• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * AMR narrowband decoder
3  * Copyright (c) 2006-2007 Robert Swain
4  * Copyright (c) 2009 Colin McQuillan
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 
24 /**
25  * @file
26  * AMR narrowband decoder
27  *
28  * This decoder uses floats for simplicity and so is not bit-exact. One
29  * difference is that differences in phase can accumulate. The test sequences
30  * in 3GPP TS 26.074 can still be useful.
31  *
32  * - Comparing this file's output to the output of the ref decoder gives a
33  *   PSNR of 30 to 80. Plotting the output samples shows a difference in
34  *   phase in some areas.
35  *
36  * - Comparing both decoders against their input, this decoder gives a similar
37  *   PSNR. If the test sequence homing frames are removed (this decoder does
38  *   not detect them), the PSNR is at least as good as the reference on 140
39  *   out of 169 tests.
40  */
41 
42 
43 #include <string.h>
44 #include <math.h>
45 
46 #include "libavutil/channel_layout.h"
47 #include "libavutil/float_dsp.h"
48 #include "avcodec.h"
49 #include "libavutil/common.h"
50 #include "libavutil/avassert.h"
51 #include "celp_math.h"
52 #include "celp_filters.h"
53 #include "acelp_filters.h"
54 #include "acelp_vectors.h"
55 #include "acelp_pitch_delay.h"
56 #include "lsp.h"
57 #include "amr.h"
58 #include "internal.h"
59 
60 #include "amrnbdata.h"
61 
62 #define AMR_BLOCK_SIZE              160   ///< samples per frame
63 #define AMR_SAMPLE_BOUND        32768.0   ///< threshold for synthesis overflow
64 
65 /**
66  * Scale from constructed speech to [-1,1]
67  *
68  * AMR is designed to produce 16-bit PCM samples (3GPP TS 26.090 4.2) but
69  * upscales by two (section 6.2.2).
70  *
71  * Fundamentally, this scale is determined by energy_mean through
72  * the fixed vector contribution to the excitation vector.
73  */
74 #define AMR_SAMPLE_SCALE  (2.0 / 32768.0)
75 
76 /** Prediction factor for 12.2kbit/s mode */
77 #define PRED_FAC_MODE_12k2             0.65
78 
79 #define LSF_R_FAC          (8000.0 / 32768.0) ///< LSF residual tables to Hertz
80 #define MIN_LSF_SPACING    (50.0488 / 8000.0) ///< Ensures stability of LPC filter
81 #define PITCH_LAG_MIN_MODE_12k2          18   ///< Lower bound on decoded lag search in 12.2kbit/s mode
82 
83 /** Initial energy in dB. Also used for bad frames (unimplemented). */
84 #define MIN_ENERGY -14.0
85 
86 /** Maximum sharpening factor
87  *
88  * The specification says 0.8, which should be 13107, but the reference C code
89  * uses 13017 instead. (Amusingly the same applies to SHARP_MAX in g729dec.c.)
90  */
91 #define SHARP_MAX 0.79449462890625
92 
93 /** Number of impulse response coefficients used for tilt factor */
94 #define AMR_TILT_RESPONSE   22
95 /** Tilt factor = 1st reflection coefficient * gamma_t */
96 #define AMR_TILT_GAMMA_T   0.8
97 /** Adaptive gain control factor used in post-filter */
98 #define AMR_AGC_ALPHA      0.9
99 
100 typedef struct AMRContext {
101     AMRNBFrame                        frame; ///< decoded AMR parameters (lsf coefficients, codebook indexes, etc)
102     uint8_t             bad_frame_indicator; ///< bad frame ? 1 : 0
103     enum Mode                cur_frame_mode;
104 
105     int16_t     prev_lsf_r[LP_FILTER_ORDER]; ///< residual LSF vector from previous subframe
106     double          lsp[4][LP_FILTER_ORDER]; ///< lsp vectors from current frame
107     double   prev_lsp_sub4[LP_FILTER_ORDER]; ///< lsp vector for the 4th subframe of the previous frame
108 
109     float         lsf_q[4][LP_FILTER_ORDER]; ///< Interpolated LSF vector for fixed gain smoothing
110     float          lsf_avg[LP_FILTER_ORDER]; ///< vector of averaged lsf vector
111 
112     float           lpc[4][LP_FILTER_ORDER]; ///< lpc coefficient vectors for 4 subframes
113 
114     uint8_t                   pitch_lag_int; ///< integer part of pitch lag from current subframe
115 
116     float excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1 + AMR_SUBFRAME_SIZE]; ///< current excitation and all necessary excitation history
117     float                       *excitation; ///< pointer to the current excitation vector in excitation_buf
118 
119     float   pitch_vector[AMR_SUBFRAME_SIZE]; ///< adaptive code book (pitch) vector
120     float   fixed_vector[AMR_SUBFRAME_SIZE]; ///< algebraic codebook (fixed) vector (must be kept zero between frames)
121 
122     float               prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
123     float                     pitch_gain[5]; ///< quantified pitch gains for the current and previous four subframes
124     float                     fixed_gain[5]; ///< quantified fixed gains for the current and previous four subframes
125 
126     float                              beta; ///< previous pitch_gain, bounded by [0.0,SHARP_MAX]
127     uint8_t                      diff_count; ///< the number of subframes for which diff has been above 0.65
128     uint8_t                      hang_count; ///< the number of subframes since a hangover period started
129 
130     float            prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness processing to determine "onset"
131     uint8_t               prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
132     uint8_t                 ir_filter_onset; ///< flag for impulse response filter strength
133 
134     float                postfilter_mem[10]; ///< previous intermediate values in the formant filter
135     float                          tilt_mem; ///< previous input to tilt compensation filter
136     float                    postfilter_agc; ///< previous factor used for adaptive gain control
137     float                  high_pass_mem[2]; ///< previous intermediate values in the high-pass filter
138 
139     float samples_in[LP_FILTER_ORDER + AMR_SUBFRAME_SIZE]; ///< floating point samples
140 
141     ACELPFContext                     acelpf_ctx; ///< context for filters for ACELP-based codecs
