
3348 af->sockaddr_len);
3349 if (err)
3350 return err;
3351
3352 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3353 chunk = sctp_make_asconf_set_prim(asoc,
3354 (union sctp_addr *)&prim->sspp_addr);
3355 if (!chunk)
3356 return -ENOMEM;
3357
3358 err = sctp_send_asconf(asoc, chunk);
3359
3360 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3361
3362 return err;
3363 }
3364
sctp_setsockopt_adaptation_layer(struct sock * sk,struct sctp_setadaptation * adapt,unsigned int optlen)3365 static int sctp_setsockopt_adaptation_layer(struct sock *sk,
3366 struct sctp_setadaptation *adapt,
3367 unsigned int optlen)
3368 {
3369 if (optlen != sizeof(struct sctp_setadaptation))
3370 return -EINVAL;
3371
3372 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind;
3373
3374 return 0;
3375 }
3376
3377 /*
3378 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3379 *
3380 * The context field in the sctp_sndrcvinfo structure is normally only
3381 * used when a failed message is retrieved holding the value that was
3382 * sent down on the actual send call. This option allows the setting of
3383 * a default context on an association basis that will be received on
3384 * reading messages from the peer. This is especially helpful in the
3385 * one-2-many model for an application to keep some reference to an
3386 * internal state machine that is processing messages on the
3387 * association. Note that the setting of this value only effects
3388 * received messages from the peer and does not effect the value that is
3389 * saved with outbound messages.
3390 */
sctp_setsockopt_context(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3391 static int sctp_setsockopt_context(struct sock *sk,
3392 struct sctp_assoc_value *params,
3393 unsigned int optlen)
3394 {
3395 struct sctp_sock *sp = sctp_sk(sk);
3396 struct sctp_association *asoc;
3397
3398 if (optlen != sizeof(struct sctp_assoc_value))
3399 return -EINVAL;
3400
3401 asoc = sctp_id2assoc(sk, params->assoc_id);
3402 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
3403 sctp_style(sk, UDP))
3404 return -EINVAL;
3405
3406 if (asoc) {
3407 asoc->default_rcv_context = params->assoc_value;
3408
3409 return 0;
3410 }
3411
3412 if (sctp_style(sk, TCP))
3413 params->assoc_id = SCTP_FUTURE_ASSOC;
3414
3415 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
3416 params->assoc_id == SCTP_ALL_ASSOC)
3417 sp->default_rcv_context = params->assoc_value;
3418
3419 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
3420 params->assoc_id == SCTP_ALL_ASSOC)
3421 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3422 asoc->default_rcv_context = params->assoc_value;
3423
3424 return 0;
3425 }
3426
3427 /*
3428 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3429 *
3430 * This options will at a minimum specify if the implementation is doing
3431 * fragmented interleave. Fragmented interleave, for a one to many
3432 * socket, is when subsequent calls to receive a message may return
3433 * parts of messages from different associations. Some implementations
3434 * may allow you to turn this value on or off. If so, when turned off,
3435 * no fragment interleave will occur (which will cause a head of line
3436 * blocking amongst multiple associations sharing the same one to many
3437 * socket). When this option is turned on, then each receive call may
3438 * come from a different association (thus the user must receive data
3439 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3440 * association each receive belongs to.
3441 *
3442 * This option takes a boolean value. A non-zero value indicates that
3443 * fragmented interleave is on. A value of zero indicates that
3444 * fragmented interleave is off.
3445 *
3446 * Note that it is important that an implementation that allows this
3447 * option to be turned on, have it off by default. Otherwise an unaware
3448 * application using the one to many model may become confused and act
3449 * incorrectly.
3450 */
sctp_setsockopt_fragment_interleave(struct sock * sk,int * val,unsigned int optlen)3451 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val,
3452 unsigned int optlen)
3453 {
3454 if (optlen != sizeof(int))
3455 return -EINVAL;
3456
3457 sctp_sk(sk)->frag_interleave = !!*val;
3458
3459 if (!sctp_sk(sk)->frag_interleave)
3460 sctp_sk(sk)->ep->intl_enable = 0;
3461
3462 return 0;
3463 }
3464
3465 /*
3466 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3467 * (SCTP_PARTIAL_DELIVERY_POINT)
3468 *
3469 * This option will set or get the SCTP partial delivery point. This
3470 * point is the size of a message where the partial delivery API will be
3471 * invoked to help free up rwnd space for the peer. Setting this to a
3472 * lower value will cause partial deliveries to happen more often. The
3473 * calls argument is an integer that sets or gets the partial delivery
3474 * point. Note also that the call will fail if the user attempts to set
3475 * this value larger than the socket receive buffer size.
3476 *
3477 * Note that any single message having a length smaller than or equal to
3478 * the SCTP partial delivery point will be delivered in one single read
3479 * call as long as the user provided buffer is large enough to hold the
3480 * message.
3481 */
sctp_setsockopt_partial_delivery_point(struct sock * sk,u32 * val,unsigned int optlen)3482 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val,
3483 unsigned int optlen)
3484 {
3485 if (optlen != sizeof(u32))
3486 return -EINVAL;
3487
3488 /* Note: We double the receive buffer from what the user sets
3489 * it to be, also initial rwnd is based on rcvbuf/2.
3490 */
3491 if (*val > (sk->sk_rcvbuf >> 1))
3492 return -EINVAL;
3493
3494 sctp_sk(sk)->pd_point = *val;
3495
3496 return 0; /* is this the right error code? */
3497 }
3498
3499 /*
3500 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3501 *
3502 * This option will allow a user to change the maximum burst of packets
3503 * that can be emitted by this association. Note that the default value
3504 * is 4, and some implementations may restrict this setting so that it
3505 * can only be lowered.
3506 *
3507 * NOTE: This text doesn't seem right. Do this on a socket basis with
3508 * future associations inheriting the socket value.
3509 */
sctp_setsockopt_maxburst(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3510 static int sctp_setsockopt_maxburst(struct sock *sk,
3511 struct sctp_assoc_value *params,
3512 unsigned int optlen)
3513 {
3514 struct sctp_sock *sp = sctp_sk(sk);
3515 struct sctp_association *asoc;
3516 sctp_assoc_t assoc_id;
3517 u32 assoc_value;
3518
3519 if (optlen == sizeof(int)) {
3520 pr_warn_ratelimited(DEPRECATED
3521 "%s (pid %d) "
3522 "Use of int in max_burst socket option deprecated.\n"
3523 "Use struct sctp_assoc_value instead\n",
3524 current->comm, task_pid_nr(current));
3525 assoc_id = SCTP_FUTURE_ASSOC;
3526 assoc_value = *((int *)params);
3527 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3528 assoc_id = params->assoc_id;
3529 assoc_value = params->assoc_value;
3530 } else
3531 return -EINVAL;
3532
3533 asoc = sctp_id2assoc(sk, assoc_id);
3534 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP))
3535 return -EINVAL;
3536
3537 if (asoc) {
3538 asoc->max_burst = assoc_value;
3539
3540 return 0;
3541 }
3542
3543 if (sctp_style(sk, TCP))
3544 assoc_id = SCTP_FUTURE_ASSOC;
3545
3546 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3547 sp->max_burst = assoc_value;
3548
3549 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3550 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3551 asoc->max_burst = assoc_value;
3552
3553 return 0;
3554 }
3555
3556 /*
3557 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3558 *
3559 * This set option adds a chunk type that the user is requesting to be
3560 * received only in an authenticated way. Changes to the list of chunks
3561 * will only effect future associations on the socket.
3562 */
sctp_setsockopt_auth_chunk(struct sock * sk,struct sctp_authchunk * val,unsigned int optlen)3563 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3564 struct sctp_authchunk *val,
3565 unsigned int optlen)
3566 {
3567 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3568
3569 if (!ep->auth_enable)
3570 return -EACCES;
3571
3572 if (optlen != sizeof(struct sctp_authchunk))
3573 return -EINVAL;
3574
3575 switch (val->sauth_chunk) {
3576 case SCTP_CID_INIT:
3577 case SCTP_CID_INIT_ACK:
3578 case SCTP_CID_SHUTDOWN_COMPLETE:
3579 case SCTP_CID_AUTH:
3580 return -EINVAL;
3581 }
3582
3583 /* add this chunk id to the endpoint */
3584 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk);
3585 }
3586
3587 /*
3588 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3589 *
3590 * This option gets or sets the list of HMAC algorithms that the local
3591 * endpoint requires the peer to use.
3592 */
sctp_setsockopt_hmac_ident(struct sock * sk,struct sctp_hmacalgo * hmacs,unsigned int optlen)3593 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3594 struct sctp_hmacalgo *hmacs,
3595 unsigned int optlen)
3596 {
3597 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3598 u32 idents;
3599
3600 if (!ep->auth_enable)
3601 return -EACCES;
3602
3603 if (optlen < sizeof(struct sctp_hmacalgo))
3604 return -EINVAL;
3605 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3606 SCTP_AUTH_NUM_HMACS * sizeof(u16));
3607
3608 idents = hmacs->shmac_num_idents;
3609 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3610 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo)))
3611 return -EINVAL;
3612
3613 return sctp_auth_ep_set_hmacs(ep, hmacs);
3614 }
3615
3616 /*
3617 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3618 *
3619 * This option will set a shared secret key which is used to build an
3620 * association shared key.
3621 */
sctp_setsockopt_auth_key(struct sock * sk,struct sctp_authkey * authkey,unsigned int optlen)3622 static int sctp_setsockopt_auth_key(struct sock *sk,
3623 struct sctp_authkey *authkey,
3624 unsigned int optlen)
3625 {
3626 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3627 struct sctp_association *asoc;
3628 int ret = -EINVAL;
3629
3630 if (optlen <= sizeof(struct sctp_authkey))
3631 return -EINVAL;
3632 /* authkey->sca_keylength is u16, so optlen can't be bigger than
3633 * this.
3634 */
3635 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3636
3637 if (authkey->sca_keylength > optlen - sizeof(*authkey))
3638 goto out;
3639
3640 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3641 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3642 sctp_style(sk, UDP))
3643 goto out;
3644
3645 if (asoc) {
3646 ret = sctp_auth_set_key(ep, asoc, authkey);
3647 goto out;
3648 }
3649
3650 if (sctp_style(sk, TCP))
3651 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3652
3653 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3654 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3655 ret = sctp_auth_set_key(ep, asoc, authkey);
3656 if (ret)
3657 goto out;
3658 }
3659
3660 ret = 0;
3661
3662 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3663 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3664 list_for_each_entry(asoc, &ep->asocs, asocs) {
3665 int res = sctp_auth_set_key(ep, asoc, authkey);
3666
3667 if (res && !ret)
3668 ret = res;
3669 }
3670 }
3671
3672 out:
3673 memzero_explicit(authkey, optlen);
3674 return ret;
3675 }
3676
3677 /*
3678 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3679 *
3680 * This option will get or set the active shared key to be used to build
3681 * the association shared key.
3682 */
sctp_setsockopt_active_key(struct sock * sk,struct sctp_authkeyid * val,unsigned int optlen)3683 static int sctp_setsockopt_active_key(struct sock *sk,
3684 struct sctp_authkeyid *val,
3685 unsigned int optlen)
3686 {
3687 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3688 struct sctp_association *asoc;
3689 int ret = 0;
3690
3691 if (optlen != sizeof(struct sctp_authkeyid))
3692 return -EINVAL;
3693
3694 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3695 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3696 sctp_style(sk, UDP))
3697 return -EINVAL;
3698
3699 if (asoc)
3700 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3701
3702 if (sctp_style(sk, TCP))
3703 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3704
3705 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3706 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3707 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3708 if (ret)
3709 return ret;
3710 }
3711
3712 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3713 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3714 list_for_each_entry(asoc, &ep->asocs, asocs) {
3715 int res = sctp_auth_set_active_key(ep, asoc,
3716 val->scact_keynumber);
3717
3718 if (res && !ret)
3719 ret = res;
3720 }
3721 }
3722
3723 return ret;
3724 }
3725
3726 /*
3727 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3728 *
3729 * This set option will delete a shared secret key from use.
3730 */
sctp_setsockopt_del_key(struct sock * sk,struct sctp_authkeyid * val,unsigned int optlen)3731 static int sctp_setsockopt_del_key(struct sock *sk,
3732 struct sctp_authkeyid *val,
3733 unsigned int optlen)
3734 {
3735 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3736 struct sctp_association *asoc;
3737 int ret = 0;
3738
3739 if (optlen != sizeof(struct sctp_authkeyid))
3740 return -EINVAL;
3741
3742 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3743 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3744 sctp_style(sk, UDP))
3745 return -EINVAL;
3746
3747 if (asoc)
3748 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3749
3750 if (sctp_style(sk, TCP))
3751 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3752
3753 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3754 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3755 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3756 if (ret)
3757 return ret;
3758 }
3759
3760 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3761 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3762 list_for_each_entry(asoc, &ep->asocs, asocs) {
3763 int res = sctp_auth_del_key_id(ep, asoc,
3764 val->scact_keynumber);
3765
3766 if (res && !ret)
3767 ret = res;
3768 }
3769 }
3770
3771 return ret;
3772 }
3773
3774 /*
3775 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3776 *
3777 * This set option will deactivate a shared secret key.
3778 */
sctp_setsockopt_deactivate_key(struct sock * sk,struct sctp_authkeyid * val,unsigned int optlen)3779 static int sctp_setsockopt_deactivate_key(struct sock *sk,
3780 struct sctp_authkeyid *val,
3781 unsigned int optlen)
3782 {
3783 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3784 struct sctp_association *asoc;
3785 int ret = 0;
3786
3787 if (optlen != sizeof(struct sctp_authkeyid))
3788 return -EINVAL;
3789
3790 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3791 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3792 sctp_style(sk, UDP))
3793 return -EINVAL;
3794
3795 if (asoc)
3796 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3797
3798 if (sctp_style(sk, TCP))
3799 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3800
3801 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3802 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3803 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3804 if (ret)
3805 return ret;
3806 }
3807
3808 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3809 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3810 list_for_each_entry(asoc, &ep->asocs, asocs) {
3811 int res = sctp_auth_deact_key_id(ep, asoc,
3812 val->scact_keynumber);
3813
3814 if (res && !ret)
3815 ret = res;
3816 }
3817 }
3818
3819 return ret;
3820 }
3821
3822 /*
3823 * 8.1.23 SCTP_AUTO_ASCONF
3824 *
3825 * This option will enable or disable the use of the automatic generation of
3826 * ASCONF chunks to add and delete addresses to an existing association. Note
3827 * that this option has two caveats namely: a) it only affects sockets that
3828 * are bound to all addresses available to the SCTP stack, and b) the system
3829 * administrator may have an overriding control that turns the ASCONF feature
3830 * off no matter what setting the socket option may have.
3831 * This option expects an integer boolean flag, where a non-zero value turns on
3832 * the option, and a zero value turns off the option.
3833 * Note. In this implementation, socket operation overrides default parameter
3834 * being set by sysctl as well as FreeBSD implementation
3835 */
sctp_setsockopt_auto_asconf(struct sock * sk,int * val,unsigned int optlen)3836 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val,
3837 unsigned int optlen)
3838 {
3839 struct sctp_sock *sp = sctp_sk(sk);
3840
3841 if (optlen < sizeof(int))
3842 return -EINVAL;
3843 if (!sctp_is_ep_boundall(sk) && *val)
3844 return -EINVAL;
3845 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf))
3846 return 0;
3847
3848 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3849 if (*val == 0 && sp->do_auto_asconf) {
3850 list_del(&sp->auto_asconf_list);
3851 sp->do_auto_asconf = 0;
3852 } else if (*val && !sp->do_auto_asconf) {
3853 list_add_tail(&sp->auto_asconf_list,
3854 &sock_net(sk)->sctp.auto_asconf_splist);
3855 sp->do_auto_asconf = 1;
3856 }
3857 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3858 return 0;
3859 }
3860
3861 /*
3862 * SCTP_PEER_ADDR_THLDS
3863 *
3864 * This option allows us to alter the partially failed threshold for one or all
3865 * transports in an association. See Section 6.1 of:
3866 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3867 */
sctp_setsockopt_paddr_thresholds(struct sock * sk,struct sctp_paddrthlds_v2 * val,unsigned int optlen,bool v2)3868 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3869 struct sctp_paddrthlds_v2 *val,
3870 unsigned int optlen, bool v2)
3871 {
3872 struct sctp_transport *trans;
3873 struct sctp_association *asoc;
3874 int len;
3875
3876 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds);
3877 if (optlen < len)
3878 return -EINVAL;
3879
3880 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld)
3881 return -EINVAL;
3882
3883 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) {
3884 trans = sctp_addr_id2transport(sk, &val->spt_address,
3885 val->spt_assoc_id);
3886 if (!trans)
3887 return -ENOENT;
3888
3889 if (val->spt_pathmaxrxt)
3890 trans->pathmaxrxt = val->spt_pathmaxrxt;
3891 if (v2)
3892 trans->ps_retrans = val->spt_pathcpthld;
3893 trans->pf_retrans = val->spt_pathpfthld;
3894
3895 return 0;
3896 }
3897
3898 asoc = sctp_id2assoc(sk, val->spt_assoc_id);
3899 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC &&
3900 sctp_style(sk, UDP))
3901 return -EINVAL;
3902
3903 if (asoc) {
3904 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3905 transports) {
3906 if (val->spt_pathmaxrxt)
3907 trans->pathmaxrxt = val->spt_pathmaxrxt;
3908 if (v2)
3909 trans->ps_retrans = val->spt_pathcpthld;
3910 trans->pf_retrans = val->spt_pathpfthld;
3911 }
3912
3913 if (val->spt_pathmaxrxt)
3914 asoc->pathmaxrxt = val->spt_pathmaxrxt;
3915 if (v2)
3916 asoc->ps_retrans = val->spt_pathcpthld;
3917 asoc->pf_retrans = val->spt_pathpfthld;
3918 } else {
3919 struct sctp_sock *sp = sctp_sk(sk);
3920
3921 if (val->spt_pathmaxrxt)
3922 sp->pathmaxrxt = val->spt_pathmaxrxt;
3923 if (v2)
3924 sp->ps_retrans = val->spt_pathcpthld;
3925 sp->pf_retrans = val->spt_pathpfthld;
3926 }
3927
3928 return 0;
3929 }
3930
sctp_setsockopt_recvrcvinfo(struct sock * sk,int * val,unsigned int optlen)3931 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val,
3932 unsigned int optlen)
3933 {
3934 if (optlen < sizeof(int))
3935 return -EINVAL;
3936
3937 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1;
3938
3939 return 0;
3940 }
3941
sctp_setsockopt_recvnxtinfo(struct sock * sk,int * val,unsigned int optlen)3942 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val,
3943 unsigned int optlen)
3944 {
3945 if (optlen < sizeof(int))
3946 return -EINVAL;
3947
3948 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1;
3949
3950 return 0;
3951 }
3952
sctp_setsockopt_pr_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3953 static int sctp_setsockopt_pr_supported(struct sock *sk,
3954 struct sctp_assoc_value *params,
3955 unsigned int optlen)
3956 {
3957 struct sctp_association *asoc;
3958
3959 if (optlen != sizeof(*params))
3960 return -EINVAL;
3961
3962 asoc = sctp_id2assoc(sk, params->assoc_id);
3963 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
3964 sctp_style(sk, UDP))
3965 return -EINVAL;
3966
3967 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value;
3968
3969 return 0;
3970 }
3971
sctp_setsockopt_default_prinfo(struct sock * sk,struct sctp_default_prinfo * info,unsigned int optlen)3972 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3973 struct sctp_default_prinfo *info,
3974 unsigned int optlen)
3975 {
3976 struct sctp_sock *sp = sctp_sk(sk);
3977 struct sctp_association *asoc;
3978 int retval = -EINVAL;
3979
3980 if (optlen != sizeof(*info))
3981 goto out;
3982
3983 if (info->pr_policy & ~SCTP_PR_SCTP_MASK)
3984 goto out;
3985
3986 if (info->pr_policy == SCTP_PR_SCTP_NONE)
3987 info->pr_value = 0;
3988
3989 asoc = sctp_id2assoc(sk, info->pr_assoc_id);
3990 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC &&
3991 sctp_style(sk, UDP))
3992 goto out;
3993
3994 retval = 0;
3995
3996 if (asoc) {
3997 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy);
3998 asoc->default_timetolive = info->pr_value;
3999 goto out;
4000 }
4001
4002 if (sctp_style(sk, TCP))
4003 info->pr_assoc_id = SCTP_FUTURE_ASSOC;
4004
4005 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC ||
4006 info->pr_assoc_id == SCTP_ALL_ASSOC) {
4007 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy);
4008 sp->default_timetolive = info->pr_value;
4009 }
4010
4011 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC ||
4012 info->pr_assoc_id == SCTP_ALL_ASSOC) {
4013 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4014 SCTP_PR_SET_POLICY(asoc->default_flags,
4015 info->pr_policy);
4016 asoc->default_timetolive = info->pr_value;
4017 }
4018 }
4019
4020 out:
4021 return retval;
4022 }
4023
sctp_setsockopt_reconfig_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4024 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4025 struct sctp_assoc_value *params,
4026 unsigned int optlen)
4027 {
4028 struct sctp_association *asoc;
4029 int retval = -EINVAL;
4030
4031 if (optlen != sizeof(*params))
4032 goto out;
4033
4034 asoc = sctp_id2assoc(sk, params->assoc_id);
4035 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4036 sctp_style(sk, UDP))
4037 goto out;
4038
4039 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value;
4040
4041 retval = 0;
4042
4043 out:
4044 return retval;
4045 }
4046
sctp_setsockopt_enable_strreset(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4047 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4048 struct sctp_assoc_value *params,
4049 unsigned int optlen)
4050 {
4051 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4052 struct sctp_association *asoc;
4053 int retval = -EINVAL;
4054
4055 if (optlen != sizeof(*params))
4056 goto out;
4057
4058 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4059 goto out;
4060
4061 asoc = sctp_id2assoc(sk, params->assoc_id);
4062 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4063 sctp_style(sk, UDP))
4064 goto out;
4065
4066 retval = 0;
4067
4068 if (asoc) {
4069 asoc->strreset_enable = params->assoc_value;
4070 goto out;
4071 }
4072
4073 if (sctp_style(sk, TCP))
4074 params->assoc_id = SCTP_FUTURE_ASSOC;
4075
4076 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4077 params->assoc_id == SCTP_ALL_ASSOC)
4078 ep->strreset_enable = params->assoc_value;
4079
4080 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4081 params->assoc_id == SCTP_ALL_ASSOC)
4082 list_for_each_entry(asoc, &ep->asocs, asocs)
4083 asoc->strreset_enable = params->assoc_value;
4084
4085 out:
4086 return retval;
4087 }
4088
sctp_setsockopt_reset_streams(struct sock * sk,struct sctp_reset_streams * params,unsigned int optlen)4089 static int sctp_setsockopt_reset_streams(struct sock *sk,
4090 struct sctp_reset_streams *params,
4091 unsigned int optlen)
4092 {
4093 struct sctp_association *asoc;
4094
4095 if (optlen < sizeof(*params))
4096 return -EINVAL;
4097 /* srs_number_streams is u16, so optlen can't be bigger than this. */
4098 optlen = min_t(unsigned int, optlen, USHRT_MAX +
