1 /*
2 * ATRAC3+ compatible decoder
3 *
4 * Copyright (c) 2010-2013 Maxim Poliakovski
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file
25 * Bitstream parser for ATRAC3+ decoder.
26 */
27
28 #include "libavutil/avassert.h"
29 #include "avcodec.h"
30 #include "get_bits.h"
31 #include "atrac3plus.h"
32 #include "atrac3plus_data.h"
33
34 static VLC_TYPE tables_data[154276][2];
35 static VLC wl_vlc_tabs[4];
36 static VLC sf_vlc_tabs[8];
37 static VLC ct_vlc_tabs[4];
38 static VLC spec_vlc_tabs[112];
39 static VLC gain_vlc_tabs[11];
40 static VLC tone_vlc_tabs[7];
41
42 /**
43 * Generate canonical VLC table from given descriptor.
44 *
45 * @param[in] cb ptr to codebook descriptor
46 * @param[in,out] xlat ptr to ptr to translation table
47 * @param[in,out] tab_offset starting offset to the generated vlc table
48 * @param[out] out_vlc ptr to vlc table to be generated
49 */
build_canonical_huff(const uint8_t * cb,const uint8_t ** xlat,int * tab_offset,VLC * out_vlc)50 static av_cold void build_canonical_huff(const uint8_t *cb, const uint8_t **xlat,
51 int *tab_offset, VLC *out_vlc)
52 {
53 int i, max_len;
54 uint8_t bits[256];
55 int index = 0;
56
57 for (int b = 1; b <= 12; b++) {
58 for (i = *cb++; i > 0; i--) {
59 av_assert0(index < 256);
60 bits[index] = b;
61 index++;
62 }
63 }
64 max_len = bits[index - 1];
65
66 out_vlc->table = &tables_data[*tab_offset];
67 out_vlc->table_allocated = 1 << max_len;
68
69 ff_init_vlc_from_lengths(out_vlc, max_len, index, bits, 1,
70 *xlat, 1, 1, 0, INIT_VLC_USE_NEW_STATIC, NULL);
71
72 *tab_offset += 1 << max_len;
73 *xlat += index;
74 }
75
ff_atrac3p_init_vlcs(void)76 av_cold void ff_atrac3p_init_vlcs(void)
77 {
78 int i, tab_offset = 0;
79 const uint8_t *xlats;
80
81 xlats = atrac3p_wl_ct_xlats;
82 for (int i = 0; i < 4; i++) {
83 build_canonical_huff(atrac3p_wl_cbs[i], &xlats,
84 &tab_offset, &wl_vlc_tabs[i]);
85 build_canonical_huff(atrac3p_ct_cbs[i], &xlats,
86 &tab_offset, &ct_vlc_tabs[i]);
87 }
88
89 xlats = atrac3p_sf_xlats;
90 for (int i = 0; i < 8; i++)
91 build_canonical_huff(atrac3p_sf_cbs[i], &xlats,
92 &tab_offset, &sf_vlc_tabs[i]);
93
94 /* build huffman tables for spectrum decoding */
95 xlats = atrac3p_spectra_xlats;
96 for (i = 0; i < 112; i++) {
97 if (atrac3p_spectra_cbs[i][0] >= 0)
98 build_canonical_huff(atrac3p_spectra_cbs[i],
99 &xlats, &tab_offset, &spec_vlc_tabs[i]);
100 else /* Reuse already initialized VLC table */
101 spec_vlc_tabs[i] = spec_vlc_tabs[-atrac3p_spectra_cbs[i][0]];
102 }
103
104 /* build huffman tables for gain data decoding */
105 xlats = atrac3p_gain_xlats;
106 for (i = 0; i < 11; i++)
107 build_canonical_huff(atrac3p_gain_cbs[i], &xlats,
108 &tab_offset, &gain_vlc_tabs[i]);
109
110 /* build huffman tables for tone decoding */
111 xlats = atrac3p_tone_xlats;
112 for (i = 0; i < 7; i++)
113 build_canonical_huff(atrac3p_tone_cbs[i], &xlats,
114 &tab_offset, &tone_vlc_tabs[i]);
115 }
116
117 /**
118 * Decode number of coded quantization units.
119 *
120 * @param[in] gb the GetBit context
121 * @param[in,out] chan ptr to the channel parameters
122 * @param[in,out] ctx ptr to the channel unit context
123 * @param[in] avctx ptr to the AVCodecContext
124 * @return result code: 0 = OK, otherwise - error code
125 */
num_coded_units(GetBitContext * gb,Atrac3pChanParams * chan,Atrac3pChanUnitCtx * ctx,AVCodecContext * avctx)126 static int num_coded_units(GetBitContext *gb, Atrac3pChanParams *chan,
127 Atrac3pChanUnitCtx *ctx, AVCodecContext *avctx)
128 {
129 chan->fill_mode = get_bits(gb, 2);
130 if (!chan->fill_mode) {
131 chan->num_coded_vals = ctx->num_quant_units;
132 } else {
133 chan->num_coded_vals = get_bits(gb, 5);
134 if (chan->num_coded_vals > ctx->num_quant_units) {
135 av_log(avctx, AV_LOG_ERROR,
136 "Invalid number of transmitted units!\n");
137 return AVERROR_INVALIDDATA;
138 }
139
140 if (chan->fill_mode == 3)
141 chan->split_point = get_bits(gb, 2) + (chan->ch_num << 1) + 1;
142 }
143
144 return 0;
145 }
146
147 /**
148 * Add weighting coefficients to the decoded word-length information.
149 *
150 * @param[in,out] ctx ptr to the channel unit context
151 * @param[in,out] chan ptr to the channel parameters
152 * @param[in] wtab_idx index of the table of weights
153 * @param[in] avctx ptr to the AVCodecContext
154 * @return result code: 0 = OK, otherwise - error code
155 */
add_wordlen_weights(Atrac3pChanUnitCtx * ctx,Atrac3pChanParams * chan,int wtab_idx,AVCodecContext * avctx)156 static int add_wordlen_weights(Atrac3pChanUnitCtx *ctx,
157 Atrac3pChanParams *chan, int wtab_idx,
158 AVCodecContext *avctx)
159 {
160 int i;
161 const int8_t *weights_tab =
162 &atrac3p_wl_weights[chan->ch_num * 3 + wtab_idx - 1][0];
163
164 for (i = 0; i < ctx->num_quant_units; i++) {
165 chan->qu_wordlen[i] += weights_tab[i];
166 if (chan->qu_wordlen[i] < 0 || chan->qu_wordlen[i] > 7) {
167 av_log(avctx, AV_LOG_ERROR,
168 "WL index out of range: pos=%d, val=%d!\n",
169 i, chan->qu_wordlen[i]);
170 return AVERROR_INVALIDDATA;
171 }
172 }
173
174 return 0;
175 }
176
177 /**
178 * Subtract weighting coefficients from decoded scalefactors.
179 *
180 * @param[in,out] ctx ptr to the channel unit context
181 * @param[in,out] chan ptr to the channel parameters
182 * @param[in] wtab_idx index of table of weights
183 * @param[in] avctx ptr to the AVCodecContext
184 * @return result code: 0 = OK, otherwise - error code
185 */
subtract_sf_weights(Atrac3pChanUnitCtx * ctx,Atrac3pChanParams * chan,int wtab_idx,AVCodecContext * avctx)186 static int subtract_sf_weights(Atrac3pChanUnitCtx *ctx,
187 Atrac3pChanParams *chan, int wtab_idx,
188 AVCodecContext *avctx)
189 {
190 int i;
191 const int8_t *weights_tab = &atrac3p_sf_weights[wtab_idx - 1][0];
192
193 for (i = 0; i < ctx->used_quant_units; i++) {
194 chan->qu_sf_idx[i] -= weights_tab[i];
195 if (chan->qu_sf_idx[i] < 0 || chan->qu_sf_idx[i] > 63) {
196 av_log(avctx, AV_LOG_ERROR,
197 "SF index out of range: pos=%d, val=%d!\n",
198 i, chan->qu_sf_idx[i]);
199 return AVERROR_INVALIDDATA;
200 }
201 }
202
203 return 0;
204 }
205
206 /**
207 * Unpack vector quantization tables.
208 *
209 * @param[in] start_val start value for the unpacked table
210 * @param[in] shape_vec ptr to table to unpack
211 * @param[out] dst ptr to output array
212 * @param[in] num_values number of values to unpack
213 */
unpack_vq_shape(int start_val,const int8_t * shape_vec,int * dst,int num_values)214 static inline void unpack_vq_shape(int start_val, const int8_t *shape_vec,
215 int *dst, int num_values)
216 {
217 int i;
218
219 if (num_values) {
220 dst[0] = dst[1] = dst[2] = start_val;
221 for (i = 3; i < num_values; i++)
222 dst[i] = start_val - shape_vec[atrac3p_qu_num_to_seg[i] - 1];
223 }
224 }
225
226 #define UNPACK_SF_VQ_SHAPE(gb, dst, num_vals) \
227 start_val = get_bits((gb), 6); \
228 unpack_vq_shape(start_val, &atrac3p_sf_shapes[get_bits((gb), 6)][0], \
229 (dst), (num_vals))
230
231 /**
232 * Decode word length for each quantization unit of a channel.
