• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* ----------------------------------------------------------------------
2  * Project:      CMSIS DSP Library
3  * Title:        arm_cfft_q31.c
4  * Description:  Combined Radix Decimation in Frequency CFFT fixed point processing function
5  *
6  * $Date:        23 April 2021
7  * $Revision:    V1.9.0
8  *
9  * Target Processor: Cortex-M and Cortex-A cores
10  * -------------------------------------------------------------------- */
11 /*
12  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
13  *
14  * SPDX-License-Identifier: Apache-2.0
15  *
16  * Licensed under the Apache License, Version 2.0 (the License); you may
17  * not use this file except in compliance with the License.
18  * You may obtain a copy of the License at
19  *
20  * www.apache.org/licenses/LICENSE-2.0
21  *
22  * Unless required by applicable law or agreed to in writing, software
23  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25  * See the License for the specific language governing permissions and
26  * limitations under the License.
27  */
28 
29 #include "dsp/transform_functions.h"
30 
31 
32 
33 #if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
34 
35 #include "arm_vec_fft.h"
36 
37 
_arm_radix4_butterfly_q31_mve(const arm_cfft_instance_q31 * S,q31_t * pSrc,uint32_t fftLen)38 static void _arm_radix4_butterfly_q31_mve(
39     const arm_cfft_instance_q31 * S,
40     q31_t   *pSrc,
41     uint32_t fftLen)
42 {
43     q31x4_t vecTmp0, vecTmp1;
44     q31x4_t vecSum0, vecDiff0, vecSum1, vecDiff1;
45     q31x4_t vecA, vecB, vecC, vecD;
46     uint32_t  blkCnt;
47     uint32_t  n1, n2;
48     uint32_t  stage = 0;
49     int32_t  iter = 1;
50     static const int32_t strides[4] = {
51         (0 - 16) * (int32_t)sizeof(q31_t *), (1 - 16) * (int32_t)sizeof(q31_t *),
52         (8 - 16) * (int32_t)sizeof(q31_t *), (9 - 16) * (int32_t)sizeof(q31_t *)
53     };
54 
55 
56     /*
57      * Process first stages
58      * Each stage in middle stages provides two down scaling of the input
59      */
60     n2 = fftLen;
61     n1 = n2;
62     n2 >>= 2u;
63 
64     for (int k = fftLen / 4u; k > 1; k >>= 2u)
65     {
66         q31_t const *p_rearranged_twiddle_tab_stride2 =
67             &S->rearranged_twiddle_stride2[
68             S->rearranged_twiddle_tab_stride2_arr[stage]];
69         q31_t const *p_rearranged_twiddle_tab_stride3 = &S->rearranged_twiddle_stride3[
70             S->rearranged_twiddle_tab_stride3_arr[stage]];
71         q31_t const *p_rearranged_twiddle_tab_stride1 =
72             &S->rearranged_twiddle_stride1[
73             S->rearranged_twiddle_tab_stride1_arr[stage]];
74 
75         q31_t * pBase = pSrc;
76         for (int i = 0; i < iter; i++)
77         {
78             q31_t    *inA = pBase;
79             q31_t    *inB = inA + n2 * CMPLX_DIM;
80             q31_t    *inC = inB + n2 * CMPLX_DIM;
81             q31_t    *inD = inC + n2 * CMPLX_DIM;
82             q31_t const *pW1 = p_rearranged_twiddle_tab_stride1;
83             q31_t const *pW2 = p_rearranged_twiddle_tab_stride2;
84             q31_t const *pW3 = p_rearranged_twiddle_tab_stride3;
85             q31x4_t    vecW;
86 
87 
88             blkCnt = n2 / 2;
89             /*
90              * load 2 x q31 complex pair
91              */
92             vecA = vldrwq_s32(inA);
93             vecC = vldrwq_s32(inC);
94             while (blkCnt > 0U)
95             {
96                 vecB = vldrwq_s32(inB);
97                 vecD = vldrwq_s32(inD);
98 
99                 vecSum0 = vhaddq(vecA, vecC);
100                 vecDiff0 = vhsubq(vecA, vecC);
101 
102                 vecSum1 = vhaddq(vecB, vecD);