142     ACELPVContext                     acelpv_ctx; ///< context for vector operations for ACELP-based codecs
143     CELPFContext                       celpf_ctx; ///< context for filters for CELP-based codecs
144     CELPMContext                       celpm_ctx; ///< context for fixed point math operations
145 
146 } AMRContext;
147 
148 /** Double version of ff_weighted_vector_sumf() */
weighted_vector_sumd(double * out,const double * in_a,const double * in_b,double weight_coeff_a,double weight_coeff_b,int length)149 static void weighted_vector_sumd(double *out, const double *in_a,
150                                  const double *in_b, double weight_coeff_a,
151                                  double weight_coeff_b, int length)
152 {
153     int i;
154 
155     for (i = 0; i < length; i++)
156         out[i] = weight_coeff_a * in_a[i]
157                + weight_coeff_b * in_b[i];
158 }
159 
amrnb_decode_init(AVCodecContext * avctx)160 static av_cold int amrnb_decode_init(AVCodecContext *avctx)
161 {
162     AMRContext *p = avctx->priv_data;
163     int i;
164 
165     if (avctx->channels > 1) {
166         avpriv_report_missing_feature(avctx, "multi-channel AMR");
167         return AVERROR_PATCHWELCOME;
168     }
169 
170     avctx->channels       = 1;
171     avctx->channel_layout = AV_CH_LAYOUT_MONO;
172     if (!avctx->sample_rate)
173         avctx->sample_rate = 8000;
174     avctx->sample_fmt     = AV_SAMPLE_FMT_FLT;
175 
176     // p->excitation always points to the same position in p->excitation_buf
177     p->excitation = &p->excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1];
178 
179     for (i = 0; i < LP_FILTER_ORDER; i++) {
180         p->prev_lsp_sub4[i] =    lsp_sub4_init[i] * 1000 / (float)(1 << 15);
181         p->lsf_avg[i] = p->lsf_q[3][i] = lsp_avg_init[i] / (float)(1 << 15);
182     }
183 
184     for (i = 0; i < 4; i++)
185         p->prediction_error[i] = MIN_ENERGY;
186 
187     ff_acelp_filter_init(&p->acelpf_ctx);
188     ff_acelp_vectors_init(&p->acelpv_ctx);
189     ff_celp_filter_init(&p->celpf_ctx);
190     ff_celp_math_init(&p->celpm_ctx);
191 
192     return 0;
193 }
194 
195 
196 /**
197  * Unpack an RFC4867 speech frame into the AMR frame mode and parameters.
198  *
199  * The order of speech bits is specified by 3GPP TS 26.101.
200  *
201  * @param p the context
202  * @param buf               pointer to the input buffer
203  * @param buf_size          size of the input buffer
204  *
205  * @return the frame mode
206  */
unpack_bitstream(AMRContext * p,const uint8_t * buf,int buf_size)207 static enum Mode unpack_bitstream(AMRContext *p, const uint8_t *buf,
208                                   int buf_size)
209 {
210     enum Mode mode;
211 
212     // Decode the first octet.
213     mode = buf[0] >> 3 & 0x0F;                      // frame type
214     p->bad_frame_indicator = (buf[0] & 0x4) != 0x4; // quality bit
215 
216     if (mode >= N_MODES || buf_size < frame_sizes_nb[mode] + 1) {
217         return NO_DATA;
218     }
219 
220     if (mode < MODE_DTX)
221         ff_amr_bit_reorder((uint16_t *) &p->frame, sizeof(AMRNBFrame), buf + 1,
222                            amr_unpacking_bitmaps_per_mode[mode]);
223 
224     return mode;
225 }
226 
227 
228 /// @name AMR pitch LPC coefficient decoding functions
229 /// @{
230 
231 /**
232  * Interpolate the LSF vector (used for fixed gain smoothing).
233  * The interpolation is done over all four subframes even in MODE_12k2.
234  *
235  * @param[in]     ctx       The Context
236  * @param[in,out] lsf_q     LSFs in [0,1] for each subframe
237  * @param[in]     lsf_new   New LSFs in [0,1] for subframe 4
238  */
interpolate_lsf(ACELPVContext * ctx,float lsf_q[4][LP_FILTER_ORDER],float * lsf_new)239 static void interpolate_lsf(ACELPVContext *ctx, float lsf_q[4][LP_FILTER_ORDER], float *lsf_new)
240 {
241     int i;
242 
243     for (i = 0; i < 4; i++)
244         ctx->weighted_vector_sumf(lsf_q[i], lsf_q[3], lsf_new,
245                                 0.25 * (3 - i), 0.25 * (i + 1),
246                                 LP_FILTER_ORDER);
247 }
248 
249 /**
250  * Decode a set of 5 split-matrix quantized lsf indexes into an lsp vector.
251  *
252  * @param p the context
253  * @param lsp output LSP vector
254  * @param lsf_no_r LSF vector without the residual vector added
255  * @param lsf_quantizer pointers to LSF dictionary tables
256  * @param quantizer_offset offset in tables
257  * @param sign for the 3 dictionary table
258  * @param update store data for computing the next frame's LSFs
259  */
lsf2lsp_for_mode12k2(AMRContext * p,double lsp[LP_FILTER_ORDER],const float lsf_no_r[LP_FILTER_ORDER],const int16_t * lsf_quantizer[5],const int quantizer_offset,const int sign,const int update)260 static void lsf2lsp_for_mode12k2(AMRContext *p, double lsp[LP_FILTER_ORDER],
261                                  const float lsf_no_r[LP_FILTER_ORDER],
262                                  const int16_t *lsf_quantizer[5],
263                                  const int quantizer_offset,
264                                  const int sign, const int update)
265 {
266     int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
267     float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
268     int i;
269 
270     for (i = 0; i < LP_FILTER_ORDER >> 1; i++)
271         memcpy(&lsf_r[i << 1], &lsf_quantizer[i][quantizer_offset],
272                2 * sizeof(*lsf_r));
273 
274     if (sign) {
275         lsf_r[4] *= -1;
276         lsf_r[5] *= -1;
277     }
278 
279     if (update)
280         memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
281 
282     for (i = 0; i < LP_FILTER_ORDER; i++)
283         lsf_q[i] = lsf_r[i] * (LSF_R_FAC / 8000.0) + lsf_no_r[i] * (1.0 / 8000.0);
284 
285     ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
286 
287     if (update)
288         interpolate_lsf(&p->acelpv_ctx, p->lsf_q, lsf_q);
289 
290     ff_acelp_lsf2lspd(lsp, lsf_q, LP_FILTER_ORDER);
291 }
292 
293 /**
294  * Decode a set of 5 split-matrix quantized lsf indexes into 2 lsp vectors.