4099 sizeof(__u16) * sizeof(*params));
4100
4101 if (params->srs_number_streams * sizeof(__u16) >
4102 optlen - sizeof(*params))
4103 return -EINVAL;
4104
4105 asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4106 if (!asoc)
4107 return -EINVAL;
4108
4109 return sctp_send_reset_streams(asoc, params);
4110 }
4111
sctp_setsockopt_reset_assoc(struct sock * sk,sctp_assoc_t * associd,unsigned int optlen)4112 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd,
4113 unsigned int optlen)
4114 {
4115 struct sctp_association *asoc;
4116
4117 if (optlen != sizeof(*associd))
4118 return -EINVAL;
4119
4120 asoc = sctp_id2assoc(sk, *associd);
4121 if (!asoc)
4122 return -EINVAL;
4123
4124 return sctp_send_reset_assoc(asoc);
4125 }
4126
sctp_setsockopt_add_streams(struct sock * sk,struct sctp_add_streams * params,unsigned int optlen)4127 static int sctp_setsockopt_add_streams(struct sock *sk,
4128 struct sctp_add_streams *params,
4129 unsigned int optlen)
4130 {
4131 struct sctp_association *asoc;
4132
4133 if (optlen != sizeof(*params))
4134 return -EINVAL;
4135
4136 asoc = sctp_id2assoc(sk, params->sas_assoc_id);
4137 if (!asoc)
4138 return -EINVAL;
4139
4140 return sctp_send_add_streams(asoc, params);
4141 }
4142
sctp_setsockopt_scheduler(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4143 static int sctp_setsockopt_scheduler(struct sock *sk,
4144 struct sctp_assoc_value *params,
4145 unsigned int optlen)
4146 {
4147 struct sctp_sock *sp = sctp_sk(sk);
4148 struct sctp_association *asoc;
4149 int retval = 0;
4150
4151 if (optlen < sizeof(*params))
4152 return -EINVAL;
4153
4154 if (params->assoc_value > SCTP_SS_MAX)
4155 return -EINVAL;
4156
4157 asoc = sctp_id2assoc(sk, params->assoc_id);
4158 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4159 sctp_style(sk, UDP))
4160 return -EINVAL;
4161
4162 if (asoc)
4163 return sctp_sched_set_sched(asoc, params->assoc_value);
4164
4165 if (sctp_style(sk, TCP))
4166 params->assoc_id = SCTP_FUTURE_ASSOC;
4167
4168 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4169 params->assoc_id == SCTP_ALL_ASSOC)
4170 sp->default_ss = params->assoc_value;
4171
4172 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4173 params->assoc_id == SCTP_ALL_ASSOC) {
4174 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4175 int ret = sctp_sched_set_sched(asoc,
4176 params->assoc_value);
4177
4178 if (ret && !retval)
4179 retval = ret;
4180 }
4181 }
4182
4183 return retval;
4184 }
4185
sctp_setsockopt_scheduler_value(struct sock * sk,struct sctp_stream_value * params,unsigned int optlen)4186 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4187 struct sctp_stream_value *params,
4188 unsigned int optlen)
4189 {
4190 struct sctp_association *asoc;
4191 int retval = -EINVAL;
4192
4193 if (optlen < sizeof(*params))
4194 goto out;
4195
4196 asoc = sctp_id2assoc(sk, params->assoc_id);
4197 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC &&
4198 sctp_style(sk, UDP))
4199 goto out;
4200
4201 if (asoc) {
4202 retval = sctp_sched_set_value(asoc, params->stream_id,
4203 params->stream_value, GFP_KERNEL);
4204 goto out;
4205 }
4206
4207 retval = 0;
4208
4209 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4210 int ret = sctp_sched_set_value(asoc, params->stream_id,
4211 params->stream_value,
4212 GFP_KERNEL);
4213 if (ret && !retval) /* try to return the 1st error. */
4214 retval = ret;
4215 }
4216
4217 out:
4218 return retval;
4219 }
4220
sctp_setsockopt_interleaving_supported(struct sock * sk,struct sctp_assoc_value * p,unsigned int optlen)4221 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4222 struct sctp_assoc_value *p,
4223 unsigned int optlen)
4224 {
4225 struct sctp_sock *sp = sctp_sk(sk);
4226 struct sctp_association *asoc;
4227
4228 if (optlen < sizeof(*p))
4229 return -EINVAL;
4230
4231 asoc = sctp_id2assoc(sk, p->assoc_id);
4232 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP))
4233 return -EINVAL;
4234
4235 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4236 return -EPERM;
4237 }
4238
4239 sp->ep->intl_enable = !!p->assoc_value;
4240 return 0;
4241 }
4242
sctp_setsockopt_reuse_port(struct sock * sk,int * val,unsigned int optlen)4243 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val,
4244 unsigned int optlen)
4245 {
4246 if (!sctp_style(sk, TCP))
4247 return -EOPNOTSUPP;
4248
4249 if (sctp_sk(sk)->ep->base.bind_addr.port)
4250 return -EFAULT;
4251
4252 if (optlen < sizeof(int))
4253 return -EINVAL;
4254
4255 sctp_sk(sk)->reuse = !!*val;
4256
4257 return 0;
4258 }
4259
sctp_assoc_ulpevent_type_set(struct sctp_event * param,struct sctp_association * asoc)4260 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4261 struct sctp_association *asoc)
4262 {
4263 struct sctp_ulpevent *event;
4264
4265 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4266
4267 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4268 if (sctp_outq_is_empty(&asoc->outqueue)) {
4269 event = sctp_ulpevent_make_sender_dry_event(asoc,
4270 GFP_USER | __GFP_NOWARN);
4271 if (!event)
4272 return -ENOMEM;
4273
4274 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4275 }
4276 }
4277
4278 return 0;
4279 }
4280
sctp_setsockopt_event(struct sock * sk,struct sctp_event * param,unsigned int optlen)4281 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param,
4282 unsigned int optlen)
4283 {
4284 struct sctp_sock *sp = sctp_sk(sk);
4285 struct sctp_association *asoc;
4286 int retval = 0;
4287
4288 if (optlen < sizeof(*param))
4289 return -EINVAL;
4290
4291 if (param->se_type < SCTP_SN_TYPE_BASE ||
4292 param->se_type > SCTP_SN_TYPE_MAX)
4293 return -EINVAL;
4294
4295 asoc = sctp_id2assoc(sk, param->se_assoc_id);
4296 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC &&
4297 sctp_style(sk, UDP))
4298 return -EINVAL;
4299
4300 if (asoc)
4301 return sctp_assoc_ulpevent_type_set(param, asoc);
4302
4303 if (sctp_style(sk, TCP))
4304 param->se_assoc_id = SCTP_FUTURE_ASSOC;
4305
4306 if (param->se_assoc_id == SCTP_FUTURE_ASSOC ||
4307 param->se_assoc_id == SCTP_ALL_ASSOC)
4308 sctp_ulpevent_type_set(&sp->subscribe,
4309 param->se_type, param->se_on);
4310
4311 if (param->se_assoc_id == SCTP_CURRENT_ASSOC ||
4312 param->se_assoc_id == SCTP_ALL_ASSOC) {
4313 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4314 int ret = sctp_assoc_ulpevent_type_set(param, asoc);
4315
4316 if (ret && !retval)
4317 retval = ret;
4318 }
4319 }
4320
4321 return retval;
4322 }
4323
sctp_setsockopt_asconf_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4324 static int sctp_setsockopt_asconf_supported(struct sock *sk,
4325 struct sctp_assoc_value *params,
4326 unsigned int optlen)
4327 {
4328 struct sctp_association *asoc;
4329 struct sctp_endpoint *ep;
4330 int retval = -EINVAL;
4331
4332 if (optlen != sizeof(*params))
4333 goto out;
4334
4335 asoc = sctp_id2assoc(sk, params->assoc_id);
4336 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4337 sctp_style(sk, UDP))
4338 goto out;
4339
4340 ep = sctp_sk(sk)->ep;
4341 ep->asconf_enable = !!params->assoc_value;
4342
4343 if (ep->asconf_enable && ep->auth_enable) {
4344 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4345 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4346 }
4347
4348 retval = 0;
4349
4350 out:
4351 return retval;
4352 }
4353
sctp_setsockopt_auth_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4354 static int sctp_setsockopt_auth_supported(struct sock *sk,
4355 struct sctp_assoc_value *params,
4356 unsigned int optlen)
4357 {
4358 struct sctp_association *asoc;
4359 struct sctp_endpoint *ep;
4360 int retval = -EINVAL;
4361
4362 if (optlen != sizeof(*params))
4363 goto out;
4364
4365 asoc = sctp_id2assoc(sk, params->assoc_id);
4366 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4367 sctp_style(sk, UDP))
4368 goto out;
4369
4370 ep = sctp_sk(sk)->ep;
4371 if (params->assoc_value) {
4372 retval = sctp_auth_init(ep, GFP_KERNEL);
4373 if (retval)
4374 goto out;
4375 if (ep->asconf_enable) {
4376 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4377 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4378 }
4379 }
4380
4381 ep->auth_enable = !!params->assoc_value;
4382 retval = 0;
4383
4384 out:
4385 return retval;
4386 }
4387
sctp_setsockopt_ecn_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4388 static int sctp_setsockopt_ecn_supported(struct sock *sk,
4389 struct sctp_assoc_value *params,
4390 unsigned int optlen)
4391 {
4392 struct sctp_association *asoc;
4393 int retval = -EINVAL;
4394
4395 if (optlen != sizeof(*params))
4396 goto out;
4397
4398 asoc = sctp_id2assoc(sk, params->assoc_id);
4399 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4400 sctp_style(sk, UDP))
4401 goto out;
4402
4403 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value;
4404 retval = 0;
4405
4406 out:
4407 return retval;
4408 }
4409
sctp_setsockopt_pf_expose(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4410 static int sctp_setsockopt_pf_expose(struct sock *sk,
4411 struct sctp_assoc_value *params,
4412 unsigned int optlen)
4413 {
4414 struct sctp_association *asoc;
4415 int retval = -EINVAL;
4416
4417 if (optlen != sizeof(*params))
4418 goto out;
4419
4420 if (params->assoc_value > SCTP_PF_EXPOSE_MAX)
4421 goto out;
4422
4423 asoc = sctp_id2assoc(sk, params->assoc_id);
4424 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4425 sctp_style(sk, UDP))
4426 goto out;
4427
4428 if (asoc)
4429 asoc->pf_expose = params->assoc_value;
4430 else
4431 sctp_sk(sk)->pf_expose = params->assoc_value;
4432 retval = 0;
4433
4434 out:
4435 return retval;
4436 }
4437
4438 /* API 6.2 setsockopt(), getsockopt()
4439 *
4440 * Applications use setsockopt() and getsockopt() to set or retrieve
4441 * socket options. Socket options are used to change the default
4442 * behavior of sockets calls. They are described in Section 7.
4443 *
4444 * The syntax is:
4445 *
4446 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
4447 * int __user *optlen);
4448 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4449 * int optlen);
4450 *
4451 * sd - the socket descript.
4452 * level - set to IPPROTO_SCTP for all SCTP options.
4453 * optname - the option name.
4454 * optval - the buffer to store the value of the option.
4455 * optlen - the size of the buffer.
4456 */
sctp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)4457 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4458 sockptr_t optval, unsigned int optlen)
4459 {
4460 void *kopt = NULL;
4461 int retval = 0;
4462
4463 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4464
4465 /* I can hardly begin to describe how wrong this is. This is
4466 * so broken as to be worse than useless. The API draft
4467 * REALLY is NOT helpful here... I am not convinced that the
4468 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4469 * are at all well-founded.
4470 */
4471 if (level != SOL_SCTP) {
4472 struct sctp_af *af = sctp_sk(sk)->pf->af;
4473
4474 return af->setsockopt(sk, level, optname, optval, optlen);
4475 }
4476
4477 if (optlen > 0) {
4478 /* Trim it to the biggest size sctp sockopt may need if necessary */
4479 optlen = min_t(unsigned int, optlen,
4480 PAGE_ALIGN(USHRT_MAX +
4481 sizeof(__u16) * sizeof(struct sctp_reset_streams)));
4482 kopt = memdup_sockptr(optval, optlen);
4483 if (IS_ERR(kopt))
4484 return PTR_ERR(kopt);
4485 }
4486
4487 lock_sock(sk);
4488
4489 switch (optname) {
4490 case SCTP_SOCKOPT_BINDX_ADD:
4491 /* 'optlen' is the size of the addresses buffer. */
4492 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4493 SCTP_BINDX_ADD_ADDR);
4494 break;
4495
4496 case SCTP_SOCKOPT_BINDX_REM:
4497 /* 'optlen' is the size of the addresses buffer. */
4498 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4499 SCTP_BINDX_REM_ADDR);
4500 break;
4501
4502 case SCTP_SOCKOPT_CONNECTX_OLD:
4503 /* 'optlen' is the size of the addresses buffer. */
4504 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen);
4505 break;
4506
4507 case SCTP_SOCKOPT_CONNECTX:
4508 /* 'optlen' is the size of the addresses buffer. */
4509 retval = sctp_setsockopt_connectx(sk, kopt, optlen);
4510 break;
4511
4512 case SCTP_DISABLE_FRAGMENTS:
4513 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen);
4514 break;
4515
4516 case SCTP_EVENTS:
4517 retval = sctp_setsockopt_events(sk, kopt, optlen);
4518 break;
4519
4520 case SCTP_AUTOCLOSE:
4521 retval = sctp_setsockopt_autoclose(sk, kopt, optlen);
4522 break;
4523
4524 case SCTP_PEER_ADDR_PARAMS:
4525 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen);
4526 break;
4527
4528 case SCTP_DELAYED_SACK:
4529 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen);
4530 break;
4531 case SCTP_PARTIAL_DELIVERY_POINT:
4532 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen);
4533 break;
4534
4535 case SCTP_INITMSG:
4536 retval = sctp_setsockopt_initmsg(sk, kopt, optlen);
4537 break;
4538 case SCTP_DEFAULT_SEND_PARAM:
4539 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen);
4540 break;
4541 case SCTP_DEFAULT_SNDINFO:
4542 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen);
4543 break;
4544 case SCTP_PRIMARY_ADDR:
4545 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen);
4546 break;
4547 case SCTP_SET_PEER_PRIMARY_ADDR:
4548 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen);
4549 break;
4550 case SCTP_NODELAY:
4551 retval = sctp_setsockopt_nodelay(sk, kopt, optlen);
4552 break;
4553 case SCTP_RTOINFO:
4554 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen);
4555 break;
4556 case SCTP_ASSOCINFO:
4557 retval = sctp_setsockopt_associnfo(sk, kopt, optlen);
4558 break;
4559 case SCTP_I_WANT_MAPPED_V4_ADDR:
4560 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen);
4561 break;
4562 case SCTP_MAXSEG:
4563 retval = sctp_setsockopt_maxseg(sk, kopt, optlen);
4564 break;
4565 case SCTP_ADAPTATION_LAYER:
4566 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen);
4567 break;
4568 case SCTP_CONTEXT:
4569 retval = sctp_setsockopt_context(sk, kopt, optlen);
4570 break;
4571 case SCTP_FRAGMENT_INTERLEAVE:
4572 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen);
4573 break;
4574 case SCTP_MAX_BURST:
4575 retval = sctp_setsockopt_maxburst(sk, kopt, optlen);
4576 break;
4577 case SCTP_AUTH_CHUNK:
4578 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen);
4579 break;
4580 case SCTP_HMAC_IDENT:
4581 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen);
4582 break;
4583 case SCTP_AUTH_KEY:
4584 retval = sctp_setsockopt_auth_key(sk, kopt, optlen);
4585 break;
4586 case SCTP_AUTH_ACTIVE_KEY:
4587 retval = sctp_setsockopt_active_key(sk, kopt, optlen);
4588 break;
4589 case SCTP_AUTH_DELETE_KEY:
4590 retval = sctp_setsockopt_del_key(sk, kopt, optlen);
4591 break;
4592 case SCTP_AUTH_DEACTIVATE_KEY:
4593 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen);
4594 break;
4595 case SCTP_AUTO_ASCONF:
4596 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen);
4597 break;
4598 case SCTP_PEER_ADDR_THLDS:
4599 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4600 false);
4601 break;
4602 case SCTP_PEER_ADDR_THLDS_V2:
4603 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4604 true);
4605 break;
4606 case SCTP_RECVRCVINFO:
4607 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen);
4608 break;
4609 case SCTP_RECVNXTINFO:
4610 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen);
4611 break;
4612 case SCTP_PR_SUPPORTED:
4613 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen);
4614 break;
4615 case SCTP_DEFAULT_PRINFO:
4616 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen);
4617 break;
4618 case SCTP_RECONFIG_SUPPORTED:
4619 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen);
4620 break;
4621 case SCTP_ENABLE_STREAM_RESET:
4622 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen);
4623 break;
4624 case SCTP_RESET_STREAMS:
4625 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen);
4626 break;
4627 case SCTP_RESET_ASSOC:
4628 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen);
4629 break;
4630 case SCTP_ADD_STREAMS:
4631 retval = sctp_setsockopt_add_streams(sk, kopt, optlen);
4632 break;
4633 case SCTP_STREAM_SCHEDULER:
4634 retval = sctp_setsockopt_scheduler(sk, kopt, optlen);
4635 break;
4636 case SCTP_STREAM_SCHEDULER_VALUE:
4637 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen);
4638 break;
4639 case SCTP_INTERLEAVING_SUPPORTED:
4640 retval = sctp_setsockopt_interleaving_supported(sk, kopt,
4641 optlen);
4642 break;
4643 case SCTP_REUSE_PORT:
4644 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen);
4645 break;
4646 case SCTP_EVENT:
4647 retval = sctp_setsockopt_event(sk, kopt, optlen);
4648 break;
4649 case SCTP_ASCONF_SUPPORTED:
4650 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen);
4651 break;
4652 case SCTP_AUTH_SUPPORTED:
4653 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen);
4654 break;
4655 case SCTP_ECN_SUPPORTED:
4656 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen);
4657 break;
4658 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
4659 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen);
4660 break;
4661 default:
4662 retval = -ENOPROTOOPT;
4663 break;
4664 }
4665
4666 release_sock(sk);
4667 kfree(kopt);
4668 return retval;
4669 }
4670
4671 /* API 3.1.6 connect() - UDP Style Syntax
4672 *
4673 * An application may use the connect() call in the UDP model to initiate an
4674 * association without sending data.
4675 *
4676 * The syntax is:
4677 *
4678 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4679 *
4680 * sd: the socket descriptor to have a new association added to.
4681 *
4682 * nam: the address structure (either struct sockaddr_in or struct
4683 * sockaddr_in6 defined in RFC2553 [7]).
4684 *
4685 * len: the size of the address.
4686 */
sctp_connect(struct sock * sk,struct sockaddr * addr,int addr_len,int flags)4687 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4688 int addr_len, int flags)
4689 {
4690 struct sctp_af *af;
4691 int err = -EINVAL;
4692
4693 lock_sock(sk);
4694 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4695 addr, addr_len);
4696
4697 /* Validate addr_len before calling common connect/connectx routine. */
4698 af = sctp_get_af_specific(addr->sa_family);
4699 if (af && addr_len >= af->sockaddr_len)
4700 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4701
4702 release_sock(sk);
4703 return err;
4704 }
4705
sctp_inet_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)4706 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4707 int addr_len, int flags)
4708 {
4709 if (addr_len < sizeof(uaddr->sa_family))
4710 return -EINVAL;
4711
4712 if (uaddr->sa_family == AF_UNSPEC)
4713 return -EOPNOTSUPP;
4714
4715 return sctp_connect(sock->sk, uaddr, addr_len, flags);
4716 }
4717
4718 /* FIXME: Write comments. */
sctp_disconnect(struct sock * sk,int flags)4719 static int sctp_disconnect(struct sock *sk, int flags)
4720 {
4721 return -EOPNOTSUPP; /* STUB */
4722 }
4723
4724 /* 4.1.4 accept() - TCP Style Syntax
4725 *
4726 * Applications use accept() call to remove an established SCTP
4727 * association from the accept queue of the endpoint. A new socket
4728 * descriptor will be returned from accept() to represent the newly
4729 * formed association.
4730 */
sctp_accept(struct sock * sk,int flags,int * err,bool kern)4731 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4732 {
4733 struct sctp_sock *sp;
4734 struct sctp_endpoint *ep;
4735 struct sock *newsk = NULL;
4736 struct sctp_association *asoc;
4737 long timeo;
4738 int error = 0;
4739
4740 lock_sock(sk);
4741
4742 sp = sctp_sk(sk);
4743 ep = sp->ep;
4744
4745 if (!sctp_style(sk, TCP)) {
4746 error = -EOPNOTSUPP;
4747 goto out;
4748 }
4749
4750 if (!sctp_sstate(sk, LISTENING)) {
4751 error = -EINVAL;
4752 goto out;
4753 }
4754
4755 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4756
4757 error = sctp_wait_for_accept(sk, timeo);
4758 if (error)
4759 goto out;
4760
4761 /* We treat the list of associations on the endpoint as the accept
4762 * queue and pick the first association on the list.
4763 */
4764 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4765
4766 newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4767 if (!newsk) {
4768 error = -ENOMEM;
4769 goto out;
4770 }
4771
4772 /* Populate the fields of the newsk from the oldsk and migrate the
4773 * asoc to the newsk.
4774 */
4775 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4776 if (error) {
4777 sk_common_release(newsk);
4778 newsk = NULL;
4779 }
4780
4781 out:
4782 release_sock(sk);
4783 *err = error;
4784 return newsk;
4785 }
4786
4787 /* The SCTP ioctl handler. */
sctp_ioctl(struct sock * sk,int cmd,unsigned long arg)4788 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4789 {
4790 int rc = -ENOTCONN;
4791
4792 lock_sock(sk);
4793
4794 /*
4795 * SEQPACKET-style sockets in LISTENING state are valid, for
4796 * SCTP, so only discard TCP-style sockets in LISTENING state.
4797 */
4798 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4799 goto out;
4800
4801 switch (cmd) {
4802 case SIOCINQ: {
4803 struct sk_buff *skb;
4804 unsigned int amount = 0;
4805
4806 skb = skb_peek(&sk->sk_receive_queue);
4807 if (skb != NULL) {
4808 /*
4809 * We will only return the amount of this packet since
4810 * that is all that will be read.
4811 */
4812 amount = skb->len;
4813 }
4814 rc = put_user(amount, (int __user *)arg);
4815 break;
4816 }
4817 default:
4818 rc = -ENOIOCTLCMD;
4819 break;
4820 }
4821 out:
4822 release_sock(sk);
4823 return rc;
4824 }
4825
4826 /* This is the function which gets called during socket creation to
4827 * initialized the SCTP-specific portion of the sock.
4828 * The sock structure should already be zero-filled memory.
4829 */
sctp_init_sock(struct sock * sk)4830 static int sctp_init_sock(struct sock *sk)
4831 {
4832 struct net *net = sock_net(sk);
4833 struct sctp_sock *sp;
4834
4835 pr_debug("%s: sk:%p\n", __func__, sk);
4836
4837 sp = sctp_sk(sk);
4838
4839 /* Initialize the SCTP per socket area. */
4840 switch (sk->sk_type) {
4841 case SOCK_SEQPACKET:
4842 sp->type = SCTP_SOCKET_UDP;
4843 break;
4844 case SOCK_STREAM:
4845 sp->type = SCTP_SOCKET_TCP;
4846 break;
4847 default:
4848 return -ESOCKTNOSUPPORT;
4849 }
4850
4851 sk->sk_gso_type = SKB_GSO_SCTP;
4852
4853 /* Initialize default send parameters. These parameters can be
4854 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4855 */
4856 sp->default_stream = 0;
4857 sp->default_ppid = 0;
4858 sp->default_flags = 0;
4859 sp->default_context = 0;
4860 sp->default_timetolive = 0;
4861
4862 sp->default_rcv_context = 0;
4863 sp->max_burst = net->sctp.max_burst;
4864
4865 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4866
4867 /* Initialize default setup parameters. These parameters
4868 * can be modified with the SCTP_INITMSG socket option or
4869 * overridden by the SCTP_INIT CMSG.
4870 */
4871 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4872 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4873 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4874 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4875
4876 /* Initialize default RTO related parameters. These parameters can
4877 * be modified for with the SCTP_RTOINFO socket option.
4878 */
4879 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4880 sp->rtoinfo.srto_max = net->sctp.rto_max;
4881 sp->rtoinfo.srto_min = net->sctp.rto_min;
4882
4883 /* Initialize default association related parameters. These parameters
4884 * can be modified with the SCTP_ASSOCINFO socket option.
4885 */
4886 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4887 sp->assocparams.sasoc_number_peer_destinations = 0;
4888 sp->assocparams.sasoc_peer_rwnd = 0;
4889 sp->assocparams.sasoc_local_rwnd = 0;
4890 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4891
4892 /* Initialize default event subscriptions. By default, all the
4893 * options are off.
4894 */
4895 sp->subscribe = 0;
4896
4897 /* Default Peer Address Parameters. These defaults can
4898 * be modified via SCTP_PEER_ADDR_PARAMS
4899 */
4900 sp->hbinterval = net->sctp.hb_interval;
4901 sp->pathmaxrxt = net->sctp.max_retrans_path;
4902 sp->pf_retrans = net->sctp.pf_retrans;
4903 sp->ps_retrans = net->sctp.ps_retrans;
4904 sp->pf_expose = net->sctp.pf_expose;
4905 sp->pathmtu = 0; /* allow default discovery */
4906 sp->sackdelay = net->sctp.sack_timeout;
4907 sp->sackfreq = 2;
4908 sp->param_flags = SPP_HB_ENABLE |
4909 SPP_PMTUD_ENABLE |
4910 SPP_SACKDELAY_ENABLE;
4911 sp->default_ss = SCTP_SS_DEFAULT;
4912
4913 /* If enabled no SCTP message fragmentation will be performed.