103                 vecDiff1 = vhsubq(vecB, vecD);
104                 /*
105                  * [ 1 1 1 1 ] * [ A B C D ]' .* 1
106                  */
107                 vecTmp0 = vhaddq(vecSum0, vecSum1);
108                 vst1q(inA, vecTmp0);
109                 inA += 4;
110                 /*
111                  * [ 1 -1 1 -1 ] * [ A B C D ]'
112                  */
113                 vecTmp0 = vhsubq(vecSum0, vecSum1);
114                 /*
115                  * [ 1 -1 1 -1 ] * [ A B C D ]'.* W2
116                  */
117                 vecW = vld1q(pW2);
118                 pW2 += 4;
119                 vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0, q31x4_t);
120 
121                 vst1q(inB, vecTmp1);
122                 inB += 4;
123                 /*
124                  * [ 1 -i -1 +i ] * [ A B C D ]'
125                  */
126                 vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
127                 /*
128                  * [ 1 -i -1 +i ] * [ A B C D ]'.* W1
129                  */
130                 vecW = vld1q(pW1);
131                 pW1 += 4;
132                 vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0, q31x4_t);
133                 vst1q(inC, vecTmp1);
134                 inC += 4;
135                 /*
136                  * [ 1 +i -1 -i ] * [ A B C D ]'
137                  */
138                 vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
139                 /*
140                  * [ 1 +i -1 -i ] * [ A B C D ]'.* W3
141                  */
142                 vecW = vld1q(pW3);
143                 pW3 += 4;
144                 vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0, q31x4_t);
145                 vst1q(inD, vecTmp1);
146                 inD += 4;
147 
148                 vecA = vldrwq_s32(inA);
149                 vecC = vldrwq_s32(inC);
150 
151                 blkCnt--;
152             }
153             pBase +=  CMPLX_DIM * n1;
154         }
155         n1 = n2;
156         n2 >>= 2u;
157         iter = iter << 2;
158         stage++;
159     }
160 
161     /*
162      * End of 1st stages process
163      * data is in 11.21(q21) format for the 1024 point as there are 3 middle stages
164      * data is in 9.23(q23) format for the 256 point as there are 2 middle stages
165      * data is in 7.25(q25) format for the 64 point as there are 1 middle stage
166      * data is in 5.27(q27) format for the 16 point as there are no middle stages
167      */
168 
169     /*
170      * start of Last stage process
171      */
172     uint32x4_t vecScGathAddr = vld1q_u32((uint32_t*)strides);
173     vecScGathAddr = vecScGathAddr + (uint32_t) pSrc;
174 
175     /*
176      * load scheduling
177      */
178     vecA = vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
179     vecC = vldrwq_gather_base_s32(vecScGathAddr, 16);
180 
181     blkCnt = (fftLen >> 3);
182     while (blkCnt > 0U)
183     {
184         vecSum0 = vhaddq(vecA, vecC);
185         vecDiff0 = vhsubq(vecA, vecC);
186 
187         vecB = vldrwq_gather_base_s32(vecScGathAddr, 8);
188         vecD = vldrwq_gather_base_s32(vecScGathAddr, 24);
189 
190         vecSum1 = vhaddq(vecB, vecD);
191         vecDiff1 = vhsubq(vecB, vecD);
192         /*
193          * pre-load for next iteration
194          */
195         vecA = vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
196         vecC = vldrwq_gather_base_s32(vecScGathAddr, 16);
197 
198         vecTmp0 = vhaddq(vecSum0, vecSum1);
199         vstrwq_scatter_base_s32(vecScGathAddr, -64, vecTmp0);
200 
201         vecTmp0 = vhsubq(vecSum0, vecSum1);
202         vstrwq_scatter_base_s32(vecScGathAddr, -64 + 8, vecTmp0);
