• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 //     * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 //     * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 //     * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 
30 // Google Mock - a framework for writing C++ mock classes.
31 //
32 // The MATCHER* family of macros can be used in a namespace scope to
33 // define custom matchers easily.
34 //
35 // Basic Usage
36 // ===========
37 //
38 // The syntax
39 //
40 //   MATCHER(name, description_string) { statements; }
41 //
42 // defines a matcher with the given name that executes the statements,
43 // which must return a bool to indicate if the match succeeds.  Inside
44 // the statements, you can refer to the value being matched by 'arg',
45 // and refer to its type by 'arg_type'.
46 //
47 // The description string documents what the matcher does, and is used
48 // to generate the failure message when the match fails.  Since a
49 // MATCHER() is usually defined in a header file shared by multiple
50 // C++ source files, we require the description to be a C-string
51 // literal to avoid possible side effects.  It can be empty, in which
52 // case we'll use the sequence of words in the matcher name as the
53 // description.
54 //
55 // For example:
56 //
57 //   MATCHER(IsEven, "") { return (arg % 2) == 0; }
58 //
59 // allows you to write
60 //
61 //   // Expects mock_foo.Bar(n) to be called where n is even.
62 //   EXPECT_CALL(mock_foo, Bar(IsEven()));
63 //
64 // or,
65 //
66 //   // Verifies that the value of some_expression is even.
67 //   EXPECT_THAT(some_expression, IsEven());
68 //
69 // If the above assertion fails, it will print something like:
70 //
71 //   Value of: some_expression
72 //   Expected: is even
73 //     Actual: 7
74 //
75 // where the description "is even" is automatically calculated from the
76 // matcher name IsEven.
77 //
78 // Argument Type
79 // =============
80 //
81 // Note that the type of the value being matched (arg_type) is
82 // determined by the context in which you use the matcher and is
83 // supplied to you by the compiler, so you don't need to worry about
84 // declaring it (nor can you).  This allows the matcher to be
85 // polymorphic.  For example, IsEven() can be used to match any type
86 // where the value of "(arg % 2) == 0" can be implicitly converted to
87 // a bool.  In the "Bar(IsEven())" example above, if method Bar()
88 // takes an int, 'arg_type' will be int; if it takes an unsigned long,
89 // 'arg_type' will be unsigned long; and so on.
90 //
91 // Parameterizing Matchers
92 // =======================
93 //
94 // Sometimes you'll want to parameterize the matcher.  For that you
95 // can use another macro:
96 //
97 //   MATCHER_P(name, param_name, description_string) { statements; }
98 //
99 // For example:
100 //
101 //   MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
102 //
103 // will allow you to write:
104 //
105 //   EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
106 //
107 // which may lead to this message (assuming n is 10):
108 //
109 //   Value of: Blah("a")
110 //   Expected: has absolute value 10
111 //     Actual: -9
112 //
113 // Note that both the matcher description and its parameter are
114 // printed, making the message human-friendly.
115 //
116 // In the matcher definition body, you can write 'foo_type' to
117 // reference the type of a parameter named 'foo'.  For example, in the
118 // body of MATCHER_P(HasAbsoluteValue, value) above, you can write
119 // 'value_type' to refer to the type of 'value'.
120 //
121 // We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
122 // support multi-parameter matchers.
123 //
124 // Describing Parameterized Matchers
125 // =================================
126 //
127 // The last argument to MATCHER*() is a string-typed expression.  The
128 // expression can reference all of the matcher's parameters and a
129 // special bool-typed variable named 'negation'.  When 'negation' is
130 // false, the expression should evaluate to the matcher's description;
131 // otherwise it should evaluate to the description of the negation of
132 // the matcher.  For example,
133 //
134 //   using testing::PrintToString;
135 //
136 //   MATCHER_P2(InClosedRange, low, hi,
137 //       std::string(negation ? "is not" : "is") + " in range [" +
138 //       PrintToString(low) + ", " + PrintToString(hi) + "]") {
139 //     return low <= arg && arg <= hi;
140 //   }
141 //   ...
142 //   EXPECT_THAT(3, InClosedRange(4, 6));
143 //   EXPECT_THAT(3, Not(InClosedRange(2, 4)));
144 //
145 // would generate two failures that contain the text:
146 //
147 //   Expected: is in range [4, 6]
148 //   ...
149 //   Expected: is not in range [2, 4]
150 //
151 // If you specify "" as the description, the failure message will
152 // contain the sequence of words in the matcher name followed by the
153 // parameter values printed as a tuple.  For example,
154 //
155 //   MATCHER_P2(InClosedRange, low, hi, "") { ... }
156 //   ...
157 //   EXPECT_THAT(3, InClosedRange(4, 6));
158 //   EXPECT_THAT(3, Not(InClosedRange(2, 4)));
159 //
160 // would generate two failures that contain the text:
161 //
162 //   Expected: in closed range (4, 6)
163 //   ...
164 //   Expected: not (in closed range (2, 4))
165 //
166 // Types of Matcher Parameters
167 // ===========================
168 //
169 // For the purpose of typing, you can view
170 //
171 //   MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
172 //
173 // as shorthand for
174 //
175 //   template <typename p1_type, ..., typename pk_type>
176 //   FooMatcherPk<p1_type, ..., pk_type>
177 //   Foo(p1_type p1, ..., pk_type pk) { ... }
178 //
179 // When you write Foo(v1, ..., vk), the compiler infers the types of
180 // the parameters v1, ..., and vk for you.  If you are not happy with
181 // the result of the type inference, you can specify the types by
182 // explicitly instantiating the template, as in Foo<long, bool>(5,
183 // false).  As said earlier, you don't get to (or need to) specify
184 // 'arg_type' as that's determined by the context in which the matcher
185 // is used.  You can assign the result of expression Foo(p1, ..., pk)
186 // to a variable of type FooMatcherPk<p1_type, ..., pk_type>.  This
187 // can be useful when composing matchers.
188 //
189 // While you can instantiate a matcher template with reference types,
190 // passing the parameters by pointer usually makes your code more
191 // readable.  If, however, you still want to pass a parameter by
192 // reference, be aware that in the failure message generated by the
193 // matcher you will see the value of the referenced object but not its
194 // address.
195 //
196 // Explaining Match Results
197 // ========================
198 //
199 // Sometimes the matcher description alone isn't enough to explain why
200 // the match has failed or succeeded.  For example, when expecting a
201 // long string, it can be very helpful to also print the diff between
202 // the expected string and the actual one.  To achieve that, you can
203 // optionally stream additional information to a special variable
204 // named result_listener, whose type is a pointer to class
205 // MatchResultListener:
206 //
207 //   MATCHER_P(EqualsLongString, str, "") {
208 //     if (arg == str) return true;
209 //
210 //     *result_listener << "the difference: "
211 ///                     << DiffStrings(str, arg);
212 //     return false;
213 //   }
214 //
215 // Overloading Matchers
216 // ====================
217 //
218 // You can overload matchers with different numbers of parameters:
219 //
220 //   MATCHER_P(Blah, a, description_string1) { ... }
221 //   MATCHER_P2(Blah, a, b, description_string2) { ... }
222 //
223 // Caveats
224 // =======
225 //
226 // When defining a new matcher, you should also consider implementing
227 // MatcherInterface or using MakePolymorphicMatcher().  These
228 // approaches require more work than the MATCHER* macros, but also
229 // give you more control on the types of the value being matched and
230 // the matcher parameters, which may leads to better compiler error
231 // messages when the matcher is used wrong.  They also allow
232 // overloading matchers based on parameter types (as opposed to just
233 // based on the number of parameters).
234 //
235 // MATCHER*() can only be used in a namespace scope as templates cannot be
236 // declared inside of a local class.
237 //
238 // More Information
239 // ================
240 //
241 // To learn more about using these macros, please search for 'MATCHER'
242 // on
243 // https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md
244 //
245 // This file also implements some commonly used argument matchers.  More
246 // matchers can be defined by the user implementing the
247 // MatcherInterface<T> interface if necessary.
248 //
249 // See googletest/include/gtest/gtest-matchers.h for the definition of class
250 // Matcher, class MatcherInterface, and others.
251 
252 // IWYU pragma: private, include "gmock/gmock.h"
253 // IWYU pragma: friend gmock/.*
254 
255 #ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
256 #define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
257 
258 #include <algorithm>
259 #include <cmath>
260 #include <initializer_list>
261 #include <ios>
262 #include <iterator>
263 #include <limits>
264 #include <memory>
265 #include <ostream>  // NOLINT
266 #include <sstream>
267 #include <string>
268 #include <type_traits>
269 #include <utility>
270 #include <vector>
271 
272 #include "gmock/internal/gmock-internal-utils.h"
273 #include "gmock/internal/gmock-port.h"
274 #include "gmock/internal/gmock-pp.h"
275 #include "gtest/gtest.h"
276 
277 // MSVC warning C5046 is new as of VS2017 version 15.8.
278 #if defined(_MSC_VER) && _MSC_VER >= 1915
279 #define GMOCK_MAYBE_5046_ 5046
280 #else
281 #define GMOCK_MAYBE_5046_
282 #endif
283 
284 GTEST_DISABLE_MSC_WARNINGS_PUSH_(
285     4251 GMOCK_MAYBE_5046_ /* class A needs to have dll-interface to be used by
286                               clients of class B */
287     /* Symbol involving type with internal linkage not defined */)
288 
289 namespace testing {
290 
291 // To implement a matcher Foo for type T, define:
292 //   1. a class FooMatcherImpl that implements the
293 //      MatcherInterface<T> interface, and
294 //   2. a factory function that creates a Matcher<T> object from a
295 //      FooMatcherImpl*.
296 //
297 // The two-level delegation design makes it possible to allow a user
298 // to write "v" instead of "Eq(v)" where a Matcher is expected, which
299 // is impossible if we pass matchers by pointers.  It also eases
300 // ownership management as Matcher objects can now be copied like
301 // plain values.
302 
303 // A match result listener that stores the explanation in a string.
304 class StringMatchResultListener : public MatchResultListener {
305  public:
StringMatchResultListener()306   StringMatchResultListener() : MatchResultListener(&ss_) {}
307 
308   // Returns the explanation accumulated so far.
str()309   std::string str() const { return ss_.str(); }
310 
311   // Clears the explanation accumulated so far.
Clear()312   void Clear() { ss_.str(""); }
313 
314  private:
315   ::std::stringstream ss_;
316 
317   StringMatchResultListener(const StringMatchResultListener&) = delete;
318   StringMatchResultListener& operator=(const StringMatchResultListener&) =
319       delete;
320 };
321 
322 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
323 // and MUST NOT BE USED IN USER CODE!!!
324 namespace internal {
325 
326 // The MatcherCastImpl class template is a helper for implementing
327 // MatcherCast().  We need this helper in order to partially
328 // specialize the implementation of MatcherCast() (C++ allows
329 // class/struct templates to be partially specialized, but not
330 // function templates.).
331 
332 // This general version is used when MatcherCast()'s argument is a
333 // polymorphic matcher (i.e. something that can be converted to a
334 // Matcher but is not one yet; for example, Eq(value)) or a value (for
335 // example, "hello").
336 template <typename T, typename M>
337 class MatcherCastImpl {
338  public:
Cast(const M & polymorphic_matcher_or_value)339   static Matcher<T> Cast(const M& polymorphic_matcher_or_value) {
340     // M can be a polymorphic matcher, in which case we want to use
341     // its conversion operator to create Matcher<T>.  Or it can be a value
342     // that should be passed to the Matcher<T>'s constructor.
343     //
344     // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a
345     // polymorphic matcher because it'll be ambiguous if T has an implicit
346     // constructor from M (this usually happens when T has an implicit
347     // constructor from any type).
348     //
349     // It won't work to unconditionally implicit_cast
350     // polymorphic_matcher_or_value to Matcher<T> because it won't trigger
351     // a user-defined conversion from M to T if one exists (assuming M is
352     // a value).
353     return CastImpl(polymorphic_matcher_or_value,
354                     std::is_convertible<M, Matcher<T>>{},
355                     std::is_convertible<M, T>{});
356   }
357 
358  private:
359   template <bool Ignore>
CastImpl(const M & polymorphic_matcher_or_value,std::true_type,std::integral_constant<bool,Ignore>)360   static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value,
361                              std::true_type /* convertible_to_matcher */,
362                              std::integral_constant<bool, Ignore>) {
363     // M is implicitly convertible to Matcher<T>, which means that either
364     // M is a polymorphic matcher or Matcher<T> has an implicit constructor
365     // from M.  In both cases using the implicit conversion will produce a
366     // matcher.
