• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* ----------------------------------------------------------------------
2  * Project:      CMSIS DSP Library
3  * Title:        arm_dct4_f32.c
4  * Description:  Processing function of DCT4 & IDCT4 F32
5  *
6  * $Date:        23 April 2021
7  * $Revision:    V1.9.0
8  *
9  * Target Processor: Cortex-M and Cortex-A cores
10  * -------------------------------------------------------------------- */
11 /*
12  * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
13  *
14  * SPDX-License-Identifier: Apache-2.0
15  *
16  * Licensed under the Apache License, Version 2.0 (the License); you may
17  * not use this file except in compliance with the License.
18  * You may obtain a copy of the License at
19  *
20  * www.apache.org/licenses/LICENSE-2.0
21  *
22  * Unless required by applicable law or agreed to in writing, software
23  * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25  * See the License for the specific language governing permissions and
26  * limitations under the License.
27  */
28 
29 #include "dsp/transform_functions.h"
30 
31 /**
32   @ingroup groupTransforms
33  */
34 
35 /**
36   @defgroup DCT4_IDCT4 DCT Type IV Functions
37 
38   Representation of signals by minimum number of values is important for storage and transmission.
39   The possibility of large discontinuity between the beginning and end of a period of a signal
40   in DFT can be avoided by extending the signal so that it is even-symmetric.
41   Discrete Cosine Transform (DCT) is constructed such that its energy is heavily concentrated in the lower part of the
42   spectrum and is very widely used in signal and image coding applications.
43   The family of DCTs (DCT type- 1,2,3,4) is the outcome of different combinations of homogeneous boundary conditions.
44   DCT has an excellent energy-packing capability, hence has many applications and in data compression in particular.
45 
46   DCT is essentially the Discrete Fourier Transform(DFT) of an even-extended real signal.
47   Reordering of the input data makes the computation of DCT just a problem of
48   computing the DFT of a real signal with a few additional operations.
49   This approach provides regular, simple, and very efficient DCT algorithms for practical hardware and software implementations.
50 
51   DCT type-II can be implemented using Fast fourier transform (FFT) internally, as the transform is applied on real values, Real FFT can be used.
52   DCT4 is implemented using DCT2 as their implementations are similar except with some added pre-processing and post-processing.
53   DCT2 implementation can be described in the following steps:
54   - Re-ordering input
55   - Calculating Real FFT
56   - Multiplication of weights and Real FFT output and getting real part from the product.
57 
58   This process is explained by the block diagram below:
59   \image html DCT4.gif "Discrete Cosine Transform - type-IV"
60 
61   @par           Algorithm
62                    The N-point type-IV DCT is defined as a real, linear transformation by the formula:
63                    \f[
64                    X_c(k) = \sqrt{\frac{2}{N}}\sum_{n=0}^{N-1} x(n)cos\Big[\Big(n+\frac{1}{2}\Big)\Big(k+\frac{1}{2}\Big)\frac{\pi}{N}\Big]
65                    \f]
66                    where <code>k = 0, 1, 2, ..., N-1</code>
67   @par
68                    Its inverse is defined as follows:
69                    \f[
70                    x(n) = \sqrt{\frac{2}{N}}\sum_{k=0}^{N-1} X_c(k)cos\Big[\Big(n+\frac{1}{2}\Big)\Big(k+\frac{1}{2}\Big)\frac{\pi}{N}\Big]
71                    \f]
72                    where <code>n = 0, 1, 2, ..., N-1</code>
73   @par
74                    The DCT4 matrices become involutory (i.e. they are self-inverse) by multiplying with an overall scale factor of sqrt(2/N).
75                    The symmetry of the transform matrix indicates that the fast algorithms for the forward
76                    and inverse transform computation are identical.
77                    Note that the implementation of Inverse DCT4 and DCT4 is same, hence same process function can be used for both.
78 
79   @par           Lengths supported by the transform:
80                    As DCT4 internally uses Real FFT, it supports all the lengths 128, 512, 2048 and 8192.
81                    The library provides separate functions for Q15, Q31, and floating-point data types.
82 
83   @par           Instance Structure
84                    The instances for Real FFT and FFT, cosine values table and twiddle factor table are stored in an instance data structure.
85                    A separate instance structure must be defined for each transform.
86                    There are separate instance structure declarations for each of the 3 supported data types.
87 
88   @par           Initialization Functions
89                    There is also an associated initialization function for each data type.
90                    The initialization function performs the following operations:
91                    - Sets the values of the internal structure fields.
