1 /*
2 * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include "libavutil/intmath.h"
22 #include "libavutil/log.h"
23 #include "libavutil/opt.h"
24 #include "avcodec.h"
25 #include "snow_dwt.h"
26 #include "internal.h"
27 #include "snow.h"
28
29 #include "rangecoder.h"
30 #include "mathops.h"
31
32 #include "mpegvideo.h"
33 #include "h263.h"
34
predict_slice_buffered(SnowContext * s,slice_buffer * sb,IDWTELEM * old_buffer,int plane_index,int add,int mb_y)35 static av_always_inline void predict_slice_buffered(SnowContext *s, slice_buffer * sb, IDWTELEM * old_buffer, int plane_index, int add, int mb_y){
36 Plane *p= &s->plane[plane_index];
37 const int mb_w= s->b_width << s->block_max_depth;
38 const int mb_h= s->b_height << s->block_max_depth;
39 int x, y, mb_x;
40 int block_size = MB_SIZE >> s->block_max_depth;
41 int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
42 int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
43 const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
44 int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
45 int ref_stride= s->current_picture->linesize[plane_index];
46 uint8_t *dst8= s->current_picture->data[plane_index];
47 int w= p->width;
48 int h= p->height;
49
50 if(s->keyframe || (s->avctx->debug&512)){
51 if(mb_y==mb_h)
52 return;
53
54 if(add){
55 for(y=block_h*mb_y; y<FFMIN(h,block_h*(mb_y+1)); y++){
56 // DWTELEM * line = slice_buffer_get_line(sb, y);
57 IDWTELEM * line = sb->line[y];
58 for(x=0; x<w; x++){
59 // int v= buf[x + y*w] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
60 int v= line[x] + (128<<FRAC_BITS) + (1<<(FRAC_BITS-1));
61 v >>= FRAC_BITS;
62 if(v&(~255)) v= ~(v>>31);
63 dst8[x + y*ref_stride]= v;
64 }
65 }
66 }else{
67 for(y=block_h*mb_y; y<FFMIN(h,block_h*(mb_y+1)); y++){
68 // DWTELEM * line = slice_buffer_get_line(sb, y);
69 IDWTELEM * line = sb->line[y];
70 for(x=0; x<w; x++){
71 line[x] -= 128 << FRAC_BITS;
72 // buf[x + y*w]-= 128<<FRAC_BITS;
73 }
74 }
75 }
76
77 return;
78 }
79
80 for(mb_x=0; mb_x<=mb_w; mb_x++){
81 add_yblock(s, 1, sb, old_buffer, dst8, obmc,
82 block_w*mb_x - block_w/2,
83 block_h*mb_y - block_h/2,
84 block_w, block_h,
85 w, h,
86 w, ref_stride, obmc_stride,
87 mb_x - 1, mb_y - 1,
88 add, 0, plane_index);
89 }
90
91 if(s->avmv && mb_y < mb_h && plane_index == 0)
92 for(mb_x=0; mb_x<mb_w; mb_x++){
93 AVMotionVector *avmv = s->avmv + s->avmv_index;
94 const int b_width = s->b_width << s->block_max_depth;
95 const int b_stride= b_width;
96 BlockNode *bn= &s->block[mb_x + mb_y*b_stride];
97
98 if (bn->type)
99 continue;
100
101 s->avmv_index++;
102
103 avmv->w = block_w;
104 avmv->h = block_h;
105 avmv->dst_x = block_w*mb_x - block_w/2;
106 avmv->dst_y = block_h*mb_y - block_h/2;
107 avmv->motion_scale = 8;
108 avmv->motion_x = bn->mx * s->mv_scale;
109 avmv->motion_y = bn->my * s->mv_scale;
110 avmv->src_x = avmv->dst_x + avmv->motion_x / 8;
111 avmv->src_y = avmv->dst_y + avmv->motion_y / 8;
112 avmv->source= -1 - bn->ref;
113 avmv->flags = 0;
114 }
115 }
116
decode_subband_slice_buffered(SnowContext * s,SubBand * b,slice_buffer * sb,int start_y,int h,int save_state[1])117 static inline void decode_subband_slice_buffered(SnowContext *s, SubBand *b, slice_buffer * sb, int start_y, int h, int save_state[1]){
