• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Microsoft Screen 3 (aka Microsoft ATC Screen) decoder
3  * Copyright (c) 2012 Konstantin Shishkov
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * Microsoft Screen 3 (aka Microsoft ATC Screen) decoder
25  */
26 
27 #include "avcodec.h"
28 #include "bytestream.h"
29 #include "internal.h"
30 #include "mathops.h"
31 #include "mss34dsp.h"
32 
33 #define HEADER_SIZE 27
34 
35 #define MODEL2_SCALE       13
36 #define MODEL_SCALE        15
37 #define MODEL256_SEC_SCALE  9
38 
39 typedef struct Model2 {
40     int      upd_val, till_rescale;
41     unsigned zero_freq,  zero_weight;
42     unsigned total_freq, total_weight;
43 } Model2;
44 
45 typedef struct Model {
46     int weights[16], freqs[16];
47     int num_syms;
48     int tot_weight;
49     int upd_val, max_upd_val, till_rescale;
50 } Model;
51 
52 typedef struct Model256 {
53     int weights[256], freqs[256];
54     int tot_weight;
55     int secondary[68];
56     int sec_size;
57     int upd_val, max_upd_val, till_rescale;
58 } Model256;
59 
60 #define RAC_BOTTOM 0x01000000
61 typedef struct RangeCoder {
62     const uint8_t *src, *src_end;
63 
64     uint32_t range, low;
65     int got_error;
66 } RangeCoder;
67 
68 enum BlockType {
69     FILL_BLOCK = 0,
70     IMAGE_BLOCK,
71     DCT_BLOCK,
72     HAAR_BLOCK,
73     SKIP_BLOCK
74 };
75 
76 typedef struct BlockTypeContext {
77     int      last_type;
78     Model    bt_model[5];
79 } BlockTypeContext;
80 
81 typedef struct FillBlockCoder {
82     int      fill_val;
83     Model    coef_model;
84 } FillBlockCoder;
85 
86 typedef struct ImageBlockCoder {
87     Model256 esc_model, vec_entry_model;
88     Model    vec_size_model;
89     Model    vq_model[125];
90 } ImageBlockCoder;
91 
92 typedef struct DCTBlockCoder {
93     int      *prev_dc;
94     ptrdiff_t prev_dc_stride;
95     int      prev_dc_height;
96     int      quality;
97     uint16_t qmat[64];
98     Model    dc_model;
99     Model2   sign_model;
100     Model256 ac_model;
101 } DCTBlockCoder;
102 
103 typedef struct HaarBlockCoder {
104     int      quality, scale;
105     Model256 coef_model;
106     Model    coef_hi_model;
107 } HaarBlockCoder;
108 
109 typedef struct MSS3Context {
110     AVCodecContext   *avctx;
111     AVFrame          *pic;
112 
113     int              got_error;
114     RangeCoder       coder;
115     BlockTypeContext btype[3];
116     FillBlockCoder   fill_coder[3];
117     ImageBlockCoder  image_coder[3];
118     DCTBlockCoder    dct_coder[3];
119     HaarBlockCoder   haar_coder[3];
120 
121     int              dctblock[64];
122     int              hblock[16 * 16];
123 } MSS3Context;
124 
125 
model2_reset(Model2 * m)126 static void model2_reset(Model2 *m)
127 {
128     m->zero_weight  = 1;
129     m->total_weight = 2;
130     m->zero_freq    = 0x1000;
131     m->total_freq   = 0x2000;
132     m->upd_val      = 4;
133     m->till_rescale = 4;
134 }
135 
model2_update(Model2 * m,int bit)136 static void model2_update(Model2 *m, int bit)
137 {
138     unsigned scale;
139 
140     if (!bit)
141         m->zero_weight++;
142     m->till_rescale--;
143     if (m->till_rescale)
144         return;
145 
146     m->total_weight += m->upd_val;
147     if (m->total_weight > 0x2000) {
148         m->total_weight = (m->total_weight + 1) >> 1;
149         m->zero_weight  = (m->zero_weight  + 1) >> 1;
150         if (m->total_weight == m->zero_weight)