203 
204         vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
205         vstrwq_scatter_base_s32(vecScGathAddr, -64 + 16, vecTmp0);
206 
207         vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
208         vstrwq_scatter_base_s32(vecScGathAddr, -64 + 24, vecTmp0);
209 
210         blkCnt--;
211     }
212 
213     /*
214      * output is in 11.21(q21) format for the 1024 point
215      * output is in 9.23(q23) format for the 256 point
216      * output is in 7.25(q25) format for the 64 point
217      * output is in 5.27(q27) format for the 16 point
218      */
219 }
220 
221 
arm_cfft_radix4by2_q31_mve(const arm_cfft_instance_q31 * S,q31_t * pSrc,uint32_t fftLen)222 static void arm_cfft_radix4by2_q31_mve(const arm_cfft_instance_q31 *S, q31_t *pSrc, uint32_t fftLen)
223 {
224     uint32_t     n2;
225     q31_t       *pIn0;
226     q31_t       *pIn1;
227     const q31_t *pCoef = S->pTwiddle;
228     uint32_t     blkCnt;
229     q31x4_t    vecIn0, vecIn1, vecSum, vecDiff;
230     q31x4_t    vecCmplxTmp, vecTw;
231 
232     n2 = fftLen >> 1;
233     pIn0 = pSrc;
234     pIn1 = pSrc + fftLen;
235 
236     blkCnt = n2 / 2;
237 
238     while (blkCnt > 0U)
239     {
240         vecIn0 = vld1q_s32(pIn0);
241         vecIn1 = vld1q_s32(pIn1);
242 
243         vecIn0 = vecIn0 >> 1;
244         vecIn1 = vecIn1 >> 1;
245         vecSum = vhaddq(vecIn0, vecIn1);
246         vst1q(pIn0, vecSum);
247         pIn0 += 4;
248 
249         vecTw = vld1q_s32(pCoef);
250         pCoef += 4;
251         vecDiff = vhsubq(vecIn0, vecIn1);
252 
253         vecCmplxTmp = MVE_CMPLX_MULT_FX_AxConjB(vecDiff, vecTw, q31x4_t);
254         vst1q(pIn1, vecCmplxTmp);
255         pIn1 += 4;
256 
257         blkCnt--;
258     }
259 
260    _arm_radix4_butterfly_q31_mve(S, pSrc, n2);
261 
262    _arm_radix4_butterfly_q31_mve(S, pSrc + fftLen, n2);
263 
264     pIn0 = pSrc;
265     blkCnt = (fftLen << 1) >> 2;
266     while (blkCnt > 0U)
267     {
268         vecIn0 = vld1q_s32(pIn0);
269         vecIn0 = vecIn0 << 1;
270         vst1q(pIn0, vecIn0);
271         pIn0 += 4;
272         blkCnt--;
273     }
274     /*
275      * tail
276      * (will be merged thru tail predication)
277      */
278     blkCnt = (fftLen << 1) & 3;
279     if (blkCnt > 0U)
280     {
281         mve_pred16_t p0 = vctp32q(blkCnt);
282 
283         vecIn0 = vld1q_s32(pIn0);
284         vecIn0 = vecIn0 << 1;
285         vstrwq_p(pIn0, vecIn0, p0);
286     }
287 
288 }
289 
_arm_radix4_butterfly_inverse_q31_mve(const arm_cfft_instance_q31 * S,q31_t * pSrc,uint32_t fftLen)290 static void _arm_radix4_butterfly_inverse_q31_mve(
291     const arm_cfft_instance_q31 *S,
292     q31_t   *pSrc,
293     uint32_t fftLen)
294 {
295     q31x4_t vecTmp0, vecTmp1;
296     q31x4_t vecSum0, vecDiff0, vecSum1, vecDiff1;
297     q31x4_t vecA, vecB, vecC, vecD;
298     uint32_t  blkCnt;
299     uint32_t  n1, n2;
300     uint32_t  stage = 0;
301     int32_t  iter = 1;
302     static const int32_t strides[4] = {
303         (0 - 16) * (int32_t)sizeof(q31_t *), (1 - 16) * (int32_t)sizeof(q31_t *),
304         (8 - 16) * (int32_t)sizeof(q31_t *), (9 - 16) * (int32_t)sizeof(q31_t *)
305     };
306 
307     /*
308      * Process first stages
309      * Each stage in middle stages provides two down scaling of the input
310      */
311     n2 = fftLen;
312     n1 = n2;
313     n2 >>= 2u;
314 
315     for (int k = fftLen / 4u; k > 1; k >>= 2u)
316     {
317         q31_t const *p_rearranged_twiddle_tab_stride2 =
318             &S->rearranged_twiddle_stride2[
319             S->rearranged_twiddle_tab_stride2_arr[stage]];
320         q31_t const *p_rearranged_twiddle_tab_stride3 = &S->rearranged_twiddle_stride3[