118 const int w= b->width;
119 int y;
120 const int qlog= av_clip(s->qlog + (int64_t)b->qlog, 0, QROOT*16);
121 int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
122 int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
123 int new_index = 0;
124
125 if(b->ibuf == s->spatial_idwt_buffer || s->qlog == LOSSLESS_QLOG){
126 qadd= 0;
127 qmul= 1<<QEXPSHIFT;
128 }
129
130 /* If we are on the second or later slice, restore our index. */
131 if (start_y != 0)
132 new_index = save_state[0];
133
134
135 for(y=start_y; y<h; y++){
136 int x = 0;
137 int v;
138 IDWTELEM * line = slice_buffer_get_line(sb, y * b->stride_line + b->buf_y_offset) + b->buf_x_offset;
139 memset(line, 0, b->width*sizeof(IDWTELEM));
140 v = b->x_coeff[new_index].coeff;
141 x = b->x_coeff[new_index++].x;
142 while(x < w){
143 register int t= (int)( (v>>1)*(unsigned)qmul + qadd)>>QEXPSHIFT;
144 register int u= -(v&1);
145 line[x] = (t^u) - u;
146
147 v = b->x_coeff[new_index].coeff;
148 x = b->x_coeff[new_index++].x;
149 }
150 }
151
152 /* Save our variables for the next slice. */
153 save_state[0] = new_index;
154
155 return;
156 }
157
decode_q_branch(SnowContext * s,int level,int x,int y)158 static int decode_q_branch(SnowContext *s, int level, int x, int y){
159 const int w= s->b_width << s->block_max_depth;
160 const int rem_depth= s->block_max_depth - level;
161 const int index= (x + y*w) << rem_depth;
162 int trx= (x+1)<<rem_depth;
163 const BlockNode *left = x ? &s->block[index-1] : &null_block;
164 const BlockNode *top = y ? &s->block[index-w] : &null_block;
165 const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
166 const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
167 int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
168 int res;
169
170 if(s->keyframe){
171 set_blocks(s, level, x, y, null_block.color[0], null_block.color[1], null_block.color[2], null_block.mx, null_block.my, null_block.ref, BLOCK_INTRA);
172 return 0;
173 }
174
175 if(level==s->block_max_depth || get_rac(&s->c, &s->block_state[4 + s_context])){
176 int type, mx, my;
177 int l = left->color[0];
178 int cb= left->color[1];
179 int cr= left->color[2];
180 unsigned ref = 0;
181 int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
182 int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 0*av_log2(2*FFABS(tr->mx - top->mx));
183 int my_context= av_log2(2*FFABS(left->my - top->my)) + 0*av_log2(2*FFABS(tr->my - top->my));
184
185 type= get_rac(&s->c, &s->block_state[1 + left->type + top->type]) ? BLOCK_INTRA : 0;
186 if(type){
187 int ld, cbd, crd;
188 pred_mv(s, &mx, &my, 0, left, top, tr);
189 ld = get_symbol(&s->c, &s->block_state[32], 1);
190 if (ld < -255 || ld > 255) {
191 return AVERROR_INVALIDDATA;
192 }
193 l += ld;
194 if (s->nb_planes > 2) {
195 cbd = get_symbol(&s->c, &s->block_state[64], 1);
196 crd = get_symbol(&s->c, &s->block_state[96], 1);
197 if (cbd < -255 || cbd > 255 || crd < -255 || crd > 255) {
198 return AVERROR_INVALIDDATA;
199 }
200 cb += cbd;
201 cr += crd;
202 }
203 }else{
204 if(s->ref_frames > 1)
205 ref= get_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], 0);
206 if (ref >= s->ref_frames) {
207 av_log(s->avctx, AV_LOG_ERROR, "Invalid ref\n");