4914 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4915 */
4916 sp->disable_fragments = 0;
4917
4918 /* Enable Nagle algorithm by default. */
4919 sp->nodelay = 0;
4920
4921 sp->recvrcvinfo = 0;
4922 sp->recvnxtinfo = 0;
4923
4924 /* Enable by default. */
4925 sp->v4mapped = 1;
4926
4927 /* Auto-close idle associations after the configured
4928 * number of seconds. A value of 0 disables this
4929 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4930 * for UDP-style sockets only.
4931 */
4932 sp->autoclose = 0;
4933
4934 /* User specified fragmentation limit. */
4935 sp->user_frag = 0;
4936
4937 sp->adaptation_ind = 0;
4938
4939 sp->pf = sctp_get_pf_specific(sk->sk_family);
4940
4941 /* Control variables for partial data delivery. */
4942 atomic_set(&sp->pd_mode, 0);
4943 skb_queue_head_init(&sp->pd_lobby);
4944 sp->frag_interleave = 0;
4945
4946 /* Create a per socket endpoint structure. Even if we
4947 * change the data structure relationships, this may still
4948 * be useful for storing pre-connect address information.
4949 */
4950 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4951 if (!sp->ep)
4952 return -ENOMEM;
4953
4954 sp->hmac = NULL;
4955
4956 sk->sk_destruct = sctp_destruct_sock;
4957
4958 SCTP_DBG_OBJCNT_INC(sock);
4959
4960 local_bh_disable();
4961 sk_sockets_allocated_inc(sk);
4962 sock_prot_inuse_add(net, sk->sk_prot, 1);
4963
4964 local_bh_enable();
4965
4966 return 0;
4967 }
4968
4969 /* Cleanup any SCTP per socket resources. Must be called with
4970 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4971 */
sctp_destroy_sock(struct sock * sk)4972 static void sctp_destroy_sock(struct sock *sk)
4973 {
4974 struct sctp_sock *sp;
4975
4976 pr_debug("%s: sk:%p\n", __func__, sk);
4977
4978 /* Release our hold on the endpoint. */
4979 sp = sctp_sk(sk);
4980 /* This could happen during socket init, thus we bail out
4981 * early, since the rest of the below is not setup either.
4982 */
4983 if (sp->ep == NULL)
4984 return;
4985
4986 if (sp->do_auto_asconf) {
4987 sp->do_auto_asconf = 0;
4988 list_del(&sp->auto_asconf_list);
4989 }
4990 sctp_endpoint_free(sp->ep);
4991 local_bh_disable();
4992 sk_sockets_allocated_dec(sk);
4993 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4994 local_bh_enable();
4995 }
4996
4997 /* Triggered when there are no references on the socket anymore */
sctp_destruct_common(struct sock * sk)4998 static void sctp_destruct_common(struct sock *sk)
4999 {
5000 struct sctp_sock *sp = sctp_sk(sk);
5001
5002 /* Free up the HMAC transform. */
5003 crypto_free_shash(sp->hmac);
5004 }
5005
sctp_destruct_sock(struct sock * sk)5006 static void sctp_destruct_sock(struct sock *sk)
5007 {
5008 sctp_destruct_common(sk);
5009 inet_sock_destruct(sk);
5010 }
5011
5012 /* API 4.1.7 shutdown() - TCP Style Syntax
5013 * int shutdown(int socket, int how);
5014 *
5015 * sd - the socket descriptor of the association to be closed.
5016 * how - Specifies the type of shutdown. The values are
5017 * as follows:
5018 * SHUT_RD
5019 * Disables further receive operations. No SCTP
5020 * protocol action is taken.
5021 * SHUT_WR
5022 * Disables further send operations, and initiates
5023 * the SCTP shutdown sequence.
5024 * SHUT_RDWR
5025 * Disables further send and receive operations
5026 * and initiates the SCTP shutdown sequence.
5027 */
sctp_shutdown(struct sock * sk,int how)5028 static void sctp_shutdown(struct sock *sk, int how)
5029 {
5030 struct net *net = sock_net(sk);
5031 struct sctp_endpoint *ep;
5032
5033 if (!sctp_style(sk, TCP))
5034 return;
5035
5036 ep = sctp_sk(sk)->ep;
5037 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5038 struct sctp_association *asoc;
5039
5040 inet_sk_set_state(sk, SCTP_SS_CLOSING);
5041 asoc = list_entry(ep->asocs.next,
5042 struct sctp_association, asocs);
5043 sctp_primitive_SHUTDOWN(net, asoc, NULL);
5044 }
5045 }
5046
sctp_get_sctp_info(struct sock * sk,struct sctp_association * asoc,struct sctp_info * info)5047 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5048 struct sctp_info *info)
5049 {
5050 struct sctp_transport *prim;
5051 struct list_head *pos;
5052 int mask;
5053
5054 memset(info, 0, sizeof(*info));
5055 if (!asoc) {
5056 struct sctp_sock *sp = sctp_sk(sk);
5057
5058 info->sctpi_s_autoclose = sp->autoclose;
5059 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5060 info->sctpi_s_pd_point = sp->pd_point;
5061 info->sctpi_s_nodelay = sp->nodelay;
5062 info->sctpi_s_disable_fragments = sp->disable_fragments;
5063 info->sctpi_s_v4mapped = sp->v4mapped;
5064 info->sctpi_s_frag_interleave = sp->frag_interleave;
5065 info->sctpi_s_type = sp->type;
5066
5067 return 0;
5068 }
5069
5070 info->sctpi_tag = asoc->c.my_vtag;
5071 info->sctpi_state = asoc->state;
5072 info->sctpi_rwnd = asoc->a_rwnd;
5073 info->sctpi_unackdata = asoc->unack_data;
5074 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5075 info->sctpi_instrms = asoc->stream.incnt;
5076 info->sctpi_outstrms = asoc->stream.outcnt;
5077 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5078 info->sctpi_inqueue++;
5079 list_for_each(pos, &asoc->outqueue.out_chunk_list)
5080 info->sctpi_outqueue++;
5081 info->sctpi_overall_error = asoc->overall_error_count;
5082 info->sctpi_max_burst = asoc->max_burst;
5083 info->sctpi_maxseg = asoc->frag_point;
5084 info->sctpi_peer_rwnd = asoc->peer.rwnd;
5085 info->sctpi_peer_tag = asoc->c.peer_vtag;
5086
5087 mask = asoc->peer.ecn_capable << 1;
5088 mask = (mask | asoc->peer.ipv4_address) << 1;
5089 mask = (mask | asoc->peer.ipv6_address) << 1;
5090 mask = (mask | asoc->peer.hostname_address) << 1;
5091 mask = (mask | asoc->peer.asconf_capable) << 1;
5092 mask = (mask | asoc->peer.prsctp_capable) << 1;
5093 mask = (mask | asoc->peer.auth_capable);
5094 info->sctpi_peer_capable = mask;
5095 mask = asoc->peer.sack_needed << 1;
5096 mask = (mask | asoc->peer.sack_generation) << 1;
5097 mask = (mask | asoc->peer.zero_window_announced);
5098 info->sctpi_peer_sack = mask;
5099
5100 info->sctpi_isacks = asoc->stats.isacks;
5101 info->sctpi_osacks = asoc->stats.osacks;
5102 info->sctpi_opackets = asoc->stats.opackets;
5103 info->sctpi_ipackets = asoc->stats.ipackets;
5104 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5105 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5106 info->sctpi_idupchunks = asoc->stats.idupchunks;
5107 info->sctpi_gapcnt = asoc->stats.gapcnt;
5108 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5109 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5110 info->sctpi_oodchunks = asoc->stats.oodchunks;
5111 info->sctpi_iodchunks = asoc->stats.iodchunks;
5112 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5113 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5114
5115 prim = asoc->peer.primary_path;
5116 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5117 info->sctpi_p_state = prim->state;
5118 info->sctpi_p_cwnd = prim->cwnd;
5119 info->sctpi_p_srtt = prim->srtt;
5120 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5121 info->sctpi_p_hbinterval = prim->hbinterval;
5122 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5123 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5124 info->sctpi_p_ssthresh = prim->ssthresh;
5125 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5126 info->sctpi_p_flight_size = prim->flight_size;
5127 info->sctpi_p_error = prim->error_count;
5128
5129 return 0;
5130 }
5131 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5132
5133 /* use callback to avoid exporting the core structure */
sctp_transport_walk_start(struct rhashtable_iter * iter)5134 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU)
5135 {
5136 rhltable_walk_enter(&sctp_transport_hashtable, iter);
5137
5138 rhashtable_walk_start(iter);
5139 }
5140
sctp_transport_walk_stop(struct rhashtable_iter * iter)5141 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU)
5142 {
5143 rhashtable_walk_stop(iter);
5144 rhashtable_walk_exit(iter);
5145 }
5146
sctp_transport_get_next(struct net * net,struct rhashtable_iter * iter)5147 struct sctp_transport *sctp_transport_get_next(struct net *net,
5148 struct rhashtable_iter *iter)
5149 {
5150 struct sctp_transport *t;
5151
5152 t = rhashtable_walk_next(iter);
5153 for (; t; t = rhashtable_walk_next(iter)) {
5154 if (IS_ERR(t)) {
5155 if (PTR_ERR(t) == -EAGAIN)
5156 continue;
5157 break;
5158 }
5159
5160 if (!sctp_transport_hold(t))
5161 continue;
5162
5163 if (net_eq(t->asoc->base.net, net) &&
5164 t->asoc->peer.primary_path == t)
5165 break;
5166
5167 sctp_transport_put(t);
5168 }
5169
5170 return t;
5171 }
5172
sctp_transport_get_idx(struct net * net,struct rhashtable_iter * iter,int pos)5173 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5174 struct rhashtable_iter *iter,
5175 int pos)
5176 {
5177 struct sctp_transport *t;
5178
5179 if (!pos)
5180 return SEQ_START_TOKEN;
5181
5182 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5183 if (!--pos)
5184 break;
5185 sctp_transport_put(t);
5186 }
5187
5188 return t;
5189 }
5190
sctp_for_each_endpoint(int (* cb)(struct sctp_endpoint *,void *),void * p)5191 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5192 void *p) {
5193 int err = 0;
5194 int hash = 0;
5195 struct sctp_ep_common *epb;
5196 struct sctp_hashbucket *head;
5197
5198 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5199 hash++, head++) {
5200 read_lock_bh(&head->lock);
5201 sctp_for_each_hentry(epb, &head->chain) {
5202 err = cb(sctp_ep(epb), p);
5203 if (err)
5204 break;
5205 }
5206 read_unlock_bh(&head->lock);
5207 }
5208
5209 return err;
5210 }
5211 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5212
sctp_transport_lookup_process(int (* cb)(struct sctp_transport *,void *),struct net * net,const union sctp_addr * laddr,const union sctp_addr * paddr,void * p)5213 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5214 struct net *net,
5215 const union sctp_addr *laddr,
5216 const union sctp_addr *paddr, void *p)
5217 {
5218 struct sctp_transport *transport;
5219 int err;
5220
5221 rcu_read_lock();
5222 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5223 rcu_read_unlock();
5224 if (!transport)
5225 return -ENOENT;
5226
5227 err = cb(transport, p);
5228 sctp_transport_put(transport);
5229
5230 return err;
5231 }
5232 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5233
sctp_transport_traverse_process(sctp_callback_t cb,sctp_callback_t cb_done,struct net * net,int * pos,void * p)5234 int sctp_transport_traverse_process(sctp_callback_t cb, sctp_callback_t cb_done,
5235 struct net *net, int *pos, void *p)
5236 {
5237 struct rhashtable_iter hti;
5238 struct sctp_transport *tsp;
5239 struct sctp_endpoint *ep;
5240 int ret;
5241
5242 again:
5243 ret = 0;
5244 sctp_transport_walk_start(&hti);
5245
5246 tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5247 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5248 ep = tsp->asoc->ep;
5249 if (sctp_endpoint_hold(ep)) { /* asoc can be peeled off */
5250 ret = cb(ep, tsp, p);
5251 if (ret)
5252 break;
5253 sctp_endpoint_put(ep);
5254 }
5255 (*pos)++;
5256 sctp_transport_put(tsp);
5257 }
5258 sctp_transport_walk_stop(&hti);
5259
5260 if (ret) {
5261 if (cb_done && !cb_done(ep, tsp, p)) {
5262 (*pos)++;
5263 sctp_endpoint_put(ep);
5264 sctp_transport_put(tsp);
5265 goto again;
5266 }
5267 sctp_endpoint_put(ep);
5268 sctp_transport_put(tsp);
5269 }
5270
5271 return ret;
5272 }
5273 EXPORT_SYMBOL_GPL(sctp_transport_traverse_process);
5274
5275 /* 7.2.1 Association Status (SCTP_STATUS)
5276
5277 * Applications can retrieve current status information about an
5278 * association, including association state, peer receiver window size,
5279 * number of unacked data chunks, and number of data chunks pending
5280 * receipt. This information is read-only.
5281 */
sctp_getsockopt_sctp_status(struct sock * sk,int len,char __user * optval,int __user * optlen)5282 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5283 char __user *optval,
5284 int __user *optlen)
5285 {
5286 struct sctp_status status;
5287 struct sctp_association *asoc = NULL;
5288 struct sctp_transport *transport;
5289 sctp_assoc_t associd;
5290 int retval = 0;
5291
5292 if (len < sizeof(status)) {
5293 retval = -EINVAL;
5294 goto out;
5295 }
5296
5297 len = sizeof(status);
5298 if (copy_from_user(&status, optval, len)) {
5299 retval = -EFAULT;
5300 goto out;
5301 }
5302
5303 associd = status.sstat_assoc_id;
5304 asoc = sctp_id2assoc(sk, associd);
5305 if (!asoc) {
5306 retval = -EINVAL;
5307 goto out;
5308 }
5309
5310 transport = asoc->peer.primary_path;
5311
5312 status.sstat_assoc_id = sctp_assoc2id(asoc);
5313 status.sstat_state = sctp_assoc_to_state(asoc);
5314 status.sstat_rwnd = asoc->peer.rwnd;
5315 status.sstat_unackdata = asoc->unack_data;
5316
5317 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5318 status.sstat_instrms = asoc->stream.incnt;
5319 status.sstat_outstrms = asoc->stream.outcnt;
5320 status.sstat_fragmentation_point = asoc->frag_point;
5321 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5322 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5323 transport->af_specific->sockaddr_len);
5324 /* Map ipv4 address into v4-mapped-on-v6 address. */
5325 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5326 (union sctp_addr *)&status.sstat_primary.spinfo_address);
5327 status.sstat_primary.spinfo_state = transport->state;
5328 status.sstat_primary.spinfo_cwnd = transport->cwnd;
5329 status.sstat_primary.spinfo_srtt = transport->srtt;
5330 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5331 status.sstat_primary.spinfo_mtu = transport->pathmtu;
5332
5333 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5334 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5335
5336 if (put_user(len, optlen)) {
5337 retval = -EFAULT;
5338 goto out;
5339 }
5340
5341 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5342 __func__, len, status.sstat_state, status.sstat_rwnd,
5343 status.sstat_assoc_id);
5344
5345 if (copy_to_user(optval, &status, len)) {
5346 retval = -EFAULT;
5347 goto out;
5348 }
5349
5350 out:
5351 return retval;
5352 }
5353
5354
5355 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5356 *
5357 * Applications can retrieve information about a specific peer address
5358 * of an association, including its reachability state, congestion
5359 * window, and retransmission timer values. This information is
5360 * read-only.
5361 */
sctp_getsockopt_peer_addr_info(struct sock * sk,int len,char __user * optval,int __user * optlen)5362 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5363 char __user *optval,
5364 int __user *optlen)
5365 {
5366 struct sctp_paddrinfo pinfo;
5367 struct sctp_transport *transport;
5368 int retval = 0;
5369
5370 if (len < sizeof(pinfo)) {
5371 retval = -EINVAL;
5372 goto out;
5373 }
5374
5375 len = sizeof(pinfo);
5376 if (copy_from_user(&pinfo, optval, len)) {
5377 retval = -EFAULT;
5378 goto out;
5379 }
5380
5381 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5382 pinfo.spinfo_assoc_id);
5383 if (!transport) {
5384 retval = -EINVAL;
5385 goto out;
5386 }
5387
5388 if (transport->state == SCTP_PF &&
5389 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) {
5390 retval = -EACCES;
5391 goto out;
5392 }
5393
5394 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5395 pinfo.spinfo_state = transport->state;
5396 pinfo.spinfo_cwnd = transport->cwnd;
5397 pinfo.spinfo_srtt = transport->srtt;
5398 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5399 pinfo.spinfo_mtu = transport->pathmtu;
5400
5401 if (pinfo.spinfo_state == SCTP_UNKNOWN)
5402 pinfo.spinfo_state = SCTP_ACTIVE;
5403
5404 if (put_user(len, optlen)) {
5405 retval = -EFAULT;
5406 goto out;
5407 }
5408
5409 if (copy_to_user(optval, &pinfo, len)) {
5410 retval = -EFAULT;
5411 goto out;
5412 }
5413
5414 out:
5415 return retval;
5416 }
5417
5418 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5419 *
5420 * This option is a on/off flag. If enabled no SCTP message
5421 * fragmentation will be performed. Instead if a message being sent
5422 * exceeds the current PMTU size, the message will NOT be sent and
5423 * instead a error will be indicated to the user.
5424 */
sctp_getsockopt_disable_fragments(struct sock * sk,int len,char __user * optval,int __user * optlen)5425 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5426 char __user *optval, int __user *optlen)
5427 {
5428 int val;
5429
5430 if (len < sizeof(int))
5431 return -EINVAL;
5432
5433 len = sizeof(int);
5434 val = (sctp_sk(sk)->disable_fragments == 1);
5435 if (put_user(len, optlen))
5436 return -EFAULT;
5437 if (copy_to_user(optval, &val, len))
5438 return -EFAULT;
5439 return 0;
5440 }
5441
5442 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5443 *
5444 * This socket option is used to specify various notifications and
5445 * ancillary data the user wishes to receive.
5446 */
sctp_getsockopt_events(struct sock * sk,int len,char __user * optval,int __user * optlen)5447 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5448 int __user *optlen)
5449 {
5450 struct sctp_event_subscribe subscribe;
5451 __u8 *sn_type = (__u8 *)&subscribe;
5452 int i;
5453
5454 if (len == 0)
5455 return -EINVAL;
5456 if (len > sizeof(struct sctp_event_subscribe))
5457 len = sizeof(struct sctp_event_subscribe);
5458 if (put_user(len, optlen))
5459 return -EFAULT;
5460
5461 for (i = 0; i < len; i++)
5462 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5463 SCTP_SN_TYPE_BASE + i);
5464
5465 if (copy_to_user(optval, &subscribe, len))
5466 return -EFAULT;
5467
5468 return 0;
5469 }
5470
5471 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5472 *
5473 * This socket option is applicable to the UDP-style socket only. When
5474 * set it will cause associations that are idle for more than the
5475 * specified number of seconds to automatically close. An association
5476 * being idle is defined an association that has NOT sent or received
5477 * user data. The special value of '0' indicates that no automatic
5478 * close of any associations should be performed. The option expects an
5479 * integer defining the number of seconds of idle time before an
5480 * association is closed.
5481 */
sctp_getsockopt_autoclose(struct sock * sk,int len,char __user * optval,int __user * optlen)5482 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5483 {
5484 /* Applicable to UDP-style socket only */
5485 if (sctp_style(sk, TCP))
5486 return -EOPNOTSUPP;
5487 if (len < sizeof(int))
5488 return -EINVAL;
5489 len = sizeof(int);
5490 if (put_user(len, optlen))
5491 return -EFAULT;
5492 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5493 return -EFAULT;
5494 return 0;
5495 }
5496
5497 /* Helper routine to branch off an association to a new socket. */
sctp_do_peeloff(struct sock * sk,sctp_assoc_t id,struct socket ** sockp)5498 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5499 {
5500 struct sctp_association *asoc = sctp_id2assoc(sk, id);
5501 struct sctp_sock *sp = sctp_sk(sk);
5502 struct socket *sock;
5503 int err = 0;
5504
5505 /* Do not peel off from one netns to another one. */
5506 if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5507 return -EINVAL;
5508
5509 if (!asoc)
5510 return -EINVAL;
5511
5512 /* An association cannot be branched off from an already peeled-off
5513 * socket, nor is this supported for tcp style sockets.
5514 */
5515 if (!sctp_style(sk, UDP))
5516 return -EINVAL;
5517
5518 /* Create a new socket. */
5519 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5520 if (err < 0)
5521 return err;
5522
5523 sctp_copy_sock(sock->sk, sk, asoc);
5524
5525 /* Make peeled-off sockets more like 1-1 accepted sockets.
5526 * Set the daddr and initialize id to something more random and also
5527 * copy over any ip options.
5528 */
5529 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sock->sk);
5530 sp->pf->copy_ip_options(sk, sock->sk);
5531
5532 /* Populate the fields of the newsk from the oldsk and migrate the
5533 * asoc to the newsk.
5534 */
5535 err = sctp_sock_migrate(sk, sock->sk, asoc,
5536 SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5537 if (err) {
5538 sock_release(sock);
5539 sock = NULL;
5540 }
5541
5542 *sockp = sock;
5543
5544 return err;
5545 }
5546 EXPORT_SYMBOL(sctp_do_peeloff);
5547
sctp_getsockopt_peeloff_common(struct sock * sk,sctp_peeloff_arg_t * peeloff,struct file ** newfile,unsigned flags)5548 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5549 struct file **newfile, unsigned flags)
5550 {
5551 struct socket *newsock;
5552 int retval;
5553
5554 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5555 if (retval < 0)
5556 goto out;
5557
5558 /* Map the socket to an unused fd that can be returned to the user. */
5559 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5560 if (retval < 0) {
5561 sock_release(newsock);
5562 goto out;
5563 }
5564
5565 *newfile = sock_alloc_file(newsock, 0, NULL);
5566 if (IS_ERR(*newfile)) {
5567 put_unused_fd(retval);
5568 retval = PTR_ERR(*newfile);
5569 *newfile = NULL;
5570 return retval;
5571 }
5572
5573 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5574 retval);
5575
5576 peeloff->sd = retval;
5577
5578 if (flags & SOCK_NONBLOCK)
5579 (*newfile)->f_flags |= O_NONBLOCK;
5580 out:
5581 return retval;
5582 }
5583
sctp_getsockopt_peeloff(struct sock * sk,int len,char __user * optval,int __user * optlen)5584 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5585 {
5586 sctp_peeloff_arg_t peeloff;
5587 struct file *newfile = NULL;
5588 int retval = 0;
5589
5590 if (len < sizeof(sctp_peeloff_arg_t))
5591 return -EINVAL;
5592 len = sizeof(sctp_peeloff_arg_t);
5593 if (copy_from_user(&peeloff, optval, len))
5594 return -EFAULT;
5595
5596 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5597 if (retval < 0)
5598 goto out;
5599
5600 /* Return the fd mapped to the new socket. */
5601 if (put_user(len, optlen)) {
5602 fput(newfile);
5603 put_unused_fd(retval);
5604 return -EFAULT;
5605 }
5606
5607 if (copy_to_user(optval, &peeloff, len)) {
5608 fput(newfile);
5609 put_unused_fd(retval);
5610 return -EFAULT;
5611 }
5612 fd_install(retval, newfile);
5613 out:
5614 return retval;
5615 }
5616
sctp_getsockopt_peeloff_flags(struct sock * sk,int len,char __user * optval,int __user * optlen)5617 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5618 char __user *optval, int __user *optlen)
5619 {
5620 sctp_peeloff_flags_arg_t peeloff;
5621 struct file *newfile = NULL;
5622 int retval = 0;
5623
5624 if (len < sizeof(sctp_peeloff_flags_arg_t))
5625 return -EINVAL;
5626 len = sizeof(sctp_peeloff_flags_arg_t);
5627 if (copy_from_user(&peeloff, optval, len))
5628 return -EFAULT;
5629
5630 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5631 &newfile, peeloff.flags);
5632 if (retval < 0)
5633 goto out;
5634
5635 /* Return the fd mapped to the new socket. */
5636 if (put_user(len, optlen)) {
5637 fput(newfile);
5638 put_unused_fd(retval);
5639 return -EFAULT;
5640 }
5641
5642 if (copy_to_user(optval, &peeloff, len)) {
5643 fput(newfile);
5644 put_unused_fd(retval);
5645 return -EFAULT;
5646 }
5647 fd_install(retval, newfile);
5648 out:
5649 return retval;
5650 }
5651
5652 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5653 *
5654 * Applications can enable or disable heartbeats for any peer address of
5655 * an association, modify an address's heartbeat interval, force a
5656 * heartbeat to be sent immediately, and adjust the address's maximum
5657 * number of retransmissions sent before an address is considered
5658 * unreachable. The following structure is used to access and modify an
5659 * address's parameters:
5660 *
5661 * struct sctp_paddrparams {
5662 * sctp_assoc_t spp_assoc_id;
5663 * struct sockaddr_storage spp_address;
5664 * uint32_t spp_hbinterval;
5665 * uint16_t spp_pathmaxrxt;
5666 * uint32_t spp_pathmtu;
5667 * uint32_t spp_sackdelay;
5668 * uint32_t spp_flags;
5669 * };
5670 *
5671 * spp_assoc_id - (one-to-many style socket) This is filled in the
5672 * application, and identifies the association for
5673 * this query.