151             m->total_weight = m->zero_weight + 1;
152     }
153     m->upd_val = m->upd_val * 5 >> 2;
154     if (m->upd_val > 64)
155         m->upd_val = 64;
156     scale = 0x80000000u / m->total_weight;
157     m->zero_freq    = m->zero_weight  * scale >> 18;
158     m->total_freq   = m->total_weight * scale >> 18;
159     m->till_rescale = m->upd_val;
160 }
161 
model_update(Model * m,int val)162 static void model_update(Model *m, int val)
163 {
164     int i, sum = 0;
165     unsigned scale;
166 
167     m->weights[val]++;
168     m->till_rescale--;
169     if (m->till_rescale)
170         return;
171     m->tot_weight += m->upd_val;
172 
173     if (m->tot_weight > 0x8000) {
174         m->tot_weight = 0;
175         for (i = 0; i < m->num_syms; i++) {
176             m->weights[i]  = (m->weights[i] + 1) >> 1;
177             m->tot_weight +=  m->weights[i];
178         }
179     }
180     scale = 0x80000000u / m->tot_weight;
181     for (i = 0; i < m->num_syms; i++) {
182         m->freqs[i] = sum * scale >> 16;
183         sum += m->weights[i];
184     }
185 
186     m->upd_val = m->upd_val * 5 >> 2;
187     if (m->upd_val > m->max_upd_val)
188         m->upd_val = m->max_upd_val;
189     m->till_rescale = m->upd_val;
190 }
191 
model_reset(Model * m)192 static void model_reset(Model *m)
193 {
194     int i;
195 
196     m->tot_weight   = 0;
197     for (i = 0; i < m->num_syms - 1; i++)
198         m->weights[i] = 1;
199     m->weights[m->num_syms - 1] = 0;
200 
201     m->upd_val      = m->num_syms;
202     m->till_rescale = 1;
203     model_update(m, m->num_syms - 1);
204     m->till_rescale =
205     m->upd_val      = (m->num_syms + 6) >> 1;
206 }
207 
model_init(Model * m,int num_syms)208 static av_cold void model_init(Model *m, int num_syms)
209 {
210     m->num_syms    = num_syms;
211     m->max_upd_val = 8 * num_syms + 48;
212 
213     model_reset(m);
214 }
215 
model256_update(Model256 * m,int val)216 static void model256_update(Model256 *m, int val)
217 {
218     int i, sum = 0;
219     unsigned scale;
220     int send, sidx = 1;
221 
222     m->weights[val]++;
223     m->till_rescale--;
224     if (m->till_rescale)
225         return;
226     m->tot_weight += m->upd_val;
227 
228     if (m->tot_weight > 0x8000) {
229         m->tot_weight = 0;
230         for (i = 0; i < 256; i++) {
231             m->weights[i]  = (m->weights[i] + 1) >> 1;
232             m->tot_weight +=  m->weights[i];
233         }
234     }
235     scale = 0x80000000u / m->tot_weight;
236     m->secondary[0] = 0;
237     for (i = 0; i < 256; i++) {
238         m->freqs[i] = sum * scale >> 16;
239         sum += m->weights[i];
240         send = m->freqs[i] >> MODEL256_SEC_SCALE;
241         while (sidx <= send)
242             m->secondary[sidx++] = i - 1;
243     }
244     while (sidx < m->sec_size)
245         m->secondary[sidx++] = 255;
246 
247     m->upd_val = m->upd_val * 5 >> 2;
248     if (m->upd_val > m->max_upd_val)
249         m->upd_val = m->max_upd_val;
250     m->till_rescale = m->upd_val;
251 }
252 
model256_reset(Model256 * m)253 static void model256_reset(Model256 *m)
254 {
255     int i;
256 
257     for (i = 0; i < 255; i++)
258         m->weights[i] = 1;
259     m->weights[255] = 0;
260 
261     m->tot_weight   = 0;
262     m->upd_val      = 256;
263     m->till_rescale = 1;
264     model256_update(m, 255);
265     m->till_rescale =
266     m->upd_val      = (256 + 6) >> 1;
267 }
268 