367     //
368     // Even if T has an implicit constructor from M, it won't be called because
369     // creating Matcher<T> would require a chain of two user-defined conversions
370     // (first to create T from M and then to create Matcher<T> from T).
371     return polymorphic_matcher_or_value;
372   }
373 
374   // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic
375   // matcher. It's a value of a type implicitly convertible to T. Use direct
376   // initialization to create a matcher.
CastImpl(const M & value,std::false_type,std::true_type)377   static Matcher<T> CastImpl(const M& value,
378                              std::false_type /* convertible_to_matcher */,
379                              std::true_type /* convertible_to_T */) {
380     return Matcher<T>(ImplicitCast_<T>(value));
381   }
382 
383   // M can't be implicitly converted to either Matcher<T> or T. Attempt to use
384   // polymorphic matcher Eq(value) in this case.
385   //
386   // Note that we first attempt to perform an implicit cast on the value and
387   // only fall back to the polymorphic Eq() matcher afterwards because the
388   // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end
389   // which might be undefined even when Rhs is implicitly convertible to Lhs
390   // (e.g. std::pair<const int, int> vs. std::pair<int, int>).
391   //
392   // We don't define this method inline as we need the declaration of Eq().
393   static Matcher<T> CastImpl(const M& value,
394                              std::false_type /* convertible_to_matcher */,
395                              std::false_type /* convertible_to_T */);
396 };
397 
398 // This more specialized version is used when MatcherCast()'s argument
399 // is already a Matcher.  This only compiles when type T can be
400 // statically converted to type U.
401 template <typename T, typename U>
402 class MatcherCastImpl<T, Matcher<U>> {
403  public:
Cast(const Matcher<U> & source_matcher)404   static Matcher<T> Cast(const Matcher<U>& source_matcher) {
405     return Matcher<T>(new Impl(source_matcher));
406   }
407 
408  private:
409   class Impl : public MatcherInterface<T> {
410    public:
Impl(const Matcher<U> & source_matcher)411     explicit Impl(const Matcher<U>& source_matcher)
412         : source_matcher_(source_matcher) {}
413 
414     // We delegate the matching logic to the source matcher.
MatchAndExplain(T x,MatchResultListener * listener)415     bool MatchAndExplain(T x, MatchResultListener* listener) const override {
416       using FromType = typename std::remove_cv<typename std::remove_pointer<
417           typename std::remove_reference<T>::type>::type>::type;
418       using ToType = typename std::remove_cv<typename std::remove_pointer<
419           typename std::remove_reference<U>::type>::type>::type;
420       // Do not allow implicitly converting base*/& to derived*/&.
421       static_assert(
422           // Do not trigger if only one of them is a pointer. That implies a
423           // regular conversion and not a down_cast.
424           (std::is_pointer<typename std::remove_reference<T>::type>::value !=
425            std::is_pointer<typename std::remove_reference<U>::type>::value) ||
426               std::is_same<FromType, ToType>::value ||
427               !std::is_base_of<FromType, ToType>::value,
428           "Can't implicitly convert from <base> to <derived>");
429 
430       // Do the cast to `U` explicitly if necessary.
431       // Otherwise, let implicit conversions do the trick.
432       using CastType =
433           typename std::conditional<std::is_convertible<T&, const U&>::value,
434                                     T&, U>::type;
435 
436       return source_matcher_.MatchAndExplain(static_cast<CastType>(x),
437                                              listener);
438     }
439 
DescribeTo(::std::ostream * os)440     void DescribeTo(::std::ostream* os) const override {
441       source_matcher_.DescribeTo(os);
442     }
443 
DescribeNegationTo(::std::ostream * os)444     void DescribeNegationTo(::std::ostream* os) const override {
445       source_matcher_.DescribeNegationTo(os);
446     }
447 
448    private:
449     const Matcher<U> source_matcher_;
450   };
451 };
452 
453 // This even more specialized version is used for efficiently casting
454 // a matcher to its own type.
455 template <typename T>
456 class MatcherCastImpl<T, Matcher<T>> {
457  public:
Cast(const Matcher<T> & matcher)458   static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; }
459 };
460 
461 // Template specialization for parameterless Matcher.
462 template <typename Derived>
463 class MatcherBaseImpl {
464  public:
465   MatcherBaseImpl() = default;
466 
467   template <typename T>
468   operator ::testing::Matcher<T>() const {  // NOLINT(runtime/explicit)
469     return ::testing::Matcher<T>(new
470                                  typename Derived::template gmock_Impl<T>());
471   }
472 };
473 
474 // Template specialization for Matcher with parameters.
475 template <template <typename...> class Derived, typename... Ts>
476 class MatcherBaseImpl<Derived<Ts...>> {
477  public:
478   // Mark the constructor explicit for single argument T to avoid implicit
479   // conversions.
480   template <typename E = std::enable_if<sizeof...(Ts) == 1>,
481             typename E::type* = nullptr>
MatcherBaseImpl(Ts...params)482   explicit MatcherBaseImpl(Ts... params)
483       : params_(std::forward<Ts>(params)...) {}
484   template <typename E = std::enable_if<sizeof...(Ts) != 1>,
485             typename = typename E::type>
MatcherBaseImpl(Ts...params)486   MatcherBaseImpl(Ts... params)  // NOLINT
487       : params_(std::forward<Ts>(params)...) {}
488 
489   template <typename F>
490   operator ::testing::Matcher<F>() const {  // NOLINT(runtime/explicit)
491     return Apply<F>(MakeIndexSequence<sizeof...(Ts)>{});
492   }
493 
494  private:
495   template <typename F, std::size_t... tuple_ids>
Apply(IndexSequence<tuple_ids...>)496   ::testing::Matcher<F> Apply(IndexSequence<tuple_ids...>) const {
497     return ::testing::Matcher<F>(
498         new typename Derived<Ts...>::template gmock_Impl<F>(
499             std::get<tuple_ids>(params_)...));
500   }
501 
502   const std::tuple<Ts...> params_;
503 };
504 
505 }  // namespace internal
506 
507 // In order to be safe and clear, casting between different matcher
508 // types is done explicitly via MatcherCast<T>(m), which takes a
509 // matcher m and returns a Matcher<T>.  It compiles only when T can be
510 // statically converted to the argument type of m.
511 template <typename T, typename M>
MatcherCast(const M & matcher)512 inline Matcher<T> MatcherCast(const M& matcher) {
513   return internal::MatcherCastImpl<T, M>::Cast(matcher);
514 }
515 
516 // This overload handles polymorphic matchers and values only since
517 // monomorphic matchers are handled by the next one.
518 template <typename T, typename M>
SafeMatcherCast(const M & polymorphic_matcher_or_value)519 inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher_or_value) {
520   return MatcherCast<T>(polymorphic_matcher_or_value);
521 }
522 
523 // This overload handles monomorphic matchers.
524 //
525 // In general, if type T can be implicitly converted to type U, we can
526 // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is
527 // contravariant): just keep a copy of the original Matcher<U>, convert the
528 // argument from type T to U, and then pass it to the underlying Matcher<U>.
529 // The only exception is when U is a reference and T is not, as the
530 // underlying Matcher<U> may be interested in the argument's address, which
531 // is not preserved in the conversion from T to U.
532 template <typename T, typename U>
SafeMatcherCast(const Matcher<U> & matcher)533 inline Matcher<T> SafeMatcherCast(const Matcher<U>& matcher) {
534   // Enforce that T can be implicitly converted to U.
535   static_assert(std::is_convertible<const T&, const U&>::value,
536                 "T must be implicitly convertible to U");
537   // Enforce that we are not converting a non-reference type T to a reference
538   // type U.
539   static_assert(std::is_reference<T>::value || !std::is_reference<U>::value,
540                 "cannot convert non reference arg to reference");
541   // In case both T and U are arithmetic types, enforce that the
542   // conversion is not lossy.
543   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT;
544   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU;
545   constexpr bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther;
546   constexpr bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther;
547   static_assert(
548       kTIsOther || kUIsOther ||
549           (internal::LosslessArithmeticConvertible<RawT, RawU>::value),
550       "conversion of arithmetic types must be lossless");
551   return MatcherCast<T>(matcher);
552 }
553 
554 // A<T>() returns a matcher that matches any value of type T.
555 template <typename T>
556 Matcher<T> A();
557 
558 // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION
559 // and MUST NOT BE USED IN USER CODE!!!
560 namespace internal {
561 
562 // If the explanation is not empty, prints it to the ostream.
PrintIfNotEmpty(const std::string & explanation,::std::ostream * os)563 inline void PrintIfNotEmpty(const std::string& explanation,
564                             ::std::ostream* os) {
565   if (explanation != "" && os != nullptr) {
566     *os << ", " << explanation;
567   }
568 }
569 
570 // Returns true if the given type name is easy to read by a human.
571 // This is used to decide whether printing the type of a value might
572 // be helpful.
IsReadableTypeName(const std::string & type_name)573 inline bool IsReadableTypeName(const std::string& type_name) {
574   // We consider a type name readable if it's short or doesn't contain
575   // a template or function type.
576   return (type_name.length() <= 20 ||
577           type_name.find_first_of("<(") == std::string::npos);
578 }
579 
580 // Matches the value against the given matcher, prints the value and explains
581 // the match result to the listener. Returns the match result.
582 // 'listener' must not be NULL.
583 // Value cannot be passed by const reference, because some matchers take a
584 // non-const argument.
585 template <typename Value, typename T>
MatchPrintAndExplain(Value & value,const Matcher<T> & matcher,MatchResultListener * listener)586 bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher,
587                           MatchResultListener* listener) {
588   if (!listener->IsInterested()) {
589     // If the listener is not interested, we do not need to construct the
590     // inner explanation.
591     return matcher.Matches(value);
592   }
593 
594   StringMatchResultListener inner_listener;
595   const bool match = matcher.MatchAndExplain(value, &inner_listener);
596 
597   UniversalPrint(value, listener->stream());
598 #if GTEST_HAS_RTTI
599   const std::string& type_name = GetTypeName<Value>();
600   if (IsReadableTypeName(type_name))
601     *listener->stream() << " (of type " << type_name << ")";
602 #endif
603   PrintIfNotEmpty(inner_listener.str(), listener->stream());
604 
605   return match;
606 }
607 
608 // An internal helper class for doing compile-time loop on a tuple's
609 // fields.
610 template <size_t N>
611 class TuplePrefix {
612  public:
613   // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true
614   // if and only if the first N fields of matcher_tuple matches
615   // the first N fields of value_tuple, respectively.
616   template <typename MatcherTuple, typename ValueTuple>
Matches(const MatcherTuple & matcher_tuple,const ValueTuple & value_tuple)617   static bool Matches(const MatcherTuple& matcher_tuple,
618                       const ValueTuple& value_tuple) {
619     return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) &&
620            std::get<N - 1>(matcher_tuple).Matches(std::get<N - 1>(value_tuple));
621   }
622 
623   // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os)
624   // describes failures in matching the first N fields of matchers
625   // against the first N fields of values.  If there is no failure,
626   // nothing will be streamed to os.
627   template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailuresTo(const MatcherTuple & matchers,const ValueTuple & values,::std::ostream * os)628   static void ExplainMatchFailuresTo(const MatcherTuple& matchers,
629                                      const ValueTuple& values,
630                                      ::std::ostream* os) {
631     // First, describes failures in the first N - 1 fields.
632     TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os);
633 
634     // Then describes the failure (if any) in the (N - 1)-th (0-based)
635     // field.
636     typename std::tuple_element<N - 1, MatcherTuple>::type matcher =
637         std::get<N - 1>(matchers);
638     typedef typename std::tuple_element<N - 1, ValueTuple>::type Value;
639     const Value& value = std::get<N - 1>(values);
640     StringMatchResultListener listener;
641     if (!matcher.MatchAndExplain(value, &listener)) {
642       *os << "  Expected arg #" << N - 1 << ": ";
643       std::get<N - 1>(matchers).DescribeTo(os);
644       *os << "\n           Actual: ";
645       // We remove the reference in type Value to prevent the
646       // universal printer from printing the address of value, which
647       // isn't interesting to the user most of the time.  The
648       // matcher's MatchAndExplain() method handles the case when
649       // the address is interesting.
650       internal::UniversalPrint(value, os);
651       PrintIfNotEmpty(listener.str(), os);
652       *os << "\n";
653     }
654   }
655 };
656 
657 // The base case.