5674 * spp_address - This specifies which address is of interest.
5675 * spp_hbinterval - This contains the value of the heartbeat interval,
5676 * in milliseconds. If a value of zero
5677 * is present in this field then no changes are to
5678 * be made to this parameter.
5679 * spp_pathmaxrxt - This contains the maximum number of
5680 * retransmissions before this address shall be
5681 * considered unreachable. If a value of zero
5682 * is present in this field then no changes are to
5683 * be made to this parameter.
5684 * spp_pathmtu - When Path MTU discovery is disabled the value
5685 * specified here will be the "fixed" path mtu.
5686 * Note that if the spp_address field is empty
5687 * then all associations on this address will
5688 * have this fixed path mtu set upon them.
5689 *
5690 * spp_sackdelay - When delayed sack is enabled, this value specifies
5691 * the number of milliseconds that sacks will be delayed
5692 * for. This value will apply to all addresses of an
5693 * association if the spp_address field is empty. Note
5694 * also, that if delayed sack is enabled and this
5695 * value is set to 0, no change is made to the last
5696 * recorded delayed sack timer value.
5697 *
5698 * spp_flags - These flags are used to control various features
5699 * on an association. The flag field may contain
5700 * zero or more of the following options.
5701 *
5702 * SPP_HB_ENABLE - Enable heartbeats on the
5703 * specified address. Note that if the address
5704 * field is empty all addresses for the association
5705 * have heartbeats enabled upon them.
5706 *
5707 * SPP_HB_DISABLE - Disable heartbeats on the
5708 * speicifed address. Note that if the address
5709 * field is empty all addresses for the association
5710 * will have their heartbeats disabled. Note also
5711 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
5712 * mutually exclusive, only one of these two should
5713 * be specified. Enabling both fields will have
5714 * undetermined results.
5715 *
5716 * SPP_HB_DEMAND - Request a user initiated heartbeat
5717 * to be made immediately.
5718 *
5719 * SPP_PMTUD_ENABLE - This field will enable PMTU
5720 * discovery upon the specified address. Note that
5721 * if the address feild is empty then all addresses
5722 * on the association are effected.
5723 *
5724 * SPP_PMTUD_DISABLE - This field will disable PMTU
5725 * discovery upon the specified address. Note that
5726 * if the address feild is empty then all addresses
5727 * on the association are effected. Not also that
5728 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5729 * exclusive. Enabling both will have undetermined
5730 * results.
5731 *
5732 * SPP_SACKDELAY_ENABLE - Setting this flag turns
5733 * on delayed sack. The time specified in spp_sackdelay
5734 * is used to specify the sack delay for this address. Note
5735 * that if spp_address is empty then all addresses will
5736 * enable delayed sack and take on the sack delay
5737 * value specified in spp_sackdelay.
5738 * SPP_SACKDELAY_DISABLE - Setting this flag turns
5739 * off delayed sack. If the spp_address field is blank then
5740 * delayed sack is disabled for the entire association. Note
5741 * also that this field is mutually exclusive to
5742 * SPP_SACKDELAY_ENABLE, setting both will have undefined
5743 * results.
5744 *
5745 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
5746 * setting of the IPV6 flow label value. The value is
5747 * contained in the spp_ipv6_flowlabel field.
5748 * Upon retrieval, this flag will be set to indicate that
5749 * the spp_ipv6_flowlabel field has a valid value returned.
5750 * If a specific destination address is set (in the
5751 * spp_address field), then the value returned is that of
5752 * the address. If just an association is specified (and
5753 * no address), then the association's default flow label
5754 * is returned. If neither an association nor a destination
5755 * is specified, then the socket's default flow label is
5756 * returned. For non-IPv6 sockets, this flag will be left
5757 * cleared.
5758 *
5759 * SPP_DSCP: Setting this flag enables the setting of the
5760 * Differentiated Services Code Point (DSCP) value
5761 * associated with either the association or a specific
5762 * address. The value is obtained in the spp_dscp field.
5763 * Upon retrieval, this flag will be set to indicate that
5764 * the spp_dscp field has a valid value returned. If a
5765 * specific destination address is set when called (in the
5766 * spp_address field), then that specific destination
5767 * address's DSCP value is returned. If just an association
5768 * is specified, then the association's default DSCP is
5769 * returned. If neither an association nor a destination is
5770 * specified, then the socket's default DSCP is returned.
5771 *
5772 * spp_ipv6_flowlabel
5773 * - This field is used in conjunction with the
5774 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5775 * The 20 least significant bits are used for the flow
5776 * label. This setting has precedence over any IPv6-layer
5777 * setting.
5778 *
5779 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
5780 * and contains the DSCP. The 6 most significant bits are
5781 * used for the DSCP. This setting has precedence over any
5782 * IPv4- or IPv6- layer setting.
5783 */
sctp_getsockopt_peer_addr_params(struct sock * sk,int len,char __user * optval,int __user * optlen)5784 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5785 char __user *optval, int __user *optlen)
5786 {
5787 struct sctp_paddrparams params;
5788 struct sctp_transport *trans = NULL;
5789 struct sctp_association *asoc = NULL;
5790 struct sctp_sock *sp = sctp_sk(sk);
5791
5792 if (len >= sizeof(params))
5793 len = sizeof(params);
5794 else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5795 spp_ipv6_flowlabel), 4))
5796 len = ALIGN(offsetof(struct sctp_paddrparams,
5797 spp_ipv6_flowlabel), 4);
5798 else
5799 return -EINVAL;
5800
5801 if (copy_from_user(¶ms, optval, len))
5802 return -EFAULT;
5803
5804 /* If an address other than INADDR_ANY is specified, and
5805 * no transport is found, then the request is invalid.
5806 */
5807 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
5808 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
5809 params.spp_assoc_id);
5810 if (!trans) {
5811 pr_debug("%s: failed no transport\n", __func__);
5812 return -EINVAL;
5813 }
5814 }
5815
5816 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5817 * socket is a one to many style socket, and an association
5818 * was not found, then the id was invalid.
5819 */
5820 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5821 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5822 sctp_style(sk, UDP)) {
5823 pr_debug("%s: failed no association\n", __func__);
5824 return -EINVAL;
5825 }
5826
5827 if (trans) {
5828 /* Fetch transport values. */
5829 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5830 params.spp_pathmtu = trans->pathmtu;
5831 params.spp_pathmaxrxt = trans->pathmaxrxt;
5832 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
5833
5834 /*draft-11 doesn't say what to return in spp_flags*/
5835 params.spp_flags = trans->param_flags;
5836 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5837 params.spp_ipv6_flowlabel = trans->flowlabel &
5838 SCTP_FLOWLABEL_VAL_MASK;
5839 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5840 }
5841 if (trans->dscp & SCTP_DSCP_SET_MASK) {
5842 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK;
5843 params.spp_flags |= SPP_DSCP;
5844 }
5845 } else if (asoc) {
5846 /* Fetch association values. */
5847 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5848 params.spp_pathmtu = asoc->pathmtu;
5849 params.spp_pathmaxrxt = asoc->pathmaxrxt;
5850 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
5851
5852 /*draft-11 doesn't say what to return in spp_flags*/
5853 params.spp_flags = asoc->param_flags;
5854 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5855 params.spp_ipv6_flowlabel = asoc->flowlabel &
5856 SCTP_FLOWLABEL_VAL_MASK;
5857 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5858 }
5859 if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5860 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK;
5861 params.spp_flags |= SPP_DSCP;
5862 }
5863 } else {
5864 /* Fetch socket values. */
5865 params.spp_hbinterval = sp->hbinterval;
5866 params.spp_pathmtu = sp->pathmtu;
5867 params.spp_sackdelay = sp->sackdelay;
5868 params.spp_pathmaxrxt = sp->pathmaxrxt;
5869
5870 /*draft-11 doesn't say what to return in spp_flags*/
5871 params.spp_flags = sp->param_flags;
5872 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5873 params.spp_ipv6_flowlabel = sp->flowlabel &
5874 SCTP_FLOWLABEL_VAL_MASK;
5875 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5876 }
5877 if (sp->dscp & SCTP_DSCP_SET_MASK) {
5878 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK;
5879 params.spp_flags |= SPP_DSCP;
5880 }
5881 }
5882
5883 if (copy_to_user(optval, ¶ms, len))
5884 return -EFAULT;
5885
5886 if (put_user(len, optlen))
5887 return -EFAULT;
5888
5889 return 0;
5890 }
5891
5892 /*
5893 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
5894 *
5895 * This option will effect the way delayed acks are performed. This
5896 * option allows you to get or set the delayed ack time, in
5897 * milliseconds. It also allows changing the delayed ack frequency.
5898 * Changing the frequency to 1 disables the delayed sack algorithm. If
5899 * the assoc_id is 0, then this sets or gets the endpoints default
5900 * values. If the assoc_id field is non-zero, then the set or get
5901 * effects the specified association for the one to many model (the
5902 * assoc_id field is ignored by the one to one model). Note that if
5903 * sack_delay or sack_freq are 0 when setting this option, then the
5904 * current values will remain unchanged.
5905 *
5906 * struct sctp_sack_info {
5907 * sctp_assoc_t sack_assoc_id;
5908 * uint32_t sack_delay;
5909 * uint32_t sack_freq;
5910 * };
5911 *
5912 * sack_assoc_id - This parameter, indicates which association the user
5913 * is performing an action upon. Note that if this field's value is
5914 * zero then the endpoints default value is changed (effecting future
5915 * associations only).
5916 *
5917 * sack_delay - This parameter contains the number of milliseconds that
5918 * the user is requesting the delayed ACK timer be set to. Note that
5919 * this value is defined in the standard to be between 200 and 500
5920 * milliseconds.
5921 *
5922 * sack_freq - This parameter contains the number of packets that must
5923 * be received before a sack is sent without waiting for the delay
5924 * timer to expire. The default value for this is 2, setting this
5925 * value to 1 will disable the delayed sack algorithm.
5926 */
sctp_getsockopt_delayed_ack(struct sock * sk,int len,char __user * optval,int __user * optlen)5927 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5928 char __user *optval,
5929 int __user *optlen)
5930 {
5931 struct sctp_sack_info params;
5932 struct sctp_association *asoc = NULL;
5933 struct sctp_sock *sp = sctp_sk(sk);
5934
5935 if (len >= sizeof(struct sctp_sack_info)) {
5936 len = sizeof(struct sctp_sack_info);
5937
5938 if (copy_from_user(¶ms, optval, len))
5939 return -EFAULT;
5940 } else if (len == sizeof(struct sctp_assoc_value)) {
5941 pr_warn_ratelimited(DEPRECATED
5942 "%s (pid %d) "
5943 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5944 "Use struct sctp_sack_info instead\n",
5945 current->comm, task_pid_nr(current));
5946 if (copy_from_user(¶ms, optval, len))
5947 return -EFAULT;
5948 } else
5949 return -EINVAL;
5950
5951 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
5952 * socket is a one to many style socket, and an association
5953 * was not found, then the id was invalid.
5954 */
5955 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5956 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
5957 sctp_style(sk, UDP))
5958 return -EINVAL;
5959
5960 if (asoc) {
5961 /* Fetch association values. */
5962 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5963 params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
5964 params.sack_freq = asoc->sackfreq;
5965
5966 } else {
5967 params.sack_delay = 0;
5968 params.sack_freq = 1;
5969 }
5970 } else {
5971 /* Fetch socket values. */
5972 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5973 params.sack_delay = sp->sackdelay;
5974 params.sack_freq = sp->sackfreq;
5975 } else {
5976 params.sack_delay = 0;
5977 params.sack_freq = 1;
5978 }
5979 }
5980
5981 if (copy_to_user(optval, ¶ms, len))
5982 return -EFAULT;
5983
5984 if (put_user(len, optlen))
5985 return -EFAULT;
5986
5987 return 0;
5988 }
5989
5990 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5991 *
5992 * Applications can specify protocol parameters for the default association
5993 * initialization. The option name argument to setsockopt() and getsockopt()
5994 * is SCTP_INITMSG.
5995 *
5996 * Setting initialization parameters is effective only on an unconnected
5997 * socket (for UDP-style sockets only future associations are effected
5998 * by the change). With TCP-style sockets, this option is inherited by
5999 * sockets derived from a listener socket.
6000 */
sctp_getsockopt_initmsg(struct sock * sk,int len,char __user * optval,int __user * optlen)6001 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6002 {
6003 if (len < sizeof(struct sctp_initmsg))
6004 return -EINVAL;
6005 len = sizeof(struct sctp_initmsg);
6006 if (put_user(len, optlen))
6007 return -EFAULT;
6008 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6009 return -EFAULT;
6010 return 0;
6011 }
6012
6013
sctp_getsockopt_peer_addrs(struct sock * sk,int len,char __user * optval,int __user * optlen)6014 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6015 char __user *optval, int __user *optlen)
6016 {
6017 struct sctp_association *asoc;
6018 int cnt = 0;
6019 struct sctp_getaddrs getaddrs;
6020 struct sctp_transport *from;
6021 void __user *to;
6022 union sctp_addr temp;
6023 struct sctp_sock *sp = sctp_sk(sk);
6024 int addrlen;
6025 size_t space_left;
6026 int bytes_copied;
6027
6028 if (len < sizeof(struct sctp_getaddrs))
6029 return -EINVAL;
6030
6031 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6032 return -EFAULT;
6033
6034 /* For UDP-style sockets, id specifies the association to query. */
6035 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6036 if (!asoc)
6037 return -EINVAL;
6038
6039 to = optval + offsetof(struct sctp_getaddrs, addrs);
6040 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6041
6042 list_for_each_entry(from, &asoc->peer.transport_addr_list,
6043 transports) {
6044 memcpy(&temp, &from->ipaddr, sizeof(temp));
6045 addrlen = sctp_get_pf_specific(sk->sk_family)
6046 ->addr_to_user(sp, &temp);
6047 if (space_left < addrlen)
6048 return -ENOMEM;
6049 if (copy_to_user(to, &temp, addrlen))
6050 return -EFAULT;
6051 to += addrlen;
6052 cnt++;
6053 space_left -= addrlen;
6054 }
6055
6056 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6057 return -EFAULT;
6058 bytes_copied = ((char __user *)to) - optval;
6059 if (put_user(bytes_copied, optlen))
6060 return -EFAULT;
6061
6062 return 0;
6063 }
6064
sctp_copy_laddrs(struct sock * sk,__u16 port,void * to,size_t space_left,int * bytes_copied)6065 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6066 size_t space_left, int *bytes_copied)
6067 {
6068 struct sctp_sockaddr_entry *addr;
6069 union sctp_addr temp;
6070 int cnt = 0;
6071 int addrlen;
6072 struct net *net = sock_net(sk);
6073
6074 rcu_read_lock();
6075 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6076 if (!addr->valid)
6077 continue;
6078
6079 if ((PF_INET == sk->sk_family) &&
6080 (AF_INET6 == addr->a.sa.sa_family))
6081 continue;
6082 if ((PF_INET6 == sk->sk_family) &&
6083 inet_v6_ipv6only(sk) &&
6084 (AF_INET == addr->a.sa.sa_family))
6085 continue;
6086 memcpy(&temp, &addr->a, sizeof(temp));
6087 if (!temp.v4.sin_port)
6088 temp.v4.sin_port = htons(port);
6089
6090 addrlen = sctp_get_pf_specific(sk->sk_family)
6091 ->addr_to_user(sctp_sk(sk), &temp);
6092
6093 if (space_left < addrlen) {
6094 cnt = -ENOMEM;
6095 break;
6096 }
6097 memcpy(to, &temp, addrlen);
6098
6099 to += addrlen;
6100 cnt++;
6101 space_left -= addrlen;
6102 *bytes_copied += addrlen;
6103 }
6104 rcu_read_unlock();
6105
6106 return cnt;
6107 }
6108
6109
sctp_getsockopt_local_addrs(struct sock * sk,int len,char __user * optval,int __user * optlen)6110 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6111 char __user *optval, int __user *optlen)
6112 {
6113 struct sctp_bind_addr *bp;
6114 struct sctp_association *asoc;
6115 int cnt = 0;
6116 struct sctp_getaddrs getaddrs;
6117 struct sctp_sockaddr_entry *addr;
6118 void __user *to;
6119 union sctp_addr temp;
6120 struct sctp_sock *sp = sctp_sk(sk);
6121 int addrlen;
6122 int err = 0;
6123 size_t space_left;
6124 int bytes_copied = 0;
6125 void *addrs;
6126 void *buf;
6127
6128 if (len < sizeof(struct sctp_getaddrs))
6129 return -EINVAL;
6130
6131 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6132 return -EFAULT;
6133
6134 /*
6135 * For UDP-style sockets, id specifies the association to query.
6136 * If the id field is set to the value '0' then the locally bound
6137 * addresses are returned without regard to any particular
6138 * association.
6139 */
6140 if (0 == getaddrs.assoc_id) {
6141 bp = &sctp_sk(sk)->ep->base.bind_addr;
6142 } else {
6143 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6144 if (!asoc)
6145 return -EINVAL;
6146 bp = &asoc->base.bind_addr;
6147 }
6148
6149 to = optval + offsetof(struct sctp_getaddrs, addrs);
6150 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6151
6152 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6153 if (!addrs)
6154 return -ENOMEM;
6155
6156 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6157 * addresses from the global local address list.
6158 */
6159 if (sctp_list_single_entry(&bp->address_list)) {
6160 addr = list_entry(bp->address_list.next,
6161 struct sctp_sockaddr_entry, list);
6162 if (sctp_is_any(sk, &addr->a)) {
6163 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6164 space_left, &bytes_copied);
6165 if (cnt < 0) {
6166 err = cnt;
6167 goto out;
6168 }
6169 goto copy_getaddrs;
6170 }
6171 }
6172
6173 buf = addrs;
6174 /* Protection on the bound address list is not needed since
6175 * in the socket option context we hold a socket lock and
6176 * thus the bound address list can't change.
6177 */
6178 list_for_each_entry(addr, &bp->address_list, list) {
6179 memcpy(&temp, &addr->a, sizeof(temp));
6180 addrlen = sctp_get_pf_specific(sk->sk_family)
6181 ->addr_to_user(sp, &temp);
6182 if (space_left < addrlen) {
6183 err = -ENOMEM; /*fixme: right error?*/
6184 goto out;
6185 }
6186 memcpy(buf, &temp, addrlen);
6187 buf += addrlen;
6188 bytes_copied += addrlen;
6189 cnt++;
6190 space_left -= addrlen;
6191 }
6192
6193 copy_getaddrs:
6194 if (copy_to_user(to, addrs, bytes_copied)) {
6195 err = -EFAULT;
6196 goto out;
6197 }
6198 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6199 err = -EFAULT;
6200 goto out;
6201 }
6202 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6203 * but we can't change it anymore.
6204 */
6205 if (put_user(bytes_copied, optlen))
6206 err = -EFAULT;
6207 out:
6208 kfree(addrs);
6209 return err;
6210 }
6211
6212 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6213 *
6214 * Requests that the local SCTP stack use the enclosed peer address as
6215 * the association primary. The enclosed address must be one of the
6216 * association peer's addresses.
6217 */
sctp_getsockopt_primary_addr(struct sock * sk,int len,char __user * optval,int __user * optlen)6218 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6219 char __user *optval, int __user *optlen)
6220 {
6221 struct sctp_prim prim;
6222 struct sctp_association *asoc;
6223 struct sctp_sock *sp = sctp_sk(sk);
6224
6225 if (len < sizeof(struct sctp_prim))
6226 return -EINVAL;
6227
6228 len = sizeof(struct sctp_prim);
6229
6230 if (copy_from_user(&prim, optval, len))
6231 return -EFAULT;
6232
6233 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6234 if (!asoc)
6235 return -EINVAL;
6236
6237 if (!asoc->peer.primary_path)
6238 return -ENOTCONN;
6239
6240 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6241 asoc->peer.primary_path->af_specific->sockaddr_len);
6242
6243 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6244 (union sctp_addr *)&prim.ssp_addr);
6245
6246 if (put_user(len, optlen))
6247 return -EFAULT;
6248 if (copy_to_user(optval, &prim, len))
6249 return -EFAULT;
6250
6251 return 0;
6252 }
6253
6254 /*
6255 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6256 *
6257 * Requests that the local endpoint set the specified Adaptation Layer
6258 * Indication parameter for all future INIT and INIT-ACK exchanges.
6259 */
sctp_getsockopt_adaptation_layer(struct sock * sk,int len,char __user * optval,int __user * optlen)6260 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6261 char __user *optval, int __user *optlen)
6262 {
6263 struct sctp_setadaptation adaptation;
6264
6265 if (len < sizeof(struct sctp_setadaptation))
6266 return -EINVAL;
6267
6268 len = sizeof(struct sctp_setadaptation);
6269
6270 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6271
6272 if (put_user(len, optlen))
6273 return -EFAULT;
6274 if (copy_to_user(optval, &adaptation, len))
6275 return -EFAULT;
6276
6277 return 0;
6278 }
6279
6280 /*
6281 *
6282 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6283 *
6284 * Applications that wish to use the sendto() system call may wish to
6285 * specify a default set of parameters that would normally be supplied
6286 * through the inclusion of ancillary data. This socket option allows
6287 * such an application to set the default sctp_sndrcvinfo structure.
6288
6289
6290 * The application that wishes to use this socket option simply passes
6291 * in to this call the sctp_sndrcvinfo structure defined in Section
6292 * 5.2.2) The input parameters accepted by this call include
6293 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6294 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
6295 * to this call if the caller is using the UDP model.
6296 *
6297 * For getsockopt, it get the default sctp_sndrcvinfo structure.
6298 */
sctp_getsockopt_default_send_param(struct sock * sk,int len,char __user * optval,int __user * optlen)6299 static int sctp_getsockopt_default_send_param(struct sock *sk,
6300 int len, char __user *optval,
6301 int __user *optlen)
6302 {
6303 struct sctp_sock *sp = sctp_sk(sk);
6304 struct sctp_association *asoc;
6305 struct sctp_sndrcvinfo info;
6306
6307 if (len < sizeof(info))
6308 return -EINVAL;
6309
6310 len = sizeof(info);
6311
6312 if (copy_from_user(&info, optval, len))
6313 return -EFAULT;
6314
6315 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6316 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6317 sctp_style(sk, UDP))
6318 return -EINVAL;
6319
6320 if (asoc) {
6321 info.sinfo_stream = asoc->default_stream;
6322 info.sinfo_flags = asoc->default_flags;
6323 info.sinfo_ppid = asoc->default_ppid;
6324 info.sinfo_context = asoc->default_context;
6325 info.sinfo_timetolive = asoc->default_timetolive;
6326 } else {
6327 info.sinfo_stream = sp->default_stream;
6328 info.sinfo_flags = sp->default_flags;
6329 info.sinfo_ppid = sp->default_ppid;
6330 info.sinfo_context = sp->default_context;
6331 info.sinfo_timetolive = sp->default_timetolive;
6332 }
6333
6334 if (put_user(len, optlen))
6335 return -EFAULT;
6336 if (copy_to_user(optval, &info, len))
6337 return -EFAULT;
6338
6339 return 0;
6340 }
6341
6342 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6343 * (SCTP_DEFAULT_SNDINFO)
6344 */
sctp_getsockopt_default_sndinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)6345 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6346 char __user *optval,
6347 int __user *optlen)
6348 {
6349 struct sctp_sock *sp = sctp_sk(sk);
6350 struct sctp_association *asoc;
6351 struct sctp_sndinfo info;
6352
6353 if (len < sizeof(info))
6354 return -EINVAL;
6355
6356 len = sizeof(info);
6357
6358 if (copy_from_user(&info, optval, len))
6359 return -EFAULT;
6360
6361 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6362 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6363 sctp_style(sk, UDP))
6364 return -EINVAL;
6365
6366 if (asoc) {
6367 info.snd_sid = asoc->default_stream;
6368 info.snd_flags = asoc->default_flags;
6369 info.snd_ppid = asoc->default_ppid;
6370 info.snd_context = asoc->default_context;
6371 } else {
6372 info.snd_sid = sp->default_stream;
6373 info.snd_flags = sp->default_flags;
6374 info.snd_ppid = sp->default_ppid;
6375 info.snd_context = sp->default_context;
6376 }
6377
6378 if (put_user(len, optlen))
6379 return -EFAULT;
6380 if (copy_to_user(optval, &info, len))
6381 return -EFAULT;
6382
6383 return 0;
6384 }
6385
6386 /*
6387 *
6388 * 7.1.5 SCTP_NODELAY
6389 *
6390 * Turn on/off any Nagle-like algorithm. This means that packets are
6391 * generally sent as soon as possible and no unnecessary delays are
6392 * introduced, at the cost of more packets in the network. Expects an
6393 * integer boolean flag.