321             S->rearranged_twiddle_tab_stride3_arr[stage]];
322         q31_t const *p_rearranged_twiddle_tab_stride1 =
323             &S->rearranged_twiddle_stride1[
324             S->rearranged_twiddle_tab_stride1_arr[stage]];
325 
326         q31_t * pBase = pSrc;
327         for (int i = 0; i < iter; i++)
328         {
329             q31_t    *inA = pBase;
330             q31_t    *inB = inA + n2 * CMPLX_DIM;
331             q31_t    *inC = inB + n2 * CMPLX_DIM;
332             q31_t    *inD = inC + n2 * CMPLX_DIM;
333             q31_t const *pW1 = p_rearranged_twiddle_tab_stride1;
334             q31_t const *pW2 = p_rearranged_twiddle_tab_stride2;
335             q31_t const *pW3 = p_rearranged_twiddle_tab_stride3;
336             q31x4_t    vecW;
337 
338             blkCnt = n2 / 2;
339             /*
340              * load 2 x q31 complex pair
341              */
342             vecA = vldrwq_s32(inA);
343             vecC = vldrwq_s32(inC);
344             while (blkCnt > 0U)
345             {
346                 vecB = vldrwq_s32(inB);
347                 vecD = vldrwq_s32(inD);
348 
349                 vecSum0 = vhaddq(vecA, vecC);
350                 vecDiff0 = vhsubq(vecA, vecC);
351 
352                 vecSum1 = vhaddq(vecB, vecD);
353                 vecDiff1 = vhsubq(vecB, vecD);
354                 /*
355                  * [ 1 1 1 1 ] * [ A B C D ]' .* 1
356                  */
357                 vecTmp0 = vhaddq(vecSum0, vecSum1);
358                 vst1q(inA, vecTmp0);
359                 inA += 4;
360                 /*
361                  * [ 1 -1 1 -1 ] * [ A B C D ]'
362                  */
363                 vecTmp0 = vhsubq(vecSum0, vecSum1);
364                 /*
365                  * [ 1 -1 1 -1 ] * [ A B C D ]'.* W2
366                  */
367                 vecW = vld1q(pW2);
368                 pW2 += 4;
369                 vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW, q31x4_t);
370 
371                 vst1q(inB, vecTmp1);
372                 inB += 4;
373                 /*
374                  * [ 1 -i -1 +i ] * [ A B C D ]'
375                  */
376                 vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
377                 /*
378                  * [ 1 -i -1 +i ] * [ A B C D ]'.* W1
379                  */
380                 vecW = vld1q(pW1);
381                 pW1 += 4;
382                 vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW, q31x4_t);
383                 vst1q(inC, vecTmp1);
384                 inC += 4;
385                 /*
386                  * [ 1 +i -1 -i ] * [ A B C D ]'
387                  */
388                 vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
389                 /*
390                  * [ 1 +i -1 -i ] * [ A B C D ]'.* W3
391                  */
392                 vecW = vld1q(pW3);
393                 pW3 += 4;
394                 vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW, q31x4_t);
395                 vst1q(inD, vecTmp1);
396                 inD += 4;
397 
398                 vecA = vldrwq_s32(inA);
399                 vecC = vldrwq_s32(inC);
400 
401                 blkCnt--;
402             }
403             pBase +=  CMPLX_DIM * n1;
404         }
405         n1 = n2;
406         n2 >>= 2u;
407         iter = iter << 2;
408         stage++;
409     }
410 
411     /*
412      * End of 1st stages process
413      * data is in 11.21(q21) format for the 1024 point as there are 3 middle stages
414      * data is in 9.23(q23) format for the 256 point as there are 2 middle stages
415      * data is in 7.25(q25) format for the 64 point as there are 1 middle stage