model256_init(Model256 * m)269 static av_cold void model256_init(Model256 *m)
270 {
271     m->max_upd_val = 8 * 256 + 48;
272     m->sec_size    = (1 << 6) + 2;
273 
274     model256_reset(m);
275 }
276 
rac_init(RangeCoder * c,const uint8_t * src,int size)277 static void rac_init(RangeCoder *c, const uint8_t *src, int size)
278 {
279     int i;
280 
281     c->src       = src;
282     c->src_end   = src + size;
283     c->low       = 0;
284     for (i = 0; i < FFMIN(size, 4); i++)
285         c->low = (c->low << 8) | *c->src++;
286     c->range     = 0xFFFFFFFF;
287     c->got_error = 0;
288 }
289 
rac_normalise(RangeCoder * c)290 static void rac_normalise(RangeCoder *c)
291 {
292     for (;;) {
293         c->range <<= 8;
294         c->low   <<= 8;
295         if (c->src < c->src_end) {
296             c->low |= *c->src++;
297         } else if (!c->low) {
298             c->got_error = 1;
299             c->low = 1;
300         }
301         if (c->low > c->range) {
302             c->got_error = 1;
303             c->low = 1;
304         }
305         if (c->range >= RAC_BOTTOM)
306             return;
307     }
308 }
309 
rac_get_bit(RangeCoder * c)310 static int rac_get_bit(RangeCoder *c)
311 {
312     int bit;
313 
314     c->range >>= 1;
315 
316     bit = (c->range <= c->low);
317     if (bit)
318         c->low -= c->range;
319 
320     if (c->range < RAC_BOTTOM)
321         rac_normalise(c);
322 
323     return bit;
324 }
325 
rac_get_bits(RangeCoder * c,int nbits)326 static int rac_get_bits(RangeCoder *c, int nbits)
327 {
328     int val;
329 
330     c->range >>= nbits;
331     val = c->low / c->range;
332     c->low -= c->range * val;
333 
334     if (c->range < RAC_BOTTOM)
335         rac_normalise(c);
336 
337     return val;
338 }
339 
rac_get_model2_sym(RangeCoder * c,Model2 * m)340 static int rac_get_model2_sym(RangeCoder *c, Model2 *m)
341 {
342     int bit, helper;
343 
344     helper = m->zero_freq * (c->range >> MODEL2_SCALE);
345     bit    = (c->low >= helper);
346     if (bit) {
347         c->low   -= helper;
348         c->range -= helper;
349     } else {
350         c->range  = helper;
351     }
352 
353     if (c->range < RAC_BOTTOM)
354         rac_normalise(c);
355 
356     model2_update(m, bit);
357 
358     return bit;
359 }
360 
rac_get_model_sym(RangeCoder * c,Model * m)361 static int rac_get_model_sym(RangeCoder *c, Model *m)
362 {
363     int val;
364     int end, end2;
365     unsigned prob, prob2, helper;
366 
367     prob       = 0;
368     prob2      = c->range;
369     c->range >>= MODEL_SCALE;
370     val        = 0;
371     end        = m->num_syms >> 1;
372     end2       = m->num_syms;
373     do {
374         helper = m->freqs[end] * c->range;
375         if (helper <= c->low) {
376             val   = end;
377             prob  = helper;
378         } else {
379             end2  = end;
380             prob2 = helper;
381         }
382         end = (end2 + val) >> 1;
383     } while (end != val);
384     c->low  -= prob;
385     c->range = prob2 - prob;
386     if (c->range < RAC_BOTTOM)
387         rac_normalise(c);
388 
389     model_update(m, val);
390 
391     return val;
392 }
393 
rac_get_model256_sym(RangeCoder * c,Model256 * m)394 static int rac_get_model256_sym(RangeCoder *c, Model256 *m)
395 {
396     int val;
397     int start, end;
398     int ssym;
399     unsigned prob, prob2, helper;
400 
401     prob2      = c->range;
402     c->range >>= MODEL_SCALE;