658 template <>
659 class TuplePrefix<0> {
660  public:
661   template <typename MatcherTuple, typename ValueTuple>
Matches(const MatcherTuple &,const ValueTuple &)662   static bool Matches(const MatcherTuple& /* matcher_tuple */,
663                       const ValueTuple& /* value_tuple */) {
664     return true;
665   }
666 
667   template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailuresTo(const MatcherTuple &,const ValueTuple &,::std::ostream *)668   static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */,
669                                      const ValueTuple& /* values */,
670                                      ::std::ostream* /* os */) {}
671 };
672 
673 // TupleMatches(matcher_tuple, value_tuple) returns true if and only if
674 // all matchers in matcher_tuple match the corresponding fields in
675 // value_tuple.  It is a compiler error if matcher_tuple and
676 // value_tuple have different number of fields or incompatible field
677 // types.
678 template <typename MatcherTuple, typename ValueTuple>
TupleMatches(const MatcherTuple & matcher_tuple,const ValueTuple & value_tuple)679 bool TupleMatches(const MatcherTuple& matcher_tuple,
680                   const ValueTuple& value_tuple) {
681   // Makes sure that matcher_tuple and value_tuple have the same
682   // number of fields.
683   static_assert(std::tuple_size<MatcherTuple>::value ==
684                     std::tuple_size<ValueTuple>::value,
685                 "matcher and value have different numbers of fields");
686   return TuplePrefix<std::tuple_size<ValueTuple>::value>::Matches(matcher_tuple,
687                                                                   value_tuple);
688 }
689 
690 // Describes failures in matching matchers against values.  If there
691 // is no failure, nothing will be streamed to os.
692 template <typename MatcherTuple, typename ValueTuple>
ExplainMatchFailureTupleTo(const MatcherTuple & matchers,const ValueTuple & values,::std::ostream * os)693 void ExplainMatchFailureTupleTo(const MatcherTuple& matchers,
694                                 const ValueTuple& values, ::std::ostream* os) {
695   TuplePrefix<std::tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo(
696       matchers, values, os);
697 }
698 
699 // TransformTupleValues and its helper.
700 //
701 // TransformTupleValuesHelper hides the internal machinery that
702 // TransformTupleValues uses to implement a tuple traversal.
703 template <typename Tuple, typename Func, typename OutIter>
704 class TransformTupleValuesHelper {
705  private:
706   typedef ::std::tuple_size<Tuple> TupleSize;
707 
708  public:
709   // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'.
710   // Returns the final value of 'out' in case the caller needs it.
Run(Func f,const Tuple & t,OutIter out)711   static OutIter Run(Func f, const Tuple& t, OutIter out) {
712     return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out);
713   }
714 
715  private:
716   template <typename Tup, size_t kRemainingSize>
717   struct IterateOverTuple {
operatorIterateOverTuple718     OutIter operator()(Func f, const Tup& t, OutIter out) const {
719       *out++ = f(::std::get<TupleSize::value - kRemainingSize>(t));
720       return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out);
721     }
722   };
723   template <typename Tup>
724   struct IterateOverTuple<Tup, 0> {
725     OutIter operator()(Func /* f */, const Tup& /* t */, OutIter out) const {
726       return out;
727     }
728   };
729 };
730 
731 // Successively invokes 'f(element)' on each element of the tuple 't',
732 // appending each result to the 'out' iterator. Returns the final value
733 // of 'out'.
734 template <typename Tuple, typename Func, typename OutIter>
735 OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) {
736   return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out);
737 }
738 
739 // Implements _, a matcher that matches any value of any
740 // type.  This is a polymorphic matcher, so we need a template type
741 // conversion operator to make it appearing as a Matcher<T> for any
742 // type T.
743 class AnythingMatcher {
744  public:
745   using is_gtest_matcher = void;
746 
747   template <typename T>
748   bool MatchAndExplain(const T& /* x */, std::ostream* /* listener */) const {
749     return true;
750   }
751   void DescribeTo(std::ostream* os) const { *os << "is anything"; }
752   void DescribeNegationTo(::std::ostream* os) const {
753     // This is mostly for completeness' sake, as it's not very useful
754     // to write Not(A<bool>()).  However we cannot completely rule out
755     // such a possibility, and it doesn't hurt to be prepared.
756     *os << "never matches";
757   }
758 };
759 
760 // Implements the polymorphic IsNull() matcher, which matches any raw or smart
761 // pointer that is NULL.
762 class IsNullMatcher {
763  public:
764   template <typename Pointer>
765   bool MatchAndExplain(const Pointer& p,
766                        MatchResultListener* /* listener */) const {
767     return p == nullptr;
768   }
769 
770   void DescribeTo(::std::ostream* os) const { *os << "is NULL"; }
771   void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NULL"; }
772 };
773 
774 // Implements the polymorphic NotNull() matcher, which matches any raw or smart
775 // pointer that is not NULL.
776 class NotNullMatcher {
777  public:
778   template <typename Pointer>
779   bool MatchAndExplain(const Pointer& p,
780                        MatchResultListener* /* listener */) const {
781     return p != nullptr;
782   }
783 
784   void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; }
785   void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL"; }
786 };
787 
788 // Ref(variable) matches any argument that is a reference to
789 // 'variable'.  This matcher is polymorphic as it can match any
790 // super type of the type of 'variable'.
791 //
792 // The RefMatcher template class implements Ref(variable).  It can
793 // only be instantiated with a reference type.  This prevents a user
794 // from mistakenly using Ref(x) to match a non-reference function
795 // argument.  For example, the following will righteously cause a
796 // compiler error:
797 //
798 //   int n;
799 //   Matcher<int> m1 = Ref(n);   // This won't compile.
800 //   Matcher<int&> m2 = Ref(n);  // This will compile.
801 template <typename T>
802 class RefMatcher;
803 
804 template <typename T>
805 class RefMatcher<T&> {
806   // Google Mock is a generic framework and thus needs to support
807   // mocking any function types, including those that take non-const
808   // reference arguments.  Therefore the template parameter T (and
809   // Super below) can be instantiated to either a const type or a
810   // non-const type.
811  public:
812   // RefMatcher() takes a T& instead of const T&, as we want the
813   // compiler to catch using Ref(const_value) as a matcher for a
814   // non-const reference.
815   explicit RefMatcher(T& x) : object_(x) {}  // NOLINT
816 
817   template <typename Super>
818   operator Matcher<Super&>() const {
819     // By passing object_ (type T&) to Impl(), which expects a Super&,
820     // we make sure that Super is a super type of T.  In particular,
821     // this catches using Ref(const_value) as a matcher for a
822     // non-const reference, as you cannot implicitly convert a const
823     // reference to a non-const reference.
824     return MakeMatcher(new Impl<Super>(object_));
825   }
826 
827  private:
828   template <typename Super>
829   class Impl : public MatcherInterface<Super&> {
830    public:
831     explicit Impl(Super& x) : object_(x) {}  // NOLINT
832 
833     // MatchAndExplain() takes a Super& (as opposed to const Super&)
834     // in order to match the interface MatcherInterface<Super&>.
835     bool MatchAndExplain(Super& x,
836                          MatchResultListener* listener) const override {
837       *listener << "which is located @" << static_cast<const void*>(&x);
838       return &x == &object_;
839     }
840 
841     void DescribeTo(::std::ostream* os) const override {
842       *os << "references the variable ";
843       UniversalPrinter<Super&>::Print(object_, os);
844     }
845 
846     void DescribeNegationTo(::std::ostream* os) const override {
847       *os << "does not reference the variable ";
848       UniversalPrinter<Super&>::Print(object_, os);
849     }
850 
851    private:
852     const Super& object_;
853   };
854 
855   T& object_;
856 };
857 
858 // Polymorphic helper functions for narrow and wide string matchers.
859 inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) {
860   return String::CaseInsensitiveCStringEquals(lhs, rhs);
861 }
862 
863 inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs,
864                                          const wchar_t* rhs) {
865   return String::CaseInsensitiveWideCStringEquals(lhs, rhs);
866 }
867 
868 // String comparison for narrow or wide strings that can have embedded NUL
869 // characters.
870 template <typename StringType>
871 bool CaseInsensitiveStringEquals(const StringType& s1, const StringType& s2) {
872   // Are the heads equal?
873   if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) {
874     return false;
875   }
876 
877   // Skip the equal heads.
878   const typename StringType::value_type nul = 0;
879   const size_t i1 = s1.find(nul), i2 = s2.find(nul);
880 
881   // Are we at the end of either s1 or s2?
882   if (i1 == StringType::npos || i2 == StringType::npos) {
883     return i1 == i2;
884   }
885 
886   // Are the tails equal?
887   return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1));
888 }
889 
890 // String matchers.
891 
892 // Implements equality-based string matchers like StrEq, StrCaseNe, and etc.
893 template <typename StringType>
894 class StrEqualityMatcher {
895  public:
896   StrEqualityMatcher(StringType str, bool expect_eq, bool case_sensitive)
897       : string_(std::move(str)),
898         expect_eq_(expect_eq),
899         case_sensitive_(case_sensitive) {}
900 
901 #if GTEST_INTERNAL_HAS_STRING_VIEW
902   bool MatchAndExplain(const internal::StringView& s,
903                        MatchResultListener* listener) const {
904     // This should fail to compile if StringView is used with wide
905     // strings.
906     const StringType& str = std::string(s);
907     return MatchAndExplain(str, listener);
908   }
909 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
910 
911   // Accepts pointer types, particularly:
912   //   const char*
913   //   char*
914   //   const wchar_t*
915   //   wchar_t*
916   template <typename CharType>
917   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
918     if (s == nullptr) {
919       return !expect_eq_;
920     }
921     return MatchAndExplain(StringType(s), listener);
922   }
923 
924   // Matches anything that can convert to StringType.
925   //
926   // This is a template, not just a plain function with const StringType&,
927   // because StringView has some interfering non-explicit constructors.
928   template <typename MatcheeStringType>
929   bool MatchAndExplain(const MatcheeStringType& s,
930                        MatchResultListener* /* listener */) const {
931     const StringType s2(s);
932     const bool eq = case_sensitive_ ? s2 == string_
933                                     : CaseInsensitiveStringEquals(s2, string_);
934     return expect_eq_ == eq;
935   }
936 
937   void DescribeTo(::std::ostream* os) const {
938     DescribeToHelper(expect_eq_, os);
939   }
940 
941   void DescribeNegationTo(::std::ostream* os) const {
942     DescribeToHelper(!expect_eq_, os);
943   }
944 
945  private:
946   void DescribeToHelper(bool expect_eq, ::std::ostream* os) const {
947     *os << (expect_eq ? "is " : "isn't ");
948     *os << "equal to ";
949     if (!case_sensitive_) {
950       *os << "(ignoring case) ";
951     }
952     UniversalPrint(string_, os);
953   }
954 
955   const StringType string_;
956   const bool expect_eq_;
957   const bool case_sensitive_;
958 };
959 
960 // Implements the polymorphic HasSubstr(substring) matcher, which
961 // can be used as a Matcher<T> as long as T can be converted to a
962 // string.
963 template <typename StringType>
964 class HasSubstrMatcher {
965  public:
966   explicit HasSubstrMatcher(const StringType& substring)
967       : substring_(substring) {}
968 
969 #if GTEST_INTERNAL_HAS_STRING_VIEW
970   bool MatchAndExplain(const internal::StringView& s,
971                        MatchResultListener* listener) const {
972     // This should fail to compile if StringView is used with wide
973     // strings.
974     const StringType& str = std::string(s);
975     return MatchAndExplain(str, listener);
976   }
977 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
978 
979   // Accepts pointer types, particularly:
980   //   const char*
981   //   char*
982   //   const wchar_t*
983   //   wchar_t*
984   template <typename CharType>
985   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
986     return s != nullptr && MatchAndExplain(StringType(s), listener);
987   }
988 
989   // Matches anything that can convert to StringType.
990   //
991   // This is a template, not just a plain function with const StringType&,
992   // because StringView has some interfering non-explicit constructors.
993   template <typename MatcheeStringType>
994   bool MatchAndExplain(const MatcheeStringType& s,
995                        MatchResultListener* /* listener */) const {
996     return StringType(s).find(substring_) != StringType::npos;
997   }
998 
999   // Describes what this matcher matches.
1000   void DescribeTo(::std::ostream* os) const {
1001     *os << "has substring ";
1002     UniversalPrint(substring_, os);
1003   }
1004 
1005   void DescribeNegationTo(::std::ostream* os) const {
1006     *os << "has no substring ";
1007     UniversalPrint(substring_, os);
1008   }
1009 
1010  private:
1011   const StringType substring_;
1012 };
1013 
1014 // Implements the polymorphic StartsWith(substring) matcher, which
1015 // can be used as a Matcher<T> as long as T can be converted to a
1016 // string.