208 return AVERROR_INVALIDDATA;
209 }
210 pred_mv(s, &mx, &my, ref, left, top, tr);
211 mx+= (unsigned)get_symbol(&s->c, &s->block_state[128 + 32*(mx_context + 16*!!ref)], 1);
212 my+= (unsigned)get_symbol(&s->c, &s->block_state[128 + 32*(my_context + 16*!!ref)], 1);
213 }
214 set_blocks(s, level, x, y, l, cb, cr, mx, my, ref, type);
215 }else{
216 if ((res = decode_q_branch(s, level+1, 2*x+0, 2*y+0)) < 0 ||
217 (res = decode_q_branch(s, level+1, 2*x+1, 2*y+0)) < 0 ||
218 (res = decode_q_branch(s, level+1, 2*x+0, 2*y+1)) < 0 ||
219 (res = decode_q_branch(s, level+1, 2*x+1, 2*y+1)) < 0)
220 return res;
221 }
222 return 0;
223 }
224
dequantize_slice_buffered(SnowContext * s,slice_buffer * sb,SubBand * b,IDWTELEM * src,int stride,int start_y,int end_y)225 static void dequantize_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int start_y, int end_y){
226 const int w= b->width;
227 const int qlog= av_clip(s->qlog + (int64_t)b->qlog, 0, QROOT*16);
228 const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
229 const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
230 int x,y;
231
232 if(s->qlog == LOSSLESS_QLOG) return;
233
234 for(y=start_y; y<end_y; y++){
235 // DWTELEM * line = slice_buffer_get_line_from_address(sb, src + (y * stride));
236 IDWTELEM * line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
237 for(x=0; x<w; x++){
238 int i= line[x];
239 if(i<0){
240 line[x]= -((-i*(unsigned)qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
241 }else if(i>0){
242 line[x]= (( i*(unsigned)qmul + qadd)>>(QEXPSHIFT));
243 }
244 }
245 }
246 }
247
correlate_slice_buffered(SnowContext * s,slice_buffer * sb,SubBand * b,IDWTELEM * src,int stride,int inverse,int use_median,int start_y,int end_y)248 static void correlate_slice_buffered(SnowContext *s, slice_buffer * sb, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median, int start_y, int end_y){
249 const int w= b->width;
250 int x,y;
251
252 IDWTELEM * line=0; // silence silly "could be used without having been initialized" warning
253 IDWTELEM * prev;
254
255 if (start_y != 0)
256 line = slice_buffer_get_line(sb, ((start_y - 1) * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
257
258 for(y=start_y; y<end_y; y++){
259 prev = line;
260 // line = slice_buffer_get_line_from_address(sb, src + (y * stride));
261 line = slice_buffer_get_line(sb, (y * b->stride_line) + b->buf_y_offset) + b->buf_x_offset;
262 for(x=0; x<w; x++){
263 if(x){
264 if(use_median){
265 if(y && x+1<w) line[x] += mid_pred(line[x - 1], prev[x], prev[x + 1]);
266 else line[x] += line[x - 1];
267 }else{
268 if(y) line[x] += mid_pred(line[x - 1], prev[x], line[x - 1] + prev[x] - prev[x - 1]);
269 else line[x] += line[x - 1];
270 }
271 }else{
272 if(y) line[x] += prev[x];
273 }
274 }
275 }
276 }
277
decode_qlogs(SnowContext * s)278 static void decode_qlogs(SnowContext *s){
279 int plane_index, level, orientation;
280
281 for(plane_index=0; plane_index < s->nb_planes; plane_index++){
282 for(level=0; level<s->spatial_decomposition_count; level++){
283 for(orientation=level ? 1:0; orientation<4; orientation++){
284 int q;
285 if (plane_index==2) q= s->plane[1].band[level][orientation].qlog;
286 else if(orientation==2) q= s->plane[plane_index].band[level][1].qlog;
