• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  *
20  * Note: Rounding-to-nearest used unless otherwise stated
21  *
22  */
23 #include <stdint.h>
24 
25 #include "config.h"
26 #include "libavutil/attributes.h"
27 #include "aacpsdsp.h"
28 
ps_add_squares_c(INTFLOAT * dst,const INTFLOAT (* src)[2],int n)29 static void ps_add_squares_c(INTFLOAT *dst, const INTFLOAT (*src)[2], int n)
30 {
31     int i;
32     for (i = 0; i < n; i++)
33         dst[i] += (UINTFLOAT)AAC_MADD28(src[i][0], src[i][0], src[i][1], src[i][1]);
34 }
35 
ps_mul_pair_single_c(INTFLOAT (* dst)[2],INTFLOAT (* src0)[2],INTFLOAT * src1,int n)36 static void ps_mul_pair_single_c(INTFLOAT (*dst)[2], INTFLOAT (*src0)[2], INTFLOAT *src1,
37                                  int n)
38 {
39     int i;
40     for (i = 0; i < n; i++) {
41         dst[i][0] = AAC_MUL16(src0[i][0], src1[i]);
42         dst[i][1] = AAC_MUL16(src0[i][1], src1[i]);
43     }
44 }
45 
ps_hybrid_analysis_c(INTFLOAT (* out)[2],INTFLOAT (* in)[2],const INTFLOAT (* filter)[8][2],ptrdiff_t stride,int n)46 static void ps_hybrid_analysis_c(INTFLOAT (*out)[2], INTFLOAT (*in)[2],
47                                  const INTFLOAT (*filter)[8][2],
48                                  ptrdiff_t stride, int n)
49 {
50     int i, j;
51 
52     for (i = 0; i < n; i++) {
53         INT64FLOAT sum_re = (INT64FLOAT)filter[i][6][0] * in[6][0];
54         INT64FLOAT sum_im = (INT64FLOAT)filter[i][6][0] * in[6][1];
55 
56         for (j = 0; j < 6; j++) {
57             INT64FLOAT in0_re = in[j][0];
58             INT64FLOAT in0_im = in[j][1];
59             INT64FLOAT in1_re = in[12-j][0];
60             INT64FLOAT in1_im = in[12-j][1];
61             sum_re += (INT64FLOAT)filter[i][j][0] * (in0_re + in1_re) -
62                       (INT64FLOAT)filter[i][j][1] * (in0_im - in1_im);
63             sum_im += (INT64FLOAT)filter[i][j][0] * (in0_im + in1_im) +
64                       (INT64FLOAT)filter[i][j][1] * (in0_re - in1_re);
65         }
66 #if USE_FIXED
67         out[i * stride][0] = (int)((sum_re + 0x40000000) >> 31);
68         out[i * stride][1] = (int)((sum_im + 0x40000000) >> 31);
69 #else
70         out[i * stride][0] = sum_re;
71         out[i * stride][1] = sum_im;
72 #endif /* USE_FIXED */
73     }
74 }
75 
ps_hybrid_analysis_ileave_c(INTFLOAT (* out)[32][2],INTFLOAT L[2][38][64],int i,int len)76 static void ps_hybrid_analysis_ileave_c(INTFLOAT (*out)[32][2], INTFLOAT L[2][38][64],
77                                       int i, int len)
78 {
79     int j;
80 
81     for (; i < 64; i++) {
82         for (j = 0; j < len; j++) {
83             out[i][j][0] = L[0][j][i];
84             out[i][j][1] = L[1][j][i];
85         }
86     }
87 }
88 
ps_hybrid_synthesis_deint_c(INTFLOAT out[2][38][64],INTFLOAT (* in)[32][2],int i,int len)89 static void ps_hybrid_synthesis_deint_c(INTFLOAT out[2][38][64],
90                                       INTFLOAT (*in)[32][2],
91                                       int i, int len)
92 {
93     int n;
94 
95     for (; i < 64; i++) {
96         for (n = 0; n < len; n++) {