233 *
234 * @param[in] gb the GetBit context
235 * @param[in,out] ctx ptr to the channel unit context
236 * @param[in] ch_num channel to process
237 * @param[in] avctx ptr to the AVCodecContext
238 * @return result code: 0 = OK, otherwise - error code
239 */
decode_channel_wordlen(GetBitContext * gb,Atrac3pChanUnitCtx * ctx,int ch_num,AVCodecContext * avctx)240 static int decode_channel_wordlen(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
241 int ch_num, AVCodecContext *avctx)
242 {
243 int i, weight_idx = 0, delta, diff, pos, delta_bits, min_val, flag,
244 ret, start_val;
245 VLC *vlc_tab;
246 Atrac3pChanParams *chan = &ctx->channels[ch_num];
247 Atrac3pChanParams *ref_chan = &ctx->channels[0];
248
249 chan->fill_mode = 0;
250
251 switch (get_bits(gb, 2)) { /* switch according to coding mode */
252 case 0: /* coded using constant number of bits */
253 for (i = 0; i < ctx->num_quant_units; i++)
254 chan->qu_wordlen[i] = get_bits(gb, 3);
255 break;
256 case 1:
257 if (ch_num) {
258 if ((ret = num_coded_units(gb, chan, ctx, avctx)) < 0)
259 return ret;
260
261 if (chan->num_coded_vals) {
262 vlc_tab = &wl_vlc_tabs[get_bits(gb, 2)];
263
264 for (i = 0; i < chan->num_coded_vals; i++) {
265 delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
266 chan->qu_wordlen[i] = (ref_chan->qu_wordlen[i] + delta) & 7;
267 }
268 }
269 } else {
270 weight_idx = get_bits(gb, 2);
271 if ((ret = num_coded_units(gb, chan, ctx, avctx)) < 0)
272 return ret;
273
274 if (chan->num_coded_vals) {
275 pos = get_bits(gb, 5);
276 if (pos > chan->num_coded_vals) {
277 av_log(avctx, AV_LOG_ERROR,
278 "WL mode 1: invalid position!\n");
279 return AVERROR_INVALIDDATA;
280 }
281
282 delta_bits = get_bits(gb, 2);
283 min_val = get_bits(gb, 3);
284
285 for (i = 0; i < pos; i++)
286 chan->qu_wordlen[i] = get_bits(gb, 3);
287
288 for (i = pos; i < chan->num_coded_vals; i++)
289 chan->qu_wordlen[i] = (min_val + get_bitsz(gb, delta_bits)) & 7;
290 }
291 }
292 break;
293 case 2:
294 if ((ret = num_coded_units(gb, chan, ctx, avctx)) < 0)
295 return ret;
296
297 if (ch_num && chan->num_coded_vals) {
298 vlc_tab = &wl_vlc_tabs[get_bits(gb, 2)];
299 delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
300 chan->qu_wordlen[0] = (ref_chan->qu_wordlen[0] + delta) & 7;
301
302 for (i = 1; i < chan->num_coded_vals; i++) {
303 diff = ref_chan->qu_wordlen[i] - ref_chan->qu_wordlen[i - 1];
304 delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
305 chan->qu_wordlen[i] = (chan->qu_wordlen[i - 1] + diff + delta) & 7;
306 }
307 } else if (chan->num_coded_vals) {
308 flag = get_bits(gb, 1);
309 vlc_tab = &wl_vlc_tabs[get_bits(gb, 1)];
310
311 start_val = get_bits(gb, 3);
312 unpack_vq_shape(start_val,
313 &atrac3p_wl_shapes[start_val][get_bits(gb, 4)][0],
314 chan->qu_wordlen, chan->num_coded_vals);
315
316 if (!flag) {
317 for (i = 0; i < chan->num_coded_vals; i++) {
318 delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
319 chan->qu_wordlen[i] = (chan->qu_wordlen[i] + delta) & 7;
320 }
321 } else {
322 for (i = 0; i < (chan->num_coded_vals & - 2); i += 2)
323 if (!get_bits1(gb)) {
324 chan->qu_wordlen[i] = (chan->qu_wordlen[i] +
325 get_vlc2(gb, vlc_tab->table,
326 vlc_tab->bits, 1)) & 7;
327 chan->qu_wordlen[i + 1] = (chan->qu_wordlen[i + 1] +
328 get_vlc2(gb, vlc_tab->table,
329 vlc_tab->bits, 1)) & 7;
330 }
331
332 if (chan->num_coded_vals & 1)
333 chan->qu_wordlen[i] = (chan->qu_wordlen[i] +
334 get_vlc2(gb, vlc_tab->table,
335 vlc_tab->bits, 1)) & 7;
336 }
337 }
338 break;
339 case 3:
340 weight_idx = get_bits(gb, 2);
341 if ((ret = num_coded_units(gb, chan, ctx, avctx)) < 0)
342 return ret;
343
344 if (chan->num_coded_vals) {
345 vlc_tab = &wl_vlc_tabs[get_bits(gb, 2)];
346
347 /* first coefficient is coded directly */
348 chan->qu_wordlen[0] = get_bits(gb, 3);
349
350 for (i = 1; i < chan->num_coded_vals; i++) {
351 delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
352 chan->qu_wordlen[i] = (chan->qu_wordlen[i - 1] + delta) & 7;
353 }
354 }
355 break;
356 }
357
358 if (chan->fill_mode == 2) {
359 for (i = chan->num_coded_vals; i < ctx->num_quant_units; i++)
360 chan->qu_wordlen[i] = ch_num ? get_bits1(gb) : 1;
361 } else if (chan->fill_mode == 3) {
362 pos = ch_num ? chan->num_coded_vals + chan->split_point
363 : ctx->num_quant_units - chan->split_point;
364 if (pos > FF_ARRAY_ELEMS(chan->qu_wordlen)) {
365 av_log(avctx, AV_LOG_ERROR, "Split point beyond array\n");
366 pos = FF_ARRAY_ELEMS(chan->qu_wordlen);
367 }
368 for (i = chan->num_coded_vals; i < pos; i++)
369 chan->qu_wordlen[i] = 1;
370 }
371
372 if (weight_idx)
373 return add_wordlen_weights(ctx, chan, weight_idx, avctx);
374
375 return 0;
376 }
377
378 /**
379 * Decode scale factor indexes for each quant unit of a channel.
380 *
381 * @param[in] gb the GetBit context
382 * @param[in,out] ctx ptr to the channel unit context
383 * @param[in] ch_num channel to process
384 * @param[in] avctx ptr to the AVCodecContext
385 * @return result code: 0 = OK, otherwise - error code
386 */
decode_channel_sf_idx(GetBitContext * gb,Atrac3pChanUnitCtx * ctx,int ch_num,AVCodecContext * avctx)387 static int decode_channel_sf_idx(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
388 int ch_num, AVCodecContext *avctx)
389 {
390 int i, weight_idx = 0, delta, diff, num_long_vals,
391 delta_bits, min_val, vlc_sel, start_val;
392 VLC *vlc_tab;
393 Atrac3pChanParams *chan = &ctx->channels[ch_num];
394 Atrac3pChanParams *ref_chan = &ctx->channels[0];
395
396 switch (get_bits(gb, 2)) { /* switch according to coding mode */
397 case 0: /* coded using constant number of bits */
398 for (i = 0; i < ctx->used_quant_units; i++)
399 chan->qu_sf_idx[i] = get_bits(gb, 6);
400 break;
401 case 1:
402 if (ch_num) {
403 vlc_tab = &sf_vlc_tabs[get_bits(gb, 2)];
404
405 for (i = 0; i < ctx->used_quant_units; i++) {
406 delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
407 chan->qu_sf_idx[i] = (ref_chan->qu_sf_idx[i] + delta) & 0x3F;
408 }
409 } else {
410 weight_idx = get_bits(gb, 2);
411 if (weight_idx == 3) {
412 UNPACK_SF_VQ_SHAPE(gb, chan->qu_sf_idx, ctx->used_quant_units);
413
414 num_long_vals = get_bits(gb, 5);
415 delta_bits = get_bits(gb, 2);
416 min_val = get_bits(gb, 4) - 7;
417
418 for (i = 0; i < num_long_vals; i++)
419 chan->qu_sf_idx[i] = (chan->qu_sf_idx[i] +
420 get_bits(gb, 4) - 7) & 0x3F;
421
422 /* all others are: min_val + delta */
423 for (i = num_long_vals; i < ctx->used_quant_units; i++)
424 chan->qu_sf_idx[i] = (chan->qu_sf_idx[i] + min_val +
425 get_bitsz(gb, delta_bits)) & 0x3F;
426 } else {
427 num_long_vals = get_bits(gb, 5);
428 delta_bits = get_bits(gb, 3);
429 min_val = get_bits(gb, 6);
430 if (num_long_vals > ctx->used_quant_units || delta_bits == 7) {
431 av_log(avctx, AV_LOG_ERROR,
432 "SF mode 1: invalid parameters!\n");
433 return AVERROR_INVALIDDATA;
434 }
435
436 /* read full-precision SF indexes */
437 for (i = 0; i < num_long_vals; i++)
438 chan->qu_sf_idx[i] = get_bits(gb, 6);
439
440 /* all others are: min_val + delta */
441 for (i = num_long_vals; i < ctx->used_quant_units; i++)
442 chan->qu_sf_idx[i] = (min_val +
443 get_bitsz(gb, delta_bits)) & 0x3F;
444 }
445 }
446 break;
447 case 2:
448 if (ch_num) {
449 vlc_tab = &sf_vlc_tabs[get_bits(gb, 2)];
450
451 delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
452 chan->qu_sf_idx[0] = (ref_chan->qu_sf_idx[0] + delta) & 0x3F;
453
454 for (i = 1; i < ctx->used_quant_units; i++) {
455 diff = ref_chan->qu_sf_idx[i] - ref_chan->qu_sf_idx[i - 1];
456 delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
457 chan->qu_sf_idx[i] = (chan->qu_sf_idx[i - 1] + diff + delta) & 0x3F;
458 }
459 } else {
460 vlc_tab = &sf_vlc_tabs[get_bits(gb, 2) + 4];
461
462 UNPACK_SF_VQ_SHAPE(gb, chan->qu_sf_idx, ctx->used_quant_units);
463
464 for (i = 0; i < ctx->used_quant_units; i++) {
465 delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
466 chan->qu_sf_idx[i] = (chan->qu_sf_idx[i] +
467 sign_extend(delta, 4)) & 0x3F;
468 }
469 }
470 break;
471 case 3:
472 if (ch_num) {
473 /* copy coefficients from reference channel */
474 for (i = 0; i < ctx->used_quant_units; i++)
475 chan->qu_sf_idx[i] = ref_chan->qu_sf_idx[i];
476 } else {
477 weight_idx = get_bits(gb, 2);
478 vlc_sel = get_bits(gb, 2);
479 vlc_tab = &sf_vlc_tabs[vlc_sel];
480
481 if (weight_idx == 3) {
482 vlc_tab = &sf_vlc_tabs[vlc_sel + 4];
483
484 UNPACK_SF_VQ_SHAPE(gb, chan->qu_sf_idx, ctx->used_quant_units);
485
486 diff = (get_bits(gb, 4) + 56) & 0x3F;
487 chan->qu_sf_idx[0] = (chan->qu_sf_idx[0] + diff) & 0x3F;
488
489 for (i = 1; i < ctx->used_quant_units; i++) {
490 delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
491 diff = (diff + sign_extend(delta, 4)) & 0x3F;
492 chan->qu_sf_idx[i] = (diff + chan->qu_sf_idx[i]) & 0x3F;
493 }
494 } else {
495 /* 1st coefficient is coded directly */
496 chan->qu_sf_idx[0] = get_bits(gb, 6);
497
498 for (i = 1; i < ctx->used_quant_units; i++) {
499 delta = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
500 chan->qu_sf_idx[i] = (chan->qu_sf_idx[i - 1] + delta) & 0x3F;
501 }
502 }
503 }
504 break;
505 }
506
507 if (weight_idx && weight_idx < 3)
508 return subtract_sf_weights(ctx, chan, weight_idx, avctx);
509
510 return 0;
511 }
512
513 /**
514 * Decode word length information for each channel.