403 
404     helper     = c->low / c->range;
405     ssym       = helper >> MODEL256_SEC_SCALE;
406     val        = m->secondary[ssym];
407 
408     end = start = m->secondary[ssym + 1] + 1;
409     while (end > val + 1) {
410         ssym = (end + val) >> 1;
411         if (m->freqs[ssym] <= helper) {
412             end = start;
413             val = ssym;
414         } else {
415             end   = (end + val) >> 1;
416             start = ssym;
417         }
418     }
419     prob = m->freqs[val] * c->range;
420     if (val != 255)
421         prob2 = m->freqs[val + 1] * c->range;
422 
423     c->low  -= prob;
424     c->range = prob2 - prob;
425     if (c->range < RAC_BOTTOM)
426         rac_normalise(c);
427 
428     model256_update(m, val);
429 
430     return val;
431 }
432 
decode_block_type(RangeCoder * c,BlockTypeContext * bt)433 static int decode_block_type(RangeCoder *c, BlockTypeContext *bt)
434 {
435     bt->last_type = rac_get_model_sym(c, &bt->bt_model[bt->last_type]);
436 
437     return bt->last_type;
438 }
439 
decode_coeff(RangeCoder * c,Model * m)440 static int decode_coeff(RangeCoder *c, Model *m)
441 {
442     int val, sign;
443 
444     val = rac_get_model_sym(c, m);
445     if (val) {
446         sign = rac_get_bit(c);
447         if (val > 1) {
448             val--;
449             val = (1 << val) + rac_get_bits(c, val);
450         }
451         if (!sign)
452             val = -val;
453     }
454 
455     return val;
456 }
457 
decode_fill_block(RangeCoder * c,FillBlockCoder * fc,uint8_t * dst,ptrdiff_t stride,int block_size)458 static void decode_fill_block(RangeCoder *c, FillBlockCoder *fc,
459                               uint8_t *dst, ptrdiff_t stride, int block_size)
460 {
461     int i;
462 
463     fc->fill_val += decode_coeff(c, &fc->coef_model);
464 
465     for (i = 0; i < block_size; i++, dst += stride)
466         memset(dst, fc->fill_val, block_size);
467 }
468 
decode_image_block(RangeCoder * c,ImageBlockCoder * ic,uint8_t * dst,ptrdiff_t stride,int block_size)469 static void decode_image_block(RangeCoder *c, ImageBlockCoder *ic,
470                                uint8_t *dst, ptrdiff_t stride, int block_size)
471 {
472     int i, j;
473     int vec_size;
474     int vec[4];
475     int prev_line[16];
476     int A, B, C;
477 
478     vec_size = rac_get_model_sym(c, &ic->vec_size_model) + 2;
479     for (i = 0; i < vec_size; i++)
480         vec[i] = rac_get_model256_sym(c, &ic->vec_entry_model);
481     for (; i < 4; i++)
482         vec[i] = 0;
483     memset(prev_line, 0, sizeof(prev_line));
484 
485     for (j = 0; j < block_size; j++) {
486         A = 0;
487         B = 0;
488         for (i = 0; i < block_size; i++) {
489             C = B;
490             B = prev_line[i];
491             A = rac_get_model_sym(c, &ic->vq_model[A + B * 5 + C * 25]);
492 
493             prev_line[i] = A;
494             if (A < 4)
495                dst[i] = vec[A];
496             else
497                dst[i] = rac_get_model256_sym(c, &ic->esc_model);
498         }
499         dst += stride;
500     }
501 }
502 
decode_dct(RangeCoder * c,DCTBlockCoder * bc,int * block,int bx,int by)503 static int decode_dct(RangeCoder *c, DCTBlockCoder *bc, int *block,
504                       int bx, int by)
505 {
506     int skip, val, sign, pos = 1, zz_pos, dc;
507     int blk_pos = bx + by * bc->prev_dc_stride;
508 
509     memset(block, 0, sizeof(*block) * 64);