6394 */
6395
sctp_getsockopt_nodelay(struct sock * sk,int len,char __user * optval,int __user * optlen)6396 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6397 char __user *optval, int __user *optlen)
6398 {
6399 int val;
6400
6401 if (len < sizeof(int))
6402 return -EINVAL;
6403
6404 len = sizeof(int);
6405 val = (sctp_sk(sk)->nodelay == 1);
6406 if (put_user(len, optlen))
6407 return -EFAULT;
6408 if (copy_to_user(optval, &val, len))
6409 return -EFAULT;
6410 return 0;
6411 }
6412
6413 /*
6414 *
6415 * 7.1.1 SCTP_RTOINFO
6416 *
6417 * The protocol parameters used to initialize and bound retransmission
6418 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6419 * and modify these parameters.
6420 * All parameters are time values, in milliseconds. A value of 0, when
6421 * modifying the parameters, indicates that the current value should not
6422 * be changed.
6423 *
6424 */
sctp_getsockopt_rtoinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)6425 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6426 char __user *optval,
6427 int __user *optlen) {
6428 struct sctp_rtoinfo rtoinfo;
6429 struct sctp_association *asoc;
6430
6431 if (len < sizeof (struct sctp_rtoinfo))
6432 return -EINVAL;
6433
6434 len = sizeof(struct sctp_rtoinfo);
6435
6436 if (copy_from_user(&rtoinfo, optval, len))
6437 return -EFAULT;
6438
6439 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6440
6441 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6442 sctp_style(sk, UDP))
6443 return -EINVAL;
6444
6445 /* Values corresponding to the specific association. */
6446 if (asoc) {
6447 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6448 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6449 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6450 } else {
6451 /* Values corresponding to the endpoint. */
6452 struct sctp_sock *sp = sctp_sk(sk);
6453
6454 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6455 rtoinfo.srto_max = sp->rtoinfo.srto_max;
6456 rtoinfo.srto_min = sp->rtoinfo.srto_min;
6457 }
6458
6459 if (put_user(len, optlen))
6460 return -EFAULT;
6461
6462 if (copy_to_user(optval, &rtoinfo, len))
6463 return -EFAULT;
6464
6465 return 0;
6466 }
6467
6468 /*
6469 *
6470 * 7.1.2 SCTP_ASSOCINFO
6471 *
6472 * This option is used to tune the maximum retransmission attempts
6473 * of the association.
6474 * Returns an error if the new association retransmission value is
6475 * greater than the sum of the retransmission value of the peer.
6476 * See [SCTP] for more information.
6477 *
6478 */
sctp_getsockopt_associnfo(struct sock * sk,int len,char __user * optval,int __user * optlen)6479 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6480 char __user *optval,
6481 int __user *optlen)
6482 {
6483
6484 struct sctp_assocparams assocparams;
6485 struct sctp_association *asoc;
6486 struct list_head *pos;
6487 int cnt = 0;
6488
6489 if (len < sizeof (struct sctp_assocparams))
6490 return -EINVAL;
6491
6492 len = sizeof(struct sctp_assocparams);
6493
6494 if (copy_from_user(&assocparams, optval, len))
6495 return -EFAULT;
6496
6497 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6498
6499 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6500 sctp_style(sk, UDP))
6501 return -EINVAL;
6502
6503 /* Values correspoinding to the specific association */
6504 if (asoc) {
6505 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6506 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6507 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6508 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6509
6510 list_for_each(pos, &asoc->peer.transport_addr_list) {
6511 cnt++;
6512 }
6513
6514 assocparams.sasoc_number_peer_destinations = cnt;
6515 } else {
6516 /* Values corresponding to the endpoint */
6517 struct sctp_sock *sp = sctp_sk(sk);
6518
6519 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6520 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6521 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6522 assocparams.sasoc_cookie_life =
6523 sp->assocparams.sasoc_cookie_life;
6524 assocparams.sasoc_number_peer_destinations =
6525 sp->assocparams.
6526 sasoc_number_peer_destinations;
6527 }
6528
6529 if (put_user(len, optlen))
6530 return -EFAULT;
6531
6532 if (copy_to_user(optval, &assocparams, len))
6533 return -EFAULT;
6534
6535 return 0;
6536 }
6537
6538 /*
6539 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6540 *
6541 * This socket option is a boolean flag which turns on or off mapped V4
6542 * addresses. If this option is turned on and the socket is type
6543 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6544 * If this option is turned off, then no mapping will be done of V4
6545 * addresses and a user will receive both PF_INET6 and PF_INET type
6546 * addresses on the socket.
6547 */
sctp_getsockopt_mappedv4(struct sock * sk,int len,char __user * optval,int __user * optlen)6548 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6549 char __user *optval, int __user *optlen)
6550 {
6551 int val;
6552 struct sctp_sock *sp = sctp_sk(sk);
6553
6554 if (len < sizeof(int))
6555 return -EINVAL;
6556
6557 len = sizeof(int);
6558 val = sp->v4mapped;
6559 if (put_user(len, optlen))
6560 return -EFAULT;
6561 if (copy_to_user(optval, &val, len))
6562 return -EFAULT;
6563
6564 return 0;
6565 }
6566
6567 /*
6568 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
6569 * (chapter and verse is quoted at sctp_setsockopt_context())
6570 */
sctp_getsockopt_context(struct sock * sk,int len,char __user * optval,int __user * optlen)6571 static int sctp_getsockopt_context(struct sock *sk, int len,
6572 char __user *optval, int __user *optlen)
6573 {
6574 struct sctp_assoc_value params;
6575 struct sctp_association *asoc;
6576
6577 if (len < sizeof(struct sctp_assoc_value))
6578 return -EINVAL;
6579
6580 len = sizeof(struct sctp_assoc_value);
6581
6582 if (copy_from_user(¶ms, optval, len))
6583 return -EFAULT;
6584
6585 asoc = sctp_id2assoc(sk, params.assoc_id);
6586 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6587 sctp_style(sk, UDP))
6588 return -EINVAL;
6589
6590 params.assoc_value = asoc ? asoc->default_rcv_context
6591 : sctp_sk(sk)->default_rcv_context;
6592
6593 if (put_user(len, optlen))
6594 return -EFAULT;
6595 if (copy_to_user(optval, ¶ms, len))
6596 return -EFAULT;
6597
6598 return 0;
6599 }
6600
6601 /*
6602 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6603 * This option will get or set the maximum size to put in any outgoing
6604 * SCTP DATA chunk. If a message is larger than this size it will be
6605 * fragmented by SCTP into the specified size. Note that the underlying
6606 * SCTP implementation may fragment into smaller sized chunks when the
6607 * PMTU of the underlying association is smaller than the value set by
6608 * the user. The default value for this option is '0' which indicates
6609 * the user is NOT limiting fragmentation and only the PMTU will effect
6610 * SCTP's choice of DATA chunk size. Note also that values set larger
6611 * than the maximum size of an IP datagram will effectively let SCTP
6612 * control fragmentation (i.e. the same as setting this option to 0).
6613 *
6614 * The following structure is used to access and modify this parameter:
6615 *
6616 * struct sctp_assoc_value {
6617 * sctp_assoc_t assoc_id;
6618 * uint32_t assoc_value;
6619 * };
6620 *
6621 * assoc_id: This parameter is ignored for one-to-one style sockets.
6622 * For one-to-many style sockets this parameter indicates which
6623 * association the user is performing an action upon. Note that if
6624 * this field's value is zero then the endpoints default value is
6625 * changed (effecting future associations only).
6626 * assoc_value: This parameter specifies the maximum size in bytes.
6627 */
sctp_getsockopt_maxseg(struct sock * sk,int len,char __user * optval,int __user * optlen)6628 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6629 char __user *optval, int __user *optlen)
6630 {
6631 struct sctp_assoc_value params;
6632 struct sctp_association *asoc;
6633
6634 if (len == sizeof(int)) {
6635 pr_warn_ratelimited(DEPRECATED
6636 "%s (pid %d) "
6637 "Use of int in maxseg socket option.\n"
6638 "Use struct sctp_assoc_value instead\n",
6639 current->comm, task_pid_nr(current));
6640 params.assoc_id = SCTP_FUTURE_ASSOC;
6641 } else if (len >= sizeof(struct sctp_assoc_value)) {
6642 len = sizeof(struct sctp_assoc_value);
6643 if (copy_from_user(¶ms, optval, len))
6644 return -EFAULT;
6645 } else
6646 return -EINVAL;
6647
6648 asoc = sctp_id2assoc(sk, params.assoc_id);
6649 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6650 sctp_style(sk, UDP))
6651 return -EINVAL;
6652
6653 if (asoc)
6654 params.assoc_value = asoc->frag_point;
6655 else
6656 params.assoc_value = sctp_sk(sk)->user_frag;
6657
6658 if (put_user(len, optlen))
6659 return -EFAULT;
6660 if (len == sizeof(int)) {
6661 if (copy_to_user(optval, ¶ms.assoc_value, len))
6662 return -EFAULT;
6663 } else {
6664 if (copy_to_user(optval, ¶ms, len))
6665 return -EFAULT;
6666 }
6667
6668 return 0;
6669 }
6670
6671 /*
6672 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6673 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6674 */
sctp_getsockopt_fragment_interleave(struct sock * sk,int len,char __user * optval,int __user * optlen)6675 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6676 char __user *optval, int __user *optlen)
6677 {
6678 int val;
6679
6680 if (len < sizeof(int))
6681 return -EINVAL;
6682
6683 len = sizeof(int);
6684
6685 val = sctp_sk(sk)->frag_interleave;
6686 if (put_user(len, optlen))
6687 return -EFAULT;
6688 if (copy_to_user(optval, &val, len))
6689 return -EFAULT;
6690
6691 return 0;
6692 }
6693
6694 /*
6695 * 7.1.25. Set or Get the sctp partial delivery point
6696 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6697 */
sctp_getsockopt_partial_delivery_point(struct sock * sk,int len,char __user * optval,int __user * optlen)6698 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6699 char __user *optval,
6700 int __user *optlen)
6701 {
6702 u32 val;
6703
6704 if (len < sizeof(u32))
6705 return -EINVAL;
6706
6707 len = sizeof(u32);
6708
6709 val = sctp_sk(sk)->pd_point;
6710 if (put_user(len, optlen))
6711 return -EFAULT;
6712 if (copy_to_user(optval, &val, len))
6713 return -EFAULT;
6714
6715 return 0;
6716 }
6717
6718 /*
6719 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
6720 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6721 */
sctp_getsockopt_maxburst(struct sock * sk,int len,char __user * optval,int __user * optlen)6722 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6723 char __user *optval,
6724 int __user *optlen)
6725 {
6726 struct sctp_assoc_value params;
6727 struct sctp_association *asoc;
6728
6729 if (len == sizeof(int)) {
6730 pr_warn_ratelimited(DEPRECATED
6731 "%s (pid %d) "
6732 "Use of int in max_burst socket option.\n"
6733 "Use struct sctp_assoc_value instead\n",
6734 current->comm, task_pid_nr(current));
6735 params.assoc_id = SCTP_FUTURE_ASSOC;
6736 } else if (len >= sizeof(struct sctp_assoc_value)) {
6737 len = sizeof(struct sctp_assoc_value);
6738 if (copy_from_user(¶ms, optval, len))
6739 return -EFAULT;
6740 } else
6741 return -EINVAL;
6742
6743 asoc = sctp_id2assoc(sk, params.assoc_id);
6744 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6745 sctp_style(sk, UDP))
6746 return -EINVAL;
6747
6748 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6749
6750 if (len == sizeof(int)) {
6751 if (copy_to_user(optval, ¶ms.assoc_value, len))
6752 return -EFAULT;
6753 } else {
6754 if (copy_to_user(optval, ¶ms, len))
6755 return -EFAULT;
6756 }
6757
6758 return 0;
6759
6760 }
6761
sctp_getsockopt_hmac_ident(struct sock * sk,int len,char __user * optval,int __user * optlen)6762 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6763 char __user *optval, int __user *optlen)
6764 {
6765 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6766 struct sctp_hmacalgo __user *p = (void __user *)optval;
6767 struct sctp_hmac_algo_param *hmacs;
6768 __u16 data_len = 0;
6769 u32 num_idents;
6770 int i;
6771
6772 if (!ep->auth_enable)
6773 return -EACCES;
6774
6775 hmacs = ep->auth_hmacs_list;
6776 data_len = ntohs(hmacs->param_hdr.length) -
6777 sizeof(struct sctp_paramhdr);
6778
6779 if (len < sizeof(struct sctp_hmacalgo) + data_len)
6780 return -EINVAL;
6781
6782 len = sizeof(struct sctp_hmacalgo) + data_len;
6783 num_idents = data_len / sizeof(u16);
6784
6785 if (put_user(len, optlen))
6786 return -EFAULT;
6787 if (put_user(num_idents, &p->shmac_num_idents))
6788 return -EFAULT;
6789 for (i = 0; i < num_idents; i++) {
6790 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6791
6792 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6793 return -EFAULT;
6794 }
6795 return 0;
6796 }
6797
sctp_getsockopt_active_key(struct sock * sk,int len,char __user * optval,int __user * optlen)6798 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6799 char __user *optval, int __user *optlen)
6800 {
6801 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6802 struct sctp_authkeyid val;
6803 struct sctp_association *asoc;
6804
6805 if (len < sizeof(struct sctp_authkeyid))
6806 return -EINVAL;
6807
6808 len = sizeof(struct sctp_authkeyid);
6809 if (copy_from_user(&val, optval, len))
6810 return -EFAULT;
6811
6812 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6813 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6814 return -EINVAL;
6815
6816 if (asoc) {
6817 if (!asoc->peer.auth_capable)
6818 return -EACCES;
6819 val.scact_keynumber = asoc->active_key_id;
6820 } else {
6821 if (!ep->auth_enable)
6822 return -EACCES;
6823 val.scact_keynumber = ep->active_key_id;
6824 }
6825
6826 if (put_user(len, optlen))
6827 return -EFAULT;
6828 if (copy_to_user(optval, &val, len))
6829 return -EFAULT;
6830
6831 return 0;
6832 }
6833
sctp_getsockopt_peer_auth_chunks(struct sock * sk,int len,char __user * optval,int __user * optlen)6834 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6835 char __user *optval, int __user *optlen)
6836 {
6837 struct sctp_authchunks __user *p = (void __user *)optval;
6838 struct sctp_authchunks val;
6839 struct sctp_association *asoc;
6840 struct sctp_chunks_param *ch;
6841 u32 num_chunks = 0;
6842 char __user *to;
6843
6844 if (len < sizeof(struct sctp_authchunks))
6845 return -EINVAL;
6846
6847 if (copy_from_user(&val, optval, sizeof(val)))
6848 return -EFAULT;
6849
6850 to = p->gauth_chunks;
6851 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6852 if (!asoc)
6853 return -EINVAL;
6854
6855 if (!asoc->peer.auth_capable)
6856 return -EACCES;
6857
6858 ch = asoc->peer.peer_chunks;
6859 if (!ch)
6860 goto num;
6861
6862 /* See if the user provided enough room for all the data */
6863 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6864 if (len < num_chunks)
6865 return -EINVAL;
6866
6867 if (copy_to_user(to, ch->chunks, num_chunks))
6868 return -EFAULT;
6869 num:
6870 len = sizeof(struct sctp_authchunks) + num_chunks;
6871 if (put_user(len, optlen))
6872 return -EFAULT;
6873 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6874 return -EFAULT;
6875 return 0;
6876 }
6877
sctp_getsockopt_local_auth_chunks(struct sock * sk,int len,char __user * optval,int __user * optlen)6878 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6879 char __user *optval, int __user *optlen)
6880 {
6881 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6882 struct sctp_authchunks __user *p = (void __user *)optval;
6883 struct sctp_authchunks val;
6884 struct sctp_association *asoc;
6885 struct sctp_chunks_param *ch;
6886 u32 num_chunks = 0;
6887 char __user *to;
6888
6889 if (len < sizeof(struct sctp_authchunks))
6890 return -EINVAL;
6891
6892 if (copy_from_user(&val, optval, sizeof(val)))
6893 return -EFAULT;
6894
6895 to = p->gauth_chunks;
6896 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6897 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
6898 sctp_style(sk, UDP))
6899 return -EINVAL;
6900
6901 if (asoc) {
6902 if (!asoc->peer.auth_capable)
6903 return -EACCES;
6904 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6905 } else {
6906 if (!ep->auth_enable)
6907 return -EACCES;
6908 ch = ep->auth_chunk_list;
6909 }
6910 if (!ch)
6911 goto num;
6912
6913 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6914 if (len < sizeof(struct sctp_authchunks) + num_chunks)
6915 return -EINVAL;
6916
6917 if (copy_to_user(to, ch->chunks, num_chunks))
6918 return -EFAULT;
6919 num:
6920 len = sizeof(struct sctp_authchunks) + num_chunks;
6921 if (put_user(len, optlen))
6922 return -EFAULT;
6923 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6924 return -EFAULT;
6925
6926 return 0;
6927 }
6928
6929 /*
6930 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6931 * This option gets the current number of associations that are attached
6932 * to a one-to-many style socket. The option value is an uint32_t.
6933 */
sctp_getsockopt_assoc_number(struct sock * sk,int len,char __user * optval,int __user * optlen)6934 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6935 char __user *optval, int __user *optlen)
6936 {
6937 struct sctp_sock *sp = sctp_sk(sk);
6938 struct sctp_association *asoc;
6939 u32 val = 0;
6940
6941 if (sctp_style(sk, TCP))
6942 return -EOPNOTSUPP;
6943
6944 if (len < sizeof(u32))
6945 return -EINVAL;
6946
6947 len = sizeof(u32);
6948
6949 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6950 val++;
6951 }
6952
6953 if (put_user(len, optlen))
6954 return -EFAULT;
6955 if (copy_to_user(optval, &val, len))
6956 return -EFAULT;
6957
6958 return 0;
6959 }
6960
6961 /*
6962 * 8.1.23 SCTP_AUTO_ASCONF
6963 * See the corresponding setsockopt entry as description
6964 */
sctp_getsockopt_auto_asconf(struct sock * sk,int len,char __user * optval,int __user * optlen)6965 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6966 char __user *optval, int __user *optlen)
6967 {
6968 int val = 0;
6969
6970 if (len < sizeof(int))
6971 return -EINVAL;
6972
6973 len = sizeof(int);
6974 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6975 val = 1;
6976 if (put_user(len, optlen))
6977 return -EFAULT;
6978 if (copy_to_user(optval, &val, len))
6979 return -EFAULT;
6980 return 0;
6981 }
6982
6983 /*
6984 * 8.2.6. Get the Current Identifiers of Associations
6985 * (SCTP_GET_ASSOC_ID_LIST)
6986 *
6987 * This option gets the current list of SCTP association identifiers of
6988 * the SCTP associations handled by a one-to-many style socket.