416      * data is in 5.27(q27) format for the 16 point as there are no middle stages
417      */
418 
419     /*
420      * start of Last stage process
421      */
422     uint32x4_t vecScGathAddr = vld1q_u32((uint32_t*)strides);
423     vecScGathAddr = vecScGathAddr + (uint32_t) pSrc;
424 
425     /*
426      * load scheduling
427      */
428     vecA = vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
429     vecC = vldrwq_gather_base_s32(vecScGathAddr, 16);
430 
431     blkCnt = (fftLen >> 3);
432     while (blkCnt > 0U)
433     {
434         vecSum0 = vhaddq(vecA, vecC);
435         vecDiff0 = vhsubq(vecA, vecC);
436 
437         vecB = vldrwq_gather_base_s32(vecScGathAddr, 8);
438         vecD = vldrwq_gather_base_s32(vecScGathAddr, 24);
439 
440         vecSum1 = vhaddq(vecB, vecD);
441         vecDiff1 = vhsubq(vecB, vecD);
442         /*
443          * pre-load for next iteration
444          */
445         vecA = vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
446         vecC = vldrwq_gather_base_s32(vecScGathAddr, 16);
447 
448         vecTmp0 = vhaddq(vecSum0, vecSum1);
449         vstrwq_scatter_base_s32(vecScGathAddr, -64, vecTmp0);
450 
451         vecTmp0 = vhsubq(vecSum0, vecSum1);
452         vstrwq_scatter_base_s32(vecScGathAddr, -64 + 8, vecTmp0);
453 
454         vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
455         vstrwq_scatter_base_s32(vecScGathAddr, -64 + 16, vecTmp0);
456 
457         vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
458         vstrwq_scatter_base_s32(vecScGathAddr, -64 + 24, vecTmp0);
459 
460         blkCnt--;
461     }
462     /*
463      * output is in 11.21(q21) format for the 1024 point
464      * output is in 9.23(q23) format for the 256 point
465      * output is in 7.25(q25) format for the 64 point
466      * output is in 5.27(q27) format for the 16 point
467      */
468 }
469 
arm_cfft_radix4by2_inverse_q31_mve(const arm_cfft_instance_q31 * S,q31_t * pSrc,uint32_t fftLen)470 static void arm_cfft_radix4by2_inverse_q31_mve(const arm_cfft_instance_q31 *S, q31_t *pSrc, uint32_t fftLen)
471 {
472     uint32_t     n2;
473     q31_t       *pIn0;
474     q31_t       *pIn1;
475     const q31_t *pCoef = S->pTwiddle;
476 
477     //uint16_t     twidCoefModifier = arm_cfft_radix2_twiddle_factor(S->fftLen);
478     //q31_t        twidIncr = (2 * twidCoefModifier * sizeof(q31_t));
479     uint32_t     blkCnt;
480     //uint64x2_t   vecOffs;
481     q31x4_t    vecIn0, vecIn1, vecSum, vecDiff;
482     q31x4_t    vecCmplxTmp, vecTw;
483 
484     n2 = fftLen >> 1;
485 
486     pIn0 = pSrc;
487     pIn1 = pSrc + fftLen;
488     //vecOffs[0] = 0;
489     //vecOffs[1] = (uint64_t) twidIncr;
490     blkCnt = n2 / 2;
491 
492     while (blkCnt > 0U)
493     {
494         vecIn0 = vld1q_s32(pIn0);
495         vecIn1 = vld1q_s32(pIn1);
496 
497         vecIn0 = vecIn0 >> 1;
498         vecIn1 = vecIn1 >> 1;
499         vecSum = vhaddq(vecIn0, vecIn1);
500         vst1q(pIn0, vecSum);
501         pIn0 += 4;
502 
503         //vecTw = (q31x4_t) vldrdq_gather_offset_s64(pCoef, vecOffs);
504         vecTw = vld1q_s32(pCoef);
505         pCoef += 4;
506         vecDiff = vhsubq(vecIn0, vecIn1);
507 
508         vecCmplxTmp = MVE_CMPLX_MULT_FX_AxB(vecDiff, vecTw, q31x4_t);
509         vst1q(pIn1, vecCmplxTmp);
510         pIn1 += 4;
511 
512         //vecOffs = vaddq((q31x4_t) vecOffs, 2 * twidIncr);
513         blkCnt--;
514     }
515 
516     _arm_radix4_butterfly_inverse_q31_mve(S, pSrc, n2);
517 
518     _arm_radix4_butterfly_inverse_q31_mve(S, pSrc + fftLen, n2);
519 
520     pIn0 = pSrc;
521     blkCnt = (fftLen << 1) >> 2;
522     while (blkCnt > 0U)
523     {