510 
511     dc = decode_coeff(c, &bc->dc_model);
512     if (by) {
513         if (bx) {
514             int l, tl, t;
515 
516             l  = bc->prev_dc[blk_pos - 1];
517             tl = bc->prev_dc[blk_pos - 1 - bc->prev_dc_stride];
518             t  = bc->prev_dc[blk_pos     - bc->prev_dc_stride];
519 
520             if (FFABS(t - tl) <= FFABS(l - tl))
521                 dc += l;
522             else
523                 dc += t;
524         } else {
525             dc += bc->prev_dc[blk_pos - bc->prev_dc_stride];
526         }
527     } else if (bx) {
528         dc += bc->prev_dc[bx - 1];
529     }
530     bc->prev_dc[blk_pos] = dc;
531     block[0]             = dc * bc->qmat[0];
532 
533     while (pos < 64) {
534         val = rac_get_model256_sym(c, &bc->ac_model);
535         if (!val)
536             return 0;
537         if (val == 0xF0) {
538             pos += 16;
539             continue;
540         }
541         skip = val >> 4;
542         val  = val & 0xF;
543         if (!val)
544             return -1;
545         pos += skip;
546         if (pos >= 64)
547             return -1;
548 
549         sign = rac_get_model2_sym(c, &bc->sign_model);
550         if (val > 1) {
551             val--;
552             val = (1 << val) + rac_get_bits(c, val);
553         }
554         if (!sign)
555             val = -val;
556 
557         zz_pos = ff_zigzag_direct[pos];
558         block[zz_pos] = val * bc->qmat[zz_pos];
559         pos++;
560     }
561 
562     return pos == 64 ? 0 : -1;
563 }
564 
decode_dct_block(RangeCoder * c,DCTBlockCoder * bc,uint8_t * dst,ptrdiff_t stride,int block_size,int * block,int mb_x,int mb_y)565 static void decode_dct_block(RangeCoder *c, DCTBlockCoder *bc,
566                              uint8_t *dst, ptrdiff_t stride, int block_size,
567                              int *block, int mb_x, int mb_y)
568 {
569     int i, j;
570     int bx, by;
571     int nblocks = block_size >> 3;
572 
573     bx = mb_x * nblocks;
574     by = mb_y * nblocks;
575 
576     for (j = 0; j < nblocks; j++) {
577         for (i = 0; i < nblocks; i++) {
578             if (decode_dct(c, bc, block, bx + i, by + j)) {
579                 c->got_error = 1;
580                 return;
581             }
582             ff_mss34_dct_put(dst + i * 8, stride, block);
583         }
584         dst += 8 * stride;
585     }
586 }
587 
decode_haar_block(RangeCoder * c,HaarBlockCoder * hc,uint8_t * dst,ptrdiff_t stride,int block_size,int * block)588 static void decode_haar_block(RangeCoder *c, HaarBlockCoder *hc,
589                               uint8_t *dst, ptrdiff_t stride,
590                               int block_size, int *block)
591 {
592     const int hsize = block_size >> 1;
593     int A, B, C, D, t1, t2, t3, t4;
594     int i, j;
595 
596     for (j = 0; j < block_size; j++) {
597         for (i = 0; i < block_size; i++) {
598             if (i < hsize && j < hsize)
599                 block[i] = rac_get_model256_sym(c, &hc->coef_model);
600             else
601                 block[i] = decode_coeff(c, &hc->coef_hi_model);
602             block[i] *= hc->scale;
603         }
604         block += block_size;
605     }
606     block -= block_size * block_size;
607 
608     for (j = 0; j < hsize; j++) {
609         for (i = 0; i < hsize; i++) {
610             A = block[i];
611             B = block[i + hsize];
612             C = block[i + hsize * block_size];