6989 */
sctp_getsockopt_assoc_ids(struct sock * sk,int len,char __user * optval,int __user * optlen)6990 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6991 char __user *optval, int __user *optlen)
6992 {
6993 struct sctp_sock *sp = sctp_sk(sk);
6994 struct sctp_association *asoc;
6995 struct sctp_assoc_ids *ids;
6996 u32 num = 0;
6997
6998 if (sctp_style(sk, TCP))
6999 return -EOPNOTSUPP;
7000
7001 if (len < sizeof(struct sctp_assoc_ids))
7002 return -EINVAL;
7003
7004 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7005 num++;
7006 }
7007
7008 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7009 return -EINVAL;
7010
7011 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7012
7013 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7014 if (unlikely(!ids))
7015 return -ENOMEM;
7016
7017 ids->gaids_number_of_ids = num;
7018 num = 0;
7019 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7020 ids->gaids_assoc_id[num++] = asoc->assoc_id;
7021 }
7022
7023 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7024 kfree(ids);
7025 return -EFAULT;
7026 }
7027
7028 kfree(ids);
7029 return 0;
7030 }
7031
7032 /*
7033 * SCTP_PEER_ADDR_THLDS
7034 *
7035 * This option allows us to fetch the partially failed threshold for one or all
7036 * transports in an association. See Section 6.1 of:
7037 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7038 */
sctp_getsockopt_paddr_thresholds(struct sock * sk,char __user * optval,int len,int __user * optlen,bool v2)7039 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7040 char __user *optval, int len,
7041 int __user *optlen, bool v2)
7042 {
7043 struct sctp_paddrthlds_v2 val;
7044 struct sctp_transport *trans;
7045 struct sctp_association *asoc;
7046 int min;
7047
7048 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
7049 if (len < min)
7050 return -EINVAL;
7051 len = min;
7052 if (copy_from_user(&val, optval, len))
7053 return -EFAULT;
7054
7055 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7056 trans = sctp_addr_id2transport(sk, &val.spt_address,
7057 val.spt_assoc_id);
7058 if (!trans)
7059 return -ENOENT;
7060
7061 val.spt_pathmaxrxt = trans->pathmaxrxt;
7062 val.spt_pathpfthld = trans->pf_retrans;
7063 val.spt_pathcpthld = trans->ps_retrans;
7064
7065 goto out;
7066 }
7067
7068 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7069 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7070 sctp_style(sk, UDP))
7071 return -EINVAL;
7072
7073 if (asoc) {
7074 val.spt_pathpfthld = asoc->pf_retrans;
7075 val.spt_pathmaxrxt = asoc->pathmaxrxt;
7076 val.spt_pathcpthld = asoc->ps_retrans;
7077 } else {
7078 struct sctp_sock *sp = sctp_sk(sk);
7079
7080 val.spt_pathpfthld = sp->pf_retrans;
7081 val.spt_pathmaxrxt = sp->pathmaxrxt;
7082 val.spt_pathcpthld = sp->ps_retrans;
7083 }
7084
7085 out:
7086 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7087 return -EFAULT;
7088
7089 return 0;
7090 }
7091
7092 /*
7093 * SCTP_GET_ASSOC_STATS
7094 *
7095 * This option retrieves local per endpoint statistics. It is modeled
7096 * after OpenSolaris' implementation
7097 */
sctp_getsockopt_assoc_stats(struct sock * sk,int len,char __user * optval,int __user * optlen)7098 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7099 char __user *optval,
7100 int __user *optlen)
7101 {
7102 struct sctp_assoc_stats sas;
7103 struct sctp_association *asoc = NULL;
7104
7105 /* User must provide at least the assoc id */
7106 if (len < sizeof(sctp_assoc_t))
7107 return -EINVAL;
7108
7109 /* Allow the struct to grow and fill in as much as possible */
7110 len = min_t(size_t, len, sizeof(sas));
7111
7112 if (copy_from_user(&sas, optval, len))
7113 return -EFAULT;
7114
7115 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7116 if (!asoc)
7117 return -EINVAL;
7118
7119 sas.sas_rtxchunks = asoc->stats.rtxchunks;
7120 sas.sas_gapcnt = asoc->stats.gapcnt;
7121 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7122 sas.sas_osacks = asoc->stats.osacks;
7123 sas.sas_isacks = asoc->stats.isacks;
7124 sas.sas_octrlchunks = asoc->stats.octrlchunks;
7125 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7126 sas.sas_oodchunks = asoc->stats.oodchunks;
7127 sas.sas_iodchunks = asoc->stats.iodchunks;
7128 sas.sas_ouodchunks = asoc->stats.ouodchunks;
7129 sas.sas_iuodchunks = asoc->stats.iuodchunks;
7130 sas.sas_idupchunks = asoc->stats.idupchunks;
7131 sas.sas_opackets = asoc->stats.opackets;
7132 sas.sas_ipackets = asoc->stats.ipackets;
7133
7134 /* New high max rto observed, will return 0 if not a single
7135 * RTO update took place. obs_rto_ipaddr will be bogus
7136 * in such a case
7137 */
7138 sas.sas_maxrto = asoc->stats.max_obs_rto;
7139 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7140 sizeof(struct sockaddr_storage));
7141
7142 /* Mark beginning of a new observation period */
7143 asoc->stats.max_obs_rto = asoc->rto_min;
7144
7145 if (put_user(len, optlen))
7146 return -EFAULT;
7147
7148 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7149
7150 if (copy_to_user(optval, &sas, len))
7151 return -EFAULT;
7152
7153 return 0;
7154 }
7155
sctp_getsockopt_recvrcvinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)7156 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
7157 char __user *optval,
7158 int __user *optlen)
7159 {
7160 int val = 0;
7161
7162 if (len < sizeof(int))
7163 return -EINVAL;
7164
7165 len = sizeof(int);
7166 if (sctp_sk(sk)->recvrcvinfo)
7167 val = 1;
7168 if (put_user(len, optlen))
7169 return -EFAULT;
7170 if (copy_to_user(optval, &val, len))
7171 return -EFAULT;
7172
7173 return 0;
7174 }
7175
sctp_getsockopt_recvnxtinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)7176 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
7177 char __user *optval,
7178 int __user *optlen)
7179 {
7180 int val = 0;
7181
7182 if (len < sizeof(int))
7183 return -EINVAL;
7184
7185 len = sizeof(int);
7186 if (sctp_sk(sk)->recvnxtinfo)
7187 val = 1;
7188 if (put_user(len, optlen))
7189 return -EFAULT;
7190 if (copy_to_user(optval, &val, len))
7191 return -EFAULT;
7192
7193 return 0;
7194 }
7195
sctp_getsockopt_pr_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7196 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7197 char __user *optval,
7198 int __user *optlen)
7199 {
7200 struct sctp_assoc_value params;
7201 struct sctp_association *asoc;
7202 int retval = -EFAULT;
7203
7204 if (len < sizeof(params)) {
7205 retval = -EINVAL;
7206 goto out;
7207 }
7208
7209 len = sizeof(params);
7210 if (copy_from_user(¶ms, optval, len))
7211 goto out;
7212
7213 asoc = sctp_id2assoc(sk, params.assoc_id);
7214 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7215 sctp_style(sk, UDP)) {
7216 retval = -EINVAL;
7217 goto out;
7218 }
7219
7220 params.assoc_value = asoc ? asoc->peer.prsctp_capable
7221 : sctp_sk(sk)->ep->prsctp_enable;
7222
7223 if (put_user(len, optlen))
7224 goto out;
7225
7226 if (copy_to_user(optval, ¶ms, len))
7227 goto out;
7228
7229 retval = 0;
7230
7231 out:
7232 return retval;
7233 }
7234
sctp_getsockopt_default_prinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)7235 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7236 char __user *optval,
7237 int __user *optlen)
7238 {
7239 struct sctp_default_prinfo info;
7240 struct sctp_association *asoc;
7241 int retval = -EFAULT;
7242
7243 if (len < sizeof(info)) {
7244 retval = -EINVAL;
7245 goto out;
7246 }
7247
7248 len = sizeof(info);
7249 if (copy_from_user(&info, optval, len))
7250 goto out;
7251
7252 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7253 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7254 sctp_style(sk, UDP)) {
7255 retval = -EINVAL;
7256 goto out;
7257 }
7258
7259 if (asoc) {
7260 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7261 info.pr_value = asoc->default_timetolive;
7262 } else {
7263 struct sctp_sock *sp = sctp_sk(sk);
7264
7265 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7266 info.pr_value = sp->default_timetolive;
7267 }
7268
7269 if (put_user(len, optlen))
7270 goto out;
7271
7272 if (copy_to_user(optval, &info, len))
7273 goto out;
7274
7275 retval = 0;
7276
7277 out:
7278 return retval;
7279 }
7280
sctp_getsockopt_pr_assocstatus(struct sock * sk,int len,char __user * optval,int __user * optlen)7281 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7282 char __user *optval,
7283 int __user *optlen)
7284 {
7285 struct sctp_prstatus params;
7286 struct sctp_association *asoc;
7287 int policy;
7288 int retval = -EINVAL;
7289
7290 if (len < sizeof(params))
7291 goto out;
7292
7293 len = sizeof(params);
7294 if (copy_from_user(¶ms, optval, len)) {
7295 retval = -EFAULT;
7296 goto out;
7297 }
7298
7299 policy = params.sprstat_policy;
7300 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7301 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7302 goto out;
7303
7304 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7305 if (!asoc)
7306 goto out;
7307
7308 if (policy == SCTP_PR_SCTP_ALL) {
7309 params.sprstat_abandoned_unsent = 0;
7310 params.sprstat_abandoned_sent = 0;
7311 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7312 params.sprstat_abandoned_unsent +=
7313 asoc->abandoned_unsent[policy];
7314 params.sprstat_abandoned_sent +=
7315 asoc->abandoned_sent[policy];
7316 }
7317 } else {
7318 params.sprstat_abandoned_unsent =
7319 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7320 params.sprstat_abandoned_sent =
7321 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7322 }
7323
7324 if (put_user(len, optlen)) {
7325 retval = -EFAULT;
7326 goto out;
7327 }
7328
7329 if (copy_to_user(optval, ¶ms, len)) {
7330 retval = -EFAULT;
7331 goto out;
7332 }
7333
7334 retval = 0;
7335
7336 out:
7337 return retval;
7338 }
7339
sctp_getsockopt_pr_streamstatus(struct sock * sk,int len,char __user * optval,int __user * optlen)7340 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7341 char __user *optval,
7342 int __user *optlen)
7343 {
7344 struct sctp_stream_out_ext *streamoute;
7345 struct sctp_association *asoc;
7346 struct sctp_prstatus params;
7347 int retval = -EINVAL;
7348 int policy;
7349
7350 if (len < sizeof(params))
7351 goto out;
7352
7353 len = sizeof(params);
7354 if (copy_from_user(¶ms, optval, len)) {
7355 retval = -EFAULT;
7356 goto out;
7357 }
7358
7359 policy = params.sprstat_policy;
7360 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7361 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7362 goto out;
7363
7364 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7365 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7366 goto out;
7367
7368 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7369 if (!streamoute) {
7370 /* Not allocated yet, means all stats are 0 */
7371 params.sprstat_abandoned_unsent = 0;
7372 params.sprstat_abandoned_sent = 0;
7373 retval = 0;
7374 goto out;
7375 }
7376
7377 if (policy == SCTP_PR_SCTP_ALL) {
7378 params.sprstat_abandoned_unsent = 0;
7379 params.sprstat_abandoned_sent = 0;
7380 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7381 params.sprstat_abandoned_unsent +=
7382 streamoute->abandoned_unsent[policy];
7383 params.sprstat_abandoned_sent +=
7384 streamoute->abandoned_sent[policy];
7385 }
7386 } else {
7387 params.sprstat_abandoned_unsent =
7388 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7389 params.sprstat_abandoned_sent =
7390 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7391 }
7392
7393 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) {
7394 retval = -EFAULT;
7395 goto out;
7396 }
7397
7398 retval = 0;
7399
7400 out:
7401 return retval;
7402 }
7403
sctp_getsockopt_reconfig_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7404 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7405 char __user *optval,
7406 int __user *optlen)
7407 {
7408 struct sctp_assoc_value params;
7409 struct sctp_association *asoc;
7410 int retval = -EFAULT;
7411
7412 if (len < sizeof(params)) {
7413 retval = -EINVAL;
7414 goto out;
7415 }
7416
7417 len = sizeof(params);
7418 if (copy_from_user(¶ms, optval, len))
7419 goto out;
7420
7421 asoc = sctp_id2assoc(sk, params.assoc_id);
7422 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7423 sctp_style(sk, UDP)) {
7424 retval = -EINVAL;
7425 goto out;
7426 }
7427
7428 params.assoc_value = asoc ? asoc->peer.reconf_capable
7429 : sctp_sk(sk)->ep->reconf_enable;
7430
7431 if (put_user(len, optlen))
7432 goto out;
7433
7434 if (copy_to_user(optval, ¶ms, len))
7435 goto out;
7436
7437 retval = 0;
7438
7439 out:
7440 return retval;
7441 }
7442
sctp_getsockopt_enable_strreset(struct sock * sk,int len,char __user * optval,int __user * optlen)7443 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7444 char __user *optval,
7445 int __user *optlen)
7446 {
7447 struct sctp_assoc_value params;
7448 struct sctp_association *asoc;
7449 int retval = -EFAULT;
7450
7451 if (len < sizeof(params)) {
7452 retval = -EINVAL;
7453 goto out;
7454 }
7455
7456 len = sizeof(params);
7457 if (copy_from_user(¶ms, optval, len))
7458 goto out;
7459
7460 asoc = sctp_id2assoc(sk, params.assoc_id);
7461 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7462 sctp_style(sk, UDP)) {
7463 retval = -EINVAL;
7464 goto out;
7465 }
7466
7467 params.assoc_value = asoc ? asoc->strreset_enable
7468 : sctp_sk(sk)->ep->strreset_enable;
7469
7470 if (put_user(len, optlen))
7471 goto out;
7472
7473 if (copy_to_user(optval, ¶ms, len))
7474 goto out;
7475
7476 retval = 0;
7477
7478 out:
7479 return retval;
7480 }
7481
sctp_getsockopt_scheduler(struct sock * sk,int len,char __user * optval,int __user * optlen)7482 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7483 char __user *optval,
7484 int __user *optlen)
7485 {
7486 struct sctp_assoc_value params;
7487 struct sctp_association *asoc;
7488 int retval = -EFAULT;
7489
7490 if (len < sizeof(params)) {
7491 retval = -EINVAL;
7492 goto out;
7493 }
7494
7495 len = sizeof(params);
7496 if (copy_from_user(¶ms, optval, len))
7497 goto out;
7498
7499 asoc = sctp_id2assoc(sk, params.assoc_id);
7500 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7501 sctp_style(sk, UDP)) {
7502 retval = -EINVAL;
7503 goto out;
7504 }
7505
7506 params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7507 : sctp_sk(sk)->default_ss;
7508
7509 if (put_user(len, optlen))
7510 goto out;
7511
7512 if (copy_to_user(optval, ¶ms, len))
7513 goto out;
7514
7515 retval = 0;
7516
7517 out:
7518 return retval;
7519 }
7520
sctp_getsockopt_scheduler_value(struct sock * sk,int len,char __user * optval,int __user * optlen)7521 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7522 char __user *optval,
7523 int __user *optlen)
7524 {
7525 struct sctp_stream_value params;
7526 struct sctp_association *asoc;
7527 int retval = -EFAULT;
7528
7529 if (len < sizeof(params)) {
7530 retval = -EINVAL;
7531 goto out;
7532 }
7533
7534 len = sizeof(params);
7535 if (copy_from_user(¶ms, optval, len))
7536 goto out;
7537
7538 asoc = sctp_id2assoc(sk, params.assoc_id);
7539 if (!asoc) {
7540 retval = -EINVAL;
7541 goto out;
7542 }
7543
7544 retval = sctp_sched_get_value(asoc, params.stream_id,
7545 ¶ms.stream_value);
7546 if (retval)
7547 goto out;
7548
7549 if (put_user(len, optlen)) {
7550 retval = -EFAULT;
7551 goto out;
7552 }
7553
7554 if (copy_to_user(optval, ¶ms, len)) {
7555 retval = -EFAULT;
7556 goto out;
7557 }
7558
7559 out:
7560 return retval;
7561 }
7562
sctp_getsockopt_interleaving_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7563 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7564 char __user *optval,
7565 int __user *optlen)
7566 {
7567 struct sctp_assoc_value params;
7568 struct sctp_association *asoc;
7569 int retval = -EFAULT;
7570
7571 if (len < sizeof(params)) {
7572 retval = -EINVAL;
7573 goto out;
7574 }
7575
7576 len = sizeof(params);
7577 if (copy_from_user(¶ms, optval, len))
7578 goto out;
7579
7580 asoc = sctp_id2assoc(sk, params.assoc_id);
7581 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7582 sctp_style(sk, UDP)) {
7583 retval = -EINVAL;
7584 goto out;
7585 }
7586
7587 params.assoc_value = asoc ? asoc->peer.intl_capable
7588 : sctp_sk(sk)->ep->intl_enable;
7589
7590 if (put_user(len, optlen))
7591 goto out;
7592
7593 if (copy_to_user(optval, ¶ms, len))
7594 goto out;
7595
7596 retval = 0;
7597
7598 out:
7599 return retval;
7600 }
7601
sctp_getsockopt_reuse_port(struct sock * sk,int len,char __user * optval,int __user * optlen)7602 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7603 char __user *optval,
7604 int __user *optlen)
7605 {
7606 int val;
7607
7608 if (len < sizeof(int))
7609 return -EINVAL;
7610
7611 len = sizeof(int);
7612 val = sctp_sk(sk)->reuse;
7613 if (put_user(len, optlen))
7614 return -EFAULT;
7615
7616 if (copy_to_user(optval, &val, len))
7617 return -EFAULT;
7618
7619 return 0;
7620 }
7621
sctp_getsockopt_event(struct sock * sk,int len,char __user * optval,int __user * optlen)7622 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7623 int __user *optlen)
7624 {
7625 struct sctp_association *asoc;
7626 struct sctp_event param;
7627 __u16 subscribe;
7628
7629 if (len < sizeof(param))
7630 return -EINVAL;
7631
7632 len = sizeof(param);
7633 if (copy_from_user(¶m, optval, len))
7634 return -EFAULT;
7635
7636 if (param.se_type < SCTP_SN_TYPE_BASE ||
7637 param.se_type > SCTP_SN_TYPE_MAX)
7638 return -EINVAL;
7639
7640 asoc = sctp_id2assoc(sk, param.se_assoc_id);
7641 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7642 sctp_style(sk, UDP))
7643 return -EINVAL;
7644
7645 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7646 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7647
7648 if (put_user(len, optlen))
7649 return -EFAULT;
7650
7651 if (copy_to_user(optval, ¶m, len))
7652 return -EFAULT;
7653
7654 return 0;
7655 }
7656
sctp_getsockopt_asconf_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7657 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
7658 char __user *optval,
7659 int __user *optlen)
7660 {
7661 struct sctp_assoc_value params;
7662 struct sctp_association *asoc;
7663 int retval = -EFAULT;
7664
7665 if (len < sizeof(params)) {
7666 retval = -EINVAL;
7667 goto out;
7668 }
7669
7670 len = sizeof(params);
7671 if (copy_from_user(¶ms, optval, len))
7672 goto out;
7673
7674 asoc = sctp_id2assoc(sk, params.assoc_id);
7675 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7676 sctp_style(sk, UDP)) {
7677 retval = -EINVAL;
7678 goto out;
7679 }
7680
7681 params.assoc_value = asoc ? asoc->peer.asconf_capable
7682 : sctp_sk(sk)->ep->asconf_enable;
7683
7684 if (put_user(len, optlen))
7685 goto out;
7686
7687 if (copy_to_user(optval, ¶ms, len))
7688 goto out;
7689
7690 retval = 0;
7691
7692 out:
7693 return retval;
7694 }
7695
sctp_getsockopt_auth_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7696 static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
7697 char __user *optval,
7698 int __user *optlen)
7699 {
7700 struct sctp_assoc_value params;
7701 struct sctp_association *asoc;
7702 int retval = -EFAULT;
7703
7704 if (len < sizeof(params)) {
7705 retval = -EINVAL;
7706 goto out;
7707 }
7708
7709 len = sizeof(params);
7710 if (copy_from_user(¶ms, optval, len))
7711 goto out;
7712
7713 asoc = sctp_id2assoc(sk, params.assoc_id);
7714 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7715 sctp_style(sk, UDP)) {
7716 retval = -EINVAL;
7717 goto out;
7718 }
7719
7720 params.assoc_value = asoc ? asoc->peer.auth_capable
7721 : sctp_sk(sk)->ep->auth_enable;
7722
7723 if (put_user(len, optlen))
7724 goto out;
7725
7726 if (copy_to_user(optval, ¶ms, len))
7727 goto out;
7728
7729 retval = 0;
7730
7731 out:
7732 return retval;
7733 }
7734
sctp_getsockopt_ecn_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7735 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
7736 char __user *optval,
7737 int __user *optlen)
7738 {
7739 struct sctp_assoc_value params;
7740 struct sctp_association *asoc;
7741 int retval = -EFAULT;
7742
7743 if (len < sizeof(params)) {
7744 retval = -EINVAL;
7745 goto out;
7746 }
7747
7748 len = sizeof(params);
7749 if (copy_from_user(¶ms, optval, len))
7750 goto out;
7751
7752 asoc = sctp_id2assoc(sk, params.assoc_id);
7753 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7754 sctp_style(sk, UDP)) {
7755 retval = -EINVAL;
7756 goto out;
7757 }
7758
7759 params.assoc_value = asoc ? asoc->peer.ecn_capable
7760 : sctp_sk(sk)->ep->ecn_enable;
7761
7762 if (put_user(len, optlen))
7763 goto out;
7764
7765 if (copy_to_user(optval, ¶ms, len))
7766 goto out;
7767
7768 retval = 0;
7769
7770 out:
7771 return retval;
7772 }
7773
sctp_getsockopt_pf_expose(struct sock * sk,int len,char __user * optval,int __user * optlen)7774 static int sctp_getsockopt_pf_expose(struct sock *sk, int len,
7775 char __user *optval,
7776 int __user *optlen)
7777 {
7778 struct sctp_assoc_value params;
7779 struct sctp_association *asoc;
7780 int retval = -EFAULT;
7781
7782 if (len < sizeof(params)) {
7783 retval = -EINVAL;
7784 goto out;
7785 }
7786
7787 len = sizeof(params);
7788 if (copy_from_user(¶ms, optval, len))
7789 goto out;
7790
7791 asoc = sctp_id2assoc(sk, params.assoc_id);
7792 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7793 sctp_style(sk, UDP)) {
7794 retval = -EINVAL;
7795 goto out;
7796 }
7797
7798 params.assoc_value = asoc ? asoc->pf_expose
7799 : sctp_sk(sk)->pf_expose;
7800
7801 if (put_user(len, optlen))
7802 goto out;
7803
7804 if (copy_to_user(optval, ¶ms, len))
7805 goto out;
7806
7807 retval = 0;
7808
7809 out:
7810 return retval;
7811 }
7812
sctp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)7813 static int sctp_getsockopt(struct sock *sk, int level, int optname,
7814 char __user *optval, int __user *optlen)
7815 {
7816 int retval = 0;
7817 int len;
7818
7819 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7820
7821 /* I can hardly begin to describe how wrong this is. This is
7822 * so broken as to be worse than useless. The API draft
7823 * REALLY is NOT helpful here... I am not convinced that the
7824 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7825 * are at all well-founded.
7826 */
7827 if (level != SOL_SCTP) {
7828 struct sctp_af *af = sctp_sk(sk)->pf->af;
7829
7830 retval = af->getsockopt(sk, level, optname, optval, optlen);
7831 return retval;
7832 }
7833
7834 if (get_user(len, optlen))
7835 return -EFAULT;
7836
7837 if (len < 0)
7838 return -EINVAL;
7839
7840 lock_sock(sk);
7841
7842 switch (optname) {
7843 case SCTP_STATUS:
7844 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7845 break;
7846 case SCTP_DISABLE_FRAGMENTS:
7847 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7848 optlen);
7849 break;
7850 case SCTP_EVENTS:
7851 retval = sctp_getsockopt_events(sk, len, optval, optlen);
7852 break;
7853 case SCTP_AUTOCLOSE:
7854 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7855 break;
7856 case SCTP_SOCKOPT_PEELOFF:
7857 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7858 break;
7859 case SCTP_SOCKOPT_PEELOFF_FLAGS:
7860 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7861 break;
7862 case SCTP_PEER_ADDR_PARAMS:
7863 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7864 optlen);
7865 break;
7866 case SCTP_DELAYED_SACK:
7867 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7868 optlen);
7869 break;
7870 case SCTP_INITMSG:
7871 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7872 break;
7873 case SCTP_GET_PEER_ADDRS:
7874 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7875 optlen);
7876 break;
7877 case SCTP_GET_LOCAL_ADDRS:
7878 retval = sctp_getsockopt_local_addrs(sk, len, optval,
7879 optlen);
7880 break;
7881 case SCTP_SOCKOPT_CONNECTX3:
7882 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7883 break;
7884 case SCTP_DEFAULT_SEND_PARAM:
7885 retval = sctp_getsockopt_default_send_param(sk, len,
7886 optval, optlen);
7887 break;
7888 case SCTP_DEFAULT_SNDINFO:
7889 retval = sctp_getsockopt_default_sndinfo(sk, len,
7890 optval, optlen);
7891 break;
7892 case SCTP_PRIMARY_ADDR:
7893 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7894 break;
7895 case SCTP_NODELAY:
7896 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7897 break;
7898 case SCTP_RTOINFO:
7899 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7900 break;
7901 case SCTP_ASSOCINFO:
7902 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7903 break;
7904 case SCTP_I_WANT_MAPPED_V4_ADDR:
7905 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7906 break;
7907 case SCTP_MAXSEG:
7908 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
7909 break;
7910 case SCTP_GET_PEER_ADDR_INFO:
7911 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
7912 optlen);
7913 break;
7914 case SCTP_ADAPTATION_LAYER:
7915 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
7916 optlen);
7917 break;
7918 case SCTP_CONTEXT:
7919 retval = sctp_getsockopt_context(sk, len, optval, optlen);
7920 break;
7921 case SCTP_FRAGMENT_INTERLEAVE:
7922 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
7923 optlen);
7924 break;
7925 case SCTP_PARTIAL_DELIVERY_POINT:
7926 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
7927 optlen);
7928 break;
7929 case SCTP_MAX_BURST:
7930 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
7931 break;
7932 case SCTP_AUTH_KEY:
7933 case SCTP_AUTH_CHUNK:
7934 case SCTP_AUTH_DELETE_KEY:
7935 case SCTP_AUTH_DEACTIVATE_KEY:
7936 retval = -EOPNOTSUPP;
7937 break;
7938 case SCTP_HMAC_IDENT:
7939 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
7940 break;
7941 case SCTP_AUTH_ACTIVE_KEY:
7942 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
7943 break;
7944 case SCTP_PEER_AUTH_CHUNKS:
7945 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
7946 optlen);
7947 break;
7948 case SCTP_LOCAL_AUTH_CHUNKS:
7949 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
7950 optlen);
7951 break;
7952 case SCTP_GET_ASSOC_NUMBER:
7953 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
7954 break;
7955 case SCTP_GET_ASSOC_ID_LIST:
7956 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
7957 break;
7958 case SCTP_AUTO_ASCONF:
7959 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
7960 break;
7961 case SCTP_PEER_ADDR_THLDS:
7962 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
7963 optlen, false);
7964 break;
7965 case SCTP_PEER_ADDR_THLDS_V2:
7966 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
7967 optlen, true);
7968 break;
7969 case SCTP_GET_ASSOC_STATS:
7970 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
7971 break;
7972 case SCTP_RECVRCVINFO:
7973 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
7974 break;
7975 case SCTP_RECVNXTINFO:
7976 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
7977 break;
7978 case SCTP_PR_SUPPORTED:
7979 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
7980 break;
7981 case SCTP_DEFAULT_PRINFO:
7982 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
7983 optlen);
7984 break;
7985 case SCTP_PR_ASSOC_STATUS:
7986 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
7987 optlen);
7988 break;
7989 case SCTP_PR_STREAM_STATUS:
7990 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
7991 optlen);
7992 break;
7993 case SCTP_RECONFIG_SUPPORTED:
7994 retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
7995 optlen);
7996 break;
7997 case SCTP_ENABLE_STREAM_RESET:
7998 retval = sctp_getsockopt_enable_strreset(sk, len, optval,
7999 optlen);
8000 break;
8001 case SCTP_STREAM_SCHEDULER:
8002 retval = sctp_getsockopt_scheduler(sk, len, optval,
8003 optlen);
8004 break;
8005 case SCTP_STREAM_SCHEDULER_VALUE:
8006 retval = sctp_getsockopt_scheduler_value(sk, len, optval,
8007 optlen);
8008 break;
8009 case SCTP_INTERLEAVING_SUPPORTED:
8010 retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
8011 optlen);
8012 break;
8013 case SCTP_REUSE_PORT:
8014 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
8015 break;
8016 case SCTP_EVENT:
8017 retval = sctp_getsockopt_event(sk, len, optval, optlen);
8018 break;
8019 case SCTP_ASCONF_SUPPORTED:
8020 retval = sctp_getsockopt_asconf_supported(sk, len, optval,
8021 optlen);
8022 break;
8023 case SCTP_AUTH_SUPPORTED:
8024 retval = sctp_getsockopt_auth_supported(sk, len, optval,
8025 optlen);
8026 break;
8027 case SCTP_ECN_SUPPORTED:
8028 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
8029 break;
8030 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
8031 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen);
8032 break;
8033 default:
8034 retval = -ENOPROTOOPT;
8035 break;
8036 }
8037
8038 release_sock(sk);
8039 return retval;
8040 }
8041
sctp_hash(struct sock * sk)8042 static int sctp_hash(struct sock *sk)
8043 {
8044 /* STUB */
8045 return 0;
8046 }
8047
sctp_unhash(struct sock * sk)8048 static void sctp_unhash(struct sock *sk)
8049 {
8050 /* STUB */
8051 }
8052
8053 /* Check if port is acceptable. Possibly find first available port.