92                    - Initializes Real FFT as its process function is used internally in DCT4, by calling \ref arm_rfft_init_f32().
93   @par
94                    Use of the initialization function is optional.
95                    However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
96                    To place an instance structure into a const data section, the instance structure must be manually initialized.
97                    Manually initialize the instance structure as follows:
98   <pre>
99       arm_dct4_instance_f32 S = {N, Nby2, normalize, pTwiddle, pCosFactor, pRfft, pCfft};
100       arm_dct4_instance_q31 S = {N, Nby2, normalize, pTwiddle, pCosFactor, pRfft, pCfft};
101       arm_dct4_instance_q15 S = {N, Nby2, normalize, pTwiddle, pCosFactor, pRfft, pCfft};
102   </pre>
103                    where \c N is the length of the DCT4; \c Nby2 is half of the length of the DCT4;
104                    \c normalize is normalizing factor used and is equal to <code>sqrt(2/N)</code>;
105                    \c pTwiddle points to the twiddle factor table;
106                    \c pCosFactor points to the cosFactor table;
107                    \c pRfft points to the real FFT instance;
108                    \c pCfft points to the complex FFT instance;
109                    The CFFT and RFFT structures also needs to be initialized, refer to arm_cfft_radix4_f32()
110                    and arm_rfft_f32() respectively for details regarding static initialization.
111 
112   @par           Fixed-Point Behavior
113                    Care must be taken when using the fixed-point versions of the DCT4 transform functions.
114                    In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
115                    Refer to the function specific documentation below for usage guidelines.
116  */
117 
118  /**
119   @addtogroup DCT4F32
120   @{
121  */
122 
123 /**
124   @brief         Processing function for the floating-point DCT4/IDCT4.
125   @deprecated    Do not use this function. It is using a deprecated version of the RFFT.
126   @param[in]     S             points to an instance of the floating-point DCT4/IDCT4 structure
127   @param[in]     pState        points to state buffer
128   @param[in,out] pInlineBuffer points to the in-place input and output buffer
129   @return        none
130  */
131 
arm_dct4_f32(const arm_dct4_instance_f32 * S,float32_t * pState,float32_t * pInlineBuffer)132 void arm_dct4_f32(
133   const arm_dct4_instance_f32 * S,
134         float32_t * pState,
135         float32_t * pInlineBuffer)
136 {
137   const float32_t *weights = S->pTwiddle;              /* Pointer to the Weights table */
138   const float32_t *cosFact = S->pCosFactor;            /* Pointer to the cos factors table */
139         float32_t *pS1, *pS2, *pbuff;                  /* Temporary pointers for input buffer and pState buffer */
140         float32_t in;                                  /* Temporary variable */
141         uint32_t i;                                    /* Loop counter */
142 
143 
144   /* DCT4 computation involves DCT2 (which is calculated using RFFT)
145    * along with some pre-processing and post-processing.
146    * Computational procedure is explained as follows:
147    * (a) Pre-processing involves multiplying input with cos factor,
148    *     r(n) = 2 * u(n) * cos(pi*(2*n+1)/(4*n))
149    *              where,
150    *                 r(n) -- output of preprocessing
151    *                 u(n) -- input to preprocessing(actual Source buffer)
152    * (b) Calculation of DCT2 using FFT is divided into three steps:
153    *                  Step1: Re-ordering of even and odd elements of input.
154    *                  Step2: Calculating FFT of the re-ordered input.
155    *                  Step3: Taking the real part of the product of FFT output and weights.
156    * (c) Post-processing - DCT4 can be obtained from DCT2 output using the following equation:
157    *                   Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)
158    *                        where,
159    *                           Y4 -- DCT4 output,   Y2 -- DCT2 output
160    * (d) Multiplying the output with the normalizing factor sqrt(2/N).