613             D = block[i + hsize * block_size + hsize];
614 
615             t1 = A - B;
616             t2 = C - D;
617             t3 = A + B;
618             t4 = C + D;
619             dst[i * 2]              = av_clip_uint8(t1 - t2);
620             dst[i * 2 + stride]     = av_clip_uint8(t1 + t2);
621             dst[i * 2 + 1]          = av_clip_uint8(t3 - t4);
622             dst[i * 2 + 1 + stride] = av_clip_uint8(t3 + t4);
623         }
624         block += block_size;
625         dst   += stride * 2;
626     }
627 }
628 
reset_coders(MSS3Context * ctx,int quality)629 static void reset_coders(MSS3Context *ctx, int quality)
630 {
631     int i, j;
632 
633     for (i = 0; i < 3; i++) {
634         ctx->btype[i].last_type = SKIP_BLOCK;
635         for (j = 0; j < 5; j++)
636             model_reset(&ctx->btype[i].bt_model[j]);
637         ctx->fill_coder[i].fill_val = 0;
638         model_reset(&ctx->fill_coder[i].coef_model);
639         model256_reset(&ctx->image_coder[i].esc_model);
640         model256_reset(&ctx->image_coder[i].vec_entry_model);
641         model_reset(&ctx->image_coder[i].vec_size_model);
642         for (j = 0; j < 125; j++)
643             model_reset(&ctx->image_coder[i].vq_model[j]);
644         if (ctx->dct_coder[i].quality != quality) {
645             ctx->dct_coder[i].quality = quality;
646             ff_mss34_gen_quant_mat(ctx->dct_coder[i].qmat, quality, !i);
647         }
648         memset(ctx->dct_coder[i].prev_dc, 0,
649                sizeof(*ctx->dct_coder[i].prev_dc) *
650                ctx->dct_coder[i].prev_dc_stride *
651                ctx->dct_coder[i].prev_dc_height);
652         model_reset(&ctx->dct_coder[i].dc_model);
653         model2_reset(&ctx->dct_coder[i].sign_model);
654         model256_reset(&ctx->dct_coder[i].ac_model);
655         if (ctx->haar_coder[i].quality != quality) {
656             ctx->haar_coder[i].quality = quality;
657             ctx->haar_coder[i].scale   = 17 - 7 * quality / 50;
658         }
659         model_reset(&ctx->haar_coder[i].coef_hi_model);
660         model256_reset(&ctx->haar_coder[i].coef_model);
661     }
662 }
663 
init_coders(MSS3Context * ctx)664 static av_cold void init_coders(MSS3Context *ctx)
665 {
666     int i, j;
667 
668     for (i = 0; i < 3; i++) {
669         for (j = 0; j < 5; j++)
670             model_init(&ctx->btype[i].bt_model[j], 5);
671         model_init(&ctx->fill_coder[i].coef_model, 12);
672         model256_init(&ctx->image_coder[i].esc_model);
673         model256_init(&ctx->image_coder[i].vec_entry_model);
674         model_init(&ctx->image_coder[i].vec_size_model, 3);
675         for (j = 0; j < 125; j++)
676             model_init(&ctx->image_coder[i].vq_model[j], 5);
677         model_init(&ctx->dct_coder[i].dc_model, 12);
678         model256_init(&ctx->dct_coder[i].ac_model);
679         model_init(&ctx->haar_coder[i].coef_hi_model, 12);
680         model256_init(&ctx->haar_coder[i].coef_model);
681     }
682 }
683 
mss3_decode_frame(AVCodecContext * avctx,void * data,int * got_frame,AVPacket * avpkt)684 static int mss3_decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
685                              AVPacket *avpkt)
686 {
687     const uint8_t *buf = avpkt->data;
688     int buf_size = avpkt->size;
689     MSS3Context *c = avctx->priv_data;
690     RangeCoder *acoder = &c->coder;
691     GetByteContext gb;
692     uint8_t *dst[3];
