• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 Georg Martius <georg.martius@web.de>
3  * Copyright (C) 2010 Daniel G. Taylor <dan@programmer-art.org>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * transform input video
25  */
26 
27 #include "libavutil/common.h"
28 #include "libavutil/avassert.h"
29 
30 #include "transform.h"
31 
32 #define INTERPOLATE_METHOD(name) \
33     static uint8_t name(float x, float y, const uint8_t *src, \
34                         int width, int height, int stride, uint8_t def)
35 
36 #define PIXEL(img, x, y, w, h, stride, def) \
37     ((x) < 0 || (y) < 0) ? (def) : \
38     (((x) >= (w) || (y) >= (h)) ? (def) : \
39     img[(x) + (y) * (stride)])
40 
41 /**
42  * Nearest neighbor interpolation
43  */
INTERPOLATE_METHOD(interpolate_nearest)44 INTERPOLATE_METHOD(interpolate_nearest)
45 {
46     return PIXEL(src, (int)(x + 0.5), (int)(y + 0.5), width, height, stride, def);
47 }
48 
49 /**
50  * Bilinear interpolation
51  */
INTERPOLATE_METHOD(interpolate_bilinear)52 INTERPOLATE_METHOD(interpolate_bilinear)
53 {
54     int x_c, x_f, y_c, y_f;
55     int v1, v2, v3, v4;
56 
57     if (x < -1 || x > width || y < -1 || y > height) {
58         return def;
59     } else {
60         x_f = (int)x;
61         x_c = x_f + 1;
62 
63         y_f = (int)y;
64         y_c = y_f + 1;
65 
66         v1 = PIXEL(src, x_c, y_c, width, height, stride, def);
67         v2 = PIXEL(src, x_c, y_f, width, height, stride, def);
68         v3 = PIXEL(src, x_f, y_c, width, height, stride, def);
69         v4 = PIXEL(src, x_f, y_f, width, height, stride, def);
70 
71         return (v1*(x - x_f)*(y - y_f) + v2*((x - x_f)*(y_c - y)) +
72                 v3*(x_c - x)*(y - y_f) + v4*((x_c - x)*(y_c - y)));
73     }
74 }
75 
76 /**
77  * Biquadratic interpolation
78  */
INTERPOLATE_METHOD(interpolate_biquadratic)79 INTERPOLATE_METHOD(interpolate_biquadratic)
80 {
81     int     x_c, x_f, y_c, y_f;
82     uint8_t v1,  v2,  v3,  v4;
83     float   f1,  f2,  f3,  f4;
84 
85     if (x < - 1 || x > width || y < -1 || y > height)
86         return def;
87     else {
88         x_f = (int)x;
89         x_c = x_f + 1;
90         y_f = (int)y;
91         y_c = y_f + 1;
92 
93         v1 = PIXEL(src, x_c, y_c, width, height, stride, def);
94         v2 = PIXEL(src, x_c, y_f, width, height, stride, def);
95         v3 = PIXEL(src, x_f, y_c, width, height, stride, def);
96         v4 = PIXEL(src, x_f, y_f, width, height, stride, def);
97 
98         f1 = 1 - sqrt((x_c - x) * (y_c - y));
99         f2 = 1 - sqrt((x_c - x) * (y - y_f));
100         f3 = 1 - sqrt((x - x_f) * (y_c - y));
101         f4 = 1 - sqrt((x - x_f) * (y - y_f));
102         return (v1 * f1 + v2 * f2 + v3 * f3 + v4 * f4) / (f1 + f2 + f3 + f4);
103     }
104 }
105 
ff_get_matrix(float x_shift,float y_shift,float angle,float scale_x,float scale_y,float * matrix)106 void ff_get_matrix(
107     float x_shift,
108     float y_shift,
109     float angle,
110     float scale_x,
111     float scale_y,
112     float *matrix
113 ) {
114     matrix[0] = scale_x * cos(angle);
115     matrix[1] = -sin(angle);
116     matrix[2] = x_shift;
117     matrix[3] = -matrix[1];
118     matrix[4] = scale_y * cos(angle);
119     matrix[5] = y_shift;
120     matrix[6] = 0;
121     matrix[7] = 0;
122     matrix[8] = 1;
123 }
124 
avfilter_add_matrix(const float * m1,const float * m2,float * result)125 void avfilter_add_matrix(const float *m1, const float *m2, float *result)
126 {
127     int i;
128     for (i = 0; i < 9; i++)
129         result[i] = m1[i] + m2[i];
130 }
131 
avfilter_sub_matrix(const float * m1,const float * m2,float * result)132 void avfilter_sub_matrix(const float *m1, const float *m2, float *result)
133 {
134     int i;
135     for (i = 0; i < 9; i++)
136         result[i] = m1[i] - m2[i];
137 }
138 
avfilter_mul_matrix(const float * m1,float scalar,float * result)139 void avfilter_mul_matrix(const float *m1, float scalar, float *result)
140 {
141     int i;
142     for (i = 0; i < 9; i++)
143         result[i] = m1[i] * scalar;
144 }
145 
avfilter_transform(const uint8_t * src,uint8_t * dst,int src_stride,int dst_stride,int width,int height,const float * matrix,enum InterpolateMethod interpolate,enum FillMethod fill)146 int avfilter_transform(const uint8_t *src, uint8_t *dst,
147                         int src_stride, int dst_stride,
148                         int width, int height, const float *matrix,
149                         enum InterpolateMethod interpolate,
150                         enum FillMethod fill)
151 {
152     int x, y;
153     float x_s, y_s;
154     uint8_t def = 0;
155     uint8_t (*func)(float, float, const uint8_t *, int, int, int, uint8_t) = NULL;
156 
157     switch(interpolate) {
158         case INTERPOLATE_NEAREST:
159             func = interpolate_nearest;
160             break;
161         case INTERPOLATE_BILINEAR:
162             func = interpolate_bilinear;
163             break;
164         case INTERPOLATE_BIQUADRATIC:
165             func = interpolate_biquadratic;
166             break;
167         default:
168             return AVERROR(EINVAL);
169     }
170 
171     for (y = 0; y < height; y++) {
172         for(x = 0; x < width; x++) {
173             x_s = x * matrix[0] + y * matrix[1] + matrix[2];
174             y_s = x * matrix[3] + y * matrix[4] + matrix[5];
175 
176             switch(fill) {
177                 case FILL_ORIGINAL:
178                     def = src[y * src_stride + x];
179                     break;
180                 case FILL_CLAMP:
181                     y_s = av_clipf(y_s, 0, height - 1);
182                     x_s = av_clipf(x_s, 0, width - 1);
183                     def = src[(int)y_s * src_stride + (int)x_s];
184                     break;
185                 case FILL_MIRROR:
186                     x_s = avpriv_mirror(x_s,  width-1);
187                     y_s = avpriv_mirror(y_s, height-1);
188 
189                     av_assert2(x_s >= 0 && y_s >= 0);
190                     av_assert2(x_s < width && y_s < height);
191                     def = src[(int)y_s * src_stride + (int)x_s];
192             }
193 
194             dst[y * dst_stride + x] = func(x_s, y_s, src, width, height, src_stride, def);
195         }
196     }
197     return 0;
198 }
199