287 else q= get_symbol(&s->c, s->header_state, 1);
288 s->plane[plane_index].band[level][orientation].qlog= q;
289 }
290 }
291 }
292 }
293
294 #define GET_S(dst, check) \
295 tmp= get_symbol(&s->c, s->header_state, 0);\
296 if(!(check)){\
297 av_log(s->avctx, AV_LOG_ERROR, "Error " #dst " is %d\n", tmp);\
298 return AVERROR_INVALIDDATA;\
299 }\
300 dst= tmp;
301
decode_header(SnowContext * s)302 static int decode_header(SnowContext *s){
303 int plane_index, tmp;
304 uint8_t kstate[32];
305
306 memset(kstate, MID_STATE, sizeof(kstate));
307
308 s->keyframe= get_rac(&s->c, kstate);
309 if(s->keyframe || s->always_reset){
310 ff_snow_reset_contexts(s);
311 s->spatial_decomposition_type=
312 s->qlog=
313 s->qbias=
314 s->mv_scale=
315 s->block_max_depth= 0;
316 }
317 if(s->keyframe){
318 GET_S(s->version, tmp <= 0U)
319 s->always_reset= get_rac(&s->c, s->header_state);
320 s->temporal_decomposition_type= get_symbol(&s->c, s->header_state, 0);
321 s->temporal_decomposition_count= get_symbol(&s->c, s->header_state, 0);
322 GET_S(s->spatial_decomposition_count, 0 < tmp && tmp <= MAX_DECOMPOSITIONS)
323 s->colorspace_type= get_symbol(&s->c, s->header_state, 0);
324 if (s->colorspace_type == 1) {
325 s->avctx->pix_fmt= AV_PIX_FMT_GRAY8;
326 s->nb_planes = 1;
327 } else if(s->colorspace_type == 0) {
328 s->chroma_h_shift= get_symbol(&s->c, s->header_state, 0);
329 s->chroma_v_shift= get_symbol(&s->c, s->header_state, 0);
330
331 if(s->chroma_h_shift == 1 && s->chroma_v_shift==1){
332 s->avctx->pix_fmt= AV_PIX_FMT_YUV420P;
333 }else if(s->chroma_h_shift == 0 && s->chroma_v_shift==0){
334 s->avctx->pix_fmt= AV_PIX_FMT_YUV444P;
335 }else if(s->chroma_h_shift == 2 && s->chroma_v_shift==2){
336 s->avctx->pix_fmt= AV_PIX_FMT_YUV410P;
337 } else {
338 av_log(s, AV_LOG_ERROR, "unsupported color subsample mode %d %d\n", s->chroma_h_shift, s->chroma_v_shift);
339 s->chroma_h_shift = s->chroma_v_shift = 1;
340 s->avctx->pix_fmt= AV_PIX_FMT_YUV420P;
341 return AVERROR_INVALIDDATA;
342 }
343 s->nb_planes = 3;
344 } else {
345 av_log(s, AV_LOG_ERROR, "unsupported color space\n");
346 s->chroma_h_shift = s->chroma_v_shift = 1;
347 s->avctx->pix_fmt= AV_PIX_FMT_YUV420P;
348 return AVERROR_INVALIDDATA;
349 }
350
351
352 s->spatial_scalability= get_rac(&s->c, s->header_state);
353 // s->rate_scalability= get_rac(&s->c, s->header_state);
354 GET_S(s->max_ref_frames, tmp < (unsigned)MAX_REF_FRAMES)
355 s->max_ref_frames++;
356
357 decode_qlogs(s);
358 }
359
360 if(!s->keyframe){
361 if(get_rac(&s->c, s->header_state)){
362 for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
363 int htaps, i, sum=0;
364 Plane *p= &s->plane[plane_index];
365 p->diag_mc= get_rac(&s->c, s->header_state);
366 htaps= get_symbol(&s->c, s->header_state, 0);
367 if((unsigned)htaps >= HTAPS_MAX/2 - 1)
368 return AVERROR_INVALIDDATA;
369 htaps = htaps*2 + 2;
370 p->htaps= htaps;
371 for(i= htaps/2; i; i--){
372 unsigned hcoeff = get_symbol(&s->c, s->header_state, 0);
373 if (hcoeff > 127)
374 return AVERROR_INVALIDDATA;
375 p->hcoeff[i]= hcoeff * (1-2*(i&1));
376 sum += p->hcoeff[i];
377 }
378 p->hcoeff[0]= 32-sum;
379 }
380 s->plane[2].diag_mc= s->plane[1].diag_mc;
381 s->plane[2].htaps = s->plane[1].htaps;