1017 template <typename StringType>
1018 class StartsWithMatcher {
1019  public:
1020   explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) {}
1021 
1022 #if GTEST_INTERNAL_HAS_STRING_VIEW
1023   bool MatchAndExplain(const internal::StringView& s,
1024                        MatchResultListener* listener) const {
1025     // This should fail to compile if StringView is used with wide
1026     // strings.
1027     const StringType& str = std::string(s);
1028     return MatchAndExplain(str, listener);
1029   }
1030 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
1031 
1032   // Accepts pointer types, particularly:
1033   //   const char*
1034   //   char*
1035   //   const wchar_t*
1036   //   wchar_t*
1037   template <typename CharType>
1038   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1039     return s != nullptr && MatchAndExplain(StringType(s), listener);
1040   }
1041 
1042   // Matches anything that can convert to StringType.
1043   //
1044   // This is a template, not just a plain function with const StringType&,
1045   // because StringView has some interfering non-explicit constructors.
1046   template <typename MatcheeStringType>
1047   bool MatchAndExplain(const MatcheeStringType& s,
1048                        MatchResultListener* /* listener */) const {
1049     const StringType& s2(s);
1050     return s2.length() >= prefix_.length() &&
1051            s2.substr(0, prefix_.length()) == prefix_;
1052   }
1053 
1054   void DescribeTo(::std::ostream* os) const {
1055     *os << "starts with ";
1056     UniversalPrint(prefix_, os);
1057   }
1058 
1059   void DescribeNegationTo(::std::ostream* os) const {
1060     *os << "doesn't start with ";
1061     UniversalPrint(prefix_, os);
1062   }
1063 
1064  private:
1065   const StringType prefix_;
1066 };
1067 
1068 // Implements the polymorphic EndsWith(substring) matcher, which
1069 // can be used as a Matcher<T> as long as T can be converted to a
1070 // string.
1071 template <typename StringType>
1072 class EndsWithMatcher {
1073  public:
1074   explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {}
1075 
1076 #if GTEST_INTERNAL_HAS_STRING_VIEW
1077   bool MatchAndExplain(const internal::StringView& s,
1078                        MatchResultListener* listener) const {
1079     // This should fail to compile if StringView is used with wide
1080     // strings.
1081     const StringType& str = std::string(s);
1082     return MatchAndExplain(str, listener);
1083   }
1084 #endif  // GTEST_INTERNAL_HAS_STRING_VIEW
1085 
1086   // Accepts pointer types, particularly:
1087   //   const char*
1088   //   char*
1089   //   const wchar_t*
1090   //   wchar_t*
1091   template <typename CharType>
1092   bool MatchAndExplain(CharType* s, MatchResultListener* listener) const {
1093     return s != nullptr && MatchAndExplain(StringType(s), listener);
1094   }
1095 
1096   // Matches anything that can convert to StringType.
1097   //
1098   // This is a template, not just a plain function with const StringType&,
1099   // because StringView has some interfering non-explicit constructors.
1100   template <typename MatcheeStringType>
1101   bool MatchAndExplain(const MatcheeStringType& s,
1102                        MatchResultListener* /* listener */) const {
1103     const StringType& s2(s);
1104     return s2.length() >= suffix_.length() &&
1105            s2.substr(s2.length() - suffix_.length()) == suffix_;
1106   }
1107 
1108   void DescribeTo(::std::ostream* os) const {
1109     *os << "ends with ";
1110     UniversalPrint(suffix_, os);
1111   }
1112 
1113   void DescribeNegationTo(::std::ostream* os) const {
1114     *os << "doesn't end with ";
1115     UniversalPrint(suffix_, os);
1116   }
1117 
1118  private:
1119   const StringType suffix_;
1120 };
1121 
1122 // Implements the polymorphic WhenBase64Unescaped(matcher) matcher, which can be
1123 // used as a Matcher<T> as long as T can be converted to a string.
1124 class WhenBase64UnescapedMatcher {
1125  public:
1126   using is_gtest_matcher = void;
1127 
1128   explicit WhenBase64UnescapedMatcher(
1129       const Matcher<const std::string&>& internal_matcher)
1130       : internal_matcher_(internal_matcher) {}
1131 
1132   // Matches anything that can convert to std::string.
1133   template <typename MatcheeStringType>
1134   bool MatchAndExplain(const MatcheeStringType& s,
1135                        MatchResultListener* listener) const {
1136     const std::string s2(s);  // NOLINT (needed for working with string_view).
1137     std::string unescaped;
1138     if (!internal::Base64Unescape(s2, &unescaped)) {
1139       if (listener != nullptr) {
1140         *listener << "is not a valid base64 escaped string";
1141       }
1142       return false;
1143     }
1144     return MatchPrintAndExplain(unescaped, internal_matcher_, listener);
1145   }
1146 
1147   void DescribeTo(::std::ostream* os) const {
1148     *os << "matches after Base64Unescape ";
1149     internal_matcher_.DescribeTo(os);
1150   }
1151 
1152   void DescribeNegationTo(::std::ostream* os) const {
1153     *os << "does not match after Base64Unescape ";
1154     internal_matcher_.DescribeTo(os);
1155   }
1156 
1157  private:
1158   const Matcher<const std::string&> internal_matcher_;
1159 };
1160 
1161 // Implements a matcher that compares the two fields of a 2-tuple
1162 // using one of the ==, <=, <, etc, operators.  The two fields being
1163 // compared don't have to have the same type.
1164 //
1165 // The matcher defined here is polymorphic (for example, Eq() can be
1166 // used to match a std::tuple<int, short>, a std::tuple<const long&, double>,
1167 // etc).  Therefore we use a template type conversion operator in the
1168 // implementation.
1169 template <typename D, typename Op>
1170 class PairMatchBase {
1171  public:
1172   template <typename T1, typename T2>
1173   operator Matcher<::std::tuple<T1, T2>>() const {
1174     return Matcher<::std::tuple<T1, T2>>(new Impl<const ::std::tuple<T1, T2>&>);
1175   }
1176   template <typename T1, typename T2>
1177   operator Matcher<const ::std::tuple<T1, T2>&>() const {
1178     return MakeMatcher(new Impl<const ::std::tuple<T1, T2>&>);
1179   }
1180 
1181  private:
1182   static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT
1183     return os << D::Desc();
1184   }
1185 
1186   template <typename Tuple>
1187   class Impl : public MatcherInterface<Tuple> {
1188    public:
1189     bool MatchAndExplain(Tuple args,
1190                          MatchResultListener* /* listener */) const override {
1191       return Op()(::std::get<0>(args), ::std::get<1>(args));
1192     }
1193     void DescribeTo(::std::ostream* os) const override {
1194       *os << "are " << GetDesc;
1195     }
1196     void DescribeNegationTo(::std::ostream* os) const override {
1197       *os << "aren't " << GetDesc;
1198     }
1199   };
1200 };
1201 
1202 class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> {
1203  public:
1204   static const char* Desc() { return "an equal pair"; }
1205 };
1206 class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> {
1207  public:
1208   static const char* Desc() { return "an unequal pair"; }
1209 };
1210 class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> {
1211  public:
1212   static const char* Desc() { return "a pair where the first < the second"; }
1213 };
1214 class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> {
1215  public:
1216   static const char* Desc() { return "a pair where the first > the second"; }
1217 };
1218 class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> {
1219  public:
1220   static const char* Desc() { return "a pair where the first <= the second"; }
1221 };
1222 class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> {
1223  public:
1224   static const char* Desc() { return "a pair where the first >= the second"; }
1225 };
1226 
1227 // Implements the Not(...) matcher for a particular argument type T.
1228 // We do not nest it inside the NotMatcher class template, as that
1229 // will prevent different instantiations of NotMatcher from sharing
1230 // the same NotMatcherImpl<T> class.
1231 template <typename T>
1232 class NotMatcherImpl : public MatcherInterface<const T&> {
1233  public:
1234   explicit NotMatcherImpl(const Matcher<T>& matcher) : matcher_(matcher) {}
1235 
1236   bool MatchAndExplain(const T& x,
1237                        MatchResultListener* listener) const override {
1238     return !matcher_.MatchAndExplain(x, listener);
1239   }
1240 
1241   void DescribeTo(::std::ostream* os) const override {
1242     matcher_.DescribeNegationTo(os);
1243   }
1244 
1245   void DescribeNegationTo(::std::ostream* os) const override {
1246     matcher_.DescribeTo(os);
1247   }
1248 
1249  private:
1250   const Matcher<T> matcher_;
1251 };
1252 
1253 // Implements the Not(m) matcher, which matches a value that doesn't
1254 // match matcher m.
1255 template <typename InnerMatcher>
1256 class NotMatcher {
1257  public:
1258   explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {}
1259 
1260   // This template type conversion operator allows Not(m) to be used
1261   // to match any type m can match.
1262   template <typename T>
1263   operator Matcher<T>() const {
1264     return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_)));
1265   }
1266 
1267  private:
1268   InnerMatcher matcher_;
1269 };
1270 
1271 // Implements the AllOf(m1, m2) matcher for a particular argument type
1272 // T. We do not nest it inside the BothOfMatcher class template, as
1273 // that will prevent different instantiations of BothOfMatcher from
1274 // sharing the same BothOfMatcherImpl<T> class.
1275 template <typename T>
1276 class AllOfMatcherImpl : public MatcherInterface<const T&> {
1277  public:
1278   explicit AllOfMatcherImpl(std::vector<Matcher<T>> matchers)
1279       : matchers_(std::move(matchers)) {}
1280 
1281   void DescribeTo(::std::ostream* os) const override {
1282     *os << "(";
1283     for (size_t i = 0; i < matchers_.size(); ++i) {
1284       if (i != 0) *os << ") and (";
1285       matchers_[i].DescribeTo(os);
1286     }
1287     *os << ")";
1288   }
1289 
1290   void DescribeNegationTo(::std::ostream* os) const override {
1291     *os << "(";
1292     for (size_t i = 0; i < matchers_.size(); ++i) {
1293       if (i != 0) *os << ") or (";
1294       matchers_[i].DescribeNegationTo(os);
1295     }
1296     *os << ")";
1297   }
1298 
1299   bool MatchAndExplain(const T& x,
1300                        MatchResultListener* listener) const override {
1301     // If either matcher1_ or matcher2_ doesn't match x, we only need
1302     // to explain why one of them fails.
1303     std::string all_match_result;
1304 
1305     for (size_t i = 0; i < matchers_.size(); ++i) {
1306       StringMatchResultListener slistener;
1307       if (matchers_[i].MatchAndExplain(x, &slistener)) {
1308         if (all_match_result.empty()) {
1309           all_match_result = slistener.str();
1310         } else {
1311           std::string result = slistener.str();
1312           if (!result.empty()) {
1313             all_match_result += ", and ";
1314             all_match_result += result;
1315           }
1316         }
1317       } else {
1318         *listener << slistener.str();
1319         return false;
1320       }
1321     }
1322 
1323     // Otherwise we need to explain why *both* of them match.
1324     *listener << all_match_result;
1325     return true;
1326   }
1327 
1328  private:
1329   const std::vector<Matcher<T>> matchers_;
1330 };
1331 
1332 // VariadicMatcher is used for the variadic implementation of
1333 // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...).
1334 // CombiningMatcher<T> is used to recursively combine the provided matchers
1335 // (of type Args...).
1336 template <template <typename T> class CombiningMatcher, typename... Args>
1337 class VariadicMatcher {
1338  public:
1339   VariadicMatcher(const Args&... matchers)  // NOLINT
1340       : matchers_(matchers...) {
1341     static_assert(sizeof...(Args) > 0, "Must have at least one matcher.");
1342   }
1343 
1344   VariadicMatcher(const VariadicMatcher&) = default;
1345   VariadicMatcher& operator=(const VariadicMatcher&) = delete;
1346 
1347   // This template type conversion operator allows an
1348   // VariadicMatcher<Matcher1, Matcher2...> object to match any type that
1349   // all of the provided matchers (Matcher1, Matcher2, ...) can match.