524         vecIn0 = vld1q_s32(pIn0);
525         vecIn0 = vecIn0 << 1;
526         vst1q(pIn0, vecIn0);
527         pIn0 += 4;
528         blkCnt--;
529     }
530     /*
531      * tail
532      * (will be merged thru tail predication)
533      */
534     blkCnt = (fftLen << 1) & 3;
535     if (blkCnt > 0U)
536     {
537         mve_pred16_t p0 = vctp32q(blkCnt);
538 
539         vecIn0 = vld1q_s32(pIn0);
540         vecIn0 = vecIn0 << 1;
541         vstrwq_p(pIn0, vecIn0, p0);
542     }
543 
544 }
545 
546 
547 /**
548   @addtogroup ComplexFFTQ31
549   @{
550  */
551 
552 /**
553   @brief         Processing function for the Q31 complex FFT.
554   @param[in]     S               points to an instance of the fixed-point CFFT structure
555   @param[in,out] p1              points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
556   @param[in]     ifftFlag       flag that selects transform direction
557                    - value = 0: forward transform
558                    - value = 1: inverse transform
559   @param[in]     bitReverseFlag flag that enables / disables bit reversal of output
560                    - value = 0: disables bit reversal of output
561                    - value = 1: enables bit reversal of output
562   @return        none
563  */
arm_cfft_q31(const arm_cfft_instance_q31 * S,q31_t * pSrc,uint8_t ifftFlag,uint8_t bitReverseFlag)564 void arm_cfft_q31(
565   const arm_cfft_instance_q31 * S,
566         q31_t * pSrc,
567         uint8_t ifftFlag,
568         uint8_t bitReverseFlag)
569 {
570         uint32_t fftLen = S->fftLen;
571 
572         if (ifftFlag == 1U) {
573 
574             switch (fftLen) {
575             case 16:
576             case 64:
577             case 256:
578             case 1024:
579             case 4096:
580                 _arm_radix4_butterfly_inverse_q31_mve(S, pSrc, fftLen);
581                 break;
582 
583             case 32:
584             case 128:
585             case 512:
586             case 2048:
587                 arm_cfft_radix4by2_inverse_q31_mve(S, pSrc, fftLen);
588                 break;
589             }
590         } else {
591             switch (fftLen) {
592             case 16:
593             case 64:
594             case 256:
595             case 1024:
596             case 4096:
597                 _arm_radix4_butterfly_q31_mve(S, pSrc, fftLen);
598                 break;
599 
600             case 32:
601             case 128:
602             case 512:
603             case 2048:
604                 arm_cfft_radix4by2_q31_mve(S, pSrc, fftLen);
605                 break;
606             }
607         }
608 
609 
610         if (bitReverseFlag)
611         {
612 
613             arm_bitreversal_32_inpl_mve((uint32_t*)pSrc, S->bitRevLength, S->pBitRevTable);
614 
615         }
616 }
617 #else
618 
619 extern void arm_radix4_butterfly_q31(
620         q31_t * pSrc,
621         uint32_t fftLen,
622   const q31_t * pCoef,
623         uint32_t twidCoefModifier);
624 
625 extern void arm_radix4_butterfly_inverse_q31(
626         q31_t * pSrc,
627         uint32_t fftLen,
628   const q31_t * pCoef,
629         uint32_t twidCoefModifier);
630 
631 extern void arm_bitreversal_32(
632         uint32_t * pSrc,
633   const uint16_t bitRevLen,
634   const uint16_t * pBitRevTable);
635 
636 void arm_cfft_radix4by2_q31(
637         q31_t * pSrc,
638         uint32_t fftLen,
639   const q31_t * pCoef);
640 
641 void arm_cfft_radix4by2_inverse_q31(
642         q31_t * pSrc,
643         uint32_t fftLen,
644   const q31_t * pCoef);
645 
646 
647 /**
648   @addtogroup ComplexFFTQ31
649   @{
650  */
651 
652 /**
653   @brief         Processing function for the Q31 complex FFT.