8054 *
8055 * The port hash table (contained in the 'global' SCTP protocol storage
8056 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8057 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8058 * list (the list number is the port number hashed out, so as you
8059 * would expect from a hash function, all the ports in a given list have
8060 * such a number that hashes out to the same list number; you were
8061 * expecting that, right?); so each list has a set of ports, with a
8062 * link to the socket (struct sock) that uses it, the port number and
8063 * a fastreuse flag (FIXME: NPI ipg).
8064 */
8065 static struct sctp_bind_bucket *sctp_bucket_create(
8066 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8067
sctp_get_port_local(struct sock * sk,union sctp_addr * addr)8068 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8069 {
8070 struct sctp_sock *sp = sctp_sk(sk);
8071 bool reuse = (sk->sk_reuse || sp->reuse);
8072 struct sctp_bind_hashbucket *head; /* hash list */
8073 struct net *net = sock_net(sk);
8074 kuid_t uid = sock_i_uid(sk);
8075 struct sctp_bind_bucket *pp;
8076 unsigned short snum;
8077 int ret;
8078
8079 snum = ntohs(addr->v4.sin_port);
8080
8081 pr_debug("%s: begins, snum:%d\n", __func__, snum);
8082
8083 if (snum == 0) {
8084 /* Search for an available port. */
8085 int low, high, remaining, index;
8086 unsigned int rover;
8087
8088 inet_get_local_port_range(net, &low, &high);
8089 remaining = (high - low) + 1;
8090 rover = prandom_u32() % remaining + low;
8091
8092 do {
8093 rover++;
8094 if ((rover < low) || (rover > high))
8095 rover = low;
8096 if (inet_is_local_reserved_port(net, rover))
8097 continue;
8098 index = sctp_phashfn(net, rover);
8099 head = &sctp_port_hashtable[index];
8100 spin_lock_bh(&head->lock);
8101 sctp_for_each_hentry(pp, &head->chain)
8102 if ((pp->port == rover) &&
8103 net_eq(net, pp->net))
8104 goto next;
8105 break;
8106 next:
8107 spin_unlock_bh(&head->lock);
8108 cond_resched();
8109 } while (--remaining > 0);
8110
8111 /* Exhausted local port range during search? */
8112 ret = 1;
8113 if (remaining <= 0)
8114 return ret;
8115
8116 /* OK, here is the one we will use. HEAD (the port
8117 * hash table list entry) is non-NULL and we hold it's
8118 * mutex.
8119 */
8120 snum = rover;
8121 } else {
8122 /* We are given an specific port number; we verify
8123 * that it is not being used. If it is used, we will
8124 * exahust the search in the hash list corresponding
8125 * to the port number (snum) - we detect that with the
8126 * port iterator, pp being NULL.
8127 */
8128 head = &sctp_port_hashtable[sctp_phashfn(net, snum)];
8129 spin_lock_bh(&head->lock);
8130 sctp_for_each_hentry(pp, &head->chain) {
8131 if ((pp->port == snum) && net_eq(pp->net, net))
8132 goto pp_found;
8133 }
8134 }
8135 pp = NULL;
8136 goto pp_not_found;
8137 pp_found:
8138 if (!hlist_empty(&pp->owner)) {
8139 /* We had a port hash table hit - there is an
8140 * available port (pp != NULL) and it is being
8141 * used by other socket (pp->owner not empty); that other
8142 * socket is going to be sk2.
8143 */
8144 struct sock *sk2;
8145
8146 pr_debug("%s: found a possible match\n", __func__);
8147
8148 if ((pp->fastreuse && reuse &&
8149 sk->sk_state != SCTP_SS_LISTENING) ||
8150 (pp->fastreuseport && sk->sk_reuseport &&
8151 uid_eq(pp->fastuid, uid)))
8152 goto success;
8153
8154 /* Run through the list of sockets bound to the port
8155 * (pp->port) [via the pointers bind_next and
8156 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8157 * we get the endpoint they describe and run through
8158 * the endpoint's list of IP (v4 or v6) addresses,
8159 * comparing each of the addresses with the address of
8160 * the socket sk. If we find a match, then that means
8161 * that this port/socket (sk) combination are already
8162 * in an endpoint.
8163 */
8164 sk_for_each_bound(sk2, &pp->owner) {
8165 struct sctp_sock *sp2 = sctp_sk(sk2);
8166 struct sctp_endpoint *ep2 = sp2->ep;
8167
8168 if (sk == sk2 ||
8169 (reuse && (sk2->sk_reuse || sp2->reuse) &&
8170 sk2->sk_state != SCTP_SS_LISTENING) ||
8171 (sk->sk_reuseport && sk2->sk_reuseport &&
8172 uid_eq(uid, sock_i_uid(sk2))))
8173 continue;
8174
8175 if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
8176 addr, sp2, sp)) {
8177 ret = 1;
8178 goto fail_unlock;
8179 }
8180 }
8181
8182 pr_debug("%s: found a match\n", __func__);
8183 }
8184 pp_not_found:
8185 /* If there was a hash table miss, create a new port. */
8186 ret = 1;
8187 if (!pp && !(pp = sctp_bucket_create(head, net, snum)))
8188 goto fail_unlock;
8189
8190 /* In either case (hit or miss), make sure fastreuse is 1 only
8191 * if sk->sk_reuse is too (that is, if the caller requested
8192 * SO_REUSEADDR on this socket -sk-).
8193 */
8194 if (hlist_empty(&pp->owner)) {
8195 if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8196 pp->fastreuse = 1;
8197 else
8198 pp->fastreuse = 0;
8199
8200 if (sk->sk_reuseport) {
8201 pp->fastreuseport = 1;
8202 pp->fastuid = uid;
8203 } else {
8204 pp->fastreuseport = 0;
8205 }
8206 } else {
8207 if (pp->fastreuse &&
8208 (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8209 pp->fastreuse = 0;
8210
8211 if (pp->fastreuseport &&
8212 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8213 pp->fastreuseport = 0;
8214 }
8215
8216 /* We are set, so fill up all the data in the hash table
8217 * entry, tie the socket list information with the rest of the
8218 * sockets FIXME: Blurry, NPI (ipg).
8219 */
8220 success:
8221 if (!sp->bind_hash) {
8222 inet_sk(sk)->inet_num = snum;
8223 sk_add_bind_node(sk, &pp->owner);
8224 sp->bind_hash = pp;
8225 }
8226 ret = 0;
8227
8228 fail_unlock:
8229 spin_unlock_bh(&head->lock);
8230 return ret;
8231 }
8232
8233 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
8234 * port is requested.
8235 */
sctp_get_port(struct sock * sk,unsigned short snum)8236 static int sctp_get_port(struct sock *sk, unsigned short snum)
8237 {
8238 union sctp_addr addr;
8239 struct sctp_af *af = sctp_sk(sk)->pf->af;
8240
8241 /* Set up a dummy address struct from the sk. */
8242 af->from_sk(&addr, sk);
8243 addr.v4.sin_port = htons(snum);
8244
8245 /* Note: sk->sk_num gets filled in if ephemeral port request. */
8246 return sctp_get_port_local(sk, &addr);
8247 }
8248
8249 /*
8250 * Move a socket to LISTENING state.
8251 */
sctp_listen_start(struct sock * sk,int backlog)8252 static int sctp_listen_start(struct sock *sk, int backlog)
8253 {
8254 struct sctp_sock *sp = sctp_sk(sk);
8255 struct sctp_endpoint *ep = sp->ep;
8256 struct crypto_shash *tfm = NULL;
8257 char alg[32];
8258
8259 /* Allocate HMAC for generating cookie. */
8260 if (!sp->hmac && sp->sctp_hmac_alg) {
8261 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8262 tfm = crypto_alloc_shash(alg, 0, 0);
8263 if (IS_ERR(tfm)) {
8264 net_info_ratelimited("failed to load transform for %s: %ld\n",
8265 sp->sctp_hmac_alg, PTR_ERR(tfm));
8266 return -ENOSYS;
8267 }
8268 sctp_sk(sk)->hmac = tfm;
8269 }
8270
8271 /*
8272 * If a bind() or sctp_bindx() is not called prior to a listen()
8273 * call that allows new associations to be accepted, the system
8274 * picks an ephemeral port and will choose an address set equivalent
8275 * to binding with a wildcard address.
8276 *
8277 * This is not currently spelled out in the SCTP sockets
8278 * extensions draft, but follows the practice as seen in TCP
8279 * sockets.
8280 *
8281 */
8282 inet_sk_set_state(sk, SCTP_SS_LISTENING);
8283 if (!ep->base.bind_addr.port) {
8284 if (sctp_autobind(sk))
8285 return -EAGAIN;
8286 } else {
8287 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8288 inet_sk_set_state(sk, SCTP_SS_CLOSED);
8289 return -EADDRINUSE;
8290 }
8291 }
8292
8293 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8294 return sctp_hash_endpoint(ep);
8295 }
8296
8297 /*
8298 * 4.1.3 / 5.1.3 listen()
8299 *
8300 * By default, new associations are not accepted for UDP style sockets.
8301 * An application uses listen() to mark a socket as being able to
8302 * accept new associations.
8303 *
8304 * On TCP style sockets, applications use listen() to ready the SCTP
8305 * endpoint for accepting inbound associations.
8306 *
8307 * On both types of endpoints a backlog of '0' disables listening.
8308 *
8309 * Move a socket to LISTENING state.
8310 */
sctp_inet_listen(struct socket * sock,int backlog)8311 int sctp_inet_listen(struct socket *sock, int backlog)
8312 {
8313 struct sock *sk = sock->sk;
8314 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8315 int err = -EINVAL;
8316
8317 if (unlikely(backlog < 0))
8318 return err;
8319
8320 lock_sock(sk);
8321
8322 /* Peeled-off sockets are not allowed to listen(). */
8323 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8324 goto out;
8325
8326 if (sock->state != SS_UNCONNECTED)
8327 goto out;
8328
8329 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8330 goto out;
8331
8332 /* If backlog is zero, disable listening. */
8333 if (!backlog) {
8334 if (sctp_sstate(sk, CLOSED))
8335 goto out;
8336
8337 err = 0;
8338 sctp_unhash_endpoint(ep);
8339 sk->sk_state = SCTP_SS_CLOSED;
8340 if (sk->sk_reuse || sctp_sk(sk)->reuse)
8341 sctp_sk(sk)->bind_hash->fastreuse = 1;
8342 goto out;
8343 }
8344
8345 /* If we are already listening, just update the backlog */
8346 if (sctp_sstate(sk, LISTENING))
8347 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8348 else {
8349 err = sctp_listen_start(sk, backlog);
8350 if (err)
8351 goto out;
8352 }
8353
8354 err = 0;
8355 out:
8356 release_sock(sk);
8357 return err;
8358 }
8359
8360 /*
8361 * This function is done by modeling the current datagram_poll() and the
8362 * tcp_poll(). Note that, based on these implementations, we don't
8363 * lock the socket in this function, even though it seems that,
8364 * ideally, locking or some other mechanisms can be used to ensure
8365 * the integrity of the counters (sndbuf and wmem_alloc) used
8366 * in this place. We assume that we don't need locks either until proven
8367 * otherwise.
8368 *
8369 * Another thing to note is that we include the Async I/O support
8370 * here, again, by modeling the current TCP/UDP code. We don't have
8371 * a good way to test with it yet.
8372 */
sctp_poll(struct file * file,struct socket * sock,poll_table * wait)8373 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8374 {
8375 struct sock *sk = sock->sk;
8376 struct sctp_sock *sp = sctp_sk(sk);
8377 __poll_t mask;
8378
8379 poll_wait(file, sk_sleep(sk), wait);
8380
8381 sock_rps_record_flow(sk);
8382
8383 /* A TCP-style listening socket becomes readable when the accept queue
8384 * is not empty.
8385 */
8386 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8387 return (!list_empty(&sp->ep->asocs)) ?
8388 (EPOLLIN | EPOLLRDNORM) : 0;
8389
8390 mask = 0;
8391
8392 /* Is there any exceptional events? */
8393 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
8394 mask |= EPOLLERR |
8395 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8396 if (sk->sk_shutdown & RCV_SHUTDOWN)
8397 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8398 if (sk->sk_shutdown == SHUTDOWN_MASK)
8399 mask |= EPOLLHUP;
8400
8401 /* Is it readable? Reconsider this code with TCP-style support. */
8402 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8403 mask |= EPOLLIN | EPOLLRDNORM;
8404
8405 /* The association is either gone or not ready. */
8406 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8407 return mask;
8408
8409 /* Is it writable? */
8410 if (sctp_writeable(sk)) {
8411 mask |= EPOLLOUT | EPOLLWRNORM;
8412 } else {
8413 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8414 /*
8415 * Since the socket is not locked, the buffer
8416 * might be made available after the writeable check and
8417 * before the bit is set. This could cause a lost I/O
8418 * signal. tcp_poll() has a race breaker for this race
8419 * condition. Based on their implementation, we put
8420 * in the following code to cover it as well.
8421 */
8422 if (sctp_writeable(sk))
8423 mask |= EPOLLOUT | EPOLLWRNORM;
8424 }
8425 return mask;
8426 }
8427
8428 /********************************************************************
8429 * 2nd Level Abstractions
8430 ********************************************************************/
8431
sctp_bucket_create(struct sctp_bind_hashbucket * head,struct net * net,unsigned short snum)8432 static struct sctp_bind_bucket *sctp_bucket_create(
8433 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8434 {
8435 struct sctp_bind_bucket *pp;
8436
8437 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8438 if (pp) {
8439 SCTP_DBG_OBJCNT_INC(bind_bucket);
8440 pp->port = snum;
8441 pp->fastreuse = 0;
8442 INIT_HLIST_HEAD(&pp->owner);
8443 pp->net = net;
8444 hlist_add_head(&pp->node, &head->chain);
8445 }
8446 return pp;
8447 }
8448
8449 /* Caller must hold hashbucket lock for this tb with local BH disabled */
sctp_bucket_destroy(struct sctp_bind_bucket * pp)8450 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8451 {
8452 if (pp && hlist_empty(&pp->owner)) {
8453 __hlist_del(&pp->node);
8454 kmem_cache_free(sctp_bucket_cachep, pp);
8455 SCTP_DBG_OBJCNT_DEC(bind_bucket);
8456 }
8457 }
8458
8459 /* Release this socket's reference to a local port. */
__sctp_put_port(struct sock * sk)8460 static inline void __sctp_put_port(struct sock *sk)
8461 {
8462 struct sctp_bind_hashbucket *head =
8463 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8464 inet_sk(sk)->inet_num)];
8465 struct sctp_bind_bucket *pp;
8466
8467 spin_lock(&head->lock);
8468 pp = sctp_sk(sk)->bind_hash;
8469 __sk_del_bind_node(sk);
8470 sctp_sk(sk)->bind_hash = NULL;
8471 inet_sk(sk)->inet_num = 0;
8472 sctp_bucket_destroy(pp);
8473 spin_unlock(&head->lock);
8474 }
8475
sctp_put_port(struct sock * sk)8476 void sctp_put_port(struct sock *sk)
8477 {
8478 local_bh_disable();
8479 __sctp_put_port(sk);
8480 local_bh_enable();
8481 }
8482
8483 /*
8484 * The system picks an ephemeral port and choose an address set equivalent
8485 * to binding with a wildcard address.
8486 * One of those addresses will be the primary address for the association.
8487 * This automatically enables the multihoming capability of SCTP.
8488 */
sctp_autobind(struct sock * sk)8489 static int sctp_autobind(struct sock *sk)
8490 {
8491 union sctp_addr autoaddr;
8492 struct sctp_af *af;
8493 __be16 port;
8494
8495 /* Initialize a local sockaddr structure to INADDR_ANY. */
8496 af = sctp_sk(sk)->pf->af;
8497
8498 port = htons(inet_sk(sk)->inet_num);
8499 af->inaddr_any(&autoaddr, port);
8500
8501 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8502 }
8503
8504 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
8505 *
8506 * From RFC 2292
8507 * 4.2 The cmsghdr Structure *
8508 *
8509 * When ancillary data is sent or received, any number of ancillary data
8510 * objects can be specified by the msg_control and msg_controllen members of
8511 * the msghdr structure, because each object is preceded by
8512 * a cmsghdr structure defining the object's length (the cmsg_len member).
8513 * Historically Berkeley-derived implementations have passed only one object
8514 * at a time, but this API allows multiple objects to be
8515 * passed in a single call to sendmsg() or recvmsg(). The following example
8516 * shows two ancillary data objects in a control buffer.
8517 *
8518 * |<--------------------------- msg_controllen -------------------------->|
8519 * | |
8520 *
8521 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
8522 *
8523 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8524 * | | |
8525 *
8526 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
8527 *
8528 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
8529 * | | | | |
8530 *
8531 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8532 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
8533 *
8534 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
8535 *
8536 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8537 * ^
8538 * |
8539 *
8540 * msg_control
8541 * points here
8542 */
sctp_msghdr_parse(const struct msghdr * msg,struct sctp_cmsgs * cmsgs)8543 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8544 {
8545 struct msghdr *my_msg = (struct msghdr *)msg;
8546 struct cmsghdr *cmsg;
8547
8548 for_each_cmsghdr(cmsg, my_msg) {
8549 if (!CMSG_OK(my_msg, cmsg))
8550 return -EINVAL;
8551
8552 /* Should we parse this header or ignore? */
8553 if (cmsg->cmsg_level != IPPROTO_SCTP)
8554 continue;
8555
8556 /* Strictly check lengths following example in SCM code. */
8557 switch (cmsg->cmsg_type) {
8558 case SCTP_INIT:
8559 /* SCTP Socket API Extension
8560 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8561 *
8562 * This cmsghdr structure provides information for
8563 * initializing new SCTP associations with sendmsg().
8564 * The SCTP_INITMSG socket option uses this same data
8565 * structure. This structure is not used for
8566 * recvmsg().
8567 *
8568 * cmsg_level cmsg_type cmsg_data[]
8569 * ------------ ------------ ----------------------
8570 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
8571 */
8572 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8573 return -EINVAL;
8574
8575 cmsgs->init = CMSG_DATA(cmsg);
8576 break;
8577
8578 case SCTP_SNDRCV:
8579 /* SCTP Socket API Extension
8580 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8581 *
8582 * This cmsghdr structure specifies SCTP options for
8583 * sendmsg() and describes SCTP header information
8584 * about a received message through recvmsg().
8585 *
8586 * cmsg_level cmsg_type cmsg_data[]
8587 * ------------ ------------ ----------------------
8588 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
8589 */
8590 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8591 return -EINVAL;
8592
8593 cmsgs->srinfo = CMSG_DATA(cmsg);
8594
8595 if (cmsgs->srinfo->sinfo_flags &
8596 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8597 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8598 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8599 return -EINVAL;
8600 break;
8601
8602 case SCTP_SNDINFO:
8603 /* SCTP Socket API Extension
8604 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8605 *
8606 * This cmsghdr structure specifies SCTP options for
8607 * sendmsg(). This structure and SCTP_RCVINFO replaces
8608 * SCTP_SNDRCV which has been deprecated.
8609 *
8610 * cmsg_level cmsg_type cmsg_data[]
8611 * ------------ ------------ ---------------------
8612 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
8613 */
8614 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8615 return -EINVAL;
8616
8617 cmsgs->sinfo = CMSG_DATA(cmsg);
8618
8619 if (cmsgs->sinfo->snd_flags &
8620 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8621 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8622 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8623 return -EINVAL;
8624 break;
8625 case SCTP_PRINFO:
8626 /* SCTP Socket API Extension
8627 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8628 *
8629 * This cmsghdr structure specifies SCTP options for sendmsg().
8630 *
8631 * cmsg_level cmsg_type cmsg_data[]
8632 * ------------ ------------ ---------------------
8633 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo
8634 */
8635 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8636 return -EINVAL;
8637
8638 cmsgs->prinfo = CMSG_DATA(cmsg);
8639 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8640 return -EINVAL;
8641
8642 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8643 cmsgs->prinfo->pr_value = 0;
8644 break;
8645 case SCTP_AUTHINFO:
8646 /* SCTP Socket API Extension
8647 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8648 *
8649 * This cmsghdr structure specifies SCTP options for sendmsg().
8650 *
8651 * cmsg_level cmsg_type cmsg_data[]
8652 * ------------ ------------ ---------------------
8653 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo
8654 */
8655 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8656 return -EINVAL;
8657
8658 cmsgs->authinfo = CMSG_DATA(cmsg);
8659 break;
8660 case SCTP_DSTADDRV4:
8661 case SCTP_DSTADDRV6:
8662 /* SCTP Socket API Extension
8663 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8664 *
8665 * This cmsghdr structure specifies SCTP options for sendmsg().
8666 *
8667 * cmsg_level cmsg_type cmsg_data[]
8668 * ------------ ------------ ---------------------
8669 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr
8670 * ------------ ------------ ---------------------
8671 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr
8672 */
8673 cmsgs->addrs_msg = my_msg;
8674 break;
8675 default:
8676 return -EINVAL;
8677 }
8678 }
8679
8680 return 0;
8681 }
8682
8683 /*
8684 * Wait for a packet..
8685 * Note: This function is the same function as in core/datagram.c
8686 * with a few modifications to make lksctp work.
8687 */
sctp_wait_for_packet(struct sock * sk,int * err,long * timeo_p)8688 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8689 {
8690 int error;
8691 DEFINE_WAIT(wait);
8692
8693 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8694
8695 /* Socket errors? */
8696 error = sock_error(sk);
8697 if (error)
8698 goto out;
8699
8700 if (!skb_queue_empty(&sk->sk_receive_queue))
8701 goto ready;
8702
8703 /* Socket shut down? */
8704 if (sk->sk_shutdown & RCV_SHUTDOWN)
8705 goto out;
8706
8707 /* Sequenced packets can come disconnected. If so we report the
8708 * problem.
8709 */
8710 error = -ENOTCONN;
8711
8712 /* Is there a good reason to think that we may receive some data? */
8713 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8714 goto out;
8715
8716 /* Handle signals. */
8717 if (signal_pending(current))
8718 goto interrupted;
8719
8720 /* Let another process have a go. Since we are going to sleep
8721 * anyway. Note: This may cause odd behaviors if the message
8722 * does not fit in the user's buffer, but this seems to be the
8723 * only way to honor MSG_DONTWAIT realistically.
8724 */
8725 release_sock(sk);
8726 *timeo_p = schedule_timeout(*timeo_p);
8727 lock_sock(sk);
8728
8729 ready:
8730 finish_wait(sk_sleep(sk), &wait);
8731 return 0;
8732
8733 interrupted:
8734 error = sock_intr_errno(*timeo_p);
8735
8736 out:
8737 finish_wait(sk_sleep(sk), &wait);
8738 *err = error;
8739 return error;
8740 }
8741
8742 /* Receive a datagram.
8743 * Note: This is pretty much the same routine as in core/datagram.c
8744 * with a few changes to make lksctp work.
8745 */
sctp_skb_recv_datagram(struct sock * sk,int flags,int noblock,int * err)8746 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8747 int noblock, int *err)
8748 {
8749 int error;
8750 struct sk_buff *skb;
8751 long timeo;
8752
8753 timeo = sock_rcvtimeo(sk, noblock);
8754
8755 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8756 MAX_SCHEDULE_TIMEOUT);
8757
8758 do {
8759 /* Again only user level code calls this function,
8760 * so nothing interrupt level
8761 * will suddenly eat the receive_queue.
8762 *
8763 * Look at current nfs client by the way...