97             out[0][n][i] = in[i][n][0];
98             out[1][n][i] = in[i][n][1];
99         }
100     }
101 }
102 
ps_decorrelate_c(INTFLOAT (* out)[2],INTFLOAT (* delay)[2],INTFLOAT (* ap_delay)[PS_QMF_TIME_SLOTS+PS_MAX_AP_DELAY][2],const INTFLOAT phi_fract[2],const INTFLOAT (* Q_fract)[2],const INTFLOAT * transient_gain,INTFLOAT g_decay_slope,int len)103 static void ps_decorrelate_c(INTFLOAT (*out)[2], INTFLOAT (*delay)[2],
104                              INTFLOAT (*ap_delay)[PS_QMF_TIME_SLOTS + PS_MAX_AP_DELAY][2],
105                              const INTFLOAT phi_fract[2], const INTFLOAT (*Q_fract)[2],
106                              const INTFLOAT *transient_gain,
107                              INTFLOAT g_decay_slope,
108                              int len)
109 {
110     static const INTFLOAT a[] = { Q31(0.65143905753106f),
111                                Q31(0.56471812200776f),
112                                Q31(0.48954165955695f) };
113     INTFLOAT ag[PS_AP_LINKS];
114     int m, n;
115 
116     for (m = 0; m < PS_AP_LINKS; m++)
117         ag[m] = AAC_MUL30(a[m], g_decay_slope);
118 
119     for (n = 0; n < len; n++) {
120         INTFLOAT in_re = AAC_MSUB30(delay[n][0], phi_fract[0], delay[n][1], phi_fract[1]);
121         INTFLOAT in_im = AAC_MADD30(delay[n][0], phi_fract[1], delay[n][1], phi_fract[0]);
122         for (m = 0; m < PS_AP_LINKS; m++) {
123             INTFLOAT a_re                = AAC_MUL31(ag[m], in_re);
124             INTFLOAT a_im                = AAC_MUL31(ag[m], in_im);
125             INTFLOAT link_delay_re       = ap_delay[m][n+2-m][0];
126             INTFLOAT link_delay_im       = ap_delay[m][n+2-m][1];
127             INTFLOAT fractional_delay_re = Q_fract[m][0];
128             INTFLOAT fractional_delay_im = Q_fract[m][1];
129             INTFLOAT apd_re = in_re;
130             INTFLOAT apd_im = in_im;
131             in_re = AAC_MSUB30(link_delay_re, fractional_delay_re,
132                     link_delay_im, fractional_delay_im);
133             in_re -= (UINTFLOAT)a_re;
134             in_im = AAC_MADD30(link_delay_re, fractional_delay_im,
135                     link_delay_im, fractional_delay_re);
136             in_im -= (UINTFLOAT)a_im;
137             ap_delay[m][n+5][0] = apd_re + (UINTFLOAT)AAC_MUL31(ag[m], in_re);
138             ap_delay[m][n+5][1] = apd_im + (UINTFLOAT)AAC_MUL31(ag[m], in_im);
139         }
140         out[n][0] = AAC_MUL16(transient_gain[n], in_re);
141         out[n][1] = AAC_MUL16(transient_gain[n], in_im);
142     }
143 }
144 
ps_stereo_interpolate_c(INTFLOAT (* l)[2],INTFLOAT (* r)[2],INTFLOAT h[2][4],INTFLOAT h_step[2][4],int len)145 static void ps_stereo_interpolate_c(INTFLOAT (*l)[2], INTFLOAT (*r)[2],
146                                     INTFLOAT h[2][4], INTFLOAT h_step[2][4],
147                                     int len)
148 {
149     INTFLOAT h0 = h[0][0];
150     INTFLOAT h1 = h[0][1];
151     INTFLOAT h2 = h[0][2];
152     INTFLOAT h3 = h[0][3];
153     UINTFLOAT hs0 = h_step[0][0];
154     UINTFLOAT hs1 = h_step[0][1];