515 *
516 * @param[in] gb the GetBit context
517 * @param[in,out] ctx ptr to the channel unit context
518 * @param[in] num_channels number of channels to process
519 * @param[in] avctx ptr to the AVCodecContext
520 * @return result code: 0 = OK, otherwise - error code
521 */
decode_quant_wordlen(GetBitContext * gb,Atrac3pChanUnitCtx * ctx,int num_channels,AVCodecContext * avctx)522 static int decode_quant_wordlen(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
523 int num_channels, AVCodecContext *avctx)
524 {
525 int ch_num, i, ret;
526
527 for (ch_num = 0; ch_num < num_channels; ch_num++) {
528 memset(ctx->channels[ch_num].qu_wordlen, 0,
529 sizeof(ctx->channels[ch_num].qu_wordlen));
530
531 if ((ret = decode_channel_wordlen(gb, ctx, ch_num, avctx)) < 0)
532 return ret;
533 }
534
535 /* scan for last non-zero coeff in both channels and
536 * set number of quant units having coded spectrum */
537 for (i = ctx->num_quant_units - 1; i >= 0; i--)
538 if (ctx->channels[0].qu_wordlen[i] ||
539 (num_channels == 2 && ctx->channels[1].qu_wordlen[i]))
540 break;
541 ctx->used_quant_units = i + 1;
542
543 return 0;
544 }
545
546 /**
547 * Decode scale factor indexes for each channel.
548 *
549 * @param[in] gb the GetBit context
550 * @param[in,out] ctx ptr to the channel unit context
551 * @param[in] num_channels number of channels to process
552 * @param[in] avctx ptr to the AVCodecContext
553 * @return result code: 0 = OK, otherwise - error code
554 */
decode_scale_factors(GetBitContext * gb,Atrac3pChanUnitCtx * ctx,int num_channels,AVCodecContext * avctx)555 static int decode_scale_factors(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
556 int num_channels, AVCodecContext *avctx)
557 {
558 int ch_num, ret;
559
560 if (!ctx->used_quant_units)
561 return 0;
562
563 for (ch_num = 0; ch_num < num_channels; ch_num++) {
564 memset(ctx->channels[ch_num].qu_sf_idx, 0,
565 sizeof(ctx->channels[ch_num].qu_sf_idx));
566
567 if ((ret = decode_channel_sf_idx(gb, ctx, ch_num, avctx)) < 0)
568 return ret;
569 }
570
571 return 0;
572 }
573
574 /**
575 * Decode number of code table values.
576 *
577 * @param[in] gb the GetBit context
578 * @param[in,out] ctx ptr to the channel unit context
579 * @param[in] avctx ptr to the AVCodecContext
580 * @return result code: 0 = OK, otherwise - error code
581 */
get_num_ct_values(GetBitContext * gb,Atrac3pChanUnitCtx * ctx,AVCodecContext * avctx)582 static int get_num_ct_values(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
583 AVCodecContext *avctx)
584 {
585 int num_coded_vals;
586
587 if (get_bits1(gb)) {
588 num_coded_vals = get_bits(gb, 5);
589 if (num_coded_vals > ctx->used_quant_units) {
590 av_log(avctx, AV_LOG_ERROR,
591 "Invalid number of code table indexes: %d!\n", num_coded_vals);
592 return AVERROR_INVALIDDATA;
593 }
594 return num_coded_vals;
595 } else
596 return ctx->used_quant_units;
597 }
598
599 #define DEC_CT_IDX_COMMON(OP) \
600 num_vals = get_num_ct_values(gb, ctx, avctx); \
601 if (num_vals < 0) \
602 return num_vals; \
603 \
604 for (i = 0; i < num_vals; i++) { \
605 if (chan->qu_wordlen[i]) { \
606 chan->qu_tab_idx[i] = OP; \
607 } else if (ch_num && ref_chan->qu_wordlen[i]) \
608 /* get clone master flag */ \
609 chan->qu_tab_idx[i] = get_bits1(gb); \
610 }
611
612 #define CODING_DIRECT get_bits(gb, num_bits)
613
614 #define CODING_VLC get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1)
615
616 #define CODING_VLC_DELTA \
617 (!i) ? CODING_VLC \
618 : (pred + get_vlc2(gb, delta_vlc->table, \
619 delta_vlc->bits, 1)) & mask; \
620 pred = chan->qu_tab_idx[i]
621
622 #define CODING_VLC_DIFF \
623 (ref_chan->qu_tab_idx[i] + \
624 get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1)) & mask
625
626 /**
627 * Decode code table indexes for each quant unit of a channel.
628 *
629 * @param[in] gb the GetBit context
630 * @param[in,out] ctx ptr to the channel unit context
631 * @param[in] ch_num channel to process
632 * @param[in] avctx ptr to the AVCodecContext
633 * @return result code: 0 = OK, otherwise - error code
634 */
decode_channel_code_tab(GetBitContext * gb,Atrac3pChanUnitCtx * ctx,int ch_num,AVCodecContext * avctx)635 static int decode_channel_code_tab(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
636 int ch_num, AVCodecContext *avctx)
637 {
638 int i, num_vals, num_bits, pred;
639 int mask = ctx->use_full_table ? 7 : 3; /* mask for modular arithmetic */
640 VLC *vlc_tab, *delta_vlc;
641 Atrac3pChanParams *chan = &ctx->channels[ch_num];
642 Atrac3pChanParams *ref_chan = &ctx->channels[0];
643
644 chan->table_type = get_bits1(gb);
645
646 switch (get_bits(gb, 2)) { /* switch according to coding mode */
647 case 0: /* directly coded */
648 num_bits = ctx->use_full_table + 2;
649 DEC_CT_IDX_COMMON(CODING_DIRECT);
650 break;
651 case 1: /* entropy-coded */
652 vlc_tab = ctx->use_full_table ? &ct_vlc_tabs[1]
653 : ct_vlc_tabs;
654 DEC_CT_IDX_COMMON(CODING_VLC);
655 break;
656 case 2: /* entropy-coded delta */
657 if (ctx->use_full_table) {
658 vlc_tab = &ct_vlc_tabs[1];
659 delta_vlc = &ct_vlc_tabs[2];
660 } else {
661 vlc_tab = ct_vlc_tabs;
662 delta_vlc = ct_vlc_tabs;
663 }
664 pred = 0;
665 DEC_CT_IDX_COMMON(CODING_VLC_DELTA);
666 break;
667 case 3: /* entropy-coded difference to master */
668 if (ch_num) {
669 vlc_tab = ctx->use_full_table ? &ct_vlc_tabs[3]
670 : ct_vlc_tabs;
671 DEC_CT_IDX_COMMON(CODING_VLC_DIFF);
672 }
673 break;
674 }
675
676 return 0;
677 }
678
679 /**
680 * Decode code table indexes for each channel.