693     int dec_width, dec_height, dec_x, dec_y, quality, keyframe;
694     int x, y, i, mb_width, mb_height, blk_size, btype;
695     int ret;
696 
697     if (buf_size < HEADER_SIZE) {
698         av_log(avctx, AV_LOG_ERROR,
699                "Frame should have at least %d bytes, got %d instead\n",
700                HEADER_SIZE, buf_size);
701         return AVERROR_INVALIDDATA;
702     }
703 
704     bytestream2_init(&gb, buf, buf_size);
705     keyframe   = bytestream2_get_be32(&gb);
706     if (keyframe & ~0x301) {
707         av_log(avctx, AV_LOG_ERROR, "Invalid frame type %X\n", keyframe);
708         return AVERROR_INVALIDDATA;
709     }
710     keyframe   = !(keyframe & 1);
711     bytestream2_skip(&gb, 6);
712     dec_x      = bytestream2_get_be16(&gb);
713     dec_y      = bytestream2_get_be16(&gb);
714     dec_width  = bytestream2_get_be16(&gb);
715     dec_height = bytestream2_get_be16(&gb);
716 
717     if (dec_x + dec_width > avctx->width ||
718         dec_y + dec_height > avctx->height ||
719         (dec_width | dec_height) & 0xF) {
720         av_log(avctx, AV_LOG_ERROR, "Invalid frame dimensions %dx%d +%d,%d\n",
721                dec_width, dec_height, dec_x, dec_y);
722         return AVERROR_INVALIDDATA;
723     }
724     bytestream2_skip(&gb, 4);
725     quality    = bytestream2_get_byte(&gb);
726     if (quality < 1 || quality > 100) {
727         av_log(avctx, AV_LOG_ERROR, "Invalid quality setting %d\n", quality);
728         return AVERROR_INVALIDDATA;
729     }
730     bytestream2_skip(&gb, 4);
731 
732     if (keyframe && !bytestream2_get_bytes_left(&gb)) {
733         av_log(avctx, AV_LOG_ERROR, "Keyframe without data found\n");
734         return AVERROR_INVALIDDATA;
735     }
736     if (!keyframe && c->got_error)
737         return buf_size;
738     c->got_error = 0;
739 
740     if ((ret = ff_reget_buffer(avctx, c->pic, 0)) < 0)
741         return ret;
742     c->pic->key_frame = keyframe;
743     c->pic->pict_type = keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
744     if (!bytestream2_get_bytes_left(&gb)) {
745         if ((ret = av_frame_ref(data, c->pic)) < 0)
746             return ret;
747         *got_frame      = 1;
748 
749         return buf_size;
750     }
751 
752     reset_coders(c, quality);
753 
754     rac_init(acoder, buf + HEADER_SIZE, buf_size - HEADER_SIZE);
755 
756     mb_width  = dec_width  >> 4;
757     mb_height = dec_height >> 4;
758     dst[0] = c->pic->data[0] + dec_x     +  dec_y      * c->pic->linesize[0];
759     dst[1] = c->pic->data[1] + dec_x / 2 + (dec_y / 2) * c->pic->linesize[1];
760     dst[2] = c->pic->data[2] + dec_x / 2 + (dec_y / 2) * c->pic->linesize[2];
761     for (y = 0; y < mb_height; y++) {
762         for (x = 0; x < mb_width; x++) {
763             for (i = 0; i < 3; i++) {
764                 blk_size = 8 << !i;
765 
766                 btype = decode_block_type(acoder, c->btype + i);
767                 switch (btype) {
768                 case FILL_BLOCK:
769                     decode_fill_block(acoder, c->fill_coder + i,
770                                       dst[i] + x * blk_size,
771                                       c->pic->linesize[i], blk_size);
772                     break;
773                 case IMAGE_BLOCK:
774                     decode_image_block(acoder, c->image_coder + i,
775                                        dst[i] + x * blk_size,
776                                        c->pic->linesize[i], blk_size);
