• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: Apache-2.0
2 // ----------------------------------------------------------------------------
3 // Copyright 2019-2021 Arm Limited
4 //
5 // Licensed under the Apache License, Version 2.0 (the "License"); you may not
6 // use this file except in compliance with the License. You may obtain a copy
7 // of the License at:
8 //
9 //     http://www.apache.org/licenses/LICENSE-2.0
10 //
11 // Unless required by applicable law or agreed to in writing, software
12 // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
13 // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
14 // License for the specific language governing permissions and limitations
15 // under the License.
16 // ----------------------------------------------------------------------------
17 
18 /**
19  * @brief 4x32-bit vectors, implemented using SSE.
20  *
21  * This module implements 4-wide 32-bit float, int, and mask vectors for x86
22  * SSE. The implementation requires at least SSE2, but higher levels of SSE can
23  * be selected at compile time to improve performance.
24  *
25  * There is a baseline level of functionality provided by all vector widths and
26  * implementations. This is implemented using identical function signatures,
27  * modulo data type, so we can use them as substitutable implementations in VLA
28  * code.
29  *
30  * The 4-wide vectors are also used as a fixed-width type, and significantly
31  * extend the functionality above that available to VLA code.
32  */
33 
34 #ifndef ASTC_VECMATHLIB_SSE_4_H_INCLUDED
35 #define ASTC_VECMATHLIB_SSE_4_H_INCLUDED
36 
37 #ifndef ASTCENC_SIMD_INLINE
38 	#error "Include astcenc_vecmathlib.h, do not include directly"
39 #endif
40 
41 #include <cstdio>
42 
43 // ============================================================================
44 // vfloat4 data type
45 // ============================================================================
46 
47 /**
48  * @brief Data type for 4-wide floats.
49  */
50 struct vfloat4
51 {
52 	/**
53 	 * @brief Construct from zero-initialized value.
54 	 */
55 	ASTCENC_SIMD_INLINE vfloat4() = default;
56 
57 	/**
58 	 * @brief Construct from 4 values loaded from an unaligned address.
59 	 *
60 	 * Consider using loada() which is better with vectors if data is aligned
61 	 * to vector length.
62 	 */
vfloat4vfloat463 	ASTCENC_SIMD_INLINE explicit vfloat4(const float *p)
64 	{
65 		m = _mm_loadu_ps(p);
66 	}
67 
68 	/**
69 	 * @brief Construct from 1 scalar value replicated across all lanes.
70 	 *
71 	 * Consider using zero() for constexpr zeros.
72 	 */
vfloat4vfloat473 	ASTCENC_SIMD_INLINE explicit vfloat4(float a)
74 	{
75 		m = _mm_set1_ps(a);
76 	}
77 
78 	/**
79 	 * @brief Construct from 4 scalar values.
80 	 *
81 	 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
82 	 */
vfloat4vfloat483 	ASTCENC_SIMD_INLINE explicit vfloat4(float a, float b, float c, float d)
84 	{
85 		m = _mm_set_ps(d, c, b, a);
86 	}
87 
88 	/**
89 	 * @brief Construct from an existing SIMD register.
90 	 */
vfloat4vfloat491 	ASTCENC_SIMD_INLINE explicit vfloat4(__m128 a)
92 	{
93 		m = a;
94 	}
95 
96 	/**
97 	 * @brief Get the scalar value of a single lane.
98 	 */
lanevfloat499 	template <int l> ASTCENC_SIMD_INLINE float lane() const
100 	{
101 		return _mm_cvtss_f32(_mm_shuffle_ps(m, m, l));
102 	}
103 
104 	/**
105 	 * @brief Set the scalar value of a single lane.
106 	 */
set_lanevfloat4107 	template <int l> ASTCENC_SIMD_INLINE void set_lane(float a)
108 	{
109 #if ASTCENC_SSE >= 41
110 		__m128 v = _mm_set1_ps(a);
111 		m = _mm_insert_ps(m, v, l << 6 | l << 4);
112 #else
113 		alignas(16) float idx[4];
114 		_mm_store_ps(idx, m);
115 		idx[l] = a;
116 		m = _mm_load_ps(idx);
117 #endif
118 	}
119 
120 	/**
121 	 * @brief Factory that returns a vector of zeros.
122 	 */
zerovfloat4123 	static ASTCENC_SIMD_INLINE vfloat4 zero()
124 	{
125 		return vfloat4(_mm_setzero_ps());
126 	}
127 
128 	/**
129 	 * @brief Factory that returns a replicated scalar loaded from memory.
130 	 */
load1vfloat4131 	static ASTCENC_SIMD_INLINE vfloat4 load1(const float* p)
132 	{
133 		return vfloat4(_mm_load_ps1(p));
134 	}
135 
136 	/**
137 	 * @brief Factory that returns a vector loaded from 16B aligned memory.
138 	 */
loadavfloat4139 	static ASTCENC_SIMD_INLINE vfloat4 loada(const float* p)
140 	{
141 		return vfloat4(_mm_load_ps(p));
142 	}
143 
144 	/**
145 	 * @brief Factory that returns a vector containing the lane IDs.
146 	 */
lane_idvfloat4147 	static ASTCENC_SIMD_INLINE vfloat4 lane_id()
148 	{
149 		return vfloat4(_mm_set_ps(3, 2, 1, 0));
150 	}
151 
152 	/**
153 	 * @brief Return a swizzled float 2.