681 *
682 * @param[in] gb the GetBit context
683 * @param[in,out] ctx ptr to the channel unit context
684 * @param[in] num_channels number of channels to process
685 * @param[in] avctx ptr to the AVCodecContext
686 * @return result code: 0 = OK, otherwise - error code
687 */
decode_code_table_indexes(GetBitContext * gb,Atrac3pChanUnitCtx * ctx,int num_channels,AVCodecContext * avctx)688 static int decode_code_table_indexes(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
689 int num_channels, AVCodecContext *avctx)
690 {
691 int ch_num, ret;
692
693 if (!ctx->used_quant_units)
694 return 0;
695
696 ctx->use_full_table = get_bits1(gb);
697
698 for (ch_num = 0; ch_num < num_channels; ch_num++) {
699 memset(ctx->channels[ch_num].qu_tab_idx, 0,
700 sizeof(ctx->channels[ch_num].qu_tab_idx));
701
702 if ((ret = decode_channel_code_tab(gb, ctx, ch_num, avctx)) < 0)
703 return ret;
704 }
705
706 return 0;
707 }
708
709 /**
710 * Decode huffman-coded spectral lines for a given quant unit.
711 *
712 * This is a generalized version for all known coding modes.
713 * Its speed can be improved by creating separate functions for each mode.
714 *
715 * @param[in] gb the GetBit context
716 * @param[in] tab code table telling how to decode spectral lines
717 * @param[in] vlc_tab ptr to the huffman table associated with the code table
718 * @param[out] out pointer to buffer where decoded data should be stored
719 * @param[in] num_specs number of spectral lines to decode
720 */
decode_qu_spectra(GetBitContext * gb,const Atrac3pSpecCodeTab * tab,VLC * vlc_tab,int16_t * out,const int num_specs)721 static void decode_qu_spectra(GetBitContext *gb, const Atrac3pSpecCodeTab *tab,
722 VLC *vlc_tab, int16_t *out, const int num_specs)
723 {
724 int i, j, pos, cf;
725 int group_size = tab->group_size;
726 int num_coeffs = tab->num_coeffs;
727 int bits = tab->bits;
728 int is_signed = tab->is_signed;
729 unsigned val;
730
731 for (pos = 0; pos < num_specs;) {
732 if (group_size == 1 || get_bits1(gb)) {
733 for (j = 0; j < group_size; j++) {
734 val = get_vlc2(gb, vlc_tab->table, vlc_tab->bits, 1);
735
736 for (i = 0; i < num_coeffs; i++) {
737 cf = av_mod_uintp2(val, bits);
738 if (is_signed)
739 cf = sign_extend(cf, bits);
740 else if (cf && get_bits1(gb))
741 cf = -cf;
742
743 out[pos++] = cf;
744 val >>= bits;
745 }
746 }
747 } else /* group skipped */
748 pos += group_size * num_coeffs;
749 }
750 }
751
752 /**
753 * Decode huffman-coded IMDCT spectrum for all channels.
754 *
755 * @param[in] gb the GetBit context
756 * @param[in,out] ctx ptr to the channel unit context
757 * @param[in] num_channels number of channels to process
758 * @param[in] avctx ptr to the AVCodecContext
759 */
decode_spectrum(GetBitContext * gb,Atrac3pChanUnitCtx * ctx,int num_channels,AVCodecContext * avctx)760 static void decode_spectrum(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
761 int num_channels, AVCodecContext *avctx)
762 {
763 int i, ch_num, qu, wordlen, codetab, tab_index, num_specs;
764 const Atrac3pSpecCodeTab *tab;
765 Atrac3pChanParams *chan;
766
767 for (ch_num = 0; ch_num < num_channels; ch_num++) {
768 chan = &ctx->channels[ch_num];
769
770 memset(chan->spectrum, 0, sizeof(chan->spectrum));
771
772 /* set power compensation level to disabled */
773 memset(chan->power_levs, ATRAC3P_POWER_COMP_OFF, sizeof(chan->power_levs));
774
775 for (qu = 0; qu < ctx->used_quant_units; qu++) {
776 num_specs = ff_atrac3p_qu_to_spec_pos[qu + 1] -
777 ff_atrac3p_qu_to_spec_pos[qu];
778
779 wordlen = chan->qu_wordlen[qu];
780 codetab = chan->qu_tab_idx[qu];
781 if (wordlen) {
782 if (!ctx->use_full_table)
783 codetab = atrac3p_ct_restricted_to_full[chan->table_type][wordlen - 1][codetab];
784
785 tab_index = (chan->table_type * 8 + codetab) * 7 + wordlen - 1;
786 tab = &atrac3p_spectra_tabs[tab_index];
787
788 decode_qu_spectra(gb, tab, &spec_vlc_tabs[tab_index],
789 &chan->spectrum[ff_atrac3p_qu_to_spec_pos[qu]],
790 num_specs);
791 } else if (ch_num && ctx->channels[0].qu_wordlen[qu] && !codetab) {
792 /* copy coefficients from master */
793 memcpy(&chan->spectrum[ff_atrac3p_qu_to_spec_pos[qu]],
794 &ctx->channels[0].spectrum[ff_atrac3p_qu_to_spec_pos[qu]],
795 num_specs *
796 sizeof(chan->spectrum[ff_atrac3p_qu_to_spec_pos[qu]]));
797 chan->qu_wordlen[qu] = ctx->channels[0].qu_wordlen[qu];
798 }
799 }
800
801 /* Power compensation levels only present in the bitstream
802 * if there are more than 2 quant units. The lowest two units
803 * correspond to the frequencies 0...351 Hz, whose shouldn't
804 * be affected by the power compensation. */
805 if (ctx->used_quant_units > 2) {
806 num_specs = atrac3p_subband_to_num_powgrps[ctx->num_coded_subbands - 1];
807 for (i = 0; i < num_specs; i++)
808 chan->power_levs[i] = get_bits(gb, 4);
809 }
810 }
811 }
812
813 /**
814 * Retrieve specified amount of flag bits from the input bitstream.
815 * The data can be shortened in the case of the following two common conditions:
816 * if all bits are zero then only one signal bit = 0 will be stored,
817 * if all bits are ones then two signal bits = 1,0 will be stored.
818 * Otherwise, all necessary bits will be directly stored
819 * prefixed by two signal bits = 1,1.
820 *
821 * @param[in] gb ptr to the GetBitContext
822 * @param[out] out where to place decoded flags
823 * @param[in] num_flags number of flags to process
824 * @return: 0 = all flag bits are zero, 1 = there is at least one non-zero flag bit
825 */
get_subband_flags(GetBitContext * gb,uint8_t * out,int num_flags)826 static int get_subband_flags(GetBitContext *gb, uint8_t *out, int num_flags)
827 {
828 int i, result;
829
830 memset(out, 0, num_flags);
831
832 result = get_bits1(gb);
833 if (result) {
834 if (get_bits1(gb))
835 for (i = 0; i < num_flags; i++)
836 out[i] = get_bits1(gb);
837 else
838 memset(out, 1, num_flags);
839 }
840
841 return result;
842 }
843
844 /**
845 * Decode mdct window shape flags for all channels.
846 *
847 * @param[in] gb the GetBit context
848 * @param[in,out] ctx ptr to the channel unit context
849 * @param[in] num_channels number of channels to process
850 */
decode_window_shape(GetBitContext * gb,Atrac3pChanUnitCtx * ctx,int num_channels)851 static void decode_window_shape(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
852 int num_channels)
853 {
854 int ch_num;
855
856 for (ch_num = 0; ch_num < num_channels; ch_num++)
857 get_subband_flags(gb, ctx->channels[ch_num].wnd_shape,
858 ctx->num_subbands);
859 }
860
861 /**
862 * Decode number of gain control points.
863 *
864 * @param[in] gb the GetBit context
865 * @param[in,out] ctx ptr to the channel unit context
866 * @param[in] ch_num channel to process
867 * @param[in] coded_subbands number of subbands to process
868 * @return result code: 0 = OK, otherwise - error code
869 */
decode_gainc_npoints(GetBitContext * gb,Atrac3pChanUnitCtx * ctx,int ch_num,int coded_subbands)870 static int decode_gainc_npoints(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
871 int ch_num, int coded_subbands)
872 {
873 int i, delta, delta_bits, min_val;
874 Atrac3pChanParams *chan = &ctx->channels[ch_num];
875 Atrac3pChanParams *ref_chan = &ctx->channels[0];
876
877 switch (get_bits(gb, 2)) { /* switch according to coding mode */
878 case 0: /* fixed-length coding */
879 for (i = 0; i < coded_subbands; i++)
880 chan->gain_data[i].num_points = get_bits(gb, 3);
881 break;
882 case 1: /* variable-length coding */
883 for (i = 0; i < coded_subbands; i++)
884 chan->gain_data[i].num_points =
885 get_vlc2(gb, gain_vlc_tabs[0].table,
886 gain_vlc_tabs[0].bits, 1);
887 break;
888 case 2:
889 if (ch_num) { /* VLC modulo delta to master channel */
890 for (i = 0; i < coded_subbands; i++) {
891 delta = get_vlc2(gb, gain_vlc_tabs[1].table,
892 gain_vlc_tabs[1].bits, 1);
893 chan->gain_data[i].num_points =
894 (ref_chan->gain_data[i].num_points + delta) & 7;
895 }
896 } else { /* VLC modulo delta to previous */
897 chan->gain_data[0].num_points =
898 get_vlc2(gb, gain_vlc_tabs[0].table,
899 gain_vlc_tabs[0].bits, 1);
900
901 for (i = 1; i < coded_subbands; i++) {
902 delta = get_vlc2(gb, gain_vlc_tabs[1].table,
903 gain_vlc_tabs[1].bits, 1);
904 chan->gain_data[i].num_points =
905 (chan->gain_data[i - 1].num_points + delta) & 7;
906 }
907 }
908 break;
909 case 3:
910 if (ch_num) { /* copy data from master channel */
911 for (i = 0; i < coded_subbands; i++)
912 chan->gain_data[i].num_points =
913 ref_chan->gain_data[i].num_points;
914 } else { /* shorter delta to min */
915 delta_bits = get_bits(gb, 2);
916 min_val = get_bits(gb, 3);
917
918 for (i = 0; i < coded_subbands; i++) {
919 chan->gain_data[i].num_points = min_val + get_bitsz(gb, delta_bits);
920 if (chan->gain_data[i].num_points > 7)
921 return AVERROR_INVALIDDATA;
922 }
923 }
924 }
925
926 return 0;
927 }
928
929 /**
930 * Implements coding mode 3 (slave) for gain compensation levels.