295  *
296  * @param p                 pointer to the AMRContext
297  */
lsf2lsp_5(AMRContext * p)298 static void lsf2lsp_5(AMRContext *p)
299 {
300     const uint16_t *lsf_param = p->frame.lsf;
301     float lsf_no_r[LP_FILTER_ORDER]; // LSFs without the residual vector
302     const int16_t *lsf_quantizer[5];
303     int i;
304 
305     lsf_quantizer[0] = lsf_5_1[lsf_param[0]];
306     lsf_quantizer[1] = lsf_5_2[lsf_param[1]];
307     lsf_quantizer[2] = lsf_5_3[lsf_param[2] >> 1];
308     lsf_quantizer[3] = lsf_5_4[lsf_param[3]];
309     lsf_quantizer[4] = lsf_5_5[lsf_param[4]];
310 
311     for (i = 0; i < LP_FILTER_ORDER; i++)
312         lsf_no_r[i] = p->prev_lsf_r[i] * LSF_R_FAC * PRED_FAC_MODE_12k2 + lsf_5_mean[i];
313 
314     lsf2lsp_for_mode12k2(p, p->lsp[1], lsf_no_r, lsf_quantizer, 0, lsf_param[2] & 1, 0);
315     lsf2lsp_for_mode12k2(p, p->lsp[3], lsf_no_r, lsf_quantizer, 2, lsf_param[2] & 1, 1);
316 
317     // interpolate LSP vectors at subframes 1 and 3
318     weighted_vector_sumd(p->lsp[0], p->prev_lsp_sub4, p->lsp[1], 0.5, 0.5, LP_FILTER_ORDER);
319     weighted_vector_sumd(p->lsp[2], p->lsp[1]       , p->lsp[3], 0.5, 0.5, LP_FILTER_ORDER);
320 }
321 
322 /**
323  * Decode a set of 3 split-matrix quantized lsf indexes into an lsp vector.
324  *
325  * @param p                 pointer to the AMRContext
326  */
lsf2lsp_3(AMRContext * p)327 static void lsf2lsp_3(AMRContext *p)
328 {
329     const uint16_t *lsf_param = p->frame.lsf;
330     int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
331     float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
332     const int16_t *lsf_quantizer;
333     int i, j;
334 
335     lsf_quantizer = (p->cur_frame_mode == MODE_7k95 ? lsf_3_1_MODE_7k95 : lsf_3_1)[lsf_param[0]];
336     memcpy(lsf_r, lsf_quantizer, 3 * sizeof(*lsf_r));
337 
338     lsf_quantizer = lsf_3_2[lsf_param[1] << (p->cur_frame_mode <= MODE_5k15)];
339     memcpy(lsf_r + 3, lsf_quantizer, 3 * sizeof(*lsf_r));
340 
341     lsf_quantizer = (p->cur_frame_mode <= MODE_5k15 ? lsf_3_3_MODE_5k15 : lsf_3_3)[lsf_param[2]];
342     memcpy(lsf_r + 6, lsf_quantizer, 4 * sizeof(*lsf_r));
343 
344     // calculate mean-removed LSF vector and add mean
345     for (i = 0; i < LP_FILTER_ORDER; i++)
346         lsf_q[i] = (lsf_r[i] + p->prev_lsf_r[i] * pred_fac[i]) * (LSF_R_FAC / 8000.0) + lsf_3_mean[i] * (1.0 / 8000.0);
347 
348     ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
349 
350     // store data for computing the next frame's LSFs
351     interpolate_lsf(&p->acelpv_ctx, p->lsf_q, lsf_q);
352     memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
353 
354     ff_acelp_lsf2lspd(p->lsp[3], lsf_q, LP_FILTER_ORDER);
355 
356     // interpolate LSP vectors at subframes 1, 2 and 3
357     for (i = 1; i <= 3; i++)
358         for(j = 0; j < LP_FILTER_ORDER; j++)
359             p->lsp[i-1][j] = p->prev_lsp_sub4[j] +
360                 (p->lsp[3][j] - p->prev_lsp_sub4[j]) * 0.25 * i;
361 }
362 
363 /// @}
364 
365 
366 /// @name AMR pitch vector decoding functions
367 /// @{
368 
369 /**
370  * Like ff_decode_pitch_lag(), but with 1/6 resolution
371  */
decode_pitch_lag_1_6(int * lag_int,int * lag_frac,int pitch_index,const int prev_lag_int,const int subframe)372 static void decode_pitch_lag_1_6(int *lag_int, int *lag_frac, int pitch_index,
373                                  const int prev_lag_int, const int subframe)
374 {
375     if (subframe == 0 || subframe == 2) {
376         if (pitch_index < 463) {
377             *lag_int  = (pitch_index + 107) * 10923 >> 16;
378             *lag_frac = pitch_index - *lag_int * 6 + 105;
379         } else {
380             *lag_int  = pitch_index - 368;
381             *lag_frac = 0;
382         }
383     } else {
384         *lag_int  = ((pitch_index + 5) * 10923 >> 16) - 1;
385         *lag_frac = pitch_index - *lag_int * 6 - 3;
386         *lag_int += av_clip(prev_lag_int - 5, PITCH_LAG_MIN_MODE_12k2,
387                             PITCH_DELAY_MAX - 9);
388     }
389 }
390 
decode_pitch_vector(AMRContext * p,const AMRNBSubframe * amr_subframe,const int subframe)391 static void decode_pitch_vector(AMRContext *p,
392                                 const AMRNBSubframe *amr_subframe,
393                                 const int subframe)
394 {
395     int pitch_lag_int, pitch_lag_frac;
396     enum Mode mode = p->cur_frame_mode;
397 
398     if (p->cur_frame_mode == MODE_12k2) {
399         decode_pitch_lag_1_6(&pitch_lag_int, &pitch_lag_frac,
400                              amr_subframe->p_lag, p->pitch_lag_int,
401                              subframe);
402     } else {
403         ff_decode_pitch_lag(&pitch_lag_int, &pitch_lag_frac,
404                             amr_subframe->p_lag,
405                             p->pitch_lag_int, subframe,
406                             mode != MODE_4k75 && mode != MODE_5k15,
407                             mode <= MODE_6k7 ? 4 : (mode == MODE_7k95 ? 5 : 6));
408         pitch_lag_frac *= 2;
409     }
410 
411     p->pitch_lag_int = pitch_lag_int; // store previous lag in a uint8_t
412 
413     pitch_lag_int += pitch_lag_frac > 0;
414 
415     /* Calculate the pitch vector by interpolating the past excitation at the
416        pitch lag using a b60 hamming windowed sinc function.   */
417     p->acelpf_ctx.acelp_interpolatef(p->excitation,
418                           p->excitation + 1 - pitch_lag_int,
419                           ff_b60_sinc, 6,
420                           pitch_lag_frac + 6 - 6*(pitch_lag_frac > 0),
421                           10, AMR_SUBFRAME_SIZE);
422 
423     memcpy(p->pitch_vector, p->excitation, AMR_SUBFRAME_SIZE * sizeof(float));
424 }
425 
426 /// @}
427 
428 
429 /// @name AMR algebraic code book (fixed) vector decoding functions
430 /// @{
431 
432 /**
433  * Decode a 10-bit algebraic codebook index from a 10.2 kbit/s frame.