382 memcpy(s->plane[2].hcoeff, s->plane[1].hcoeff, sizeof(s->plane[1].hcoeff));
383 }
384 if(get_rac(&s->c, s->header_state)){
385 GET_S(s->spatial_decomposition_count, 0 < tmp && tmp <= MAX_DECOMPOSITIONS)
386 decode_qlogs(s);
387 }
388 }
389
390 s->spatial_decomposition_type+= (unsigned)get_symbol(&s->c, s->header_state, 1);
391 if(s->spatial_decomposition_type > 1U){
392 av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_type %d not supported\n", s->spatial_decomposition_type);
393 return AVERROR_INVALIDDATA;
394 }
395 if(FFMIN(s->avctx-> width>>s->chroma_h_shift,
396 s->avctx->height>>s->chroma_v_shift) >> (s->spatial_decomposition_count-1) <= 1){
397 av_log(s->avctx, AV_LOG_ERROR, "spatial_decomposition_count %d too large for size\n", s->spatial_decomposition_count);
398 return AVERROR_INVALIDDATA;
399 }
400 if (s->avctx->width > 65536-4) {
401 av_log(s->avctx, AV_LOG_ERROR, "Width %d is too large\n", s->avctx->width);
402 return AVERROR_INVALIDDATA;
403 }
404
405
406 s->qlog += (unsigned)get_symbol(&s->c, s->header_state, 1);
407 s->mv_scale += (unsigned)get_symbol(&s->c, s->header_state, 1);
408 s->qbias += (unsigned)get_symbol(&s->c, s->header_state, 1);
409 s->block_max_depth+= (unsigned)get_symbol(&s->c, s->header_state, 1);
410 if(s->block_max_depth > 1 || s->block_max_depth < 0 || s->mv_scale > 256U){
411 av_log(s->avctx, AV_LOG_ERROR, "block_max_depth= %d is too large\n", s->block_max_depth);
412 s->block_max_depth= 0;
413 s->mv_scale = 0;
414 return AVERROR_INVALIDDATA;
415 }
416 if (FFABS(s->qbias) > 127) {
417 av_log(s->avctx, AV_LOG_ERROR, "qbias %d is too large\n", s->qbias);
418 s->qbias = 0;
419 return AVERROR_INVALIDDATA;
420 }
421
422 return 0;
423 }
424
decode_blocks(SnowContext * s)425 static int decode_blocks(SnowContext *s){
426 int x, y;
427 int w= s->b_width;
428 int h= s->b_height;
429 int res;
430
431 for(y=0; y<h; y++){
432 for(x=0; x<w; x++){
433 if (s->c.bytestream >= s->c.bytestream_end)
434 return AVERROR_INVALIDDATA;
435 if ((res = decode_q_branch(s, 0, x, y)) < 0)
436 return res;
437 }
438 }
439 return 0;
440 }
441
decode_frame(AVCodecContext * avctx,void * data,int * got_frame,AVPacket * avpkt)442 static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
443 AVPacket *avpkt)
444 {
445 const uint8_t *buf = avpkt->data;
446 int buf_size = avpkt->size;
447 SnowContext *s = avctx->priv_data;
448 RangeCoder * const c= &s->c;
449 int bytes_read;
450 AVFrame *picture = data;
451 int level, orientation, plane_index;
452 int res;
453
454 ff_init_range_decoder(c, buf, buf_size);
455 ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
456
457 s->current_picture->pict_type= AV_PICTURE_TYPE_I; //FIXME I vs. P
458 if ((res = decode_header(s)) < 0)
459 return res;
460 if ((res=ff_snow_common_init_after_header(avctx)) < 0)
461 return res;
462
463 // realloc slice buffer for the case that spatial_decomposition_count changed
464 ff_slice_buffer_destroy(&s->sb);
465 if ((res = ff_slice_buffer_init(&s->sb, s->plane[0].height,
466 (MB_SIZE >> s->block_max_depth) +
467 s->spatial_decomposition_count * 11 + 1,
468 s->plane[0].width,
469 s->spatial_idwt_buffer)) < 0)
470 return res;
471
472 for(plane_index=0; plane_index < s->nb_planes; plane_index++){