931 *
932 * @param[out] dst ptr to the output array
933 * @param[in] ref ptr to the reference channel
934 */
gainc_level_mode3s(AtracGainInfo * dst,AtracGainInfo * ref)935 static inline void gainc_level_mode3s(AtracGainInfo *dst, AtracGainInfo *ref)
936 {
937 int i;
938
939 for (i = 0; i < dst->num_points; i++)
940 dst->lev_code[i] = (i >= ref->num_points) ? 7 : ref->lev_code[i];
941 }
942
943 /**
944 * Implements coding mode 1 (master) for gain compensation levels.
945 *
946 * @param[in] gb the GetBit context
947 * @param[in] ctx ptr to the channel unit context
948 * @param[out] dst ptr to the output array
949 */
gainc_level_mode1m(GetBitContext * gb,Atrac3pChanUnitCtx * ctx,AtracGainInfo * dst)950 static inline void gainc_level_mode1m(GetBitContext *gb,
951 Atrac3pChanUnitCtx *ctx,
952 AtracGainInfo *dst)
953 {
954 int i, delta;
955
956 if (dst->num_points > 0)
957 dst->lev_code[0] = get_vlc2(gb, gain_vlc_tabs[2].table,
958 gain_vlc_tabs[2].bits, 1);
959
960 for (i = 1; i < dst->num_points; i++) {
961 delta = get_vlc2(gb, gain_vlc_tabs[3].table,
962 gain_vlc_tabs[3].bits, 1);
963 dst->lev_code[i] = (dst->lev_code[i - 1] + delta) & 0xF;
964 }
965 }
966
967 /**
968 * Decode level code for each gain control point.
969 *
970 * @param[in] gb the GetBit context
971 * @param[in,out] ctx ptr to the channel unit context
972 * @param[in] ch_num channel to process
973 * @param[in] coded_subbands number of subbands to process
974 * @return result code: 0 = OK, otherwise - error code
975 */
decode_gainc_levels(GetBitContext * gb,Atrac3pChanUnitCtx * ctx,int ch_num,int coded_subbands)976 static int decode_gainc_levels(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
977 int ch_num, int coded_subbands)
978 {
979 int sb, i, delta, delta_bits, min_val, pred;
980 Atrac3pChanParams *chan = &ctx->channels[ch_num];
981 Atrac3pChanParams *ref_chan = &ctx->channels[0];
982
983 switch (get_bits(gb, 2)) { /* switch according to coding mode */
984 case 0: /* fixed-length coding */
985 for (sb = 0; sb < coded_subbands; sb++)
986 for (i = 0; i < chan->gain_data[sb].num_points; i++)
987 chan->gain_data[sb].lev_code[i] = get_bits(gb, 4);
988 break;
989 case 1:
990 if (ch_num) { /* VLC modulo delta to master channel */
991 for (sb = 0; sb < coded_subbands; sb++)
992 for (i = 0; i < chan->gain_data[sb].num_points; i++) {
993 delta = get_vlc2(gb, gain_vlc_tabs[5].table,
994 gain_vlc_tabs[5].bits, 1);
995 pred = (i >= ref_chan->gain_data[sb].num_points)
996 ? 7 : ref_chan->gain_data[sb].lev_code[i];
997 chan->gain_data[sb].lev_code[i] = (pred + delta) & 0xF;
998 }
999 } else { /* VLC modulo delta to previous */
1000 for (sb = 0; sb < coded_subbands; sb++)
1001 gainc_level_mode1m(gb, ctx, &chan->gain_data[sb]);
1002 }
1003 break;
1004 case 2:
1005 if (ch_num) { /* VLC modulo delta to previous or clone master */
1006 for (sb = 0; sb < coded_subbands; sb++)
1007 if (chan->gain_data[sb].num_points > 0) {
1008 if (get_bits1(gb))
1009 gainc_level_mode1m(gb, ctx, &chan->gain_data[sb]);
1010 else
1011 gainc_level_mode3s(&chan->gain_data[sb],
1012 &ref_chan->gain_data[sb]);
1013 }
1014 } else { /* VLC modulo delta to lev_codes of previous subband */
1015 if (chan->gain_data[0].num_points > 0)
1016 gainc_level_mode1m(gb, ctx, &chan->gain_data[0]);
1017
1018 for (sb = 1; sb < coded_subbands; sb++)
1019 for (i = 0; i < chan->gain_data[sb].num_points; i++) {
1020 delta = get_vlc2(gb, gain_vlc_tabs[4].table,
1021 gain_vlc_tabs[4].bits, 1);
1022 pred = (i >= chan->gain_data[sb - 1].num_points)
1023 ? 7 : chan->gain_data[sb - 1].lev_code[i];
1024 chan->gain_data[sb].lev_code[i] = (pred + delta) & 0xF;
1025 }
1026 }
1027 break;
1028 case 3:
1029 if (ch_num) { /* clone master */
1030 for (sb = 0; sb < coded_subbands; sb++)
1031 gainc_level_mode3s(&chan->gain_data[sb],
1032 &ref_chan->gain_data[sb]);
1033 } else { /* shorter delta to min */
1034 delta_bits = get_bits(gb, 2);
1035 min_val = get_bits(gb, 4);
1036
1037 for (sb = 0; sb < coded_subbands; sb++)
1038 for (i = 0; i < chan->gain_data[sb].num_points; i++) {
1039 chan->gain_data[sb].lev_code[i] = min_val + get_bitsz(gb, delta_bits);
1040 if (chan->gain_data[sb].lev_code[i] > 15)
1041 return AVERROR_INVALIDDATA;
1042 }
1043 }
1044 break;
1045 }
1046
1047 return 0;
1048 }
1049
1050 /**
1051 * Implements coding mode 0 for gain compensation locations.
1052 *
1053 * @param[in] gb the GetBit context
1054 * @param[in] ctx ptr to the channel unit context
1055 * @param[out] dst ptr to the output array
1056 * @param[in] pos position of the value to be processed
1057 */
gainc_loc_mode0(GetBitContext * gb,Atrac3pChanUnitCtx * ctx,AtracGainInfo * dst,int pos)1058 static inline void gainc_loc_mode0(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
1059 AtracGainInfo *dst, int pos)
1060 {
1061 int delta_bits;
1062
1063 if (!pos || dst->loc_code[pos - 1] < 15)
1064 dst->loc_code[pos] = get_bits(gb, 5);
1065 else if (dst->loc_code[pos - 1] >= 30)
1066 dst->loc_code[pos] = 31;
1067 else {
1068 delta_bits = av_log2(30 - dst->loc_code[pos - 1]) + 1;
1069 dst->loc_code[pos] = dst->loc_code[pos - 1] +
1070 get_bits(gb, delta_bits) + 1;
1071 }
1072 }
1073
1074 /**
1075 * Implements coding mode 1 for gain compensation locations.
1076 *
1077 * @param[in] gb the GetBit context
1078 * @param[in] ctx ptr to the channel unit context
1079 * @param[out] dst ptr to the output array
1080 */
gainc_loc_mode1(GetBitContext * gb,Atrac3pChanUnitCtx * ctx,AtracGainInfo * dst)1081 static inline void gainc_loc_mode1(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
1082 AtracGainInfo *dst)
1083 {
1084 int i;
1085 VLC *tab;
1086
1087 if (dst->num_points > 0) {
1088 /* 1st coefficient is stored directly */
1089 dst->loc_code[0] = get_bits(gb, 5);
1090
1091 for (i = 1; i < dst->num_points; i++) {
1092 /* switch VLC according to the curve direction
1093 * (ascending/descending) */
1094 tab = (dst->lev_code[i] <= dst->lev_code[i - 1])
1095 ? &gain_vlc_tabs[7]
1096 : &gain_vlc_tabs[9];
1097 dst->loc_code[i] = dst->loc_code[i - 1] +
1098 get_vlc2(gb, tab->table, tab->bits, 1);
1099 }
1100 }
1101 }
1102
1103 /**
1104 * Decode location code for each gain control point.