434  */
decode_10bit_pulse(int code,int pulse_position[8],int i1,int i2,int i3)435 static void decode_10bit_pulse(int code, int pulse_position[8],
436                                int i1, int i2, int i3)
437 {
438     // coded using 7+3 bits with the 3 LSBs being, individually, the LSB of 1 of
439     // the 3 pulses and the upper 7 bits being coded in base 5
440     const uint8_t *positions = base_five_table[code >> 3];
441     pulse_position[i1] = (positions[2] << 1) + ( code       & 1);
442     pulse_position[i2] = (positions[1] << 1) + ((code >> 1) & 1);
443     pulse_position[i3] = (positions[0] << 1) + ((code >> 2) & 1);
444 }
445 
446 /**
447  * Decode the algebraic codebook index to pulse positions and signs and
448  * construct the algebraic codebook vector for MODE_10k2.
449  *
450  * @param fixed_index          positions of the eight pulses
451  * @param fixed_sparse         pointer to the algebraic codebook vector
452  */
decode_8_pulses_31bits(const int16_t * fixed_index,AMRFixed * fixed_sparse)453 static void decode_8_pulses_31bits(const int16_t *fixed_index,
454                                    AMRFixed *fixed_sparse)
455 {
456     int pulse_position[8];
457     int i, temp;
458 
459     decode_10bit_pulse(fixed_index[4], pulse_position, 0, 4, 1);
460     decode_10bit_pulse(fixed_index[5], pulse_position, 2, 6, 5);
461 
462     // coded using 5+2 bits with the 2 LSBs being, individually, the LSB of 1 of
463     // the 2 pulses and the upper 5 bits being coded in base 5
464     temp = ((fixed_index[6] >> 2) * 25 + 12) >> 5;
465     pulse_position[3] = temp % 5;
466     pulse_position[7] = temp / 5;
467     if (pulse_position[7] & 1)
468         pulse_position[3] = 4 - pulse_position[3];
469     pulse_position[3] = (pulse_position[3] << 1) + ( fixed_index[6]       & 1);
470     pulse_position[7] = (pulse_position[7] << 1) + ((fixed_index[6] >> 1) & 1);
471 
472     fixed_sparse->n = 8;
473     for (i = 0; i < 4; i++) {
474         const int pos1   = (pulse_position[i]     << 2) + i;
475         const int pos2   = (pulse_position[i + 4] << 2) + i;
476         const float sign = fixed_index[i] ? -1.0 : 1.0;
477         fixed_sparse->x[i    ] = pos1;
478         fixed_sparse->x[i + 4] = pos2;
479         fixed_sparse->y[i    ] = sign;
480         fixed_sparse->y[i + 4] = pos2 < pos1 ? -sign : sign;
481     }
482 }
483 
484 /**
485  * Decode the algebraic codebook index to pulse positions and signs,
486  * then construct the algebraic codebook vector.
487  *
488  *                              nb of pulses | bits encoding pulses
489  * For MODE_4k75 or MODE_5k15,             2 | 1-3, 4-6, 7
490  *                  MODE_5k9,              2 | 1,   2-4, 5-6, 7-9
491  *                  MODE_6k7,              3 | 1-3, 4,   5-7, 8,  9-11
492  *      MODE_7k4 or MODE_7k95,             4 | 1-3, 4-6, 7-9, 10, 11-13
493  *
494  * @param fixed_sparse pointer to the algebraic codebook vector
495  * @param pulses       algebraic codebook indexes
496  * @param mode         mode of the current frame
497  * @param subframe     current subframe number
498  */
decode_fixed_sparse(AMRFixed * fixed_sparse,const uint16_t * pulses,const enum Mode mode,const int subframe)499 static void decode_fixed_sparse(AMRFixed *fixed_sparse, const uint16_t *pulses,
500                                 const enum Mode mode, const int subframe)
501 {
502     av_assert1(MODE_4k75 <= (signed)mode && mode <= MODE_12k2);
503 
504     if (mode == MODE_12k2) {
505         ff_decode_10_pulses_35bits(pulses, fixed_sparse, gray_decode, 5, 3);
506     } else if (mode == MODE_10k2) {
507         decode_8_pulses_31bits(pulses, fixed_sparse);
508     } else {
509         int *pulse_position = fixed_sparse->x;
510         int i, pulse_subset;
511         const int fixed_index = pulses[0];
512 
513         if (mode <= MODE_5k15) {
514             pulse_subset      = ((fixed_index >> 3) & 8)     + (subframe << 1);
515             pulse_position[0] = ( fixed_index       & 7) * 5 + track_position[pulse_subset];
516             pulse_position[1] = ((fixed_index >> 3) & 7) * 5 + track_position[pulse_subset + 1];
517             fixed_sparse->n = 2;
518         } else if (mode == MODE_5k9) {
519             pulse_subset      = ((fixed_index & 1) << 1) + 1;
520             pulse_position[0] = ((fixed_index >> 1) & 7) * 5 + pulse_subset;
521             pulse_subset      = (fixed_index  >> 4) & 3;
522             pulse_position[1] = ((fixed_index >> 6) & 7) * 5 + pulse_subset + (pulse_subset == 3 ? 1 : 0);
523             fixed_sparse->n = pulse_position[0] == pulse_position[1] ? 1 : 2;
524         } else if (mode == MODE_6k7) {
525             pulse_position[0] = (fixed_index        & 7) * 5;
526             pulse_subset      = (fixed_index  >> 2) & 2;
527             pulse_position[1] = ((fixed_index >> 4) & 7) * 5 + pulse_subset + 1;
528             pulse_subset      = (fixed_index  >> 6) & 2;
529             pulse_position[2] = ((fixed_index >> 8) & 7) * 5 + pulse_subset + 2;
530             fixed_sparse->n = 3;
531         } else { // mode <= MODE_7k95
532             pulse_position[0] = gray_decode[ fixed_index        & 7];
533             pulse_position[1] = gray_decode[(fixed_index >> 3)  & 7] + 1;
534             pulse_position[2] = gray_decode[(fixed_index >> 6)  & 7] + 2;
535             pulse_subset      = (fixed_index >> 9) & 1;
536             pulse_position[3] = gray_decode[(fixed_index >> 10) & 7] + pulse_subset + 3;
537             fixed_sparse->n = 4;
538         }
539         for (i = 0; i < fixed_sparse->n; i++)
540             fixed_sparse->y[i] = (pulses[1] >> i) & 1 ? 1.0 : -1.0;
541     }
542 }
543 
544 /**
545  * Apply pitch lag to obtain the sharpened fixed vector (section 6.1.2)
546  *
547  * @param p the context
548  * @param subframe unpacked amr subframe
549  * @param mode mode of the current frame
550  * @param fixed_sparse sparse representation of the fixed vector
551  */
pitch_sharpening(AMRContext * p,int subframe,enum Mode mode,AMRFixed * fixed_sparse)552 static void pitch_sharpening(AMRContext *p, int subframe, enum Mode mode,
553                              AMRFixed *fixed_sparse)
554 {
555     // The spec suggests the current pitch gain is always used, but in other
556     // modes the pitch and codebook gains are jointly quantized (sec 5.8.2)
557     // so the codebook gain cannot depend on the quantized pitch gain.