473 Plane *p= &s->plane[plane_index];
474 p->fast_mc= p->diag_mc && p->htaps==6 && p->hcoeff[0]==40
475 && p->hcoeff[1]==-10
476 && p->hcoeff[2]==2;
477 }
478
479 ff_snow_alloc_blocks(s);
480
481 if((res = ff_snow_frame_start(s)) < 0)
482 return res;
483
484 s->current_picture->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
485
486 //keyframe flag duplication mess FIXME
487 if(avctx->debug&FF_DEBUG_PICT_INFO)
488 av_log(avctx, AV_LOG_ERROR,
489 "keyframe:%d qlog:%d qbias: %d mvscale: %d "
490 "decomposition_type:%d decomposition_count:%d\n",
491 s->keyframe, s->qlog, s->qbias, s->mv_scale,
492 s->spatial_decomposition_type,
493 s->spatial_decomposition_count
494 );
495
496 if (s->avctx->export_side_data & AV_CODEC_EXPORT_DATA_MVS) {
497 size_t size;
498 res = av_size_mult(s->b_width * s->b_height, sizeof(AVMotionVector) << (s->block_max_depth*2), &size);
499 if (res)
500 return res;
501 av_fast_malloc(&s->avmv, &s->avmv_size, size);
502 if (!s->avmv)
503 return AVERROR(ENOMEM);
504 } else {
505 s->avmv_size = 0;
506 av_freep(&s->avmv);
507 }
508 s->avmv_index = 0;
509
510 if ((res = decode_blocks(s)) < 0)
511 return res;
512
513 for(plane_index=0; plane_index < s->nb_planes; plane_index++){
514 Plane *p= &s->plane[plane_index];
515 int w= p->width;
516 int h= p->height;
517 int x, y;
518 int decode_state[MAX_DECOMPOSITIONS][4][1]; /* Stored state info for unpack_coeffs. 1 variable per instance. */
519
520 if(s->avctx->debug&2048){
521 memset(s->spatial_dwt_buffer, 0, sizeof(DWTELEM)*w*h);
522 predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
523
524 for(y=0; y<h; y++){
525 for(x=0; x<w; x++){
526 int v= s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x];
527 s->mconly_picture->data[plane_index][y*s->mconly_picture->linesize[plane_index] + x]= v;
528 }
529 }
530 }
531
532 for(level=0; level<s->spatial_decomposition_count; level++){
533 for(orientation=level ? 1 : 0; orientation<4; orientation++){
534 SubBand *b= &p->band[level][orientation];
535 unpack_coeffs(s, b, b->parent, orientation);
536 }
537 }
538
539 {
540 const int mb_h= s->b_height << s->block_max_depth;
541 const int block_size = MB_SIZE >> s->block_max_depth;
542 const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
543 int mb_y;
544 DWTCompose cs[MAX_DECOMPOSITIONS];
545 int yd=0, yq=0;
546 int y;
547 int end_y;
548
549 ff_spatial_idwt_buffered_init(cs, &s->sb, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count);
550 for(mb_y=0; mb_y<=mb_h; mb_y++){
551
552 int slice_starty = block_h*mb_y;
553 int slice_h = block_h*(mb_y+1);
554
555 if (!(s->keyframe || s->avctx->debug&512)){
556 slice_starty = FFMAX(0, slice_starty - (block_h >> 1));
557 slice_h -= (block_h >> 1);
558 }
559
560 for(level=0; level<s->spatial_decomposition_count; level++){
561 for(orientation=level ? 1 : 0; orientation<4; orientation++){
562 SubBand *b= &p->band[level][orientation];
563 int start_y;
564 int end_y;
565 int our_mb_start = mb_y;
566 int our_mb_end = (mb_y + 1);
567 const int extra= 3;
568 start_y = (mb_y ? ((block_h * our_mb_start) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra: 0);
569 end_y = (((block_h * our_mb_end) >> (s->spatial_decomposition_count - level)) + s->spatial_decomposition_count - level + extra);