654   @param[in]     S               points to an instance of the fixed-point CFFT structure
655   @param[in,out] p1              points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
656   @param[in]     ifftFlag       flag that selects transform direction
657                    - value = 0: forward transform
658                    - value = 1: inverse transform
659   @param[in]     bitReverseFlag flag that enables / disables bit reversal of output
660                    - value = 0: disables bit reversal of output
661                    - value = 1: enables bit reversal of output
662   @return        none
663  */
arm_cfft_q31(const arm_cfft_instance_q31 * S,q31_t * p1,uint8_t ifftFlag,uint8_t bitReverseFlag)664 void arm_cfft_q31(
665   const arm_cfft_instance_q31 * S,
666         q31_t * p1,
667         uint8_t ifftFlag,
668         uint8_t bitReverseFlag)
669 {
670   uint32_t L = S->fftLen;
671 
672   if (ifftFlag == 1U)
673   {
674      switch (L)
675      {
676      case 16:
677      case 64:
678      case 256:
679      case 1024:
680      case 4096:
681        arm_radix4_butterfly_inverse_q31 ( p1, L, (q31_t*)S->pTwiddle, 1 );
682        break;
683 
684      case 32:
685      case 128:
686      case 512:
687      case 2048:
688        arm_cfft_radix4by2_inverse_q31 ( p1, L, S->pTwiddle );
689        break;
690      }
691   }
692   else
693   {
694      switch (L)
695      {
696      case 16:
697      case 64:
698      case 256:
699      case 1024:
700      case 4096:
701        arm_radix4_butterfly_q31 ( p1, L, (q31_t*)S->pTwiddle, 1 );
702        break;
703 
704      case 32:
705      case 128:
706      case 512:
707      case 2048:
708        arm_cfft_radix4by2_q31 ( p1, L, S->pTwiddle );
709        break;
710      }
711   }
712 
713   if ( bitReverseFlag )
714     arm_bitreversal_32 ((uint32_t*) p1, S->bitRevLength, S->pBitRevTable);
715 }
716 
717 /**
718   @} end of ComplexFFTQ31 group
719  */
720 
arm_cfft_radix4by2_q31(q31_t * pSrc,uint32_t fftLen,const q31_t * pCoef)721 void arm_cfft_radix4by2_q31(
722         q31_t * pSrc,
723         uint32_t fftLen,
724   const q31_t * pCoef)
725 {
726         uint32_t i, l;
727         uint32_t n2;
728         q31_t xt, yt, cosVal, sinVal;
729         q31_t p0, p1;
730 
731   n2 = fftLen >> 1U;
732   for (i = 0; i < n2; i++)
733   {
734      cosVal = pCoef[2 * i];
735      sinVal = pCoef[2 * i + 1];
736 
737      l = i + n2;
738 
739      xt =          (pSrc[2 * i] >> 2U) - (pSrc[2 * l] >> 2U);
740      pSrc[2 * i] = (pSrc[2 * i] >> 2U) + (pSrc[2 * l] >> 2U);
741 
742      yt =              (pSrc[2 * i + 1] >> 2U) - (pSrc[2 * l + 1] >> 2U);