558     if (mode == MODE_12k2)
559         p->beta = FFMIN(p->pitch_gain[4], 1.0);
560 
561     fixed_sparse->pitch_lag  = p->pitch_lag_int;
562     fixed_sparse->pitch_fac  = p->beta;
563 
564     // Save pitch sharpening factor for the next subframe
565     // MODE_4k75 only updates on the 2nd and 4th subframes - this follows from
566     // the fact that the gains for two subframes are jointly quantized.
567     if (mode != MODE_4k75 || subframe & 1)
568         p->beta = av_clipf(p->pitch_gain[4], 0.0, SHARP_MAX);
569 }
570 /// @}
571 
572 
573 /// @name AMR gain decoding functions
574 /// @{
575 
576 /**
577  * fixed gain smoothing
578  * Note that where the spec specifies the "spectrum in the q domain"
579  * in section 6.1.4, in fact frequencies should be used.
580  *
581  * @param p the context
582  * @param lsf LSFs for the current subframe, in the range [0,1]
583  * @param lsf_avg averaged LSFs
584  * @param mode mode of the current frame
585  *
586  * @return fixed gain smoothed
587  */
fixed_gain_smooth(AMRContext * p,const float * lsf,const float * lsf_avg,const enum Mode mode)588 static float fixed_gain_smooth(AMRContext *p , const float *lsf,
589                                const float *lsf_avg, const enum Mode mode)
590 {
591     float diff = 0.0;
592     int i;
593 
594     for (i = 0; i < LP_FILTER_ORDER; i++)
595         diff += fabs(lsf_avg[i] - lsf[i]) / lsf_avg[i];
596 
597     // If diff is large for ten subframes, disable smoothing for a 40-subframe
598     // hangover period.
599     p->diff_count++;
600     if (diff <= 0.65)
601         p->diff_count = 0;
602 
603     if (p->diff_count > 10) {
604         p->hang_count = 0;
605         p->diff_count--; // don't let diff_count overflow
606     }
607 
608     if (p->hang_count < 40) {
609         p->hang_count++;
610     } else if (mode < MODE_7k4 || mode == MODE_10k2) {
611         const float smoothing_factor = av_clipf(4.0 * diff - 1.6, 0.0, 1.0);
612         const float fixed_gain_mean = (p->fixed_gain[0] + p->fixed_gain[1] +
613                                        p->fixed_gain[2] + p->fixed_gain[3] +
614                                        p->fixed_gain[4]) * 0.2;
615         return smoothing_factor * p->fixed_gain[4] +
616                (1.0 - smoothing_factor) * fixed_gain_mean;
617     }
618     return p->fixed_gain[4];
619 }
620 
621 /**
622  * Decode pitch gain and fixed gain factor (part of section 6.1.3).
623  *
624  * @param p the context
625  * @param amr_subframe unpacked amr subframe
626  * @param mode mode of the current frame
627  * @param subframe current subframe number
628  * @param fixed_gain_factor decoded gain correction factor
629  */
decode_gains(AMRContext * p,const AMRNBSubframe * amr_subframe,const enum Mode mode,const int subframe,float * fixed_gain_factor)630 static void decode_gains(AMRContext *p, const AMRNBSubframe *amr_subframe,
631                          const enum Mode mode, const int subframe,
632                          float *fixed_gain_factor)
633 {
634     if (mode == MODE_12k2 || mode == MODE_7k95) {
635         p->pitch_gain[4]   = qua_gain_pit [amr_subframe->p_gain    ]
636             * (1.0 / 16384.0);
637         *fixed_gain_factor = qua_gain_code[amr_subframe->fixed_gain]
638             * (1.0 /  2048.0);
639     } else {
640         const uint16_t *gains;
641 
642         if (mode >= MODE_6k7) {
643             gains = gains_high[amr_subframe->p_gain];
644         } else if (mode >= MODE_5k15) {
645             gains = gains_low [amr_subframe->p_gain];
646         } else {
647             // gain index is only coded in subframes 0,2 for MODE_4k75
648             gains = gains_MODE_4k75[(p->frame.subframe[subframe & 2].p_gain << 1) + (subframe & 1)];
649         }
650 
651         p->pitch_gain[4]   = gains[0] * (1.0 / 16384.0);
652         *fixed_gain_factor = gains[1] * (1.0 /  4096.0);
653     }
654 }
655 
656 /// @}
657 
658 
659 /// @name AMR preprocessing functions
660 /// @{
661 
662 /**
663  * Circularly convolve a sparse fixed vector with a phase dispersion impulse
664  * response filter (D.6.2 of G.729 and 6.1.5 of AMR).