161    */
162 
163   /*-------- Pre-processing ------------*/
164   /* Multiplying input with cos factor i.e. r(n) = 2 * x(n) * cos(pi*(2*n+1)/(4*n)) */
165   arm_scale_f32(pInlineBuffer, 2.0f, pInlineBuffer, S->N);
166   arm_mult_f32(pInlineBuffer, cosFact, pInlineBuffer, S->N);
167 
168   /* ----------------------------------------------------------------
169    * Step1: Re-ordering of even and odd elements as
170    *             pState[i] =  pInlineBuffer[2*i] and
171    *             pState[N-i-1] = pInlineBuffer[2*i+1] where i = 0 to N/2
172    ---------------------------------------------------------------------*/
173 
174   /* pS1 initialized to pState */
175   pS1 = pState;
176 
177   /* pS2 initialized to pState+N-1, so that it points to the end of the state buffer */
178   pS2 = pState + (S->N - 1U);
179 
180   /* pbuff initialized to input buffer */
181   pbuff = pInlineBuffer;
182 
183 
184 #if defined (ARM_MATH_LOOPUNROLL)
185 
186   /* Initializing the loop counter to N/2 >> 2 for loop unrolling by 4 */
187   i = S->Nby2 >> 2U;
188 
189   /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
190    ** a second loop below computes the remaining 1 to 3 samples. */
191   do
192   {
193     /* Re-ordering of even and odd elements */
194     /* pState[i] =  pInlineBuffer[2*i] */
195     *pS1++ = *pbuff++;
196     /* pState[N-i-1] = pInlineBuffer[2*i+1] */
197     *pS2-- = *pbuff++;
198 
199     *pS1++ = *pbuff++;
200     *pS2-- = *pbuff++;
201 
202     *pS1++ = *pbuff++;
203     *pS2-- = *pbuff++;
204 
205     *pS1++ = *pbuff++;
206     *pS2-- = *pbuff++;
207 
208     /* Decrement loop counter */
209     i--;
210   } while (i > 0U);
211 
212   /* pbuff initialized to input buffer */
213   pbuff = pInlineBuffer;
214 
215   /* pS1 initialized to pState */
216   pS1 = pState;
217 
218   /* Initializing the loop counter to N/4 instead of N for loop unrolling */
219   i = S->N >> 2U;
220 
221   /* Processing with loop unrolling 4 times as N is always multiple of 4.
222    * Compute 4 outputs at a time */
223   do
224   {
225     /* Writing the re-ordered output back to inplace input buffer */
226     *pbuff++ = *pS1++;
227     *pbuff++ = *pS1++;
228     *pbuff++ = *pS1++;
229     *pbuff++ = *pS1++;
230 
231     /* Decrement the loop counter */
232     i--;
233   } while (i > 0U);
234 
235 
236   /* ---------------------------------------------------------
237    *     Step2: Calculate RFFT for N-point input
238    * ---------------------------------------------------------- */
239   /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */
240   arm_rfft_f32 (S->pRfft, pInlineBuffer, pState);
241 
242   /*----------------------------------------------------------------------
243    *  Step3: Multiply the FFT output with the weights.
244    *----------------------------------------------------------------------*/
245   arm_cmplx_mult_cmplx_f32 (pState, weights, pState, S->N);
246 
247   /* ----------- Post-processing ---------- */
248   /* DCT-IV can be obtained from DCT-II by the equation,
249    *       Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)
250    *       Hence, Y4(0) = Y2(0)/2  */
251   /* Getting only real part from the output and Converting to DCT-IV */
252 
253   /* Initializing the loop counter to N >> 2 for loop unrolling by 4 */
254   i = (S->N - 1U) >> 2U;
255 
256   /* pbuff initialized to input buffer. */
257   pbuff = pInlineBuffer;
258 
259   /* pS1 initialized to pState */
260   pS1 = pState;
261 
262   /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */
263   in = *pS1++ * (float32_t) 0.5;
264   /* input buffer acts as inplace, so output values are stored in the input itself. */
265   *pbuff++ = in;
266 
267   /* pState pointer is incremented twice as the real values are located alternatively in the array */
268   pS1++;
269 
270   /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
271    ** a second loop below computes the remaining 1 to 3 samples. */
272   do
273   {
274     /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
275     /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
276     in = *pS1++ - in;
277     *pbuff++ = in;
278     /* points to the next real value */
279     pS1++;
280 
281     in = *pS1++ - in;
282     *pbuff++ = in;
283     pS1++;
284 
285     in = *pS1++ - in;
286     *pbuff++ = in;
287     pS1++;
288 
289     in = *pS1++ - in;
290     *pbuff++ = in;
291     pS1++;
292 
293     /* Decrement the loop counter */
294     i--;
295   } while (i > 0U);