154 	 */
swzvfloat4155 	template <int l0, int l1> ASTCENC_SIMD_INLINE vfloat4 swz() const
156 	{
157 		vfloat4 result(_mm_shuffle_ps(m, m, l0 | l1 << 2));
158 		result.set_lane<2>(0.0f);
159 		result.set_lane<3>(0.0f);
160 		return result;
161 	}
162 
163 	/**
164 	 * @brief Return a swizzled float 3.
165 	 */
swzvfloat4166 	template <int l0, int l1, int l2> ASTCENC_SIMD_INLINE vfloat4 swz() const
167 	{
168 		vfloat4 result(_mm_shuffle_ps(m, m, l0 | l1 << 2 | l2 << 4));
169 		result.set_lane<3>(0.0f);
170 		return result;
171 	}
172 
173 	/**
174 	 * @brief Return a swizzled float 4.
175 	 */
swzvfloat4176 	template <int l0, int l1, int l2, int l3> ASTCENC_SIMD_INLINE vfloat4 swz() const
177 	{
178 		return vfloat4(_mm_shuffle_ps(m, m, l0 | l1 << 2 | l2 << 4 | l3 << 6));
179 	}
180 
181 	/**
182 	 * @brief The vector ...
183 	 */
184 	__m128 m;
185 };
186 
187 // ============================================================================
188 // vint4 data type
189 // ============================================================================
190 
191 /**
192  * @brief Data type for 4-wide ints.
193  */
194 struct vint4
195 {
196 	/**
197 	 * @brief Construct from zero-initialized value.
198 	 */
199 	ASTCENC_SIMD_INLINE vint4() = default;
200 
201 	/**
202 	 * @brief Construct from 4 values loaded from an unaligned address.
203 	 *
204 	 * Consider using loada() which is better with vectors if data is aligned
205 	 * to vector length.
206 	 */
vint4vint4207 	ASTCENC_SIMD_INLINE explicit vint4(const int *p)
208 	{
209 		m = _mm_loadu_si128(reinterpret_cast<const __m128i*>(p));
210 	}
211 
212 	/**
213 	 * @brief Construct from 4 uint8_t loaded from an unaligned address.
214 	 */
vint4vint4215 	ASTCENC_SIMD_INLINE explicit vint4(const uint8_t *p)
216 	{
217 		// _mm_loadu_si32 would be nicer syntax, but missing on older GCC
218 		__m128i t = _mm_cvtsi32_si128(*reinterpret_cast<const int*>(p));
219 
220 #if ASTCENC_SSE >= 41
221 		m = _mm_cvtepu8_epi32(t);
222 #else
223 		t = _mm_unpacklo_epi8(t, _mm_setzero_si128());
224 		m = _mm_unpacklo_epi16(t, _mm_setzero_si128());
225 #endif
226 	}
227 
228 	/**
229 	 * @brief Construct from 1 scalar value replicated across all lanes.
230 	 *
231 	 * Consider using vfloat4::zero() for constexpr zeros.
232 	 */
vint4vint4233 	ASTCENC_SIMD_INLINE explicit vint4(int a)
234 	{
235 		m = _mm_set1_epi32(a);
236 	}
237 
238 	/**
239 	 * @brief Construct from 4 scalar values.
240 	 *
241 	 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
242 	 */
vint4vint4243 	ASTCENC_SIMD_INLINE explicit vint4(int a, int b, int c, int d)
244 	{
245 		m = _mm_set_epi32(d, c, b, a);
246 	}
247 
248 	/**
249 	 * @brief Construct from an existing SIMD register.
250 	 */
vint4vint4251 	ASTCENC_SIMD_INLINE explicit vint4(__m128i a)
252 	{
253 		m = a;
254 	}
255 
256 	/**
257 	 * @brief Get the scalar from a single lane.
258 	 */
lanevint4259 	template <int l> ASTCENC_SIMD_INLINE int lane() const
260 	{
261 		return _mm_cvtsi128_si32(_mm_shuffle_epi32(m, l));
262 	}
263 
264 	/**
265 	 * @brief Set the scalar value of a single lane.
266 	 */
set_lanevint4267 	template <int l> ASTCENC_SIMD_INLINE void set_lane(int a)
268 	{
269 #if ASTCENC_SSE >= 41
270 		m = _mm_insert_epi32(m, a, l);
271 #else
272 		alignas(16) int idx[4];
273 		_mm_store_si128(reinterpret_cast<__m128i*>(idx), m);
274 		idx[l] = a;
275 		m = _mm_load_si128(reinterpret_cast<const __m128i*>(idx));
276 #endif
277 	}
278 
279 	/**
280 	 * @brief Factory that returns a vector of zeros.
281 	 */
zerovint4282 	static ASTCENC_SIMD_INLINE vint4 zero()
283 	{
284 		return vint4(_mm_setzero_si128());
285 	}
286 
287 	/**
288 	 * @brief Factory that returns a replicated scalar loaded from memory.
289 	 */
load1vint4290 	static ASTCENC_SIMD_INLINE vint4 load1(const int* p)
291 	{
292 		return vint4(*p);
293 	}
294 
295 	/**
296 	 * @brief Factory that returns a vector loaded from 16B aligned memory.