1350   template <typename T>
1351   operator Matcher<T>() const {
1352     std::vector<Matcher<T>> values;
1353     CreateVariadicMatcher<T>(&values, std::integral_constant<size_t, 0>());
1354     return Matcher<T>(new CombiningMatcher<T>(std::move(values)));
1355   }
1356 
1357  private:
1358   template <typename T, size_t I>
1359   void CreateVariadicMatcher(std::vector<Matcher<T>>* values,
1360                              std::integral_constant<size_t, I>) const {
1361     values->push_back(SafeMatcherCast<T>(std::get<I>(matchers_)));
1362     CreateVariadicMatcher<T>(values, std::integral_constant<size_t, I + 1>());
1363   }
1364 
1365   template <typename T>
1366   void CreateVariadicMatcher(
1367       std::vector<Matcher<T>>*,
1368       std::integral_constant<size_t, sizeof...(Args)>) const {}
1369 
1370   std::tuple<Args...> matchers_;
1371 };
1372 
1373 template <typename... Args>
1374 using AllOfMatcher = VariadicMatcher<AllOfMatcherImpl, Args...>;
1375 
1376 // Implements the AnyOf(m1, m2) matcher for a particular argument type
1377 // T.  We do not nest it inside the AnyOfMatcher class template, as
1378 // that will prevent different instantiations of AnyOfMatcher from
1379 // sharing the same EitherOfMatcherImpl<T> class.
1380 template <typename T>
1381 class AnyOfMatcherImpl : public MatcherInterface<const T&> {
1382  public:
1383   explicit AnyOfMatcherImpl(std::vector<Matcher<T>> matchers)
1384       : matchers_(std::move(matchers)) {}
1385 
1386   void DescribeTo(::std::ostream* os) const override {
1387     *os << "(";
1388     for (size_t i = 0; i < matchers_.size(); ++i) {
1389       if (i != 0) *os << ") or (";
1390       matchers_[i].DescribeTo(os);
1391     }
1392     *os << ")";
1393   }
1394 
1395   void DescribeNegationTo(::std::ostream* os) const override {
1396     *os << "(";
1397     for (size_t i = 0; i < matchers_.size(); ++i) {
1398       if (i != 0) *os << ") and (";
1399       matchers_[i].DescribeNegationTo(os);
1400     }
1401     *os << ")";
1402   }
1403 
1404   bool MatchAndExplain(const T& x,
1405                        MatchResultListener* listener) const override {
1406     std::string no_match_result;
1407 
1408     // If either matcher1_ or matcher2_ matches x, we just need to
1409     // explain why *one* of them matches.
1410     for (size_t i = 0; i < matchers_.size(); ++i) {
1411       StringMatchResultListener slistener;
1412       if (matchers_[i].MatchAndExplain(x, &slistener)) {
1413         *listener << slistener.str();
1414         return true;
1415       } else {
1416         if (no_match_result.empty()) {
1417           no_match_result = slistener.str();
1418         } else {
1419           std::string result = slistener.str();
1420           if (!result.empty()) {
1421             no_match_result += ", and ";
1422             no_match_result += result;
1423           }
1424         }
1425       }
1426     }
1427 
1428     // Otherwise we need to explain why *both* of them fail.
1429     *listener << no_match_result;
1430     return false;
1431   }
1432 
1433  private:
1434   const std::vector<Matcher<T>> matchers_;
1435 };
1436 
1437 // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...).
1438 template <typename... Args>
1439 using AnyOfMatcher = VariadicMatcher<AnyOfMatcherImpl, Args...>;
1440 
1441 // ConditionalMatcher is the implementation of Conditional(cond, m1, m2)
1442 template <typename MatcherTrue, typename MatcherFalse>
1443 class ConditionalMatcher {
1444  public:
1445   ConditionalMatcher(bool condition, MatcherTrue matcher_true,
1446                      MatcherFalse matcher_false)
1447       : condition_(condition),
1448         matcher_true_(std::move(matcher_true)),
1449         matcher_false_(std::move(matcher_false)) {}
1450 
1451   template <typename T>
1452   operator Matcher<T>() const {  // NOLINT(runtime/explicit)
1453     return condition_ ? SafeMatcherCast<T>(matcher_true_)
1454                       : SafeMatcherCast<T>(matcher_false_);
1455   }
1456 
1457  private:
1458   bool condition_;
1459   MatcherTrue matcher_true_;
1460   MatcherFalse matcher_false_;
1461 };
1462 
1463 // Wrapper for implementation of Any/AllOfArray().
1464 template <template <class> class MatcherImpl, typename T>
1465 class SomeOfArrayMatcher {
1466  public:
1467   // Constructs the matcher from a sequence of element values or
1468   // element matchers.
1469   template <typename Iter>
1470   SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
1471 
1472   template <typename U>
1473   operator Matcher<U>() const {  // NOLINT
1474     using RawU = typename std::decay<U>::type;
1475     std::vector<Matcher<RawU>> matchers;
1476     for (const auto& matcher : matchers_) {
1477       matchers.push_back(MatcherCast<RawU>(matcher));
1478     }
1479     return Matcher<U>(new MatcherImpl<RawU>(std::move(matchers)));
1480   }
1481 
1482  private:
1483   const ::std::vector<T> matchers_;
1484 };
1485 
1486 template <typename T>
1487 using AllOfArrayMatcher = SomeOfArrayMatcher<AllOfMatcherImpl, T>;
1488 
1489 template <typename T>
1490 using AnyOfArrayMatcher = SomeOfArrayMatcher<AnyOfMatcherImpl, T>;
1491 
1492 // Used for implementing Truly(pred), which turns a predicate into a
1493 // matcher.
1494 template <typename Predicate>
1495 class TrulyMatcher {
1496  public:
1497   explicit TrulyMatcher(Predicate pred) : predicate_(pred) {}
1498 
1499   // This method template allows Truly(pred) to be used as a matcher
1500   // for type T where T is the argument type of predicate 'pred'.  The
1501   // argument is passed by reference as the predicate may be
1502   // interested in the address of the argument.
1503   template <typename T>
1504   bool MatchAndExplain(T& x,  // NOLINT
1505                        MatchResultListener* listener) const {
1506     // Without the if-statement, MSVC sometimes warns about converting
1507     // a value to bool (warning 4800).
1508     //
1509     // We cannot write 'return !!predicate_(x);' as that doesn't work
1510     // when predicate_(x) returns a class convertible to bool but
1511     // having no operator!().
1512     if (predicate_(x)) return true;
1513     *listener << "didn't satisfy the given predicate";
1514     return false;
1515   }
1516 
1517   void DescribeTo(::std::ostream* os) const {
1518     *os << "satisfies the given predicate";
1519   }
1520 
1521   void DescribeNegationTo(::std::ostream* os) const {
1522     *os << "doesn't satisfy the given predicate";
1523   }
1524 
1525  private:
1526   Predicate predicate_;
1527 };
1528 
1529 // Used for implementing Matches(matcher), which turns a matcher into
1530 // a predicate.
1531 template <typename M>
1532 class MatcherAsPredicate {
1533  public:
1534   explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {}
1535 
1536   // This template operator() allows Matches(m) to be used as a
1537   // predicate on type T where m is a matcher on type T.
1538   //
1539   // The argument x is passed by reference instead of by value, as
1540   // some matcher may be interested in its address (e.g. as in
1541   // Matches(Ref(n))(x)).
1542   template <typename T>
1543   bool operator()(const T& x) const {
1544     // We let matcher_ commit to a particular type here instead of
1545     // when the MatcherAsPredicate object was constructed.  This
1546     // allows us to write Matches(m) where m is a polymorphic matcher
1547     // (e.g. Eq(5)).
1548     //
1549     // If we write Matcher<T>(matcher_).Matches(x) here, it won't
1550     // compile when matcher_ has type Matcher<const T&>; if we write
1551     // Matcher<const T&>(matcher_).Matches(x) here, it won't compile
1552     // when matcher_ has type Matcher<T>; if we just write
1553     // matcher_.Matches(x), it won't compile when matcher_ is
1554     // polymorphic, e.g. Eq(5).
1555     //
1556     // MatcherCast<const T&>() is necessary for making the code work
1557     // in all of the above situations.
1558     return MatcherCast<const T&>(matcher_).Matches(x);
1559   }
1560 
1561  private:
1562   M matcher_;
1563 };
1564 
1565 // For implementing ASSERT_THAT() and EXPECT_THAT().  The template
1566 // argument M must be a type that can be converted to a matcher.
1567 template <typename M>
1568 class PredicateFormatterFromMatcher {
1569  public:
1570   explicit PredicateFormatterFromMatcher(M m) : matcher_(std::move(m)) {}
1571 
1572   // This template () operator allows a PredicateFormatterFromMatcher
1573   // object to act as a predicate-formatter suitable for using with
1574   // Google Test's EXPECT_PRED_FORMAT1() macro.
1575   template <typename T>
1576   AssertionResult operator()(const char* value_text, const T& x) const {
1577     // We convert matcher_ to a Matcher<const T&> *now* instead of
1578     // when the PredicateFormatterFromMatcher object was constructed,
1579     // as matcher_ may be polymorphic (e.g. NotNull()) and we won't
1580     // know which type to instantiate it to until we actually see the
1581     // type of x here.
1582     //
1583     // We write SafeMatcherCast<const T&>(matcher_) instead of
1584     // Matcher<const T&>(matcher_), as the latter won't compile when
1585     // matcher_ has type Matcher<T> (e.g. An<int>()).
1586     // We don't write MatcherCast<const T&> either, as that allows
1587     // potentially unsafe downcasting of the matcher argument.
1588     const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_);
1589 
1590     // The expected path here is that the matcher should match (i.e. that most
1591     // tests pass) so optimize for this case.
1592     if (matcher.Matches(x)) {
1593       return AssertionSuccess();
1594     }
1595 
1596     ::std::stringstream ss;
1597     ss << "Value of: " << value_text << "\n"
1598        << "Expected: ";
1599     matcher.DescribeTo(&ss);
1600 
1601     // Rerun the matcher to "PrintAndExplain" the failure.
1602     StringMatchResultListener listener;
1603     if (MatchPrintAndExplain(x, matcher, &listener)) {
1604       ss << "\n  The matcher failed on the initial attempt; but passed when "
1605             "rerun to generate the explanation.";
1606     }
1607     ss << "\n  Actual: " << listener.str();
1608     return AssertionFailure() << ss.str();
1609   }
1610 
1611  private:
1612   const M matcher_;
1613 };
1614 
1615 // A helper function for converting a matcher to a predicate-formatter
1616 // without the user needing to explicitly write the type.  This is
1617 // used for implementing ASSERT_THAT() and EXPECT_THAT().
1618 // Implementation detail: 'matcher' is received by-value to force decaying.
1619 template <typename M>
1620 inline PredicateFormatterFromMatcher<M> MakePredicateFormatterFromMatcher(
1621     M matcher) {
1622   return PredicateFormatterFromMatcher<M>(std::move(matcher));
1623 }
1624 
1625 // Implements the polymorphic IsNan() matcher, which matches any floating type
1626 // value that is Nan.
1627 class IsNanMatcher {
1628  public:
1629   template <typename FloatType>
1630   bool MatchAndExplain(const FloatType& f,
1631                        MatchResultListener* /* listener */) const {
1632     return (::std::isnan)(f);
1633   }
1634 
1635   void DescribeTo(::std::ostream* os) const { *os << "is NaN"; }
1636   void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NaN"; }
1637 };
1638 
1639 // Implements the polymorphic floating point equality matcher, which matches
1640 // two float values using ULP-based approximation or, optionally, a
1641 // user-specified epsilon.  The template is meant to be instantiated with
1642 // FloatType being either float or double.
1643 template <typename FloatType>
1644 class FloatingEqMatcher {
1645  public:
1646   // Constructor for FloatingEqMatcher.
1647   // The matcher's input will be compared with expected.  The matcher treats two
1648   // NANs as equal if nan_eq_nan is true.  Otherwise, under IEEE standards,
1649   // equality comparisons between NANs will always return false.  We specify a
1650   // negative max_abs_error_ term to indicate that ULP-based approximation will
1651   // be used for comparison.
1652   FloatingEqMatcher(FloatType expected, bool nan_eq_nan)
1653       : expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) {}
1654 
1655   // Constructor that supports a user-specified max_abs_error that will be used
1656   // for comparison instead of ULP-based approximation.  The max absolute
1657   // should be non-negative.
1658   FloatingEqMatcher(FloatType expected, bool nan_eq_nan,
1659                     FloatType max_abs_error)
1660       : expected_(expected),
1661         nan_eq_nan_(nan_eq_nan),
1662         max_abs_error_(max_abs_error) {
1663     GTEST_CHECK_(max_abs_error >= 0)
1664         << ", where max_abs_error is" << max_abs_error;
1665   }
1666 
1667   // Implements floating point equality matcher as a Matcher<T>.