665  *
666  * @param out vector with filter applied
667  * @param in source vector
668  * @param filter phase filter coefficients
669  *
670  *  out[n] = sum(i,0,len-1){ in[i] * filter[(len + n - i)%len] }
671  */
apply_ir_filter(float * out,const AMRFixed * in,const float * filter)672 static void apply_ir_filter(float *out, const AMRFixed *in,
673                             const float *filter)
674 {
675     float filter1[AMR_SUBFRAME_SIZE],     ///< filters at pitch lag*1 and *2
676           filter2[AMR_SUBFRAME_SIZE];
677     int   lag = in->pitch_lag;
678     float fac = in->pitch_fac;
679     int i;
680 
681     if (lag < AMR_SUBFRAME_SIZE) {
682         ff_celp_circ_addf(filter1, filter, filter, lag, fac,
683                           AMR_SUBFRAME_SIZE);
684 
685         if (lag < AMR_SUBFRAME_SIZE >> 1)
686             ff_celp_circ_addf(filter2, filter, filter1, lag, fac,
687                               AMR_SUBFRAME_SIZE);
688     }
689 
690     memset(out, 0, sizeof(float) * AMR_SUBFRAME_SIZE);
691     for (i = 0; i < in->n; i++) {
692         int   x = in->x[i];
693         float y = in->y[i];
694         const float *filterp;
695 
696         if (x >= AMR_SUBFRAME_SIZE - lag) {
697             filterp = filter;
698         } else if (x >= AMR_SUBFRAME_SIZE - (lag << 1)) {
699             filterp = filter1;
700         } else
701             filterp = filter2;
702 
703         ff_celp_circ_addf(out, out, filterp, x, y, AMR_SUBFRAME_SIZE);
704     }
705 }
706 
707 /**
708  * Reduce fixed vector sparseness by smoothing with one of three IR filters.
709  * Also know as "adaptive phase dispersion".
710  *
711  * This implements 3GPP TS 26.090 section 6.1(5).
712  *
713  * @param p the context
714  * @param fixed_sparse algebraic codebook vector
715  * @param fixed_vector unfiltered fixed vector
716  * @param fixed_gain smoothed gain
717  * @param out space for modified vector if necessary
718  */
anti_sparseness(AMRContext * p,AMRFixed * fixed_sparse,const float * fixed_vector,float fixed_gain,float * out)719 static const float *anti_sparseness(AMRContext *p, AMRFixed *fixed_sparse,
720                                     const float *fixed_vector,
721                                     float fixed_gain, float *out)
722 {
723     int ir_filter_nr;
724 
725     if (p->pitch_gain[4] < 0.6) {
726         ir_filter_nr = 0;      // strong filtering
727     } else if (p->pitch_gain[4] < 0.9) {
728         ir_filter_nr = 1;      // medium filtering
729     } else
730         ir_filter_nr = 2;      // no filtering
731 
732     // detect 'onset'
733     if (fixed_gain > 2.0 * p->prev_sparse_fixed_gain) {
734         p->ir_filter_onset = 2;
735     } else if (p->ir_filter_onset)
736         p->ir_filter_onset--;
737 
738     if (!p->ir_filter_onset) {
739         int i, count = 0;
740 
741         for (i = 0; i < 5; i++)
742             if (p->pitch_gain[i] < 0.6)
743                 count++;
744         if (count > 2)
745             ir_filter_nr = 0;
746 
747         if (ir_filter_nr > p->prev_ir_filter_nr + 1)
748             ir_filter_nr--;
749     } else if (ir_filter_nr < 2)
750         ir_filter_nr++;
751 
752     // Disable filtering for very low level of fixed_gain.
753     // Note this step is not specified in the technical description but is in
754     // the reference source in the function Ph_disp.
755     if (fixed_gain < 5.0)
756         ir_filter_nr = 2;
757 
758     if (p->cur_frame_mode != MODE_7k4 && p->cur_frame_mode < MODE_10k2
759          && ir_filter_nr < 2) {
760         apply_ir_filter(out, fixed_sparse,
761                         (p->cur_frame_mode == MODE_7k95 ?
762                              ir_filters_lookup_MODE_7k95 :
763                              ir_filters_lookup)[ir_filter_nr]);
764         fixed_vector = out;
765     }
766 
767     // update ir filter strength history
768     p->prev_ir_filter_nr       = ir_filter_nr;
769     p->prev_sparse_fixed_gain  = fixed_gain;
770 
771     return fixed_vector;
772 }
773 
774 /// @}
775 
776 
777 /// @name AMR synthesis functions
778 /// @{
779 
780 /**
781  * Conduct 10th order linear predictive coding synthesis.
782  *
783  * @param p             pointer to the AMRContext
784  * @param lpc           pointer to the LPC coefficients
785  * @param fixed_gain    fixed codebook gain for synthesis
786  * @param fixed_vector  algebraic codebook vector
787  * @param samples       pointer to the output speech samples
788  * @param overflow      16-bit overflow flag
789  */
synthesis(AMRContext * p,float * lpc,float fixed_gain,const float * fixed_vector,float * samples,uint8_t overflow)790 static int synthesis(AMRContext *p, float *lpc,
791                      float fixed_gain, const float *fixed_vector,
792                      float *samples, uint8_t overflow)
793 {
794     int i;
795     float excitation[AMR_SUBFRAME_SIZE];
796 
797     // if an overflow has been detected, the pitch vector is scaled down by a
798     // factor of 4
799     if (overflow)
800         for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
801             p->pitch_vector[i] *= 0.25;
802 
803     p->acelpv_ctx.weighted_vector_sumf(excitation, p->pitch_vector, fixed_vector,
804                             p->pitch_gain[4], fixed_gain, AMR_SUBFRAME_SIZE);
805 
806     // emphasize pitch vector contribution
807     if (p->pitch_gain[4] > 0.5 && !overflow) {
808         float energy = p->celpm_ctx.dot_productf(excitation, excitation,
809                                                     AMR_SUBFRAME_SIZE);
810         float pitch_factor =
811             p->pitch_gain[4] *
812             (p->cur_frame_mode == MODE_12k2 ?
813                 0.25 * FFMIN(p->pitch_gain[4], 1.0) :
814                 0.5  * FFMIN(p->pitch_gain[4], SHARP_MAX));
815 
816         for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
817             excitation[i] += pitch_factor * p->pitch_vector[i];
818 
819         ff_scale_vector_to_given_sum_of_squares(excitation, excitation, energy,
820                                                 AMR_SUBFRAME_SIZE);
821     }
822 
823     p->celpf_ctx.celp_lp_synthesis_filterf(samples, lpc, excitation,
824                                  AMR_SUBFRAME_SIZE,
825                                  LP_FILTER_ORDER);
826 
827     // detect overflow
828     for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
829         if (fabsf(samples[i]) > AMR_SAMPLE_BOUND) {
830             return 1;
831         }
832 
833     return 0;
834 }
835 
836 /// @}
837 
838 
839 /// @name AMR update functions
840 /// @{
841 
842 /**
843  * Update buffers and history at the end of decoding a subframe.