1105 *
1106 * @param[in] gb the GetBit context
1107 * @param[in,out] ctx ptr to the channel unit context
1108 * @param[in] ch_num channel to process
1109 * @param[in] coded_subbands number of subbands to process
1110 * @param[in] avctx ptr to the AVCodecContext
1111 * @return result code: 0 = OK, otherwise - error code
1112 */
decode_gainc_loc_codes(GetBitContext * gb,Atrac3pChanUnitCtx * ctx,int ch_num,int coded_subbands,AVCodecContext * avctx)1113 static int decode_gainc_loc_codes(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
1114 int ch_num, int coded_subbands,
1115 AVCodecContext *avctx)
1116 {
1117 int sb, i, delta, delta_bits, min_val, pred, more_than_ref;
1118 AtracGainInfo *dst, *ref;
1119 VLC *tab;
1120 Atrac3pChanParams *chan = &ctx->channels[ch_num];
1121 Atrac3pChanParams *ref_chan = &ctx->channels[0];
1122
1123 switch (get_bits(gb, 2)) { /* switch according to coding mode */
1124 case 0: /* sequence of numbers in ascending order */
1125 for (sb = 0; sb < coded_subbands; sb++)
1126 for (i = 0; i < chan->gain_data[sb].num_points; i++)
1127 gainc_loc_mode0(gb, ctx, &chan->gain_data[sb], i);
1128 break;
1129 case 1:
1130 if (ch_num) {
1131 for (sb = 0; sb < coded_subbands; sb++) {
1132 if (chan->gain_data[sb].num_points <= 0)
1133 continue;
1134 dst = &chan->gain_data[sb];
1135 ref = &ref_chan->gain_data[sb];
1136
1137 /* 1st value is vlc-coded modulo delta to master */
1138 delta = get_vlc2(gb, gain_vlc_tabs[10].table,
1139 gain_vlc_tabs[10].bits, 1);
1140 pred = ref->num_points > 0 ? ref->loc_code[0] : 0;
1141 dst->loc_code[0] = (pred + delta) & 0x1F;
1142
1143 for (i = 1; i < dst->num_points; i++) {
1144 more_than_ref = i >= ref->num_points;
1145 if (dst->lev_code[i] > dst->lev_code[i - 1]) {
1146 /* ascending curve */
1147 if (more_than_ref) {
1148 delta =
1149 get_vlc2(gb, gain_vlc_tabs[9].table,
1150 gain_vlc_tabs[9].bits, 1);
1151 dst->loc_code[i] = dst->loc_code[i - 1] + delta;
1152 } else {
1153 if (get_bits1(gb))
1154 gainc_loc_mode0(gb, ctx, dst, i); // direct coding
1155 else
1156 dst->loc_code[i] = ref->loc_code[i]; // clone master
1157 }
1158 } else { /* descending curve */
1159 tab = more_than_ref ? &gain_vlc_tabs[7]
1160 : &gain_vlc_tabs[10];
1161 delta = get_vlc2(gb, tab->table, tab->bits, 1);
1162 if (more_than_ref)
1163 dst->loc_code[i] = dst->loc_code[i - 1] + delta;
1164 else
1165 dst->loc_code[i] = (ref->loc_code[i] + delta) & 0x1F;
1166 }
1167 }
1168 }
1169 } else /* VLC delta to previous */
1170 for (sb = 0; sb < coded_subbands; sb++)
1171 gainc_loc_mode1(gb, ctx, &chan->gain_data[sb]);
1172 break;
1173 case 2:
1174 if (ch_num) {
1175 for (sb = 0; sb < coded_subbands; sb++) {
1176 if (chan->gain_data[sb].num_points <= 0)
1177 continue;
1178 dst = &chan->gain_data[sb];
1179 ref = &ref_chan->gain_data[sb];
1180 if (dst->num_points > ref->num_points || get_bits1(gb))
1181 gainc_loc_mode1(gb, ctx, dst);
1182 else /* clone master for the whole subband */
1183 for (i = 0; i < chan->gain_data[sb].num_points; i++)
1184 dst->loc_code[i] = ref->loc_code[i];
1185 }
1186 } else {
1187 /* data for the first subband is coded directly */
1188 for (i = 0; i < chan->gain_data[0].num_points; i++)
1189 gainc_loc_mode0(gb, ctx, &chan->gain_data[0], i);
1190
1191 for (sb = 1; sb < coded_subbands; sb++) {
1192 if (chan->gain_data[sb].num_points <= 0)
1193 continue;
1194 dst = &chan->gain_data[sb];
1195
1196 /* 1st value is vlc-coded modulo delta to the corresponding
1197 * value of the previous subband if any or zero */
1198 delta = get_vlc2(gb, gain_vlc_tabs[6].table,
1199 gain_vlc_tabs[6].bits, 1);
1200 pred = dst[-1].num_points > 0
1201 ? dst[-1].loc_code[0] : 0;
1202 dst->loc_code[0] = (pred + delta) & 0x1F;
1203
1204 for (i = 1; i < dst->num_points; i++) {
1205 more_than_ref = i >= dst[-1].num_points;
1206 /* Select VLC table according to curve direction and
1207 * presence of prediction. */
1208 tab = &gain_vlc_tabs[(dst->lev_code[i] > dst->lev_code[i - 1]) *
1209 2 + more_than_ref + 6];
1210 delta = get_vlc2(gb, tab->table, tab->bits, 1);
1211 if (more_than_ref)
1212 dst->loc_code[i] = dst->loc_code[i - 1] + delta;
1213 else
1214 dst->loc_code[i] = (dst[-1].loc_code[i] + delta) & 0x1F;
1215 }
1216 }
1217 }
1218 break;
1219 case 3:
1220 if (ch_num) { /* clone master or direct or direct coding */
1221 for (sb = 0; sb < coded_subbands; sb++)
1222 for (i = 0; i < chan->gain_data[sb].num_points; i++) {
1223 if (i >= ref_chan->gain_data[sb].num_points)
1224 gainc_loc_mode0(gb, ctx, &chan->gain_data[sb], i);
1225 else
1226 chan->gain_data[sb].loc_code[i] =
1227 ref_chan->gain_data[sb].loc_code[i];
1228 }
1229 } else { /* shorter delta to min */
1230 delta_bits = get_bits(gb, 2) + 1;
1231 min_val = get_bits(gb, 5);
1232
1233 for (sb = 0; sb < coded_subbands; sb++)
1234 for (i = 0; i < chan->gain_data[sb].num_points; i++)
1235 chan->gain_data[sb].loc_code[i] = min_val + i +
1236 get_bits(gb, delta_bits);
1237 }
1238 break;
1239 }
1240
1241 /* Validate decoded information */
1242 for (sb = 0; sb < coded_subbands; sb++) {
1243 dst = &chan->gain_data[sb];
1244 for (i = 0; i < chan->gain_data[sb].num_points; i++) {
1245 if (dst->loc_code[i] < 0 || dst->loc_code[i] > 31 ||
1246 (i && dst->loc_code[i] <= dst->loc_code[i - 1])) {
1247 av_log(avctx, AV_LOG_ERROR,
1248 "Invalid gain location: ch=%d, sb=%d, pos=%d, val=%d\n",
1249 ch_num, sb, i, dst->loc_code[i]);
1250 return AVERROR_INVALIDDATA;
1251 }
1252 }
1253 }
1254
1255 return 0;
1256 }
1257
1258 /**
1259 * Decode gain control data for all channels.
1260 *
1261 * @param[in] gb the GetBit context
1262 * @param[in,out] ctx ptr to the channel unit context
1263 * @param[in] num_channels number of channels to process
1264 * @param[in] avctx ptr to the AVCodecContext
1265 * @return result code: 0 = OK, otherwise - error code
1266 */
decode_gainc_data(GetBitContext * gb,Atrac3pChanUnitCtx * ctx,int num_channels,AVCodecContext * avctx)1267 static int decode_gainc_data(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
1268 int num_channels, AVCodecContext *avctx)
1269 {
1270 int ch_num, coded_subbands, sb, ret;
1271
1272 for (ch_num = 0; ch_num < num_channels; ch_num++) {
1273 memset(ctx->channels[ch_num].gain_data, 0,
1274 sizeof(*ctx->channels[ch_num].gain_data) * ATRAC3P_SUBBANDS);
1275
1276 if (get_bits1(gb)) { /* gain control data present? */
1277 coded_subbands = get_bits(gb, 4) + 1;
1278 if (get_bits1(gb)) /* is high band gain data replication on? */
1279 ctx->channels[ch_num].num_gain_subbands = get_bits(gb, 4) + 1;
1280 else
1281 ctx->channels[ch_num].num_gain_subbands = coded_subbands;
1282
1283 if ((ret = decode_gainc_npoints(gb, ctx, ch_num, coded_subbands)) < 0 ||
1284 (ret = decode_gainc_levels(gb, ctx, ch_num, coded_subbands)) < 0 ||
1285 (ret = decode_gainc_loc_codes(gb, ctx, ch_num, coded_subbands, avctx)) < 0)
1286 return ret;
1287
1288 if (coded_subbands > 0) { /* propagate gain data if requested */
1289 for (sb = coded_subbands; sb < ctx->channels[ch_num].num_gain_subbands; sb++)
1290 ctx->channels[ch_num].gain_data[sb] =
1291 ctx->channels[ch_num].gain_data[sb - 1];
1292 }
1293 } else {
1294 ctx->channels[ch_num].num_gain_subbands = 0;
1295 }
1296 }
1297
1298 return 0;
1299 }
1300
1301 /**
1302 * Decode envelope for all tones of a channel.
