• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* ----------------------------------------------------------------------
2  * Project:      CMSIS DSP Library
3  * Title:        arm_float_to_q15.c
4  * Description:  Converts the elements of the floating-point vector to Q15 vector
5  *
6  * $Date:        23 April 2021
7  * $Revision:    V1.9.0
8  *
9  * Target Processor: Cortex-M and Cortex-A cores
10  * -------------------------------------------------------------------- */
11 /*
12  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
13  *
14  * SPDX-License-Identifier: Apache-2.0
15  *
16  * Licensed under the Apache License, Version 2.0 (the License); you may
17  * not use this file except in compliance with the License.
18  * You may obtain a copy of the License at
19  *
20  * www.apache.org/licenses/LICENSE-2.0
21  *
22  * Unless required by applicable law or agreed to in writing, software
23  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25  * See the License for the specific language governing permissions and
26  * limitations under the License.
27  */
28 
29 #include "dsp/support_functions.h"
30 
31 /**
32   @ingroup groupSupport
33  */
34 
35 /**
36   @addtogroup float_to_x
37   @{
38  */
39 
40 /**
41   @brief         Converts the elements of the floating-point vector to Q15 vector.
42   @param[in]     pSrc       points to the floating-point input vector
43   @param[out]    pDst       points to the Q15 output vector
44   @param[in]     blockSize  number of samples in each vector
45   @return        none
46 
47   @par           Details
48                    The equation used for the conversion process is:
49   <pre>
50       pDst[n] = (q15_t)(pSrc[n] * 32768);   0 <= n < blockSize.
51   </pre>
52 
53   @par           Scaling and Overflow Behavior
54                    The function uses saturating arithmetic.
55                    Results outside of the allowable Q15 range [0x8000 0x7FFF] are saturated.
56 
57   @note
58                    In order to apply rounding, the library should be rebuilt with the ROUNDING macro
59                    defined in the preprocessor section of project options.
60  */
61 
62 #if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
arm_float_to_q15(const float32_t * pSrc,q15_t * pDst,uint32_t blockSize)63 void arm_float_to_q15(
64   const float32_t * pSrc,
65   q15_t * pDst,
66   uint32_t blockSize)
67 {
68     uint32_t         blkCnt;
69     float32_t       maxQ = (float32_t) Q15_MAX;
70     f32x4x2_t       tmp;
71     q15x8_t         vecDst = { 0 };
72 #ifdef ARM_MATH_ROUNDING
73     float32_t in;
74 #endif
75 
76 
77     blkCnt = blockSize >> 3;
78     while (blkCnt > 0U)
79     {
80         /* C = A * 32768 */
81         /* convert from float to q15 and then store the results in the destination buffer */
82         tmp = vld2q(pSrc);
83 
84         tmp.val[0] = vmulq(tmp.val[0], maxQ);
85         tmp.val[1] = vmulq(tmp.val[1], maxQ);
86 
87         vecDst = vqmovnbq(vecDst, vcvtaq_s32_f32(tmp.val[0]));
88         vecDst = vqmovntq(vecDst, vcvtaq_s32_f32(tmp.val[1]));
89         vst1q(pDst, vecDst);
90         /*
91          * Decrement the blockSize loop counter
92          */
93         blkCnt--;
94         pDst += 8;
95         pSrc += 8;
96     }
97 
98     blkCnt = blockSize & 7;
99     while (blkCnt > 0U)
100     {
101       /* C = A * 32768 */
102 
103       /* convert from float to Q15 and store result in destination buffer */
104 #ifdef ARM_MATH_ROUNDING
105 
106       in = (*pSrc++ * 32768.0f);
107       in += in > 0.0f ? 0.5f : -0.5f;
108       *pDst++ = (q15_t) (__SSAT((q31_t) (in), 16));
109 
110 #else
111 
112       /* C = A * 32768 */
113       /* Convert from float to q15 and then store the results in the destination buffer */
114       *pDst++ = (q15_t) __SSAT((q31_t) (*pSrc++ * 32768.0f), 16);
115 
116 #endif /* #ifdef ARM_MATH_ROUNDING */
117 
118       /* Decrement loop counter */
119       blkCnt--;
120     }
121 }
122 
123 #else
124 #if defined(ARM_MATH_NEON_EXPERIMENTAL)
arm_float_to_q15(const float32_t * pSrc,q15_t * pDst,uint32_t blockSize)125 void arm_float_to_q15(
126   const float32_t * pSrc,
127   q15_t * pDst,
128   uint32_t blockSize)
129 {
130   const float32_t *pIn = pSrc;                         /* Src pointer */
131   uint32_t blkCnt;                               /* loop counter */
132 
133   float32x4_t inV;
134   #ifdef ARM_MATH_ROUNDING
135   float32x4_t zeroV = vdupq_n_f32(0.0f);
136   float32x4_t pHalf = vdupq_n_f32(0.5f / 32768.0f);
137   float32x4_t mHalf = vdupq_n_f32(-0.5f / 32768.0f);
138   float32x4_t r;
139   uint32x4_t cmp;
140   float32_t in;
141   #endif
142 
143   int32x4_t cvt;
144   int16x4_t outV;
145 
146   blkCnt = blockSize >> 2U;
147 
148   /* Compute 4 outputs at a time.