743      pSrc[2 * i + 1] = (pSrc[2 * l + 1] >> 2U) + (pSrc[2 * i + 1] >> 2U);
744 
745      mult_32x32_keep32_R(p0, xt, cosVal);
746      mult_32x32_keep32_R(p1, yt, cosVal);
747      multAcc_32x32_keep32_R(p0, yt, sinVal);
748      multSub_32x32_keep32_R(p1, xt, sinVal);
749 
750      pSrc[2 * l]     = p0 << 1;
751      pSrc[2 * l + 1] = p1 << 1;
752   }
753 
754 
755   /* first col */
756   arm_radix4_butterfly_q31 (pSrc,          n2, (q31_t*)pCoef, 2U);
757 
758   /* second col */
759   arm_radix4_butterfly_q31 (pSrc + fftLen, n2, (q31_t*)pCoef, 2U);
760 
761   n2 = fftLen >> 1U;
762   for (i = 0; i < n2; i++)
763   {
764      p0 = pSrc[4 * i + 0];
765      p1 = pSrc[4 * i + 1];
766      xt = pSrc[4 * i + 2];
767      yt = pSrc[4 * i + 3];
768 
769      p0 <<= 1U;
770      p1 <<= 1U;
771      xt <<= 1U;
772      yt <<= 1U;
773 
774      pSrc[4 * i + 0] = p0;
775      pSrc[4 * i + 1] = p1;
776      pSrc[4 * i + 2] = xt;
777      pSrc[4 * i + 3] = yt;
778   }
779 
780 }
781 
arm_cfft_radix4by2_inverse_q31(q31_t * pSrc,uint32_t fftLen,const q31_t * pCoef)782 void arm_cfft_radix4by2_inverse_q31(
783         q31_t * pSrc,
784         uint32_t fftLen,
785   const q31_t * pCoef)
786 {
787   uint32_t i, l;
788   uint32_t n2;
789   q31_t xt, yt, cosVal, sinVal;
790   q31_t p0, p1;
791 
792   n2 = fftLen >> 1U;
793   for (i = 0; i < n2; i++)
794   {
795      cosVal = pCoef[2 * i];
796      sinVal = pCoef[2 * i + 1];
797 
798      l = i + n2;
799 
800      xt =          (pSrc[2 * i] >> 2U) - (pSrc[2 * l] >> 2U);
801      pSrc[2 * i] = (pSrc[2 * i] >> 2U) + (pSrc[2 * l] >> 2U);
802 
803      yt =              (pSrc[2 * i + 1] >> 2U) - (pSrc[2 * l + 1] >> 2U);
804      pSrc[2 * i + 1] = (pSrc[2 * l + 1] >> 2U) + (pSrc[2 * i + 1] >> 2U);
805 
806      mult_32x32_keep32_R(p0, xt, cosVal);
807      mult_32x32_keep32_R(p1, yt, cosVal);
808      multSub_32x32_keep32_R(p0, yt, sinVal);
809      multAcc_32x32_keep32_R(p1, xt, sinVal);
810 
811      pSrc[2 * l]     = p0 << 1U;
812      pSrc[2 * l + 1] = p1 << 1U;
813   }
814 
815   /* first col */
816   arm_radix4_butterfly_inverse_q31( pSrc,          n2, (q31_t*)pCoef, 2U);
817 
818   /* second col */
819   arm_radix4_butterfly_inverse_q31( pSrc + fftLen, n2, (q31_t*)pCoef, 2U);
820 
821   n2 = fftLen >> 1U;
822   for (i = 0; i < n2; i++)
823   {
824      p0 = pSrc[4 * i + 0];
825      p1 = pSrc[4 * i + 1];
826      xt = pSrc[4 * i + 2];
827      yt = pSrc[4 * i + 3];
828 
829      p0 <<= 1U;
830      p1 <<= 1U;
831      xt <<= 1U;
832      yt <<= 1U;
833 
834      pSrc[4 * i + 0] = p0;
835      pSrc[4 * i + 1] = p1;
836      pSrc[4 * i + 2] = xt;
837      pSrc[4 * i + 3] = yt;
838   }
839 }
840 #endif /* defined(ARM_MATH_MVEI) */
841