297 	 */
loadavint4298 	static ASTCENC_SIMD_INLINE vint4 loada(const int* p)
299 	{
300 		return vint4(_mm_load_si128(reinterpret_cast<const __m128i*>(p)));
301 	}
302 
303 	/**
304 	 * @brief Factory that returns a vector containing the lane IDs.
305 	 */
lane_idvint4306 	static ASTCENC_SIMD_INLINE vint4 lane_id()
307 	{
308 		return vint4(_mm_set_epi32(3, 2, 1, 0));
309 	}
310 
311 	/**
312 	 * @brief The vector ...
313 	 */
314 	__m128i m;
315 };
316 
317 // ============================================================================
318 // vmask4 data type
319 // ============================================================================
320 
321 /**
322  * @brief Data type for 4-wide control plane masks.
323  */
324 struct vmask4
325 {
326 	/**
327 	 * @brief Construct from an existing SIMD register.
328 	 */
vmask4vmask4329 	ASTCENC_SIMD_INLINE explicit vmask4(__m128 a)
330 	{
331 		m = a;
332 	}
333 
334 	/**
335 	 * @brief Construct from an existing SIMD register.
336 	 */
vmask4vmask4337 	ASTCENC_SIMD_INLINE explicit vmask4(__m128i a)
338 	{
339 		m = _mm_castsi128_ps(a);
340 	}
341 
342 	/**
343 	 * @brief Construct from 1 scalar value.
344 	 */
vmask4vmask4345 	ASTCENC_SIMD_INLINE explicit vmask4(bool a)
346 	{
347 		vint4 mask(a == false ? 0 : -1);
348 		m = _mm_castsi128_ps(mask.m);
349 	}
350 
351 	/**
352 	 * @brief Construct from 4 scalar values.
353 	 *
354 	 * The value of @c a is stored to lane 0 (LSB) in the SIMD register.
355 	 */
vmask4vmask4356 	ASTCENC_SIMD_INLINE explicit vmask4(bool a, bool b, bool c, bool d)
357 	{
358 		vint4 mask(a == false ? 0 : -1,
359 		           b == false ? 0 : -1,
360 		           c == false ? 0 : -1,
361 		           d == false ? 0 : -1);
362 
363 		m = _mm_castsi128_ps(mask.m);
364 	}
365 
366 	/**
367 	 * @brief The vector ...
368 	 */
369 	__m128 m;
370 };
371 
372 // ============================================================================
373 // vmask4 operators and functions
374 // ============================================================================
375 
376 /**
377  * @brief Overload: mask union (or).
378  */
379 ASTCENC_SIMD_INLINE vmask4 operator|(vmask4 a, vmask4 b)
380 {
381 	return vmask4(_mm_or_ps(a.m, b.m));
382 }
383 
384 /**
385  * @brief Overload: mask intersect (and).
386  */
387 ASTCENC_SIMD_INLINE vmask4 operator&(vmask4 a, vmask4 b)
388 {
389 	return vmask4(_mm_and_ps(a.m, b.m));
390 }
391 
392 /**
393  * @brief Overload: mask difference (xor).
394  */
395 ASTCENC_SIMD_INLINE vmask4 operator^(vmask4 a, vmask4 b)
396 {
397 	return vmask4(_mm_xor_ps(a.m, b.m));
398 }
399 
400 /**
401  * @brief Overload: mask invert (not).
402  */
403 ASTCENC_SIMD_INLINE vmask4 operator~(vmask4 a)
404 {
405 	return vmask4(_mm_xor_si128(_mm_castps_si128(a.m), _mm_set1_epi32(-1)));
406 }
407 
408 /**
409  * @brief Return a 4-bit mask code indicating mask status.
410  *
411  * bit0 = lane 0
412  */
mask(vmask4 a)413 ASTCENC_SIMD_INLINE unsigned int mask(vmask4 a)
414 {
415 	return _mm_movemask_ps(a.m);
416 }
417 
418 // ============================================================================
419 // vint4 operators and functions
420 // ============================================================================
421 
422 /**
423  * @brief Overload: vector by vector addition.
424  */
425 ASTCENC_SIMD_INLINE vint4 operator+(vint4 a, vint4 b)
426 {
427 	return vint4(_mm_add_epi32(a.m, b.m));
428 }
429 
430 /**
431  * @brief Overload: vector by vector subtraction.
432  */
433 ASTCENC_SIMD_INLINE vint4 operator-(vint4 a, vint4 b)
434 {
435 	return vint4(_mm_sub_epi32(a.m, b.m));
436 }
437 
438 /**
439  * @brief Overload: vector by vector multiplication.
440  */
441 ASTCENC_SIMD_INLINE vint4 operator*(vint4 a, vint4 b)
442 {
443 #if ASTCENC_SSE >= 41
444 	return vint4(_mm_mullo_epi32 (a.m, b.m));
445 #else
446 	__m128i t1 = _mm_mul_epu32(a.m, b.m);
447 	__m128i t2 = _mm_mul_epu32(
448 	                 _mm_srli_si128(a.m, 4),
449 	                 _mm_srli_si128(b.m, 4));
450 	__m128i r =  _mm_unpacklo_epi32(
451 	                 _mm_shuffle_epi32(t1, _MM_SHUFFLE (0, 0, 2, 0)),
452 	                 _mm_shuffle_epi32(t2, _MM_SHUFFLE (0, 0, 2, 0)));
453 	return vint4(r);
454 #endif
455 }
456 
457 /**
458  * @brief Overload: vector bit invert.