1668   template <typename T>
1669   class Impl : public MatcherInterface<T> {
1670    public:
1671     Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error)
1672         : expected_(expected),
1673           nan_eq_nan_(nan_eq_nan),
1674           max_abs_error_(max_abs_error) {}
1675 
1676     bool MatchAndExplain(T value,
1677                          MatchResultListener* listener) const override {
1678       const FloatingPoint<FloatType> actual(value), expected(expected_);
1679 
1680       // Compares NaNs first, if nan_eq_nan_ is true.
1681       if (actual.is_nan() || expected.is_nan()) {
1682         if (actual.is_nan() && expected.is_nan()) {
1683           return nan_eq_nan_;
1684         }
1685         // One is nan; the other is not nan.
1686         return false;
1687       }
1688       if (HasMaxAbsError()) {
1689         // We perform an equality check so that inf will match inf, regardless
1690         // of error bounds.  If the result of value - expected_ would result in
1691         // overflow or if either value is inf, the default result is infinity,
1692         // which should only match if max_abs_error_ is also infinity.
1693         if (value == expected_) {
1694           return true;
1695         }
1696 
1697         const FloatType diff = value - expected_;
1698         if (::std::fabs(diff) <= max_abs_error_) {
1699           return true;
1700         }
1701 
1702         if (listener->IsInterested()) {
1703           *listener << "which is " << diff << " from " << expected_;
1704         }
1705         return false;
1706       } else {
1707         return actual.AlmostEquals(expected);
1708       }
1709     }
1710 
1711     void DescribeTo(::std::ostream* os) const override {
1712       // os->precision() returns the previously set precision, which we
1713       // store to restore the ostream to its original configuration
1714       // after outputting.
1715       const ::std::streamsize old_precision =
1716           os->precision(::std::numeric_limits<FloatType>::digits10 + 2);
1717       if (FloatingPoint<FloatType>(expected_).is_nan()) {
1718         if (nan_eq_nan_) {
1719           *os << "is NaN";
1720         } else {
1721           *os << "never matches";
1722         }
1723       } else {
1724         *os << "is approximately " << expected_;
1725         if (HasMaxAbsError()) {
1726           *os << " (absolute error <= " << max_abs_error_ << ")";
1727         }
1728       }
1729       os->precision(old_precision);
1730     }
1731 
1732     void DescribeNegationTo(::std::ostream* os) const override {
1733       // As before, get original precision.
1734       const ::std::streamsize old_precision =
1735           os->precision(::std::numeric_limits<FloatType>::digits10 + 2);
1736       if (FloatingPoint<FloatType>(expected_).is_nan()) {
1737         if (nan_eq_nan_) {
1738           *os << "isn't NaN";
1739         } else {
1740           *os << "is anything";
1741         }
1742       } else {
1743         *os << "isn't approximately " << expected_;
1744         if (HasMaxAbsError()) {
1745           *os << " (absolute error > " << max_abs_error_ << ")";
1746         }
1747       }
1748       // Restore original precision.
1749       os->precision(old_precision);
1750     }
1751 
1752    private:
1753     bool HasMaxAbsError() const { return max_abs_error_ >= 0; }
1754 
1755     const FloatType expected_;
1756     const bool nan_eq_nan_;
1757     // max_abs_error will be used for value comparison when >= 0.
1758     const FloatType max_abs_error_;
1759   };
1760 
1761   // The following 3 type conversion operators allow FloatEq(expected) and
1762   // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a
1763   // Matcher<const float&>, or a Matcher<float&>, but nothing else.
1764   operator Matcher<FloatType>() const {
1765     return MakeMatcher(
1766         new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_));
1767   }
1768 
1769   operator Matcher<const FloatType&>() const {
1770     return MakeMatcher(
1771         new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1772   }
1773 
1774   operator Matcher<FloatType&>() const {
1775     return MakeMatcher(
1776         new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_));
1777   }
1778 
1779  private:
1780   const FloatType expected_;
1781   const bool nan_eq_nan_;
1782   // max_abs_error will be used for value comparison when >= 0.
1783   const FloatType max_abs_error_;
1784 };
1785 
1786 // A 2-tuple ("binary") wrapper around FloatingEqMatcher:
1787 // FloatingEq2Matcher() matches (x, y) by matching FloatingEqMatcher(x, false)
1788 // against y, and FloatingEq2Matcher(e) matches FloatingEqMatcher(x, false, e)
1789 // against y. The former implements "Eq", the latter "Near". At present, there
1790 // is no version that compares NaNs as equal.
1791 template <typename FloatType>
1792 class FloatingEq2Matcher {
1793  public:
1794   FloatingEq2Matcher() { Init(-1, false); }
1795 
1796   explicit FloatingEq2Matcher(bool nan_eq_nan) { Init(-1, nan_eq_nan); }
1797 
1798   explicit FloatingEq2Matcher(FloatType max_abs_error) {
1799     Init(max_abs_error, false);
1800   }
1801 
1802   FloatingEq2Matcher(FloatType max_abs_error, bool nan_eq_nan) {
1803     Init(max_abs_error, nan_eq_nan);
1804   }
1805 
1806   template <typename T1, typename T2>
1807   operator Matcher<::std::tuple<T1, T2>>() const {
1808     return MakeMatcher(
1809         new Impl<::std::tuple<T1, T2>>(max_abs_error_, nan_eq_nan_));
1810   }
1811   template <typename T1, typename T2>
1812   operator Matcher<const ::std::tuple<T1, T2>&>() const {
1813     return MakeMatcher(
1814         new Impl<const ::std::tuple<T1, T2>&>(max_abs_error_, nan_eq_nan_));
1815   }
1816 
1817  private:
1818   static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT
1819     return os << "an almost-equal pair";
1820   }
1821 
1822   template <typename Tuple>
1823   class Impl : public MatcherInterface<Tuple> {
1824    public:
1825     Impl(FloatType max_abs_error, bool nan_eq_nan)
1826         : max_abs_error_(max_abs_error), nan_eq_nan_(nan_eq_nan) {}
1827 
1828     bool MatchAndExplain(Tuple args,
1829                          MatchResultListener* listener) const override {
1830       if (max_abs_error_ == -1) {
1831         FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_);
1832         return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1833             ::std::get<1>(args), listener);
1834       } else {
1835         FloatingEqMatcher<FloatType> fm(::std::get<0>(args), nan_eq_nan_,
1836                                         max_abs_error_);
1837         return static_cast<Matcher<FloatType>>(fm).MatchAndExplain(
1838             ::std::get<1>(args), listener);
1839       }
1840     }
1841     void DescribeTo(::std::ostream* os) const override {
1842       *os << "are " << GetDesc;
1843     }
1844     void DescribeNegationTo(::std::ostream* os) const override {
1845       *os << "aren't " << GetDesc;
1846     }
1847 
1848    private:
1849     FloatType max_abs_error_;
1850     const bool nan_eq_nan_;
1851   };
1852 
1853   void Init(FloatType max_abs_error_val, bool nan_eq_nan_val) {
1854     max_abs_error_ = max_abs_error_val;
1855     nan_eq_nan_ = nan_eq_nan_val;
1856   }
1857   FloatType max_abs_error_;
1858   bool nan_eq_nan_;
1859 };
1860 
1861 // Implements the Pointee(m) matcher for matching a pointer whose
1862 // pointee matches matcher m.  The pointer can be either raw or smart.
1863 template <typename InnerMatcher>
1864 class PointeeMatcher {
1865  public:
1866   explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1867 
1868   // This type conversion operator template allows Pointee(m) to be
1869   // used as a matcher for any pointer type whose pointee type is
1870   // compatible with the inner matcher, where type Pointer can be
1871   // either a raw pointer or a smart pointer.
1872   //
1873   // The reason we do this instead of relying on
1874   // MakePolymorphicMatcher() is that the latter is not flexible
1875   // enough for implementing the DescribeTo() method of Pointee().
1876   template <typename Pointer>
1877   operator Matcher<Pointer>() const {
1878     return Matcher<Pointer>(new Impl<const Pointer&>(matcher_));
1879   }
1880 
1881  private:
1882   // The monomorphic implementation that works for a particular pointer type.
1883   template <typename Pointer>
1884   class Impl : public MatcherInterface<Pointer> {
1885    public:
1886     using Pointee =
1887         typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
1888             Pointer)>::element_type;
1889 
1890     explicit Impl(const InnerMatcher& matcher)
1891         : matcher_(MatcherCast<const Pointee&>(matcher)) {}
1892 
1893     void DescribeTo(::std::ostream* os) const override {
1894       *os << "points to a value that ";
1895       matcher_.DescribeTo(os);
1896     }
1897 
1898     void DescribeNegationTo(::std::ostream* os) const override {
1899       *os << "does not point to a value that ";
1900       matcher_.DescribeTo(os);
1901     }
1902 
1903     bool MatchAndExplain(Pointer pointer,
1904                          MatchResultListener* listener) const override {
1905       if (GetRawPointer(pointer) == nullptr) return false;
1906 
1907       *listener << "which points to ";
1908       return MatchPrintAndExplain(*pointer, matcher_, listener);
1909     }
1910 
1911    private:
1912     const Matcher<const Pointee&> matcher_;
1913   };
1914 
1915   const InnerMatcher matcher_;
1916 };
1917 
1918 // Implements the Pointer(m) matcher
1919 // Implements the Pointer(m) matcher for matching a pointer that matches matcher
1920 // m.  The pointer can be either raw or smart, and will match `m` against the
1921 // raw pointer.
1922 template <typename InnerMatcher>
1923 class PointerMatcher {
1924  public:
1925   explicit PointerMatcher(const InnerMatcher& matcher) : matcher_(matcher) {}
1926 
1927   // This type conversion operator template allows Pointer(m) to be
1928   // used as a matcher for any pointer type whose pointer type is
1929   // compatible with the inner matcher, where type PointerType can be
1930   // either a raw pointer or a smart pointer.
1931   //
1932   // The reason we do this instead of relying on
1933   // MakePolymorphicMatcher() is that the latter is not flexible
1934   // enough for implementing the DescribeTo() method of Pointer().
1935   template <typename PointerType>
1936   operator Matcher<PointerType>() const {  // NOLINT
1937     return Matcher<PointerType>(new Impl<const PointerType&>(matcher_));
1938   }
1939 
1940  private:
1941   // The monomorphic implementation that works for a particular pointer type.
1942   template <typename PointerType>
1943   class Impl : public MatcherInterface<PointerType> {
1944    public:
1945     using Pointer =
1946         const typename std::pointer_traits<GTEST_REMOVE_REFERENCE_AND_CONST_(
1947             PointerType)>::element_type*;
1948 
1949     explicit Impl(const InnerMatcher& matcher)
1950         : matcher_(MatcherCast<Pointer>(matcher)) {}
1951 
1952     void DescribeTo(::std::ostream* os) const override {
1953       *os << "is a pointer that ";
1954       matcher_.DescribeTo(os);
1955     }
1956 
1957     void DescribeNegationTo(::std::ostream* os) const override {
1958       *os << "is not a pointer that ";
1959       matcher_.DescribeTo(os);
1960     }
1961 
1962     bool MatchAndExplain(PointerType pointer,
1963                          MatchResultListener* listener) const override {
1964       *listener << "which is a pointer that ";
1965       Pointer p = GetRawPointer(pointer);
1966       return MatchPrintAndExplain(p, matcher_, listener);
1967     }
1968 
1969    private:
1970     Matcher<Pointer> matcher_;
1971   };
1972 
1973   const InnerMatcher matcher_;
1974 };
1975 
1976 #if GTEST_HAS_RTTI
1977 // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or
1978 // reference that matches inner_matcher when dynamic_cast<T> is applied.
1979 // The result of dynamic_cast<To> is forwarded to the inner matcher.
1980 // If To is a pointer and the cast fails, the inner matcher will receive NULL.
1981 // If To is a reference and the cast fails, this matcher returns false
1982 // immediately.
1983 template <typename To>
1984 class WhenDynamicCastToMatcherBase {
1985  public:
1986   explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher)
1987       : matcher_(matcher) {}
1988 
1989   void DescribeTo(::std::ostream* os) const {
1990     GetCastTypeDescription(os);
1991     matcher_.DescribeTo(os);
1992   }
1993 
1994   void DescribeNegationTo(::std::ostream* os) const {
1995     GetCastTypeDescription(os);
1996     matcher_.DescribeNegationTo(os);
1997   }
1998 
1999  protected:
2000   const Matcher<To> matcher_;
2001 
2002   static std::string GetToName() { return GetTypeName<To>(); }
2003 
2004  private:
2005   static void GetCastTypeDescription(::std::ostream* os) {
2006     *os << "when dynamic_cast to " << GetToName() << ", ";
2007   }
2008 };
2009 
2010 // Primary template.