844  *
845  * @param p             pointer to the AMRContext
846  */
update_state(AMRContext * p)847 static void update_state(AMRContext *p)
848 {
849     memcpy(p->prev_lsp_sub4, p->lsp[3], LP_FILTER_ORDER * sizeof(p->lsp[3][0]));
850 
851     memmove(&p->excitation_buf[0], &p->excitation_buf[AMR_SUBFRAME_SIZE],
852             (PITCH_DELAY_MAX + LP_FILTER_ORDER + 1) * sizeof(float));
853 
854     memmove(&p->pitch_gain[0], &p->pitch_gain[1], 4 * sizeof(float));
855     memmove(&p->fixed_gain[0], &p->fixed_gain[1], 4 * sizeof(float));
856 
857     memmove(&p->samples_in[0], &p->samples_in[AMR_SUBFRAME_SIZE],
858             LP_FILTER_ORDER * sizeof(float));
859 }
860 
861 /// @}
862 
863 
864 /// @name AMR Postprocessing functions
865 /// @{
866 
867 /**
868  * Get the tilt factor of a formant filter from its transfer function
869  *
870  * @param p     The Context
871  * @param lpc_n LP_FILTER_ORDER coefficients of the numerator
872  * @param lpc_d LP_FILTER_ORDER coefficients of the denominator
873  */
tilt_factor(AMRContext * p,float * lpc_n,float * lpc_d)874 static float tilt_factor(AMRContext *p, float *lpc_n, float *lpc_d)
875 {
876     float rh0, rh1; // autocorrelation at lag 0 and 1
877 
878     // LP_FILTER_ORDER prior zeros are needed for ff_celp_lp_synthesis_filterf
879     float impulse_buffer[LP_FILTER_ORDER + AMR_TILT_RESPONSE] = { 0 };
880     float *hf = impulse_buffer + LP_FILTER_ORDER; // start of impulse response
881 
882     hf[0] = 1.0;
883     memcpy(hf + 1, lpc_n, sizeof(float) * LP_FILTER_ORDER);
884     p->celpf_ctx.celp_lp_synthesis_filterf(hf, lpc_d, hf,
885                                  AMR_TILT_RESPONSE,
886                                  LP_FILTER_ORDER);
887 
888     rh0 = p->celpm_ctx.dot_productf(hf, hf,     AMR_TILT_RESPONSE);
889     rh1 = p->celpm_ctx.dot_productf(hf, hf + 1, AMR_TILT_RESPONSE - 1);
890 
891     // The spec only specifies this check for 12.2 and 10.2 kbit/s
892     // modes. But in the ref source the tilt is always non-negative.
893     return rh1 >= 0.0 ? rh1 / rh0 * AMR_TILT_GAMMA_T : 0.0;
894 }
895 
896 /**
897  * Perform adaptive post-filtering to enhance the quality of the speech.
898  * See section 6.2.1.
899  *
900  * @param p             pointer to the AMRContext
901  * @param lpc           interpolated LP coefficients for this subframe
902  * @param buf_out       output of the filter
903  */
postfilter(AMRContext * p,float * lpc,float * buf_out)904 static void postfilter(AMRContext *p, float *lpc, float *buf_out)
905 {
906     int i;
907     float *samples          = p->samples_in + LP_FILTER_ORDER; // Start of input
908 
909     float speech_gain       = p->celpm_ctx.dot_productf(samples, samples,
910                                                            AMR_SUBFRAME_SIZE);
911 
912     float pole_out[AMR_SUBFRAME_SIZE + LP_FILTER_ORDER];  // Output of pole filter
913     const float *gamma_n, *gamma_d;                       // Formant filter factor table
914     float lpc_n[LP_FILTER_ORDER], lpc_d[LP_FILTER_ORDER]; // Transfer function coefficients
915 
916     if (p->cur_frame_mode == MODE_12k2 || p->cur_frame_mode == MODE_10k2) {
917         gamma_n = ff_pow_0_7;
918         gamma_d = ff_pow_0_75;
919     } else {
920         gamma_n = ff_pow_0_55;
921         gamma_d = ff_pow_0_7;
922     }
923 
924     for (i = 0; i < LP_FILTER_ORDER; i++) {
925          lpc_n[i] = lpc[i] * gamma_n[i];
926          lpc_d[i] = lpc[i] * gamma_d[i];
927     }
928 
929     memcpy(pole_out, p->postfilter_mem, sizeof(float) * LP_FILTER_ORDER);
930     p->celpf_ctx.celp_lp_synthesis_filterf(pole_out + LP_FILTER_ORDER, lpc_d, samples,
931                                  AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
932     memcpy(p->postfilter_mem, pole_out + AMR_SUBFRAME_SIZE,
933            sizeof(float) * LP_FILTER_ORDER);
934 
935     p->celpf_ctx.celp_lp_zero_synthesis_filterf(buf_out, lpc_n,
936                                       pole_out + LP_FILTER_ORDER,
937                                       AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
938 
939     ff_tilt_compensation(&p->tilt_mem, tilt_factor(p, lpc_n, lpc_d), buf_out,
940                          AMR_SUBFRAME_SIZE);
941 
942     ff_adaptive_gain_control(buf_out, buf_out, speech_gain, AMR_SUBFRAME_SIZE,
943                              AMR_AGC_ALPHA, &p->postfilter_agc);
944 }
945 
946 /// @}
947 
amrnb_decode_frame(AVCodecContext * avctx,void * data,int * got_frame_ptr,AVPacket * avpkt)948 static int amrnb_decode_frame(AVCodecContext *avctx, void *data,
949                               int *got_frame_ptr, AVPacket *avpkt)
950 {
951 
952     AMRContext *p = avctx->priv_data;        // pointer to private data
953     AVFrame *frame     = data;
954     const uint8_t *buf = avpkt->data;
955     int buf_size       = avpkt->size;
956     float *buf_out;                          // pointer to the output data buffer
957     int i, subframe, ret;
958     float fixed_gain_factor;
959     AMRFixed fixed_sparse = {0};             // fixed vector up to anti-sparseness processing
960     float spare_vector[AMR_SUBFRAME_SIZE];   // extra stack space to hold result from anti-sparseness processing
961     float synth_fixed_gain;                  // the fixed gain that synthesis should use
962     const float *synth_fixed_vector;         // pointer to the fixed vector that synthesis should use
963 
964     /* get output buffer */
965     frame->nb_samples = AMR_BLOCK_SIZE;
966     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
967         return ret;
968     buf_out = (float *)frame->data[0];
969 
970     p->cur_frame_mode = unpack_bitstream(p, buf, buf_size);
971     if (p->cur_frame_mode == NO_DATA) {
972         av_log(avctx, AV_LOG_ERROR, "Corrupt bitstream\n");
973         return AVERROR_INVALIDDATA;
974     }
975     if (p->cur_frame_mode == MODE_DTX) {
976         avpriv_report_missing_feature(avctx, "dtx mode");
977         av_log(avctx, AV_LOG_INFO, "Note: libopencore_amrnb supports dtx\n");
978         return AVERROR_PATCHWELCOME;
979     }
980 
981     if (p->cur_frame_mode == MODE_12k2) {
982         lsf2lsp_5(p);
983     } else
984         lsf2lsp_3(p);
985 
986     for (i = 0; i < 4; i++)
987         ff_acelp_lspd2lpc(p->lsp[i], p->lpc[i], 5);
988 
989     for (subframe = 0; subframe < 4; subframe++) {
990         const AMRNBSubframe *amr_subframe = &p->frame.subframe[subframe];
991 
992         decode_pitch_vector(p, amr_subframe, subframe);
993 
994         decode_fixed_sparse(&fixed_sparse, amr_subframe->pulses,
995                             p->cur_frame_mode, subframe);
996 
997         // The fixed gain (section 6.1.3) depends on the fixed vector
998         // (section 6.1.2), but the fixed vector calculation uses
999         // pitch sharpening based on the on the pitch gain (section 6.1.3).