459  */
460 ASTCENC_SIMD_INLINE vint4 operator~(vint4 a)
461 {
462 	return vint4(_mm_xor_si128(a.m, _mm_set1_epi32(-1)));
463 }
464 
465 /**
466  * @brief Overload: vector by vector bitwise or.
467  */
468 ASTCENC_SIMD_INLINE vint4 operator|(vint4 a, vint4 b)
469 {
470 	return vint4(_mm_or_si128(a.m, b.m));
471 }
472 
473 /**
474  * @brief Overload: vector by vector bitwise and.
475  */
476 ASTCENC_SIMD_INLINE vint4 operator&(vint4 a, vint4 b)
477 {
478 	return vint4(_mm_and_si128(a.m, b.m));
479 }
480 
481 /**
482  * @brief Overload: vector by vector bitwise xor.
483  */
484 ASTCENC_SIMD_INLINE vint4 operator^(vint4 a, vint4 b)
485 {
486 	return vint4(_mm_xor_si128(a.m, b.m));
487 }
488 
489 /**
490  * @brief Overload: vector by vector equality.
491  */
492 ASTCENC_SIMD_INLINE vmask4 operator==(vint4 a, vint4 b)
493 {
494 	return vmask4(_mm_cmpeq_epi32(a.m, b.m));
495 }
496 
497 /**
498  * @brief Overload: vector by vector inequality.
499  */
500 ASTCENC_SIMD_INLINE vmask4 operator!=(vint4 a, vint4 b)
501 {
502 	return ~vmask4(_mm_cmpeq_epi32(a.m, b.m));
503 }
504 
505 /**
506  * @brief Overload: vector by vector less than.
507  */
508 ASTCENC_SIMD_INLINE vmask4 operator<(vint4 a, vint4 b)
509 {
510 	return vmask4(_mm_cmplt_epi32(a.m, b.m));
511 }
512 
513 /**
514  * @brief Overload: vector by vector greater than.
515  */
516 ASTCENC_SIMD_INLINE vmask4 operator>(vint4 a, vint4 b)
517 {
518 	return vmask4(_mm_cmpgt_epi32(a.m, b.m));
519 }
520 
521 /**
522  * @brief Logical shift left.
523  */
lsl(vint4 a)524 template <int s> ASTCENC_SIMD_INLINE vint4 lsl(vint4 a)
525 {
526 	return vint4(_mm_slli_epi32(a.m, s));
527 }
528 
529 /**
530  * @brief Logical shift right.
531  */
lsr(vint4 a)532 template <int s> ASTCENC_SIMD_INLINE vint4 lsr(vint4 a)
533 {
534 	return vint4(_mm_srli_epi32(a.m, s));
535 }
536 
537 /**
538  * @brief Arithmetic shift right.
539  */
asr(vint4 a)540 template <int s> ASTCENC_SIMD_INLINE vint4 asr(vint4 a)
541 {
542 	return vint4(_mm_srai_epi32(a.m, s));
543 }
544 
545 /**
546  * @brief Return the min vector of two vectors.
547  */
min(vint4 a,vint4 b)548 ASTCENC_SIMD_INLINE vint4 min(vint4 a, vint4 b)
549 {
550 #if ASTCENC_SSE >= 41
551 	return vint4(_mm_min_epi32(a.m, b.m));
552 #else
553 	vmask4 d = a < b;
554 	__m128i ap = _mm_and_si128(_mm_castps_si128(d.m), a.m);
555 	__m128i bp = _mm_andnot_si128(_mm_castps_si128(d.m), b.m);
556 	return vint4(_mm_or_si128(ap,bp));
557 #endif
558 }
559 
560 /**
561  * @brief Return the max vector of two vectors.
562  */
max(vint4 a,vint4 b)563 ASTCENC_SIMD_INLINE vint4 max(vint4 a, vint4 b)
564 {
565 #if ASTCENC_SSE >= 41
566 	return vint4(_mm_max_epi32(a.m, b.m));
567 #else
568 	vmask4 d = a > b;
569 	__m128i ap = _mm_and_si128(_mm_castps_si128(d.m), a.m);
570 	__m128i bp = _mm_andnot_si128(_mm_castps_si128(d.m), b.m);
571 	return vint4(_mm_or_si128(ap,bp));
572 #endif
573 }
574 
575 /**
576  * @brief Return the horizontal minimum of a vector.
577  */
hmin(vint4 a)578 ASTCENC_SIMD_INLINE vint4 hmin(vint4 a)
579 {
580 	a = min(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 3, 2))));
581 	a = min(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 1))));
582 	return vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 0)));
583 }
584 
585 /*
586  * @brief Return the horizontal maximum of a vector.
587  */
hmax(vint4 a)588 ASTCENC_SIMD_INLINE vint4 hmax(vint4 a)
589 {
590 	a = max(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 3, 2))));
591 	a = max(a, vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 1))));
592 	return vint4(_mm_shuffle_epi32(a.m, _MM_SHUFFLE(0, 0, 0, 0)));
593 }
594 
595 /**
596  * @brief Return the horizontal sum of a vector as a scalar.