777                     break;
778                 case DCT_BLOCK:
779                     decode_dct_block(acoder, c->dct_coder + i,
780                                      dst[i] + x * blk_size,
781                                      c->pic->linesize[i], blk_size,
782                                      c->dctblock, x, y);
783                     break;
784                 case HAAR_BLOCK:
785                     decode_haar_block(acoder, c->haar_coder + i,
786                                       dst[i] + x * blk_size,
787                                       c->pic->linesize[i], blk_size,
788                                       c->hblock);
789                     break;
790                 }
791                 if (c->got_error || acoder->got_error) {
792                     av_log(avctx, AV_LOG_ERROR, "Error decoding block %d,%d\n",
793                            x, y);
794                     c->got_error = 1;
795                     return AVERROR_INVALIDDATA;
796                 }
797             }
798         }
799         dst[0] += c->pic->linesize[0] * 16;
800         dst[1] += c->pic->linesize[1] * 8;
801         dst[2] += c->pic->linesize[2] * 8;
802     }
803 
804     if ((ret = av_frame_ref(data, c->pic)) < 0)
805         return ret;
806 
807     *got_frame      = 1;
808 
809     return buf_size;
810 }
811 
mss3_decode_end(AVCodecContext * avctx)812 static av_cold int mss3_decode_end(AVCodecContext *avctx)
813 {
814     MSS3Context * const c = avctx->priv_data;
815     int i;
816 
817     av_frame_free(&c->pic);
818     for (i = 0; i < 3; i++)
819         av_freep(&c->dct_coder[i].prev_dc);
820 
821     return 0;
822 }
823 
mss3_decode_init(AVCodecContext * avctx)824 static av_cold int mss3_decode_init(AVCodecContext *avctx)
825 {
826     MSS3Context * const c = avctx->priv_data;
827     int i;
828 
829     c->avctx = avctx;
830 
831     if ((avctx->width & 0xF) || (avctx->height & 0xF)) {
832         av_log(avctx, AV_LOG_ERROR,
833                "Image dimensions should be a multiple of 16.\n");
834         return AVERROR_INVALIDDATA;
835     }
836 
837     c->got_error = 0;
838     for (i = 0; i < 3; i++) {
839         int b_width  = avctx->width  >> (2 + !!i);
840         int b_height = avctx->height >> (2 + !!i);
841         c->dct_coder[i].prev_dc_stride = b_width;
842         c->dct_coder[i].prev_dc_height = b_height;
843         c->dct_coder[i].prev_dc = av_malloc(sizeof(*c->dct_coder[i].prev_dc) *
844                                             b_width * b_height);
845         if (!c->dct_coder[i].prev_dc) {
846             av_log(avctx, AV_LOG_ERROR, "Cannot allocate buffer\n");
847             return AVERROR(ENOMEM);
848         }
849     }
850 
851     c->pic = av_frame_alloc();
852     if (!c->pic)
853         return AVERROR(ENOMEM);
854 
855     avctx->pix_fmt     = AV_PIX_FMT_YUV420P;
856 
857     init_coders(c);
858 
859     return 0;
860 }
861 
862 AVCodec ff_msa1_decoder = {
863     .name           = "msa1",
864     .long_name      = NULL_IF_CONFIG_SMALL("MS ATC Screen"),
865     .type           = AVMEDIA_TYPE_VIDEO,
866     .id             = AV_CODEC_ID_MSA1,
867     .priv_data_size = sizeof(MSS3Context),
868     .init           = mss3_decode_init,
869     .close          = mss3_decode_end,
870     .decode         = mss3_decode_frame,
871     .capabilities   = AV_CODEC_CAP_DR1,
872     .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
873 };
874