2011 // To is a pointer. Cast and forward the result.
2012 template <typename To>
2013 class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> {
2014  public:
2015   explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher)
2016       : WhenDynamicCastToMatcherBase<To>(matcher) {}
2017 
2018   template <typename From>
2019   bool MatchAndExplain(From from, MatchResultListener* listener) const {
2020     To to = dynamic_cast<To>(from);
2021     return MatchPrintAndExplain(to, this->matcher_, listener);
2022   }
2023 };
2024 
2025 // Specialize for references.
2026 // In this case we return false if the dynamic_cast fails.
2027 template <typename To>
2028 class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> {
2029  public:
2030   explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher)
2031       : WhenDynamicCastToMatcherBase<To&>(matcher) {}
2032 
2033   template <typename From>
2034   bool MatchAndExplain(From& from, MatchResultListener* listener) const {
2035     // We don't want an std::bad_cast here, so do the cast with pointers.
2036     To* to = dynamic_cast<To*>(&from);
2037     if (to == nullptr) {
2038       *listener << "which cannot be dynamic_cast to " << this->GetToName();
2039       return false;
2040     }
2041     return MatchPrintAndExplain(*to, this->matcher_, listener);
2042   }
2043 };
2044 #endif  // GTEST_HAS_RTTI
2045 
2046 // Implements the Field() matcher for matching a field (i.e. member
2047 // variable) of an object.
2048 template <typename Class, typename FieldType>
2049 class FieldMatcher {
2050  public:
2051   FieldMatcher(FieldType Class::*field,
2052                const Matcher<const FieldType&>& matcher)
2053       : field_(field), matcher_(matcher), whose_field_("whose given field ") {}
2054 
2055   FieldMatcher(const std::string& field_name, FieldType Class::*field,
2056                const Matcher<const FieldType&>& matcher)
2057       : field_(field),
2058         matcher_(matcher),
2059         whose_field_("whose field `" + field_name + "` ") {}
2060 
2061   void DescribeTo(::std::ostream* os) const {
2062     *os << "is an object " << whose_field_;
2063     matcher_.DescribeTo(os);
2064   }
2065 
2066   void DescribeNegationTo(::std::ostream* os) const {
2067     *os << "is an object " << whose_field_;
2068     matcher_.DescribeNegationTo(os);
2069   }
2070 
2071   template <typename T>
2072   bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2073     // FIXME: The dispatch on std::is_pointer was introduced as a workaround for
2074     // a compiler bug, and can now be removed.
2075     return MatchAndExplainImpl(
2076         typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2077         value, listener);
2078   }
2079 
2080  private:
2081   bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2082                            const Class& obj,
2083                            MatchResultListener* listener) const {
2084     *listener << whose_field_ << "is ";
2085     return MatchPrintAndExplain(obj.*field_, matcher_, listener);
2086   }
2087 
2088   bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2089                            MatchResultListener* listener) const {
2090     if (p == nullptr) return false;
2091 
2092     *listener << "which points to an object ";
2093     // Since *p has a field, it must be a class/struct/union type and
2094     // thus cannot be a pointer.  Therefore we pass false_type() as
2095     // the first argument.
2096     return MatchAndExplainImpl(std::false_type(), *p, listener);
2097   }
2098 
2099   const FieldType Class::*field_;
2100   const Matcher<const FieldType&> matcher_;
2101 
2102   // Contains either "whose given field " if the name of the field is unknown
2103   // or "whose field `name_of_field` " if the name is known.
2104   const std::string whose_field_;
2105 };
2106 
2107 // Implements the Property() matcher for matching a property
2108 // (i.e. return value of a getter method) of an object.
2109 //
2110 // Property is a const-qualified member function of Class returning
2111 // PropertyType.
2112 template <typename Class, typename PropertyType, typename Property>
2113 class PropertyMatcher {
2114  public:
2115   typedef const PropertyType& RefToConstProperty;
2116 
2117   PropertyMatcher(Property property, const Matcher<RefToConstProperty>& matcher)
2118       : property_(property),
2119         matcher_(matcher),
2120         whose_property_("whose given property ") {}
2121 
2122   PropertyMatcher(const std::string& property_name, Property property,
2123                   const Matcher<RefToConstProperty>& matcher)
2124       : property_(property),
2125         matcher_(matcher),
2126         whose_property_("whose property `" + property_name + "` ") {}
2127 
2128   void DescribeTo(::std::ostream* os) const {
2129     *os << "is an object " << whose_property_;
2130     matcher_.DescribeTo(os);
2131   }
2132 
2133   void DescribeNegationTo(::std::ostream* os) const {
2134     *os << "is an object " << whose_property_;
2135     matcher_.DescribeNegationTo(os);
2136   }
2137 
2138   template <typename T>
2139   bool MatchAndExplain(const T& value, MatchResultListener* listener) const {
2140     return MatchAndExplainImpl(
2141         typename std::is_pointer<typename std::remove_const<T>::type>::type(),
2142         value, listener);
2143   }
2144 
2145  private:
2146   bool MatchAndExplainImpl(std::false_type /* is_not_pointer */,
2147                            const Class& obj,
2148                            MatchResultListener* listener) const {
2149     *listener << whose_property_ << "is ";
2150     // Cannot pass the return value (for example, int) to MatchPrintAndExplain,
2151     // which takes a non-const reference as argument.
2152     RefToConstProperty result = (obj.*property_)();
2153     return MatchPrintAndExplain(result, matcher_, listener);
2154   }
2155 
2156   bool MatchAndExplainImpl(std::true_type /* is_pointer */, const Class* p,
2157                            MatchResultListener* listener) const {
2158     if (p == nullptr) return false;
2159 
2160     *listener << "which points to an object ";
2161     // Since *p has a property method, it must be a class/struct/union
2162     // type and thus cannot be a pointer.  Therefore we pass
2163     // false_type() as the first argument.
2164     return MatchAndExplainImpl(std::false_type(), *p, listener);
2165   }
2166 
2167   Property property_;
2168   const Matcher<RefToConstProperty> matcher_;
2169 
2170   // Contains either "whose given property " if the name of the property is
2171   // unknown or "whose property `name_of_property` " if the name is known.
2172   const std::string whose_property_;
2173 };
2174 
2175 // Type traits specifying various features of different functors for ResultOf.
2176 // The default template specifies features for functor objects.
2177 template <typename Functor>
2178 struct CallableTraits {
2179   typedef Functor StorageType;
2180 
2181   static void CheckIsValid(Functor /* functor */) {}
2182 
2183   template <typename T>
2184   static auto Invoke(Functor f, const T& arg) -> decltype(f(arg)) {
2185     return f(arg);
2186   }
2187 };
2188 
2189 // Specialization for function pointers.
2190 template <typename ArgType, typename ResType>
2191 struct CallableTraits<ResType (*)(ArgType)> {
2192   typedef ResType ResultType;
2193   typedef ResType (*StorageType)(ArgType);
2194 
2195   static void CheckIsValid(ResType (*f)(ArgType)) {
2196     GTEST_CHECK_(f != nullptr)
2197         << "NULL function pointer is passed into ResultOf().";
2198   }
2199   template <typename T>
2200   static ResType Invoke(ResType (*f)(ArgType), T arg) {
2201     return (*f)(arg);
2202   }
2203 };
2204 
2205 // Implements the ResultOf() matcher for matching a return value of a
2206 // unary function of an object.
2207 template <typename Callable, typename InnerMatcher>
2208 class ResultOfMatcher {
2209  public:
2210   ResultOfMatcher(Callable callable, InnerMatcher matcher)
2211       : ResultOfMatcher(/*result_description=*/"", std::move(callable),
2212                         std::move(matcher)) {}
2213 
2214   ResultOfMatcher(const std::string& result_description, Callable callable,
2215                   InnerMatcher matcher)
2216       : result_description_(result_description),
2217         callable_(std::move(callable)),
2218         matcher_(std::move(matcher)) {
2219     CallableTraits<Callable>::CheckIsValid(callable_);
2220   }
2221 
2222   template <typename T>
2223   operator Matcher<T>() const {
2224     return Matcher<T>(
2225         new Impl<const T&>(result_description_, callable_, matcher_));
2226   }
2227 
2228  private:
2229   typedef typename CallableTraits<Callable>::StorageType CallableStorageType;
2230 
2231   template <typename T>
2232   class Impl : public MatcherInterface<T> {
2233     using ResultType = decltype(CallableTraits<Callable>::template Invoke<T>(
2234         std::declval<CallableStorageType>(), std::declval<T>()));
2235 
2236    public:
2237     template <typename M>
2238     Impl(const std::string& result_description,
2239          const CallableStorageType& callable, const M& matcher)
2240         : result_description_(result_description),
2241           callable_(callable),
2242           matcher_(MatcherCast<ResultType>(matcher)) {}
2243 
2244     void DescribeTo(::std::ostream* os) const override {
2245       if (result_description_.empty()) {
2246         *os << "is mapped by the given callable to a value that ";
2247       } else {
2248         *os << "whose " << result_description_ << " ";
2249       }
2250       matcher_.DescribeTo(os);
2251     }
2252 
2253     void DescribeNegationTo(::std::ostream* os) const override {
2254       if (result_description_.empty()) {
2255         *os << "is mapped by the given callable to a value that ";
2256       } else {
2257         *os << "whose " << result_description_ << " ";
2258       }
2259       matcher_.DescribeNegationTo(os);
2260     }
2261 
2262     bool MatchAndExplain(T obj, MatchResultListener* listener) const override {
2263       if (result_description_.empty()) {
2264         *listener << "which is mapped by the given callable to ";
2265       } else {
2266         *listener << "whose " << result_description_ << " is ";
2267       }
2268       // Cannot pass the return value directly to MatchPrintAndExplain, which
2269       // takes a non-const reference as argument.
2270       // Also, specifying template argument explicitly is needed because T could
2271       // be a non-const reference (e.g. Matcher<Uncopyable&>).
2272       ResultType result =
2273           CallableTraits<Callable>::template Invoke<T>(callable_, obj);
2274       return MatchPrintAndExplain(result, matcher_, listener);
2275     }
2276 
2277    private:
2278     const std::string result_description_;
2279     // Functors often define operator() as non-const method even though
2280     // they are actually stateless. But we need to use them even when
2281     // 'this' is a const pointer. It's the user's responsibility not to
2282     // use stateful callables with ResultOf(), which doesn't guarantee
2283     // how many times the callable will be invoked.
2284     mutable CallableStorageType callable_;
2285     const Matcher<ResultType> matcher_;
2286   };  // class Impl
2287 
2288   const std::string result_description_;
2289   const CallableStorageType callable_;
2290   const InnerMatcher matcher_;
2291 };
2292 
2293 // Implements a matcher that checks the size of an STL-style container.
2294 template <typename SizeMatcher>
2295 class SizeIsMatcher {
2296  public:
2297   explicit SizeIsMatcher(const SizeMatcher& size_matcher)
2298       : size_matcher_(size_matcher) {}
2299 
2300   template <typename Container>
2301   operator Matcher<Container>() const {
2302     return Matcher<Container>(new Impl<const Container&>(size_matcher_));
2303   }
2304 
2305   template <typename Container>
2306   class Impl : public MatcherInterface<Container> {
2307    public:
2308     using SizeType = decltype(std::declval<Container>().size());
2309     explicit Impl(const SizeMatcher& size_matcher)
2310         : size_matcher_(MatcherCast<SizeType>(size_matcher)) {}
2311 
2312     void DescribeTo(::std::ostream* os) const override {
2313       *os << "has a size that ";
2314       size_matcher_.DescribeTo(os);
2315     }
2316     void DescribeNegationTo(::std::ostream* os) const override {
2317       *os << "has a size that ";
2318       size_matcher_.DescribeNegationTo(os);
2319     }
2320 
2321     bool MatchAndExplain(Container container,
2322                          MatchResultListener* listener) const override {
2323       SizeType size = container.size();
2324       StringMatchResultListener size_listener;
2325       const bool result = size_matcher_.MatchAndExplain(size, &size_listener);
2326       *listener << "whose size " << size
2327                 << (result ? " matches" : " doesn't match");
2328       PrintIfNotEmpty(size_listener.str(), listener->stream());
2329       return result;
2330     }
2331 
2332    private:
2333     const Matcher<SizeType> size_matcher_;
2334   };
2335 
2336  private:
2337   const SizeMatcher size_matcher_;
2338 };
2339 
2340 // Implements a matcher that checks the begin()..end() distance of an STL-style
2341 // container.