597  */
hadd_s(vint4 a)598 ASTCENC_SIMD_INLINE int hadd_s(vint4 a)
599 {
600 	// Add top and bottom halves, lane 1/0
601 	__m128i fold = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(a.m),
602 	                                              _mm_castsi128_ps(a.m)));
603 	__m128i t = _mm_add_epi32(a.m, fold);
604 
605 	// Add top and bottom halves, lane 0 (_mm_hadd_ps exists but slow)
606 	t = _mm_add_epi32(t, _mm_shuffle_epi32(t, 0x55));
607 
608 	return _mm_cvtsi128_si32(t);
609 }
610 
611 /**
612  * @brief Store a vector to a 16B aligned memory address.
613  */
storea(vint4 a,int * p)614 ASTCENC_SIMD_INLINE void storea(vint4 a, int* p)
615 {
616 	_mm_store_si128(reinterpret_cast<__m128i*>(p), a.m);
617 }
618 
619 /**
620  * @brief Store a vector to an unaligned memory address.
621  */
store(vint4 a,int * p)622 ASTCENC_SIMD_INLINE void store(vint4 a, int* p)
623 {
624 	// Cast due to missing intrinsics
625 	_mm_storeu_ps(reinterpret_cast<float*>(p), _mm_castsi128_ps(a.m));
626 }
627 
628 /**
629  * @brief Store lowest N (vector width) bytes into an unaligned address.
630  */
store_nbytes(vint4 a,uint8_t * p)631 ASTCENC_SIMD_INLINE void store_nbytes(vint4 a, uint8_t* p)
632 {
633 	// Cast due to missing intrinsics
634 	_mm_store_ss(reinterpret_cast<float*>(p), _mm_castsi128_ps(a.m));
635 }
636 
637 /**
638  * @brief Gather N (vector width) indices from the array.
639  */
gatheri(const int * base,vint4 indices)640 ASTCENC_SIMD_INLINE vint4 gatheri(const int* base, vint4 indices)
641 {
642 #if ASTCENC_AVX >= 2
643 	return vint4(_mm_i32gather_epi32(base, indices.m, 4));
644 #else
645 	alignas(16) int idx[4];
646 	storea(indices, idx);
647 	return vint4(base[idx[0]], base[idx[1]], base[idx[2]], base[idx[3]]);
648 #endif
649 }
650 
651 /**
652  * @brief Pack low 8 bits of N (vector width) lanes into bottom of vector.
653  */
pack_low_bytes(vint4 a)654 ASTCENC_SIMD_INLINE vint4 pack_low_bytes(vint4 a)
655 {
656 #if ASTCENC_SSE >= 41
657 	__m128i shuf = _mm_set_epi8(0,0,0,0, 0,0,0,0, 0,0,0,0, 12,8,4,0);
658 	return vint4(_mm_shuffle_epi8(a.m, shuf));
659 #else
660 	__m128i va = _mm_unpacklo_epi8(a.m, _mm_shuffle_epi32(a.m, _MM_SHUFFLE(1,1,1,1)));
661 	__m128i vb = _mm_unpackhi_epi8(a.m, _mm_shuffle_epi32(a.m, _MM_SHUFFLE(3,3,3,3)));
662 	return vint4(_mm_unpacklo_epi16(va, vb));
663 #endif
664 }
665 
666 /**
667  * @brief Return lanes from @c b if @c cond is set, else @c a.
668  */
select(vint4 a,vint4 b,vmask4 cond)669 ASTCENC_SIMD_INLINE vint4 select(vint4 a, vint4 b, vmask4 cond)
670 {
671 	__m128i condi = _mm_castps_si128(cond.m);
672 
673 #if ASTCENC_SSE >= 41
674 	return vint4(_mm_blendv_epi8(a.m, b.m, condi));
675 #else
676 	return vint4(_mm_or_si128(_mm_and_si128(condi, b.m), _mm_andnot_si128(condi, a.m)));
677 #endif
678 }
679 
680 // ============================================================================
681 // vfloat4 operators and functions
682 // ============================================================================
683 
684 /**
685  * @brief Overload: vector by vector addition.
686  */
687 ASTCENC_SIMD_INLINE vfloat4 operator+(vfloat4 a, vfloat4 b)
688 {
689 	return vfloat4(_mm_add_ps(a.m, b.m));
690 }
691 
692 /**
693  * @brief Overload: vector by vector subtraction.
694  */
695 ASTCENC_SIMD_INLINE vfloat4 operator-(vfloat4 a, vfloat4 b)
696 {
697 	return vfloat4(_mm_sub_ps(a.m, b.m));
698 }
699 
700 /**
701  * @brief Overload: vector by vector multiplication.
702  */
703 ASTCENC_SIMD_INLINE vfloat4 operator*(vfloat4 a, vfloat4 b)
704 {
705 	return vfloat4(_mm_mul_ps(a.m, b.m));
706 }
707 
708 /**
709  * @brief Overload: vector by vector division.
710  */
711 ASTCENC_SIMD_INLINE vfloat4 operator/(vfloat4 a, vfloat4 b)
712 {
713 	return vfloat4(_mm_div_ps(a.m, b.m));
714 }
715 
716 /**
717  * @brief Overload: vector by vector equality.