155     UINTFLOAT hs2 = h_step[0][2];
156     UINTFLOAT hs3 = h_step[0][3];
157     int n;
158 
159     for (n = 0; n < len; n++) {
160         //l is s, r is d
161         INTFLOAT l_re = l[n][0];
162         INTFLOAT l_im = l[n][1];
163         INTFLOAT r_re = r[n][0];
164         INTFLOAT r_im = r[n][1];
165         h0 += hs0;
166         h1 += hs1;
167         h2 += hs2;
168         h3 += hs3;
169         l[n][0] = AAC_MADD30(h0, l_re, h2, r_re);
170         l[n][1] = AAC_MADD30(h0, l_im, h2, r_im);
171         r[n][0] = AAC_MADD30(h1, l_re, h3, r_re);
172         r[n][1] = AAC_MADD30(h1, l_im, h3, r_im);
173     }
174 }
175 
ps_stereo_interpolate_ipdopd_c(INTFLOAT (* l)[2],INTFLOAT (* r)[2],INTFLOAT h[2][4],INTFLOAT h_step[2][4],int len)176 static void ps_stereo_interpolate_ipdopd_c(INTFLOAT (*l)[2], INTFLOAT (*r)[2],
177                                            INTFLOAT h[2][4], INTFLOAT h_step[2][4],
178                                            int len)
179 {
180     INTFLOAT h00  = h[0][0],      h10  = h[1][0];
181     INTFLOAT h01  = h[0][1],      h11  = h[1][1];
182     INTFLOAT h02  = h[0][2],      h12  = h[1][2];
183     INTFLOAT h03  = h[0][3],      h13  = h[1][3];
184     UINTFLOAT hs00 = h_step[0][0], hs10 = h_step[1][0];
185     UINTFLOAT hs01 = h_step[0][1], hs11 = h_step[1][1];
186     UINTFLOAT hs02 = h_step[0][2], hs12 = h_step[1][2];
187     UINTFLOAT hs03 = h_step[0][3], hs13 = h_step[1][3];
188     int n;
189 
190     for (n = 0; n < len; n++) {
191         //l is s, r is d
192         INTFLOAT l_re = l[n][0];
193         INTFLOAT l_im = l[n][1];
194         INTFLOAT r_re = r[n][0];
195         INTFLOAT r_im = r[n][1];
196         h00 += hs00;
197         h01 += hs01;
198         h02 += hs02;
199         h03 += hs03;
200         h10 += hs10;
201         h11 += hs11;
202         h12 += hs12;
203         h13 += hs13;
204 
205         l[n][0] = AAC_MSUB30_V8(h00, l_re, h02, r_re, h10, l_im, h12, r_im);
206         l[n][1] = AAC_MADD30_V8(h00, l_im, h02, r_im, h10, l_re, h12, r_re);
207         r[n][0] = AAC_MSUB30_V8(h01, l_re, h03, r_re, h11, l_im, h13, r_im);
208         r[n][1] = AAC_MADD30_V8(h01, l_im, h03, r_im, h11, l_re, h13, r_re);
209     }
210 }
211 
AAC_RENAME(ff_psdsp_init)212 av_cold void AAC_RENAME(ff_psdsp_init)(PSDSPContext *s)
213 {
214     s->add_squares            = ps_add_squares_c;
215     s->mul_pair_single        = ps_mul_pair_single_c;
216     s->hybrid_analysis        = ps_hybrid_analysis_c;
217     s->hybrid_analysis_ileave = ps_hybrid_analysis_ileave_c;
218     s->hybrid_synthesis_deint = ps_hybrid_synthesis_deint_c;
219     s->decorrelate            = ps_decorrelate_c;
220     s->stereo_interpolate[0]  = ps_stereo_interpolate_c;
221     s->stereo_interpolate[1]  = ps_stereo_interpolate_ipdopd_c;
222 
223 #if !USE_FIXED
224     if (ARCH_ARM)
225         ff_psdsp_init_arm(s);
226     if (ARCH_AARCH64)
227         ff_psdsp_init_aarch64(s);
228     if (ARCH_MIPS)
229         ff_psdsp_init_mips(s);
230     if (ARCH_X86)
231         ff_psdsp_init_x86(s);
232 #endif /* !USE_FIXED */
233 }
234