8764 * However, this function was correct in any case. 8)
8765 */
8766 if (flags & MSG_PEEK) {
8767 skb = skb_peek(&sk->sk_receive_queue);
8768 if (skb)
8769 refcount_inc(&skb->users);
8770 } else {
8771 skb = __skb_dequeue(&sk->sk_receive_queue);
8772 }
8773
8774 if (skb)
8775 return skb;
8776
8777 /* Caller is allowed not to check sk->sk_err before calling. */
8778 error = sock_error(sk);
8779 if (error)
8780 goto no_packet;
8781
8782 if (sk->sk_shutdown & RCV_SHUTDOWN)
8783 break;
8784
8785 if (sk_can_busy_loop(sk)) {
8786 sk_busy_loop(sk, noblock);
8787
8788 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8789 continue;
8790 }
8791
8792 /* User doesn't want to wait. */
8793 error = -EAGAIN;
8794 if (!timeo)
8795 goto no_packet;
8796 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8797
8798 return NULL;
8799
8800 no_packet:
8801 *err = error;
8802 return NULL;
8803 }
8804
8805 /* If sndbuf has changed, wake up per association sndbuf waiters. */
__sctp_write_space(struct sctp_association * asoc)8806 static void __sctp_write_space(struct sctp_association *asoc)
8807 {
8808 struct sock *sk = asoc->base.sk;
8809
8810 if (sctp_wspace(asoc) <= 0)
8811 return;
8812
8813 if (waitqueue_active(&asoc->wait))
8814 wake_up_interruptible(&asoc->wait);
8815
8816 if (sctp_writeable(sk)) {
8817 struct socket_wq *wq;
8818
8819 rcu_read_lock();
8820 wq = rcu_dereference(sk->sk_wq);
8821 if (wq) {
8822 if (waitqueue_active(&wq->wait))
8823 wake_up_interruptible(&wq->wait);
8824
8825 /* Note that we try to include the Async I/O support
8826 * here by modeling from the current TCP/UDP code.
8827 * We have not tested with it yet.
8828 */
8829 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8830 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8831 }
8832 rcu_read_unlock();
8833 }
8834 }
8835
sctp_wake_up_waiters(struct sock * sk,struct sctp_association * asoc)8836 static void sctp_wake_up_waiters(struct sock *sk,
8837 struct sctp_association *asoc)
8838 {
8839 struct sctp_association *tmp = asoc;
8840
8841 /* We do accounting for the sndbuf space per association,
8842 * so we only need to wake our own association.
8843 */
8844 if (asoc->ep->sndbuf_policy)
8845 return __sctp_write_space(asoc);
8846
8847 /* If association goes down and is just flushing its
8848 * outq, then just normally notify others.
8849 */
8850 if (asoc->base.dead)
8851 return sctp_write_space(sk);
8852
8853 /* Accounting for the sndbuf space is per socket, so we
8854 * need to wake up others, try to be fair and in case of
8855 * other associations, let them have a go first instead
8856 * of just doing a sctp_write_space() call.
8857 *
8858 * Note that we reach sctp_wake_up_waiters() only when
8859 * associations free up queued chunks, thus we are under
8860 * lock and the list of associations on a socket is
8861 * guaranteed not to change.
8862 */
8863 for (tmp = list_next_entry(tmp, asocs); 1;
8864 tmp = list_next_entry(tmp, asocs)) {
8865 /* Manually skip the head element. */
8866 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8867 continue;
8868 /* Wake up association. */
8869 __sctp_write_space(tmp);
8870 /* We've reached the end. */
8871 if (tmp == asoc)
8872 break;
8873 }
8874 }
8875
8876 /* Do accounting for the sndbuf space.
8877 * Decrement the used sndbuf space of the corresponding association by the
8878 * data size which was just transmitted(freed).
8879 */
sctp_wfree(struct sk_buff * skb)8880 static void sctp_wfree(struct sk_buff *skb)
8881 {
8882 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8883 struct sctp_association *asoc = chunk->asoc;
8884 struct sock *sk = asoc->base.sk;
8885
8886 sk_mem_uncharge(sk, skb->truesize);
8887 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
8888 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
8889 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
8890 &sk->sk_wmem_alloc));
8891
8892 if (chunk->shkey) {
8893 struct sctp_shared_key *shkey = chunk->shkey;
8894
8895 /* refcnt == 2 and !list_empty mean after this release, it's
8896 * not being used anywhere, and it's time to notify userland
8897 * that this shkey can be freed if it's been deactivated.
8898 */
8899 if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8900 refcount_read(&shkey->refcnt) == 2) {
8901 struct sctp_ulpevent *ev;
8902
8903 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
8904 SCTP_AUTH_FREE_KEY,
8905 GFP_KERNEL);
8906 if (ev)
8907 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
8908 }
8909 sctp_auth_shkey_release(chunk->shkey);
8910 }
8911
8912 sock_wfree(skb);
8913 sctp_wake_up_waiters(sk, asoc);
8914
8915 sctp_association_put(asoc);
8916 }
8917
8918 /* Do accounting for the receive space on the socket.
8919 * Accounting for the association is done in ulpevent.c
8920 * We set this as a destructor for the cloned data skbs so that
8921 * accounting is done at the correct time.
8922 */
sctp_sock_rfree(struct sk_buff * skb)8923 void sctp_sock_rfree(struct sk_buff *skb)
8924 {
8925 struct sock *sk = skb->sk;
8926 struct sctp_ulpevent *event = sctp_skb2event(skb);
8927
8928 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
8929
8930 /*
8931 * Mimic the behavior of sock_rfree
8932 */
8933 sk_mem_uncharge(sk, event->rmem_len);
8934 }
8935
8936
8937 /* Helper function to wait for space in the sndbuf. */
sctp_wait_for_sndbuf(struct sctp_association * asoc,long * timeo_p,size_t msg_len)8938 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
8939 size_t msg_len)
8940 {
8941 struct sock *sk = asoc->base.sk;
8942 long current_timeo = *timeo_p;
8943 DEFINE_WAIT(wait);
8944 int err = 0;
8945
8946 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
8947 *timeo_p, msg_len);
8948
8949 /* Increment the association's refcnt. */
8950 sctp_association_hold(asoc);
8951
8952 /* Wait on the association specific sndbuf space. */
8953 for (;;) {
8954 prepare_to_wait_exclusive(&asoc->wait, &wait,
8955 TASK_INTERRUPTIBLE);
8956 if (asoc->base.dead)
8957 goto do_dead;
8958 if (!*timeo_p)
8959 goto do_nonblock;
8960 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
8961 goto do_error;
8962 if (signal_pending(current))
8963 goto do_interrupted;
8964 if (sk_under_memory_pressure(sk))
8965 sk_mem_reclaim(sk);
8966 if ((int)msg_len <= sctp_wspace(asoc) &&
8967 sk_wmem_schedule(sk, msg_len))
8968 break;
8969
8970 /* Let another process have a go. Since we are going
8971 * to sleep anyway.
8972 */
8973 release_sock(sk);
8974 current_timeo = schedule_timeout(current_timeo);
8975 lock_sock(sk);
8976 if (sk != asoc->base.sk)
8977 goto do_error;
8978
8979 *timeo_p = current_timeo;
8980 }
8981
8982 out:
8983 finish_wait(&asoc->wait, &wait);
8984
8985 /* Release the association's refcnt. */
8986 sctp_association_put(asoc);
8987
8988 return err;
8989
8990 do_dead:
8991 err = -ESRCH;
8992 goto out;
8993
8994 do_error:
8995 err = -EPIPE;
8996 goto out;
8997
8998 do_interrupted:
8999 err = sock_intr_errno(*timeo_p);
9000 goto out;
9001
9002 do_nonblock:
9003 err = -EAGAIN;
9004 goto out;
9005 }
9006
sctp_data_ready(struct sock * sk)9007 void sctp_data_ready(struct sock *sk)
9008 {
9009 struct socket_wq *wq;
9010
9011 rcu_read_lock();
9012 wq = rcu_dereference(sk->sk_wq);
9013 if (skwq_has_sleeper(wq))
9014 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
9015 EPOLLRDNORM | EPOLLRDBAND);
9016 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
9017 rcu_read_unlock();
9018 }
9019
9020 /* If socket sndbuf has changed, wake up all per association waiters. */
sctp_write_space(struct sock * sk)9021 void sctp_write_space(struct sock *sk)
9022 {
9023 struct sctp_association *asoc;
9024
9025 /* Wake up the tasks in each wait queue. */
9026 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9027 __sctp_write_space(asoc);
9028 }
9029 }
9030
9031 /* Is there any sndbuf space available on the socket?
9032 *
9033 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9034 * associations on the same socket. For a UDP-style socket with
9035 * multiple associations, it is possible for it to be "unwriteable"
9036 * prematurely. I assume that this is acceptable because
9037 * a premature "unwriteable" is better than an accidental "writeable" which
9038 * would cause an unwanted block under certain circumstances. For the 1-1
9039 * UDP-style sockets or TCP-style sockets, this code should work.
9040 * - Daisy
9041 */
sctp_writeable(struct sock * sk)9042 static bool sctp_writeable(struct sock *sk)
9043 {
9044 return sk->sk_sndbuf > sk->sk_wmem_queued;
9045 }
9046
9047 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9048 * returns immediately with EINPROGRESS.
9049 */
sctp_wait_for_connect(struct sctp_association * asoc,long * timeo_p)9050 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9051 {
9052 struct sock *sk = asoc->base.sk;
9053 int err = 0;
9054 long current_timeo = *timeo_p;
9055 DEFINE_WAIT(wait);
9056
9057 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9058
9059 /* Increment the association's refcnt. */
9060 sctp_association_hold(asoc);
9061
9062 for (;;) {
9063 prepare_to_wait_exclusive(&asoc->wait, &wait,
9064 TASK_INTERRUPTIBLE);
9065 if (!*timeo_p)
9066 goto do_nonblock;
9067 if (sk->sk_shutdown & RCV_SHUTDOWN)
9068 break;
9069 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9070 asoc->base.dead)
9071 goto do_error;
9072 if (signal_pending(current))
9073 goto do_interrupted;
9074
9075 if (sctp_state(asoc, ESTABLISHED))
9076 break;
9077
9078 /* Let another process have a go. Since we are going
9079 * to sleep anyway.
9080 */
9081 release_sock(sk);
9082 current_timeo = schedule_timeout(current_timeo);
9083 lock_sock(sk);
9084
9085 *timeo_p = current_timeo;
9086 }
9087
9088 out:
9089 finish_wait(&asoc->wait, &wait);
9090
9091 /* Release the association's refcnt. */
9092 sctp_association_put(asoc);
9093
9094 return err;
9095
9096 do_error:
9097 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9098 err = -ETIMEDOUT;
9099 else
9100 err = -ECONNREFUSED;
9101 goto out;
9102
9103 do_interrupted:
9104 err = sock_intr_errno(*timeo_p);
9105 goto out;
9106
9107 do_nonblock:
9108 err = -EINPROGRESS;
9109 goto out;
9110 }
9111
sctp_wait_for_accept(struct sock * sk,long timeo)9112 static int sctp_wait_for_accept(struct sock *sk, long timeo)
9113 {
9114 struct sctp_endpoint *ep;
9115 int err = 0;
9116 DEFINE_WAIT(wait);
9117
9118 ep = sctp_sk(sk)->ep;
9119
9120
9121 for (;;) {
9122 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9123 TASK_INTERRUPTIBLE);
9124
9125 if (list_empty(&ep->asocs)) {
9126 release_sock(sk);
9127 timeo = schedule_timeout(timeo);
9128 lock_sock(sk);
9129 }
9130
9131 err = -EINVAL;
9132 if (!sctp_sstate(sk, LISTENING))
9133 break;
9134
9135 err = 0;
9136 if (!list_empty(&ep->asocs))
9137 break;
9138
9139 err = sock_intr_errno(timeo);
9140 if (signal_pending(current))
9141 break;
9142
9143 err = -EAGAIN;
9144 if (!timeo)
9145 break;
9146 }
9147
9148 finish_wait(sk_sleep(sk), &wait);
9149
9150 return err;
9151 }
9152
sctp_wait_for_close(struct sock * sk,long timeout)9153 static void sctp_wait_for_close(struct sock *sk, long timeout)
9154 {
9155 DEFINE_WAIT(wait);
9156
9157 do {
9158 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9159 if (list_empty(&sctp_sk(sk)->ep->asocs))
9160 break;
9161 release_sock(sk);
9162 timeout = schedule_timeout(timeout);
9163 lock_sock(sk);
9164 } while (!signal_pending(current) && timeout);
9165
9166 finish_wait(sk_sleep(sk), &wait);
9167 }
9168
sctp_skb_set_owner_r_frag(struct sk_buff * skb,struct sock * sk)9169 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9170 {
9171 struct sk_buff *frag;
9172
9173 if (!skb->data_len)
9174 goto done;
9175
9176 /* Don't forget the fragments. */
9177 skb_walk_frags(skb, frag)
9178 sctp_skb_set_owner_r_frag(frag, sk);
9179
9180 done:
9181 sctp_skb_set_owner_r(skb, sk);
9182 }
9183
sctp_copy_sock(struct sock * newsk,struct sock * sk,struct sctp_association * asoc)9184 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9185 struct sctp_association *asoc)
9186 {
9187 struct inet_sock *inet = inet_sk(sk);
9188 struct inet_sock *newinet;
9189 struct sctp_sock *sp = sctp_sk(sk);
9190 struct sctp_endpoint *ep = sp->ep;
9191
9192 newsk->sk_type = sk->sk_type;
9193 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9194 newsk->sk_flags = sk->sk_flags;
9195 newsk->sk_tsflags = sk->sk_tsflags;
9196 newsk->sk_no_check_tx = sk->sk_no_check_tx;
9197 newsk->sk_no_check_rx = sk->sk_no_check_rx;
9198 newsk->sk_reuse = sk->sk_reuse;
9199 sctp_sk(newsk)->reuse = sp->reuse;
9200
9201 newsk->sk_shutdown = sk->sk_shutdown;
9202 newsk->sk_destruct = sk->sk_destruct;
9203 newsk->sk_family = sk->sk_family;
9204 newsk->sk_protocol = IPPROTO_SCTP;
9205 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9206 newsk->sk_sndbuf = sk->sk_sndbuf;
9207 newsk->sk_rcvbuf = sk->sk_rcvbuf;
9208 newsk->sk_lingertime = sk->sk_lingertime;
9209 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9210 newsk->sk_sndtimeo = sk->sk_sndtimeo;
9211 newsk->sk_rxhash = sk->sk_rxhash;
9212
9213 newinet = inet_sk(newsk);
9214
9215 /* Initialize sk's sport, dport, rcv_saddr and daddr for
9216 * getsockname() and getpeername()
9217 */
9218 newinet->inet_sport = inet->inet_sport;
9219 newinet->inet_saddr = inet->inet_saddr;
9220 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9221 newinet->inet_dport = htons(asoc->peer.port);
9222 newinet->pmtudisc = inet->pmtudisc;
9223 newinet->inet_id = prandom_u32();
9224
9225 newinet->uc_ttl = inet->uc_ttl;
9226 newinet->mc_loop = 1;
9227 newinet->mc_ttl = 1;
9228 newinet->mc_index = 0;
9229 newinet->mc_list = NULL;
9230
9231 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9232 net_enable_timestamp();
9233
9234 /* Set newsk security attributes from orginal sk and connection
9235 * security attribute from ep.
9236 */
9237 security_sctp_sk_clone(ep, sk, newsk);
9238 }
9239
sctp_copy_descendant(struct sock * sk_to,const struct sock * sk_from)9240 static inline void sctp_copy_descendant(struct sock *sk_to,
9241 const struct sock *sk_from)
9242 {
9243 size_t ancestor_size = sizeof(struct inet_sock);
9244
9245 ancestor_size += sk_from->sk_prot->obj_size;
9246 ancestor_size -= offsetof(struct sctp_sock, pd_lobby);
9247 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9248 }
9249
9250 /* Populate the fields of the newsk from the oldsk and migrate the assoc
9251 * and its messages to the newsk.
9252 */
sctp_sock_migrate(struct sock * oldsk,struct sock * newsk,struct sctp_association * assoc,enum sctp_socket_type type)9253 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9254 struct sctp_association *assoc,
9255 enum sctp_socket_type type)
9256 {
9257 struct sctp_sock *oldsp = sctp_sk(oldsk);
9258 struct sctp_sock *newsp = sctp_sk(newsk);
9259 struct sctp_bind_bucket *pp; /* hash list port iterator */
9260 struct sctp_endpoint *newep = newsp->ep;
9261 struct sk_buff *skb, *tmp;
9262 struct sctp_ulpevent *event;
9263 struct sctp_bind_hashbucket *head;
9264 int err;
9265
9266 /* Migrate socket buffer sizes and all the socket level options to the
9267 * new socket.
9268 */
9269 newsk->sk_sndbuf = oldsk->sk_sndbuf;
9270 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9271 /* Brute force copy old sctp opt. */
9272 sctp_copy_descendant(newsk, oldsk);
9273
9274 /* Restore the ep value that was overwritten with the above structure
9275 * copy.
9276 */
9277 newsp->ep = newep;
9278 newsp->hmac = NULL;
9279
9280 /* Hook this new socket in to the bind_hash list. */
9281 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9282 inet_sk(oldsk)->inet_num)];
9283 spin_lock_bh(&head->lock);
9284 pp = sctp_sk(oldsk)->bind_hash;
9285 sk_add_bind_node(newsk, &pp->owner);
9286 sctp_sk(newsk)->bind_hash = pp;
9287 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9288 spin_unlock_bh(&head->lock);
9289
9290 /* Copy the bind_addr list from the original endpoint to the new
9291 * endpoint so that we can handle restarts properly
9292 */
9293 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9294 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9295 if (err)
9296 return err;
9297
9298 /* New ep's auth_hmacs should be set if old ep's is set, in case
9299 * that net->sctp.auth_enable has been changed to 0 by users and
9300 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9301 */
9302 if (oldsp->ep->auth_hmacs) {
9303 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9304 if (err)
9305 return err;
9306 }
9307
9308 sctp_auto_asconf_init(newsp);
9309
9310 /* Move any messages in the old socket's receive queue that are for the
9311 * peeled off association to the new socket's receive queue.
9312 */
9313 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9314 event = sctp_skb2event(skb);
9315 if (event->asoc == assoc) {
9316 __skb_unlink(skb, &oldsk->sk_receive_queue);
9317 __skb_queue_tail(&newsk->sk_receive_queue, skb);
9318 sctp_skb_set_owner_r_frag(skb, newsk);
9319 }
9320 }
9321
9322 /* Clean up any messages pending delivery due to partial
9323 * delivery. Three cases:
9324 * 1) No partial deliver; no work.
9325 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9326 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9327 */
9328 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9329
9330 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9331 struct sk_buff_head *queue;
9332
9333 /* Decide which queue to move pd_lobby skbs to. */
9334 if (assoc->ulpq.pd_mode) {
9335 queue = &newsp->pd_lobby;
9336 } else
9337 queue = &newsk->sk_receive_queue;
9338
9339 /* Walk through the pd_lobby, looking for skbs that
9340 * need moved to the new socket.
9341 */
9342 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9343 event = sctp_skb2event(skb);
9344 if (event->asoc == assoc) {
9345 __skb_unlink(skb, &oldsp->pd_lobby);
9346 __skb_queue_tail(queue, skb);
9347 sctp_skb_set_owner_r_frag(skb, newsk);
9348 }
9349 }
9350
9351 /* Clear up any skbs waiting for the partial
9352 * delivery to finish.
9353 */
9354 if (assoc->ulpq.pd_mode)
9355 sctp_clear_pd(oldsk, NULL);
9356
9357 }
9358
9359 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9360
9361 /* Set the type of socket to indicate that it is peeled off from the
9362 * original UDP-style socket or created with the accept() call on a
9363 * TCP-style socket..
9364 */
9365 newsp->type = type;
9366
9367 /* Mark the new socket "in-use" by the user so that any packets
9368 * that may arrive on the association after we've moved it are
9369 * queued to the backlog. This prevents a potential race between
9370 * backlog processing on the old socket and new-packet processing
9371 * on the new socket.
9372 *
9373 * The caller has just allocated newsk so we can guarantee that other
9374 * paths won't try to lock it and then oldsk.
9375 */
9376 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9377 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w);
9378 sctp_assoc_migrate(assoc, newsk);
9379 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w);
9380
9381 /* If the association on the newsk is already closed before accept()
9382 * is called, set RCV_SHUTDOWN flag.
9383 */
9384 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9385 inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9386 newsk->sk_shutdown |= RCV_SHUTDOWN;
9387 } else {
9388 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9389 }
9390
9391 release_sock(newsk);
9392
9393 return 0;
9394 }
9395
9396
9397 /* This proto struct describes the ULP interface for SCTP. */
9398 struct proto sctp_prot = {
9399 .name = "SCTP",
9400 .owner = THIS_MODULE,
9401 .close = sctp_close,
9402 .disconnect = sctp_disconnect,
9403 .accept = sctp_accept,
9404 .ioctl = sctp_ioctl,
9405 .init = sctp_init_sock,
9406 .destroy = sctp_destroy_sock,
9407 .shutdown = sctp_shutdown,
9408 .setsockopt = sctp_setsockopt,
9409 .getsockopt = sctp_getsockopt,
9410 .sendmsg = sctp_sendmsg,
9411 .recvmsg = sctp_recvmsg,
9412 .bind = sctp_bind,
9413 .bind_add = sctp_bind_add,
9414 .backlog_rcv = sctp_backlog_rcv,
9415 .hash = sctp_hash,
9416 .unhash = sctp_unhash,
9417 .no_autobind = true,
9418 .obj_size = sizeof(struct sctp_sock),
9419 .useroffset = offsetof(struct sctp_sock, subscribe),
9420 .usersize = offsetof(struct sctp_sock, initmsg) -
9421 offsetof(struct sctp_sock, subscribe) +
9422 sizeof_field(struct sctp_sock, initmsg),
9423 .sysctl_mem = sysctl_sctp_mem,
9424 .sysctl_rmem = sysctl_sctp_rmem,
9425 .sysctl_wmem = sysctl_sctp_wmem,
9426 .memory_pressure = &sctp_memory_pressure,
9427 .enter_memory_pressure = sctp_enter_memory_pressure,
9428 .memory_allocated = &sctp_memory_allocated,
9429 .sockets_allocated = &sctp_sockets_allocated,
9430 };
9431
9432 #if IS_ENABLED(CONFIG_IPV6)
9433
sctp_v6_destruct_sock(struct sock * sk)9434 static void sctp_v6_destruct_sock(struct sock *sk)
9435 {
9436 sctp_destruct_common(sk);
9437 inet6_sock_destruct(sk);
9438 }
9439
sctp_v6_init_sock(struct sock * sk)9440 static int sctp_v6_init_sock(struct sock *sk)
9441 {
9442 int ret = sctp_init_sock(sk);
9443
9444 if (!ret)
9445 sk->sk_destruct = sctp_v6_destruct_sock;
9446
9447 return ret;
9448 }
9449
9450 struct proto sctpv6_prot = {
9451 .name = "SCTPv6",
9452 .owner = THIS_MODULE,
9453 .close = sctp_close,
9454 .disconnect = sctp_disconnect,
9455 .accept = sctp_accept,
9456 .ioctl = sctp_ioctl,
9457 .init = sctp_v6_init_sock,
9458 .destroy = sctp_destroy_sock,
9459 .shutdown = sctp_shutdown,
9460 .setsockopt = sctp_setsockopt,
9461 .getsockopt = sctp_getsockopt,
9462 .sendmsg = sctp_sendmsg,
9463 .recvmsg = sctp_recvmsg,
9464 .bind = sctp_bind,
9465 .bind_add = sctp_bind_add,
9466 .backlog_rcv = sctp_backlog_rcv,
9467 .hash = sctp_hash,
9468 .unhash = sctp_unhash,
9469 .no_autobind = true,
9470 .obj_size = sizeof(struct sctp6_sock),
9471 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe),
9472 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) -
9473 offsetof(struct sctp6_sock, sctp.subscribe) +
9474 sizeof_field(struct sctp6_sock, sctp.initmsg),
9475 .sysctl_mem = sysctl_sctp_mem,
9476 .sysctl_rmem = sysctl_sctp_rmem,
9477 .sysctl_wmem = sysctl_sctp_wmem,
9478 .memory_pressure = &sctp_memory_pressure,
9479 .enter_memory_pressure = sctp_enter_memory_pressure,
9480 .memory_allocated = &sctp_memory_allocated,
9481 .sockets_allocated = &sctp_sockets_allocated,
9482 };
9483 #endif /* IS_ENABLED(CONFIG_IPV6) */
9484