718  */
719 ASTCENC_SIMD_INLINE vmask4 operator==(vfloat4 a, vfloat4 b)
720 {
721 	return vmask4(_mm_cmpeq_ps(a.m, b.m));
722 }
723 
724 /**
725  * @brief Overload: vector by vector inequality.
726  */
727 ASTCENC_SIMD_INLINE vmask4 operator!=(vfloat4 a, vfloat4 b)
728 {
729 	return vmask4(_mm_cmpneq_ps(a.m, b.m));
730 }
731 
732 /**
733  * @brief Overload: vector by vector less than.
734  */
735 ASTCENC_SIMD_INLINE vmask4 operator<(vfloat4 a, vfloat4 b)
736 {
737 	return vmask4(_mm_cmplt_ps(a.m, b.m));
738 }
739 
740 /**
741  * @brief Overload: vector by vector greater than.
742  */
743 ASTCENC_SIMD_INLINE vmask4 operator>(vfloat4 a, vfloat4 b)
744 {
745 	return vmask4(_mm_cmpgt_ps(a.m, b.m));
746 }
747 
748 /**
749  * @brief Overload: vector by vector less than or equal.
750  */
751 ASTCENC_SIMD_INLINE vmask4 operator<=(vfloat4 a, vfloat4 b)
752 {
753 	return vmask4(_mm_cmple_ps(a.m, b.m));
754 }
755 
756 /**
757  * @brief Overload: vector by vector greater than or equal.
758  */
759 ASTCENC_SIMD_INLINE vmask4 operator>=(vfloat4 a, vfloat4 b)
760 {
761 	return vmask4(_mm_cmpge_ps(a.m, b.m));
762 }
763 
764 /**
765  * @brief Return the min vector of two vectors.
766  *
767  * If either lane value is NaN, @c b will be returned for that lane.
768  */
min(vfloat4 a,vfloat4 b)769 ASTCENC_SIMD_INLINE vfloat4 min(vfloat4 a, vfloat4 b)
770 {
771 	// Do not reorder - second operand will return if either is NaN
772 	return vfloat4(_mm_min_ps(a.m, b.m));
773 }
774 
775 /**
776  * @brief Return the max vector of two vectors.
777  *
778  * If either lane value is NaN, @c b will be returned for that lane.
779  */
max(vfloat4 a,vfloat4 b)780 ASTCENC_SIMD_INLINE vfloat4 max(vfloat4 a, vfloat4 b)
781 {
782 	// Do not reorder - second operand will return if either is NaN
783 	return vfloat4(_mm_max_ps(a.m, b.m));
784 }
785 
786 /**
787  * @brief Return the absolute value of the float vector.
788  */
abs(vfloat4 a)789 ASTCENC_SIMD_INLINE vfloat4 abs(vfloat4 a)
790 {
791 	return vfloat4(_mm_max_ps(_mm_sub_ps(_mm_setzero_ps(), a.m), a.m));
792 }
793 
794 /**
795  * @brief Return a float rounded to the nearest integer value.
796  */
round(vfloat4 a)797 ASTCENC_SIMD_INLINE vfloat4 round(vfloat4 a)
798 {
799 #if ASTCENC_SSE >= 41
800 	constexpr int flags = _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC;
801 	return vfloat4(_mm_round_ps(a.m, flags));
802 #else
803 	__m128 v = a.m;
804 	__m128 neg_zero = _mm_castsi128_ps(_mm_set1_epi32(0x80000000));
805 	__m128 no_fraction = _mm_set1_ps(8388608.0f);
806 	__m128 abs_mask = _mm_castsi128_ps(_mm_set1_epi32(0x7FFFFFFF));
807 	__m128 sign = _mm_and_ps(v, neg_zero);
808 	__m128 s_magic = _mm_or_ps(no_fraction, sign);
809 	__m128 r1 = _mm_add_ps(v, s_magic);
810 	r1 = _mm_sub_ps(r1, s_magic);
811 	__m128 r2 = _mm_and_ps(v, abs_mask);
812 	__m128 mask = _mm_cmple_ps(r2, no_fraction);
813 	r2 = _mm_andnot_ps(mask, v);
814 	r1 = _mm_and_ps(r1, mask);
815 	return vfloat4(_mm_xor_ps(r1, r2));
816 #endif
817 }
818 
819 /**
820  * @brief Return the horizontal minimum of a vector.
821  */
hmin(vfloat4 a)822 ASTCENC_SIMD_INLINE vfloat4 hmin(vfloat4 a)
823 {
824 	a = min(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 3, 2))));
825 	a = min(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 1))));
826 	return vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 0)));
827 }
828 
829 /**
830  * @brief Return the horizontal maximum of a vector.
831  */
hmax(vfloat4 a)832 ASTCENC_SIMD_INLINE vfloat4 hmax(vfloat4 a)
833 {
834 	a = max(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 3, 2))));
835 	a = max(a, vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 1))));
836 	return vfloat4(_mm_shuffle_ps(a.m, a.m, _MM_SHUFFLE(0, 0, 0, 0)));
837 }
838 
839 /**
840  * @brief Return the horizontal sum of a vector as a scalar.