149    ** a second loop below computes the remaining 1 to 3 samples. */
150   while (blkCnt > 0U)
151   {
152 
153 #ifdef ARM_MATH_ROUNDING
154     /* C = A * 32768 */
155     /* Convert from float to q15 and then store the results in the destination buffer */
156     inV = vld1q_f32(pIn);
157     cmp = vcgtq_f32(inV,zeroV);
158     r = vbslq_f32(cmp,pHalf,mHalf);
159     inV = vaddq_f32(inV, r);
160 
161     pIn += 4;
162 
163     cvt = vcvtq_n_s32_f32(inV,15);
164     outV = vqmovn_s32(cvt);
165 
166     vst1_s16(pDst, outV);
167     pDst += 4;
168 
169 #else
170 
171     /* C = A * 32768 */
172     /* Convert from float to q15 and then store the results in the destination buffer */
173     inV = vld1q_f32(pIn);
174 
175     cvt = vcvtq_n_s32_f32(inV,15);
176     outV = vqmovn_s32(cvt);
177 
178     vst1_s16(pDst, outV);
179     pDst += 4;
180     pIn += 4;
181 
182 #endif /*      #ifdef ARM_MATH_ROUNDING        */
183 
184     /* Decrement the loop counter */
185     blkCnt--;
186   }
187 
188   /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
189    ** No loop unrolling is used. */
190   blkCnt = blockSize & 3;
191 
192   while (blkCnt > 0U)
193   {
194 
195 #ifdef ARM_MATH_ROUNDING
196     /* C = A * 32768 */
197     /* Convert from float to q15 and then store the results in the destination buffer */
198     in = *pIn++;
199     in = (in * 32768.0f);
200     in += in > 0.0f ? 0.5f : -0.5f;
201     *pDst++ = (q15_t) (__SSAT((q31_t) (in), 16));
202 
203 #else
204 
205     /* C = A * 32768 */
206     /* Convert from float to q15 and then store the results in the destination buffer */
207     *pDst++ = (q15_t) __SSAT((q31_t) (*pIn++ * 32768.0f), 16);
208 
209 #endif /*      #ifdef ARM_MATH_ROUNDING        */
210 
211     /* Decrement the loop counter */
212     blkCnt--;
213   }
214 }
215 #else
arm_float_to_q15(const float32_t * pSrc,q15_t * pDst,uint32_t blockSize)216 void arm_float_to_q15(
217   const float32_t * pSrc,
218         q15_t * pDst,
219         uint32_t blockSize)
220 {
221         uint32_t blkCnt;                               /* Loop counter */
222   const float32_t *pIn = pSrc;                         /* Source pointer */
223 
224 #ifdef ARM_MATH_ROUNDING
225         float32_t in;
226 #endif /* #ifdef ARM_MATH_ROUNDING */
227 
228 #if defined (ARM_MATH_LOOPUNROLL)
229 
230   /* Loop unrolling: Compute 4 outputs at a time */
231   blkCnt = blockSize >> 2U;
232 
233   while (blkCnt > 0U)
234   {
235     /* C = A * 32768 */
236 
237     /* convert from float to Q15 and store result in destination buffer */
238 #ifdef ARM_MATH_ROUNDING
239 
240     in = (*pIn++ * 32768.0f);
241     in += in > 0.0f ? 0.5f : -0.5f;
242     *pDst++ = (q15_t) (__SSAT((q31_t) (in), 16));
243 
244     in = (*pIn++ * 32768.0f);
245     in += in > 0.0f ? 0.5f : -0.5f;
246     *pDst++ = (q15_t) (__SSAT((q31_t) (in), 16));
247 
248     in = (*pIn++ * 32768.0f);
249     in += in > 0.0f ? 0.5f : -0.5f;
250     *pDst++ = (q15_t) (__SSAT((q31_t) (in), 16));
251 
252     in = (*pIn++ * 32768.0f);
253     in += in > 0.0f ? 0.5f : -0.5f;
254     *pDst++ = (q15_t) (__SSAT((q31_t) (in), 16));
255 
256 #else
257 
258     *pDst++ = (q15_t) __SSAT((q31_t) (*pIn++ * 32768.0f), 16);
259     *pDst++ = (q15_t) __SSAT((q31_t) (*pIn++ * 32768.0f), 16);
260     *pDst++ = (q15_t) __SSAT((q31_t) (*pIn++ * 32768.0f), 16);
261     *pDst++ = (q15_t) __SSAT((q31_t) (*pIn++ * 32768.0f), 16);
262 
263 #endif /* #ifdef ARM_MATH_ROUNDING */
264 
265     /* Decrement loop counter */
266     blkCnt--;
267   }
268 
269   /* Loop unrolling: Compute remaining outputs */
270   blkCnt = blockSize % 0x4U;
271 
272 #else
273 
274   /* Initialize blkCnt with number of samples */
275   blkCnt = blockSize;
276 
277 #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
278 
279   while (blkCnt > 0U)
280   {
281     /* C = A * 32768 */
282 
283     /* convert from float to Q15 and store result in destination buffer */
284 #ifdef ARM_MATH_ROUNDING
285 
286     in = (*pIn++ * 32768.0f);
287     in += in > 0.0f ? 0.5f : -0.5f;
288     *pDst++ = (q15_t) (__SSAT((q31_t) (in), 16));
289 
290 #else
291 
292     /* C = A * 32768 */
293     /* Convert from float to q15 and then store the results in the destination buffer */
294     *pDst++ = (q15_t) __SSAT((q31_t) (*pIn++ * 32768.0f), 16);
295 
296 #endif /* #ifdef ARM_MATH_ROUNDING */
297 
298     /* Decrement loop counter */
299     blkCnt--;
300   }
301 
302 }
303 #endif /* #if defined(ARM_MATH_NEON) */
304 #endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
305 
306 /**
307   @} end of float_to_x group
308  */
309