570 if (!(s->keyframe || s->avctx->debug&512)){
571 start_y = FFMAX(0, start_y - (block_h >> (1+s->spatial_decomposition_count - level)));
572 end_y = FFMAX(0, end_y - (block_h >> (1+s->spatial_decomposition_count - level)));
573 }
574 start_y = FFMIN(b->height, start_y);
575 end_y = FFMIN(b->height, end_y);
576
577 if (start_y != end_y){
578 if (orientation == 0){
579 SubBand * correlate_band = &p->band[0][0];
580 int correlate_end_y = FFMIN(b->height, end_y + 1);
581 int correlate_start_y = FFMIN(b->height, (start_y ? start_y + 1 : 0));
582 decode_subband_slice_buffered(s, correlate_band, &s->sb, correlate_start_y, correlate_end_y, decode_state[0][0]);
583 correlate_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, 1, 0, correlate_start_y, correlate_end_y);
584 dequantize_slice_buffered(s, &s->sb, correlate_band, correlate_band->ibuf, correlate_band->stride, start_y, end_y);
585 }
586 else
587 decode_subband_slice_buffered(s, b, &s->sb, start_y, end_y, decode_state[level][orientation]);
588 }
589 }
590 }
591
592 for(; yd<slice_h; yd+=4){
593 ff_spatial_idwt_buffered_slice(&s->dwt, cs, &s->sb, s->temp_idwt_buffer, w, h, 1, s->spatial_decomposition_type, s->spatial_decomposition_count, yd);
594 }
595
596 if(s->qlog == LOSSLESS_QLOG){
597 for(; yq<slice_h && yq<h; yq++){
598 IDWTELEM * line = slice_buffer_get_line(&s->sb, yq);
599 for(x=0; x<w; x++){
600 line[x] *= 1<<FRAC_BITS;
601 }
602 }
603 }
604
605 predict_slice_buffered(s, &s->sb, s->spatial_idwt_buffer, plane_index, 1, mb_y);
606
607 y = FFMIN(p->height, slice_starty);
608 end_y = FFMIN(p->height, slice_h);
609 while(y < end_y)
610 ff_slice_buffer_release(&s->sb, y++);
611 }
612
613 ff_slice_buffer_flush(&s->sb);
614 }
615
616 }
617
618 emms_c();
619
620 ff_snow_release_buffer(avctx);
621
622 if(!(s->avctx->debug&2048))
623 res = av_frame_ref(picture, s->current_picture);
624 else
625 res = av_frame_ref(picture, s->mconly_picture);
626 if (res >= 0 && s->avmv_index) {
627 AVFrameSideData *sd;
628
629 sd = av_frame_new_side_data(picture, AV_FRAME_DATA_MOTION_VECTORS, s->avmv_index * sizeof(AVMotionVector));
630 if (!sd)
631 return AVERROR(ENOMEM);
632 memcpy(sd->data, s->avmv, s->avmv_index * sizeof(AVMotionVector));
633 }
634
635 if (res < 0)
636 return res;
637
638 *got_frame = 1;
639
640 bytes_read= c->bytestream - c->bytestream_start;
641 if(bytes_read ==0) av_log(s->avctx, AV_LOG_ERROR, "error at end of frame\n"); //FIXME
642
643 return bytes_read;
644 }
645
decode_end(AVCodecContext * avctx)646 static av_cold int decode_end(AVCodecContext *avctx)
647 {
648 SnowContext *s = avctx->priv_data;
649
650 ff_slice_buffer_destroy(&s->sb);
651
652 ff_snow_common_end(s);
653
654 s->avmv_size = 0;
655 av_freep(&s->avmv);
656
657 return 0;
658 }
659
660 AVCodec ff_snow_decoder = {
661 .name = "snow",
662 .long_name = NULL_IF_CONFIG_SMALL("Snow"),
663 .type = AVMEDIA_TYPE_VIDEO,
664 .id = AV_CODEC_ID_SNOW,
665 .priv_data_size = sizeof(SnowContext),
666 .init = ff_snow_common_init,
667 .close = decode_end,
668 .decode = decode_frame,
669 .capabilities = AV_CODEC_CAP_DR1 /*| AV_CODEC_CAP_DRAW_HORIZ_BAND*/,
670 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
671 FF_CODEC_CAP_INIT_CLEANUP,
672 };
673