841  */
hadd_s(vfloat4 a)842 ASTCENC_SIMD_INLINE float hadd_s(vfloat4 a)
843 {
844 	// Add top and bottom halves, lane 1/0
845 	__m128 t = _mm_add_ps(a.m, _mm_movehl_ps(a.m, a.m));
846 
847 	// Add top and bottom halves, lane 0 (_mm_hadd_ps exists but slow)
848 	t = _mm_add_ss(t, _mm_shuffle_ps(t, t, 0x55));
849 
850 	return _mm_cvtss_f32(t);
851 }
852 
853 /**
854  * @brief Return the sqrt of the lanes in the vector.
855  */
sqrt(vfloat4 a)856 ASTCENC_SIMD_INLINE vfloat4 sqrt(vfloat4 a)
857 {
858 	return vfloat4(_mm_sqrt_ps(a.m));
859 }
860 
861 /**
862  * @brief Return lanes from @c b if @c cond is set, else @c a.
863  */
select(vfloat4 a,vfloat4 b,vmask4 cond)864 ASTCENC_SIMD_INLINE vfloat4 select(vfloat4 a, vfloat4 b, vmask4 cond)
865 {
866 #if ASTCENC_SSE >= 41
867 	return vfloat4(_mm_blendv_ps(a.m, b.m, cond.m));
868 #else
869 	return vfloat4(_mm_or_ps(_mm_and_ps(cond.m, b.m), _mm_andnot_ps(cond.m, a.m)));
870 #endif
871 }
872 
873 /**
874  * @brief Return lanes from @c b if MSB of @c cond is set, else @c a.
875  */
select_msb(vfloat4 a,vfloat4 b,vmask4 cond)876 ASTCENC_SIMD_INLINE vfloat4 select_msb(vfloat4 a, vfloat4 b, vmask4 cond)
877 {
878 #if ASTCENC_SSE >= 41
879 	return vfloat4(_mm_blendv_ps(a.m, b.m, cond.m));
880 #else
881 	__m128 d = _mm_castsi128_ps(_mm_srai_epi32(_mm_castps_si128(cond.m), 31));
882 	return vfloat4(_mm_or_ps(_mm_and_ps(d, b.m), _mm_andnot_ps(d, a.m)));
883 #endif
884 }
885 
886 /**
887  * @brief Load a vector of gathered results from an array;
888  */
gatherf(const float * base,vint4 indices)889 ASTCENC_SIMD_INLINE vfloat4 gatherf(const float* base, vint4 indices)
890 {
891 #if ASTCENC_AVX >= 2
892 	return vfloat4(_mm_i32gather_ps(base, indices.m, 4));
893 #else
894 	alignas(16) int idx[4];
895 	storea(indices, idx);
896 	return vfloat4(base[idx[0]], base[idx[1]], base[idx[2]], base[idx[3]]);
897 #endif
898 }
899 
900 /**
901  * @brief Store a vector to an unaligned memory address.
902  */
store(vfloat4 a,float * p)903 ASTCENC_SIMD_INLINE void store(vfloat4 a, float* p)
904 {
905 	_mm_storeu_ps(p, a.m);
906 }
907 
908 /**
909  * @brief Store a vector to a 16B aligned memory address.
910  */
storea(vfloat4 a,float * p)911 ASTCENC_SIMD_INLINE void storea(vfloat4 a, float* p)
912 {
913 	_mm_store_ps(p, a.m);
914 }
915 
916 /**
917  * @brief Return a integer value for a float vector, using truncation.
918  */
float_to_int(vfloat4 a)919 ASTCENC_SIMD_INLINE vint4 float_to_int(vfloat4 a)
920 {
921 	return vint4(_mm_cvttps_epi32(a.m));
922 }
923 
924 /**
925  * @brief Return a integer value for a float vector, using round-to-nearest.
926  */
float_to_int_rtn(vfloat4 a)927 ASTCENC_SIMD_INLINE vint4 float_to_int_rtn(vfloat4 a)
928 {
929 	a = round(a);
930 	return vint4(_mm_cvttps_epi32(a.m));
931 }
932 
933 /**
934  * @brief Return a float value for an integer vector.
935  */
int_to_float(vint4 a)936 ASTCENC_SIMD_INLINE vfloat4 int_to_float(vint4 a)
937 {
938 	return vfloat4(_mm_cvtepi32_ps(a.m));
939 }
940 
941 /**
942  * @brief Return a float16 value for a float vector, using round-to-nearest.
943  */
float_to_float16(vfloat4 a)944 ASTCENC_SIMD_INLINE vint4 float_to_float16(vfloat4 a)
945 {
946 #if ASTCENC_F16C >= 1
947 	__m128i packedf16 = _mm_cvtps_ph(a.m, 0);
948 	__m128i f16 = _mm_cvtepu16_epi32(packedf16);
949 	return vint4(f16);
950 #else
951 	return vint4(
952 		float_to_sf16(a.lane<0>()),
953 		float_to_sf16(a.lane<1>()),
954 		float_to_sf16(a.lane<2>()),
955 		float_to_sf16(a.lane<3>()));
956 #endif
957 }
958 
959 /**
960  * @brief Return a float16 value for a float scalar, using round-to-nearest.