296 
297   /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
298    ** No loop unrolling is used. */
299   i = (S->N - 1U) % 0x4U;
300 
301   while (i > 0U)
302   {
303     /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
304     /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
305     in = *pS1++ - in;
306     *pbuff++ = in;
307 
308     /* points to the next real value */
309     pS1++;
310 
311     /* Decrement the loop counter */
312     i--;
313   }
314 
315 
316   /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/
317 
318   /* Initializing the loop counter to N/4 instead of N for loop unrolling */
319   i = S->N >> 2U;
320 
321   /* pbuff initialized to the pInlineBuffer(now contains the output values) */
322   pbuff = pInlineBuffer;
323 
324   /* Processing with loop unrolling 4 times as N is always multiple of 4.  Compute 4 outputs at a time */
325   do
326   {
327     /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */
328     in = *pbuff;
329     *pbuff++ = in * S->normalize;
330 
331     in = *pbuff;
332     *pbuff++ = in * S->normalize;
333 
334     in = *pbuff;
335     *pbuff++ = in * S->normalize;
336 
337     in = *pbuff;
338     *pbuff++ = in * S->normalize;
339 
340     /* Decrement the loop counter */
341     i--;
342   } while (i > 0U);
343 
344 
345 #else
346 
347   /* Initializing the loop counter to N/2 */
348   i = S->Nby2;
349 
350   do
351   {
352     /* Re-ordering of even and odd elements */
353     /* pState[i] =  pInlineBuffer[2*i] */
354     *pS1++ = *pbuff++;
355     /* pState[N-i-1] = pInlineBuffer[2*i+1] */
356     *pS2-- = *pbuff++;
357 
358     /* Decrement the loop counter */
359     i--;
360   } while (i > 0U);
361 
362   /* pbuff initialized to input buffer */
363   pbuff = pInlineBuffer;
364 
365   /* pS1 initialized to pState */
366   pS1 = pState;
367 
368   /* Initializing the loop counter */
369   i = S->N;
370 
371   do
372   {
373     /* Writing the re-ordered output back to inplace input buffer */
374     *pbuff++ = *pS1++;
375 
376     /* Decrement the loop counter */
377     i--;
378   } while (i > 0U);
379 
380 
381   /* ---------------------------------------------------------
382    *     Step2: Calculate RFFT for N-point input
383    * ---------------------------------------------------------- */
384   /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */
385   arm_rfft_f32 (S->pRfft, pInlineBuffer, pState);
386 
387   /*----------------------------------------------------------------------
388    *  Step3: Multiply the FFT output with the weights.
389    *----------------------------------------------------------------------*/
390   arm_cmplx_mult_cmplx_f32 (pState, weights, pState, S->N);
391 
392   /* ----------- Post-processing ---------- */
393   /* DCT-IV can be obtained from DCT-II by the equation,
394    *       Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)
395    *       Hence, Y4(0) = Y2(0)/2  */
396   /* Getting only real part from the output and Converting to DCT-IV */
397 
398   /* pbuff initialized to input buffer. */
399   pbuff = pInlineBuffer;
400 
401   /* pS1 initialized to pState */
402   pS1 = pState;
403 
404   /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */
405   in = *pS1++ * (float32_t) 0.5;
406   /* input buffer acts as inplace, so output values are stored in the input itself. */
407   *pbuff++ = in;
408 
409   /* pState pointer is incremented twice as the real values are located alternatively in the array */
410   pS1++;
411 
412   /* Initializing the loop counter */
413   i = (S->N - 1U);
414 
415   do
416   {
417     /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
418     /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
419     in = *pS1++ - in;
420     *pbuff++ = in;
421 
422     /* points to the next real value */
423     pS1++;
424 
425     /* Decrement loop counter */
426     i--;
427   } while (i > 0U);
428 
429   /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/
430 
431   /* Initializing loop counter */
432   i = S->N;
433 
434   /* pbuff initialized to the pInlineBuffer (now contains the output values) */
435   pbuff = pInlineBuffer;
436 
437   do
438   {
439     /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */
440     in = *pbuff;
441     *pbuff++ = in * S->normalize;
442 
443     /* Decrement loop counter */
444     i--;
445   } while (i > 0U);
446 
447 #endif /* #if defined (ARM_MATH_LOOPUNROLL) */
448 
449 }
450 
451 /**
452   @} end of DCT4F32 group
453  */
454