1303 *
1304 * @param[in] gb the GetBit context
1305 * @param[in,out] ctx ptr to the channel unit context
1306 * @param[in] ch_num channel to process
1307 * @param[in] band_has_tones ptr to an array of per-band-flags:
1308 * 1 - tone data present
1309 */
decode_tones_envelope(GetBitContext * gb,Atrac3pChanUnitCtx * ctx,int ch_num,int band_has_tones[])1310 static void decode_tones_envelope(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
1311 int ch_num, int band_has_tones[])
1312 {
1313 int sb;
1314 Atrac3pWavesData *dst = ctx->channels[ch_num].tones_info;
1315 Atrac3pWavesData *ref = ctx->channels[0].tones_info;
1316
1317 if (!ch_num || !get_bits1(gb)) { /* mode 0: fixed-length coding */
1318 for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) {
1319 if (!band_has_tones[sb])
1320 continue;
1321 dst[sb].pend_env.has_start_point = get_bits1(gb);
1322 dst[sb].pend_env.start_pos = dst[sb].pend_env.has_start_point
1323 ? get_bits(gb, 5) : -1;
1324 dst[sb].pend_env.has_stop_point = get_bits1(gb);
1325 dst[sb].pend_env.stop_pos = dst[sb].pend_env.has_stop_point
1326 ? get_bits(gb, 5) : 32;
1327 }
1328 } else { /* mode 1(slave only): copy master */
1329 for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) {
1330 if (!band_has_tones[sb])
1331 continue;
1332 dst[sb].pend_env.has_start_point = ref[sb].pend_env.has_start_point;
1333 dst[sb].pend_env.has_stop_point = ref[sb].pend_env.has_stop_point;
1334 dst[sb].pend_env.start_pos = ref[sb].pend_env.start_pos;
1335 dst[sb].pend_env.stop_pos = ref[sb].pend_env.stop_pos;
1336 }
1337 }
1338 }
1339
1340 /**
1341 * Decode number of tones for each subband of a channel.
1342 *
1343 * @param[in] gb the GetBit context
1344 * @param[in,out] ctx ptr to the channel unit context
1345 * @param[in] ch_num channel to process
1346 * @param[in] band_has_tones ptr to an array of per-band-flags:
1347 * 1 - tone data present
1348 * @param[in] avctx ptr to the AVCodecContext
1349 * @return result code: 0 = OK, otherwise - error code
1350 */
decode_band_numwavs(GetBitContext * gb,Atrac3pChanUnitCtx * ctx,int ch_num,int band_has_tones[],AVCodecContext * avctx)1351 static int decode_band_numwavs(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
1352 int ch_num, int band_has_tones[],
1353 AVCodecContext *avctx)
1354 {
1355 int mode, sb, delta;
1356 Atrac3pWavesData *dst = ctx->channels[ch_num].tones_info;
1357 Atrac3pWavesData *ref = ctx->channels[0].tones_info;
1358
1359 mode = get_bits(gb, ch_num + 1);
1360 switch (mode) {
1361 case 0: /** fixed-length coding */
1362 for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++)
1363 if (band_has_tones[sb])
1364 dst[sb].num_wavs = get_bits(gb, 4);
1365 break;
1366 case 1: /** variable-length coding */
1367 for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++)
1368 if (band_has_tones[sb])
1369 dst[sb].num_wavs =
1370 get_vlc2(gb, tone_vlc_tabs[1].table,
1371 tone_vlc_tabs[1].bits, 1);
1372 break;
1373 case 2: /** VLC modulo delta to master (slave only) */
1374 for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++)
1375 if (band_has_tones[sb]) {
1376 delta = get_vlc2(gb, tone_vlc_tabs[2].table,
1377 tone_vlc_tabs[2].bits, 1);
1378 delta = sign_extend(delta, 3);
1379 dst[sb].num_wavs = (ref[sb].num_wavs + delta) & 0xF;
1380 }
1381 break;
1382 case 3: /** copy master (slave only) */
1383 for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++)
1384 if (band_has_tones[sb])
1385 dst[sb].num_wavs = ref[sb].num_wavs;
1386 break;
1387 }
1388
1389 /** initialize start tone index for each subband */
1390 for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++)
1391 if (band_has_tones[sb]) {
1392 if (ctx->waves_info->tones_index + dst[sb].num_wavs > 48) {
1393 av_log(avctx, AV_LOG_ERROR,
1394 "Too many tones: %d (max. 48), frame: %d!\n",
1395 ctx->waves_info->tones_index + dst[sb].num_wavs,
1396 avctx->frame_number);
1397 return AVERROR_INVALIDDATA;
1398 }
1399 dst[sb].start_index = ctx->waves_info->tones_index;
1400 ctx->waves_info->tones_index += dst[sb].num_wavs;
1401 }
1402
1403 return 0;
1404 }
1405
1406 /**
1407 * Decode frequency information for each subband of a channel.
1408 *
1409 * @param[in] gb the GetBit context
1410 * @param[in,out] ctx ptr to the channel unit context
1411 * @param[in] ch_num channel to process
1412 * @param[in] band_has_tones ptr to an array of per-band-flags:
1413 * 1 - tone data present
1414 */
decode_tones_frequency(GetBitContext * gb,Atrac3pChanUnitCtx * ctx,int ch_num,int band_has_tones[])1415 static void decode_tones_frequency(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
1416 int ch_num, int band_has_tones[])
1417 {
1418 int sb, i, direction, nbits, pred, delta;
1419 Atrac3pWaveParam *iwav, *owav;
1420 Atrac3pWavesData *dst = ctx->channels[ch_num].tones_info;
1421 Atrac3pWavesData *ref = ctx->channels[0].tones_info;
1422
1423 if (!ch_num || !get_bits1(gb)) { /* mode 0: fixed-length coding */
1424 for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) {
1425 if (!band_has_tones[sb] || !dst[sb].num_wavs)
1426 continue;
1427 iwav = &ctx->waves_info->waves[dst[sb].start_index];
1428 direction = (dst[sb].num_wavs > 1) ? get_bits1(gb) : 0;
1429 if (direction) { /** packed numbers in descending order */
1430 if (dst[sb].num_wavs)
1431 iwav[dst[sb].num_wavs - 1].freq_index = get_bits(gb, 10);
1432 for (i = dst[sb].num_wavs - 2; i >= 0 ; i--) {
1433 nbits = av_log2(iwav[i+1].freq_index) + 1;
1434 iwav[i].freq_index = get_bits(gb, nbits);
1435 }
1436 } else { /** packed numbers in ascending order */
1437 for (i = 0; i < dst[sb].num_wavs; i++) {
1438 if (!i || iwav[i - 1].freq_index < 512)
1439 iwav[i].freq_index = get_bits(gb, 10);
1440 else {
1441 nbits = av_log2(1023 - iwav[i - 1].freq_index) + 1;
1442 iwav[i].freq_index = get_bits(gb, nbits) +
1443 1024 - (1 << nbits);
1444 }
1445 }
1446 }
1447 }
1448 } else { /* mode 1: VLC modulo delta to master (slave only) */
1449 for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) {
1450 if (!band_has_tones[sb] || !dst[sb].num_wavs)
1451 continue;
1452 iwav = &ctx->waves_info->waves[ref[sb].start_index];
1453 owav = &ctx->waves_info->waves[dst[sb].start_index];
1454 for (i = 0; i < dst[sb].num_wavs; i++) {
1455 delta = get_vlc2(gb, tone_vlc_tabs[6].table,
1456 tone_vlc_tabs[6].bits, 1);
1457 delta = sign_extend(delta, 8);
1458 pred = (i < ref[sb].num_wavs) ? iwav[i].freq_index :
1459 (ref[sb].num_wavs ? iwav[ref[sb].num_wavs - 1].freq_index : 0);
1460 owav[i].freq_index = (pred + delta) & 0x3FF;
1461 }
1462 }
1463 }
1464 }
1465
1466 /**
1467 * Decode amplitude information for each subband of a channel.
1468 *
1469 * @param[in] gb the GetBit context
1470 * @param[in,out] ctx ptr to the channel unit context
1471 * @param[in] ch_num channel to process
1472 * @param[in] band_has_tones ptr to an array of per-band-flags:
1473 * 1 - tone data present
1474 */
decode_tones_amplitude(GetBitContext * gb,Atrac3pChanUnitCtx * ctx,int ch_num,int band_has_tones[])1475 static void decode_tones_amplitude(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
1476 int ch_num, int band_has_tones[])
1477 {
1478 int mode, sb, j, i, diff, maxdiff, fi, delta, pred;
1479 Atrac3pWaveParam *wsrc, *wref;
1480 int refwaves[48] = { 0 };
1481 Atrac3pWavesData *dst = ctx->channels[ch_num].tones_info;
1482 Atrac3pWavesData *ref = ctx->channels[0].tones_info;
1483
1484 if (ch_num) {
1485 for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) {
1486 if (!band_has_tones[sb] || !dst[sb].num_wavs)
1487 continue;
1488 wsrc = &ctx->waves_info->waves[dst[sb].start_index];
1489 wref = &ctx->waves_info->waves[ref[sb].start_index];
1490 for (j = 0; j < dst[sb].num_wavs; j++) {
1491 for (i = 0, fi = 0, maxdiff = 1024; i < ref[sb].num_wavs; i++) {
1492 diff = FFABS(wsrc[j].freq_index - wref[i].freq_index);
1493 if (diff < maxdiff) {
1494 maxdiff = diff;
1495 fi = i;
1496 }
1497 }
1498
1499 if (maxdiff < 8)
1500 refwaves[dst[sb].start_index + j] = fi + ref[sb].start_index;
1501 else if (j < ref[sb].num_wavs)
1502 refwaves[dst[sb].start_index + j] = j + ref[sb].start_index;
1503 else
1504 refwaves[dst[sb].start_index + j] = -1;
1505 }
1506 }
1507 }
1508
1509 mode = get_bits(gb, ch_num + 1);
1510
1511 switch (mode) {
1512 case 0: /** fixed-length coding */
1513 for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) {
1514 if (!band_has_tones[sb] || !dst[sb].num_wavs)
1515 continue;
1516 if (ctx->waves_info->amplitude_mode)
1517 for (i = 0; i < dst[sb].num_wavs; i++)
1518 ctx->waves_info->waves[dst[sb].start_index + i].amp_sf = get_bits(gb, 6);
1519 else
1520 ctx->waves_info->waves[dst[sb].start_index].amp_sf = get_bits(gb, 6);
1521 }
1522 break;
1523 case 1: /** min + VLC delta */
1524 for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) {
1525 if (!band_has_tones[sb] || !dst[sb].num_wavs)
1526 continue;
1527 if (ctx->waves_info->amplitude_mode)
1528 for (i = 0; i < dst[sb].num_wavs; i++)
1529 ctx->waves_info->waves[dst[sb].start_index + i].amp_sf =
1530 get_vlc2(gb, tone_vlc_tabs[3].table,
1531 tone_vlc_tabs[3].bits, 1) + 20;
1532 else
1533 ctx->waves_info->waves[dst[sb].start_index].amp_sf =
1534 get_vlc2(gb, tone_vlc_tabs[4].table,
1535 tone_vlc_tabs[4].bits, 1) + 24;
1536 }
1537 break;
1538 case 2: /** VLC modulo delta to master (slave only) */
1539 for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) {
1540 if (!band_has_tones[sb] || !dst[sb].num_wavs)
1541 continue;
1542 for (i = 0; i < dst[sb].num_wavs; i++) {
1543 delta = get_vlc2(gb, tone_vlc_tabs[5].table,
1544 tone_vlc_tabs[5].bits, 1);
1545 delta = sign_extend(delta, 5);
1546 pred = refwaves[dst[sb].start_index + i] >= 0 ?