961  */
float_to_float16(float a)962 static inline uint16_t float_to_float16(float a)
963 {
964 #if ASTCENC_F16C >= 1
965 	__m128i f16 = _mm_cvtps_ph(_mm_set1_ps(a), 0);
966 	return  static_cast<uint16_t>(_mm_cvtsi128_si32(f16));
967 #else
968 	return float_to_sf16(a);
969 #endif
970 }
971 
972 /**
973  * @brief Return a float value for a float16 vector.
974  */
float16_to_float(vint4 a)975 ASTCENC_SIMD_INLINE vfloat4 float16_to_float(vint4 a)
976 {
977 #if ASTCENC_F16C >= 1
978 	__m128i packed = _mm_packs_epi32(a.m, a.m);
979 	__m128 f32 = _mm_cvtph_ps(packed);
980 	return vfloat4(f32);
981 #else
982 	return vfloat4(
983 		sf16_to_float(a.lane<0>()),
984 		sf16_to_float(a.lane<1>()),
985 		sf16_to_float(a.lane<2>()),
986 		sf16_to_float(a.lane<3>()));
987 #endif
988 }
989 
990 /**
991  * @brief Return a float value for a float16 scalar.
992  */
float16_to_float(uint16_t a)993 ASTCENC_SIMD_INLINE float float16_to_float(uint16_t a)
994 {
995 #if ASTCENC_F16C >= 1
996 	__m128i packed = _mm_set1_epi16(a);
997 	__m128 f32 = _mm_cvtph_ps(packed);
998 	return _mm_cvtss_f32(f32);
999 #else
1000 	return sf16_to_float(a);
1001 #endif
1002 }
1003 
1004 /**
1005  * @brief Return a float value as an integer bit pattern (i.e. no conversion).
1006  *
1007  * It is a common trick to convert floats into integer bit patterns, perform
1008  * some bit hackery based on knowledge they are IEEE 754 layout, and then
1009  * convert them back again. This is the first half of that flip.
1010  */
float_as_int(vfloat4 a)1011 ASTCENC_SIMD_INLINE vint4 float_as_int(vfloat4 a)
1012 {
1013 	return vint4(_mm_castps_si128(a.m));
1014 }
1015 
1016 /**
1017  * @brief Return a integer value as a float bit pattern (i.e. no conversion).
1018  *
1019  * It is a common trick to convert floats into integer bit patterns, perform
1020  * some bit hackery based on knowledge they are IEEE 754 layout, and then
1021  * convert them back again. This is the second half of that flip.
1022  */
int_as_float(vint4 v)1023 ASTCENC_SIMD_INLINE vfloat4 int_as_float(vint4 v)
1024 {
1025 	return vfloat4(_mm_castsi128_ps(v.m));
1026 }
1027 
1028 #if defined(ASTCENC_NO_INVARIANCE) && (ASTCENC_SSE >= 41)
1029 
1030 #define ASTCENC_USE_NATIVE_DOT_PRODUCT 1
1031 
1032 /**
1033  * @brief Return the dot product for the full 4 lanes, returning scalar.
1034  */
dot_s(vfloat4 a,vfloat4 b)1035 ASTCENC_SIMD_INLINE float dot_s(vfloat4 a, vfloat4 b)
1036 {
1037 	return _mm_cvtss_f32(_mm_dp_ps(a.m, b.m, 0xFF));
1038 }
1039 
1040 /**
1041  * @brief Return the dot product for the full 4 lanes, returning vector.
1042  */
dot(vfloat4 a,vfloat4 b)1043 ASTCENC_SIMD_INLINE vfloat4 dot(vfloat4 a, vfloat4 b)
1044 {
1045 	return vfloat4(_mm_dp_ps(a.m, b.m, 0xFF));
1046 }
1047 
1048 /**
1049  * @brief Return the dot product for the bottom 3 lanes, returning scalar.
1050  */
dot3_s(vfloat4 a,vfloat4 b)1051 ASTCENC_SIMD_INLINE float dot3_s(vfloat4 a, vfloat4 b)
1052 {
1053 	return _mm_cvtss_f32(_mm_dp_ps(a.m, b.m, 0x77));
1054 }
1055 
1056 /**
1057  * @brief Return the dot product for the bottom 3 lanes, returning vector.
1058  */
dot3(vfloat4 a,vfloat4 b)1059 ASTCENC_SIMD_INLINE vfloat4 dot3(vfloat4 a, vfloat4 b)
1060 {
1061 	return vfloat4(_mm_dp_ps(a.m, b.m, 0x77));
1062 }
1063 
1064 #endif // #if defined(ASTCENC_NO_INVARIANCE) && (ASTCENC_SSE >= 41)
1065 
1066 #if ASTCENC_POPCNT >= 1
1067 
1068 #define ASTCENC_USE_NATIVE_POPCOUNT 1
1069 
1070 /**
1071  * @brief Population bit count.
1072  *
1073  * @param v   The value to population count.
1074  *
1075  * @return The number of 1 bits.
1076  */
popcount(uint64_t v)1077 ASTCENC_SIMD_INLINE int popcount(uint64_t v)
1078 {
1079 	return static_cast<int>(_mm_popcnt_u64(v));
1080 }
1081 
1082 #endif // ASTCENC_POPCNT >= 1
1083 
1084 #endif // #ifndef ASTC_VECMATHLIB_SSE_4_H_INCLUDED
1085