1000         // So the correct order is: pitch gain, pitch sharpening, fixed gain.
1001         decode_gains(p, amr_subframe, p->cur_frame_mode, subframe,
1002                      &fixed_gain_factor);
1003 
1004         pitch_sharpening(p, subframe, p->cur_frame_mode, &fixed_sparse);
1005 
1006         if (fixed_sparse.pitch_lag == 0) {
1007             av_log(avctx, AV_LOG_ERROR, "The file is corrupted, pitch_lag = 0 is not allowed\n");
1008             return AVERROR_INVALIDDATA;
1009         }
1010         ff_set_fixed_vector(p->fixed_vector, &fixed_sparse, 1.0,
1011                             AMR_SUBFRAME_SIZE);
1012 
1013         p->fixed_gain[4] =
1014             ff_amr_set_fixed_gain(fixed_gain_factor,
1015                        p->celpm_ctx.dot_productf(p->fixed_vector,
1016                                                                p->fixed_vector,
1017                                                                AMR_SUBFRAME_SIZE) /
1018                                   AMR_SUBFRAME_SIZE,
1019                        p->prediction_error,
1020                        energy_mean[p->cur_frame_mode], energy_pred_fac);
1021 
1022         // The excitation feedback is calculated without any processing such
1023         // as fixed gain smoothing. This isn't mentioned in the specification.
1024         for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
1025             p->excitation[i] *= p->pitch_gain[4];
1026         ff_set_fixed_vector(p->excitation, &fixed_sparse, p->fixed_gain[4],
1027                             AMR_SUBFRAME_SIZE);
1028 
1029         // In the ref decoder, excitation is stored with no fractional bits.
1030         // This step prevents buzz in silent periods. The ref encoder can
1031         // emit long sequences with pitch factor greater than one. This
1032         // creates unwanted feedback if the excitation vector is nonzero.
1033         // (e.g. test sequence T19_795.COD in 3GPP TS 26.074)
1034         for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
1035             p->excitation[i] = truncf(p->excitation[i]);
1036 
1037         // Smooth fixed gain.
1038         // The specification is ambiguous, but in the reference source, the
1039         // smoothed value is NOT fed back into later fixed gain smoothing.
1040         synth_fixed_gain = fixed_gain_smooth(p, p->lsf_q[subframe],
1041                                              p->lsf_avg, p->cur_frame_mode);
1042 
1043         synth_fixed_vector = anti_sparseness(p, &fixed_sparse, p->fixed_vector,
1044                                              synth_fixed_gain, spare_vector);
1045 
1046         if (synthesis(p, p->lpc[subframe], synth_fixed_gain,
1047                       synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 0))
1048             // overflow detected -> rerun synthesis scaling pitch vector down
1049             // by a factor of 4, skipping pitch vector contribution emphasis
1050             // and adaptive gain control
1051             synthesis(p, p->lpc[subframe], synth_fixed_gain,
1052                       synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 1);
1053 
1054         postfilter(p, p->lpc[subframe], buf_out + subframe * AMR_SUBFRAME_SIZE);
1055 
1056         // update buffers and history
1057         ff_clear_fixed_vector(p->fixed_vector, &fixed_sparse, AMR_SUBFRAME_SIZE);
1058         update_state(p);
1059     }
1060 
1061     p->acelpf_ctx.acelp_apply_order_2_transfer_function(buf_out,
1062                                              buf_out, highpass_zeros,
1063                                              highpass_poles,
1064                                              highpass_gain * AMR_SAMPLE_SCALE,
1065                                              p->high_pass_mem, AMR_BLOCK_SIZE);
1066 
1067     /* Update averaged lsf vector (used for fixed gain smoothing).
1068      *
1069      * Note that lsf_avg should not incorporate the current frame's LSFs
1070      * for fixed_gain_smooth.
1071      * The specification has an incorrect formula: the reference decoder uses
1072      * qbar(n-1) rather than qbar(n) in section 6.1(4) equation 71. */
1073     p->acelpv_ctx.weighted_vector_sumf(p->lsf_avg, p->lsf_avg, p->lsf_q[3],
1074                             0.84, 0.16, LP_FILTER_ORDER);
1075 
1076     *got_frame_ptr = 1;
1077 
1078     /* return the amount of bytes consumed if everything was OK */
1079     return frame_sizes_nb[p->cur_frame_mode] + 1; // +7 for rounding and +8 for TOC
1080 }
1081 
1082 
1083 AVCodec ff_amrnb_decoder = {
1084     .name           = "amrnb",
1085     .long_name      = NULL_IF_CONFIG_SMALL("AMR-NB (Adaptive Multi-Rate NarrowBand)"),
1086     .type           = AVMEDIA_TYPE_AUDIO,
1087     .id             = AV_CODEC_ID_AMR_NB,
1088     .priv_data_size = sizeof(AMRContext),
1089     .init           = amrnb_decode_init,
1090     .decode         = amrnb_decode_frame,
1091     .capabilities   = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
1092     .sample_fmts    = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
1093                                                      AV_SAMPLE_FMT_NONE },
1094 };
1095