1547 ctx->waves_info->waves[refwaves[dst[sb].start_index + i]].amp_sf : 34;
1548 ctx->waves_info->waves[dst[sb].start_index + i].amp_sf = (pred + delta) & 0x3F;
1549 }
1550 }
1551 break;
1552 case 3: /** clone master (slave only) */
1553 for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) {
1554 if (!band_has_tones[sb])
1555 continue;
1556 for (i = 0; i < dst[sb].num_wavs; i++)
1557 ctx->waves_info->waves[dst[sb].start_index + i].amp_sf =
1558 refwaves[dst[sb].start_index + i] >= 0
1559 ? ctx->waves_info->waves[refwaves[dst[sb].start_index + i]].amp_sf
1560 : 32;
1561 }
1562 break;
1563 }
1564 }
1565
1566 /**
1567 * Decode phase information for each subband of a channel.
1568 *
1569 * @param[in] gb the GetBit context
1570 * @param[in,out] ctx ptr to the channel unit context
1571 * @param[in] ch_num channel to process
1572 * @param[in] band_has_tones ptr to an array of per-band-flags:
1573 * 1 - tone data present
1574 */
decode_tones_phase(GetBitContext * gb,Atrac3pChanUnitCtx * ctx,int ch_num,int band_has_tones[])1575 static void decode_tones_phase(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
1576 int ch_num, int band_has_tones[])
1577 {
1578 int sb, i;
1579 Atrac3pWaveParam *wparam;
1580 Atrac3pWavesData *dst = ctx->channels[ch_num].tones_info;
1581
1582 for (sb = 0; sb < ctx->waves_info->num_tone_bands; sb++) {
1583 if (!band_has_tones[sb])
1584 continue;
1585 wparam = &ctx->waves_info->waves[dst[sb].start_index];
1586 for (i = 0; i < dst[sb].num_wavs; i++)
1587 wparam[i].phase_index = get_bits(gb, 5);
1588 }
1589 }
1590
1591 /**
1592 * Decode tones info for all channels.
1593 *
1594 * @param[in] gb the GetBit context
1595 * @param[in,out] ctx ptr to the channel unit context
1596 * @param[in] num_channels number of channels to process
1597 * @param[in] avctx ptr to the AVCodecContext
1598 * @return result code: 0 = OK, otherwise - error code
1599 */
decode_tones_info(GetBitContext * gb,Atrac3pChanUnitCtx * ctx,int num_channels,AVCodecContext * avctx)1600 static int decode_tones_info(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
1601 int num_channels, AVCodecContext *avctx)
1602 {
1603 int ch_num, i, ret;
1604 int band_has_tones[16];
1605
1606 for (ch_num = 0; ch_num < num_channels; ch_num++)
1607 memset(ctx->channels[ch_num].tones_info, 0,
1608 sizeof(*ctx->channels[ch_num].tones_info) * ATRAC3P_SUBBANDS);
1609
1610 ctx->waves_info->tones_present = get_bits1(gb);
1611 if (!ctx->waves_info->tones_present)
1612 return 0;
1613
1614 memset(ctx->waves_info->waves, 0, sizeof(ctx->waves_info->waves));
1615
1616 ctx->waves_info->amplitude_mode = get_bits1(gb);
1617 if (!ctx->waves_info->amplitude_mode) {
1618 avpriv_report_missing_feature(avctx, "GHA amplitude mode 0");
1619 return AVERROR_PATCHWELCOME;
1620 }
1621
1622 ctx->waves_info->num_tone_bands =
1623 get_vlc2(gb, tone_vlc_tabs[0].table,
1624 tone_vlc_tabs[0].bits, 1) + 1;
1625
1626 if (num_channels == 2) {
1627 get_subband_flags(gb, ctx->waves_info->tone_sharing, ctx->waves_info->num_tone_bands);
1628 get_subband_flags(gb, ctx->waves_info->tone_master, ctx->waves_info->num_tone_bands);
1629 get_subband_flags(gb, ctx->waves_info->invert_phase, ctx->waves_info->num_tone_bands);
1630 }
1631
1632 ctx->waves_info->tones_index = 0;
1633
1634 for (ch_num = 0; ch_num < num_channels; ch_num++) {
1635 for (i = 0; i < ctx->waves_info->num_tone_bands; i++)
1636 band_has_tones[i] = !ch_num ? 1 : !ctx->waves_info->tone_sharing[i];
1637
1638 decode_tones_envelope(gb, ctx, ch_num, band_has_tones);
1639 if ((ret = decode_band_numwavs(gb, ctx, ch_num, band_has_tones,
1640 avctx)) < 0)
1641 return ret;
1642
1643 decode_tones_frequency(gb, ctx, ch_num, band_has_tones);
1644 decode_tones_amplitude(gb, ctx, ch_num, band_has_tones);
1645 decode_tones_phase(gb, ctx, ch_num, band_has_tones);
1646 }
1647
1648 if (num_channels == 2) {
1649 for (i = 0; i < ctx->waves_info->num_tone_bands; i++) {
1650 if (ctx->waves_info->tone_sharing[i])
1651 ctx->channels[1].tones_info[i] = ctx->channels[0].tones_info[i];
1652
1653 if (ctx->waves_info->tone_master[i])
1654 FFSWAP(Atrac3pWavesData, ctx->channels[0].tones_info[i],
1655 ctx->channels[1].tones_info[i]);
1656 }
1657 }
1658
1659 return 0;
1660 }
1661
ff_atrac3p_decode_channel_unit(GetBitContext * gb,Atrac3pChanUnitCtx * ctx,int num_channels,AVCodecContext * avctx)1662 int ff_atrac3p_decode_channel_unit(GetBitContext *gb, Atrac3pChanUnitCtx *ctx,
1663 int num_channels, AVCodecContext *avctx)
1664 {
1665 int ret;
1666
1667 /* parse sound header */
1668 ctx->num_quant_units = get_bits(gb, 5) + 1;
1669 if (ctx->num_quant_units > 28 && ctx->num_quant_units < 32) {
1670 av_log(avctx, AV_LOG_ERROR,
1671 "Invalid number of quantization units: %d!\n",
1672 ctx->num_quant_units);
1673 return AVERROR_INVALIDDATA;
1674 }
1675
1676 ctx->mute_flag = get_bits1(gb);
1677
1678 /* decode various sound parameters */
1679 if ((ret = decode_quant_wordlen(gb, ctx, num_channels, avctx)) < 0)
1680 return ret;
1681
1682 ctx->num_subbands = atrac3p_qu_to_subband[ctx->num_quant_units - 1] + 1;
1683 ctx->num_coded_subbands = ctx->used_quant_units
1684 ? atrac3p_qu_to_subband[ctx->used_quant_units - 1] + 1
1685 : 0;
1686
1687 if ((ret = decode_scale_factors(gb, ctx, num_channels, avctx)) < 0)
1688 return ret;
1689
1690 if ((ret = decode_code_table_indexes(gb, ctx, num_channels, avctx)) < 0)
1691 return ret;
1692
1693 decode_spectrum(gb, ctx, num_channels, avctx);
1694
1695 if (num_channels == 2) {
1696 get_subband_flags(gb, ctx->swap_channels, ctx->num_coded_subbands);
1697 get_subband_flags(gb, ctx->negate_coeffs, ctx->num_coded_subbands);
1698 }
1699
1700 decode_window_shape(gb, ctx, num_channels);
1701
1702 if ((ret = decode_gainc_data(gb, ctx, num_channels, avctx)) < 0)
1703 return ret;
1704
1705 if ((ret = decode_tones_info(gb, ctx, num_channels, avctx)) < 0)
1706 return ret;
1707
1708 /* decode global noise info */
1709 ctx->noise_present = get_bits1(gb);
1710 if (ctx->noise_present) {
1711 ctx->noise_level_index = get_bits(gb, 4);
1712 ctx->noise_table_index = get_bits(gb, 4);
1713 }
1714
1715 return 0;
1716 }
1717