2342 template <typename DistanceMatcher>
2343 class BeginEndDistanceIsMatcher {
2344  public:
2345   explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher)
2346       : distance_matcher_(distance_matcher) {}
2347 
2348   template <typename Container>
2349   operator Matcher<Container>() const {
2350     return Matcher<Container>(new Impl<const Container&>(distance_matcher_));
2351   }
2352 
2353   template <typename Container>
2354   class Impl : public MatcherInterface<Container> {
2355    public:
2356     typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2357         Container)>
2358         ContainerView;
2359     typedef typename std::iterator_traits<
2360         typename ContainerView::type::const_iterator>::difference_type
2361         DistanceType;
2362     explicit Impl(const DistanceMatcher& distance_matcher)
2363         : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {}
2364 
2365     void DescribeTo(::std::ostream* os) const override {
2366       *os << "distance between begin() and end() ";
2367       distance_matcher_.DescribeTo(os);
2368     }
2369     void DescribeNegationTo(::std::ostream* os) const override {
2370       *os << "distance between begin() and end() ";
2371       distance_matcher_.DescribeNegationTo(os);
2372     }
2373 
2374     bool MatchAndExplain(Container container,
2375                          MatchResultListener* listener) const override {
2376       using std::begin;
2377       using std::end;
2378       DistanceType distance = std::distance(begin(container), end(container));
2379       StringMatchResultListener distance_listener;
2380       const bool result =
2381           distance_matcher_.MatchAndExplain(distance, &distance_listener);
2382       *listener << "whose distance between begin() and end() " << distance
2383                 << (result ? " matches" : " doesn't match");
2384       PrintIfNotEmpty(distance_listener.str(), listener->stream());
2385       return result;
2386     }
2387 
2388    private:
2389     const Matcher<DistanceType> distance_matcher_;
2390   };
2391 
2392  private:
2393   const DistanceMatcher distance_matcher_;
2394 };
2395 
2396 // Implements an equality matcher for any STL-style container whose elements
2397 // support ==. This matcher is like Eq(), but its failure explanations provide
2398 // more detailed information that is useful when the container is used as a set.
2399 // The failure message reports elements that are in one of the operands but not
2400 // the other. The failure messages do not report duplicate or out-of-order
2401 // elements in the containers (which don't properly matter to sets, but can
2402 // occur if the containers are vectors or lists, for example).
2403 //
2404 // Uses the container's const_iterator, value_type, operator ==,
2405 // begin(), and end().
2406 template <typename Container>
2407 class ContainerEqMatcher {
2408  public:
2409   typedef internal::StlContainerView<Container> View;
2410   typedef typename View::type StlContainer;
2411   typedef typename View::const_reference StlContainerReference;
2412 
2413   static_assert(!std::is_const<Container>::value,
2414                 "Container type must not be const");
2415   static_assert(!std::is_reference<Container>::value,
2416                 "Container type must not be a reference");
2417 
2418   // We make a copy of expected in case the elements in it are modified
2419   // after this matcher is created.
2420   explicit ContainerEqMatcher(const Container& expected)
2421       : expected_(View::Copy(expected)) {}
2422 
2423   void DescribeTo(::std::ostream* os) const {
2424     *os << "equals ";
2425     UniversalPrint(expected_, os);
2426   }
2427   void DescribeNegationTo(::std::ostream* os) const {
2428     *os << "does not equal ";
2429     UniversalPrint(expected_, os);
2430   }
2431 
2432   template <typename LhsContainer>
2433   bool MatchAndExplain(const LhsContainer& lhs,
2434                        MatchResultListener* listener) const {
2435     typedef internal::StlContainerView<
2436         typename std::remove_const<LhsContainer>::type>
2437         LhsView;
2438     StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2439     if (lhs_stl_container == expected_) return true;
2440 
2441     ::std::ostream* const os = listener->stream();
2442     if (os != nullptr) {
2443       // Something is different. Check for extra values first.
2444       bool printed_header = false;
2445       for (auto it = lhs_stl_container.begin(); it != lhs_stl_container.end();
2446            ++it) {
2447         if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) ==
2448             expected_.end()) {
2449           if (printed_header) {
2450             *os << ", ";
2451           } else {
2452             *os << "which has these unexpected elements: ";
2453             printed_header = true;
2454           }
2455           UniversalPrint(*it, os);
2456         }
2457       }
2458 
2459       // Now check for missing values.
2460       bool printed_header2 = false;
2461       for (auto it = expected_.begin(); it != expected_.end(); ++it) {
2462         if (internal::ArrayAwareFind(lhs_stl_container.begin(),
2463                                      lhs_stl_container.end(),
2464                                      *it) == lhs_stl_container.end()) {
2465           if (printed_header2) {
2466             *os << ", ";
2467           } else {
2468             *os << (printed_header ? ",\nand" : "which")
2469                 << " doesn't have these expected elements: ";
2470             printed_header2 = true;
2471           }
2472           UniversalPrint(*it, os);
2473         }
2474       }
2475     }
2476 
2477     return false;
2478   }
2479 
2480  private:
2481   const StlContainer expected_;
2482 };
2483 
2484 // A comparator functor that uses the < operator to compare two values.
2485 struct LessComparator {
2486   template <typename T, typename U>
2487   bool operator()(const T& lhs, const U& rhs) const {
2488     return lhs < rhs;
2489   }
2490 };
2491 
2492 // Implements WhenSortedBy(comparator, container_matcher).
2493 template <typename Comparator, typename ContainerMatcher>
2494 class WhenSortedByMatcher {
2495  public:
2496   WhenSortedByMatcher(const Comparator& comparator,
2497                       const ContainerMatcher& matcher)
2498       : comparator_(comparator), matcher_(matcher) {}
2499 
2500   template <typename LhsContainer>
2501   operator Matcher<LhsContainer>() const {
2502     return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_));
2503   }
2504 
2505   template <typename LhsContainer>
2506   class Impl : public MatcherInterface<LhsContainer> {
2507    public:
2508     typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2509         LhsContainer)>
2510         LhsView;
2511     typedef typename LhsView::type LhsStlContainer;
2512     typedef typename LhsView::const_reference LhsStlContainerReference;
2513     // Transforms std::pair<const Key, Value> into std::pair<Key, Value>
2514     // so that we can match associative containers.
2515     typedef
2516         typename RemoveConstFromKey<typename LhsStlContainer::value_type>::type
2517             LhsValue;
2518 
2519     Impl(const Comparator& comparator, const ContainerMatcher& matcher)
2520         : comparator_(comparator), matcher_(matcher) {}
2521 
2522     void DescribeTo(::std::ostream* os) const override {
2523       *os << "(when sorted) ";
2524       matcher_.DescribeTo(os);
2525     }
2526 
2527     void DescribeNegationTo(::std::ostream* os) const override {
2528       *os << "(when sorted) ";
2529       matcher_.DescribeNegationTo(os);
2530     }
2531 
2532     bool MatchAndExplain(LhsContainer lhs,
2533                          MatchResultListener* listener) const override {
2534       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2535       ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(),
2536                                                lhs_stl_container.end());
2537       ::std::sort(sorted_container.begin(), sorted_container.end(),
2538                   comparator_);
2539 
2540       if (!listener->IsInterested()) {
2541         // If the listener is not interested, we do not need to
2542         // construct the inner explanation.
2543         return matcher_.Matches(sorted_container);
2544       }
2545 
2546       *listener << "which is ";
2547       UniversalPrint(sorted_container, listener->stream());
2548       *listener << " when sorted";
2549 
2550       StringMatchResultListener inner_listener;
2551       const bool match =
2552           matcher_.MatchAndExplain(sorted_container, &inner_listener);
2553       PrintIfNotEmpty(inner_listener.str(), listener->stream());
2554       return match;
2555     }
2556 
2557    private:
2558     const Comparator comparator_;
2559     const Matcher<const ::std::vector<LhsValue>&> matcher_;
2560 
2561     Impl(const Impl&) = delete;
2562     Impl& operator=(const Impl&) = delete;
2563   };
2564 
2565  private:
2566   const Comparator comparator_;
2567   const ContainerMatcher matcher_;
2568 };
2569 
2570 // Implements Pointwise(tuple_matcher, rhs_container).  tuple_matcher
2571 // must be able to be safely cast to Matcher<std::tuple<const T1&, const
2572 // T2&> >, where T1 and T2 are the types of elements in the LHS
2573 // container and the RHS container respectively.
2574 template <typename TupleMatcher, typename RhsContainer>
2575 class PointwiseMatcher {
2576   static_assert(
2577       !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>::value,
2578       "use UnorderedPointwise with hash tables");
2579 
2580  public:
2581   typedef internal::StlContainerView<RhsContainer> RhsView;
2582   typedef typename RhsView::type RhsStlContainer;
2583   typedef typename RhsStlContainer::value_type RhsValue;
2584 
2585   static_assert(!std::is_const<RhsContainer>::value,
2586                 "RhsContainer type must not be const");
2587   static_assert(!std::is_reference<RhsContainer>::value,
2588                 "RhsContainer type must not be a reference");
2589 
2590   // Like ContainerEq, we make a copy of rhs in case the elements in
2591   // it are modified after this matcher is created.
2592   PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs)
2593       : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) {}
2594 
2595   template <typename LhsContainer>
2596   operator Matcher<LhsContainer>() const {
2597     static_assert(
2598         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)>::value,
2599         "use UnorderedPointwise with hash tables");
2600 
2601     return Matcher<LhsContainer>(
2602         new Impl<const LhsContainer&>(tuple_matcher_, rhs_));
2603   }
2604 
2605   template <typename LhsContainer>
2606   class Impl : public MatcherInterface<LhsContainer> {
2607    public:
2608     typedef internal::StlContainerView<GTEST_REMOVE_REFERENCE_AND_CONST_(
2609         LhsContainer)>
2610         LhsView;
2611     typedef typename LhsView::type LhsStlContainer;
2612     typedef typename LhsView::const_reference LhsStlContainerReference;
2613     typedef typename LhsStlContainer::value_type LhsValue;
2614     // We pass the LHS value and the RHS value to the inner matcher by
2615     // reference, as they may be expensive to copy.  We must use tuple
2616     // instead of pair here, as a pair cannot hold references (C++ 98,
2617     // 20.2.2 [lib.pairs]).
2618     typedef ::std::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg;
2619 
2620     Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs)
2621         // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher.
2622         : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)),
2623           rhs_(rhs) {}
2624 
2625     void DescribeTo(::std::ostream* os) const override {
2626       *os << "contains " << rhs_.size()
2627           << " values, where each value and its corresponding value in ";
2628       UniversalPrinter<RhsStlContainer>::Print(rhs_, os);
2629       *os << " ";
2630       mono_tuple_matcher_.DescribeTo(os);
2631     }
2632     void DescribeNegationTo(::std::ostream* os) const override {
2633       *os << "doesn't contain exactly " << rhs_.size()
2634           << " values, or contains a value x at some index i"
2635           << " where x and the i-th value of ";
2636       UniversalPrint(rhs_, os);
2637       *os << " ";
2638       mono_tuple_matcher_.DescribeNegationTo(os);
2639     }
2640 
2641     bool MatchAndExplain(LhsContainer lhs,
2642                          MatchResultListener* listener) const override {
2643       LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs);
2644       const size_t actual_size = lhs_stl_container.size();
2645       if (actual_size != rhs_.size()) {
2646         *listener << "which contains " << actual_size << " values";
2647         return false;
2648       }
2649 
2650       auto left = lhs_stl_container.begin();
2651       auto right = rhs_.begin();
2652       for (size_t i = 0; i != actual_size; ++i, ++left, ++right) {
2653         if (listener->IsInterested()) {
2654           StringMatchResultListener inner_listener;
2655           // Create InnerMatcherArg as a temporarily object to avoid it outlives
2656           // *left and *right. Dereference or the conversion to `const T&` may
2657           // return temp objects, e.g. for vector<bool>.
2658           if (!mono_tuple_matcher_.MatchAndExplain(
2659                   InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2660                                   ImplicitCast_<const RhsValue&>(*right)),
2661                   &inner_listener)) {
2662             *listener << "where the value pair (";
2663             UniversalPrint(*left, listener->stream());
2664             *listener << ", ";
2665             UniversalPrint(*right, listener->stream());
2666             *listener << ") at index #" << i << " don't match";
2667             PrintIfNotEmpty(inner_listener.str(), listener->stream());
2668             return false;
2669           }
2670         } else {
2671           if (!mono_tuple_matcher_.Matches(
2672                   InnerMatcherArg(ImplicitCast_<const LhsValue&>(*left),
2673                                   ImplicitCast_<const RhsValue&>(*right))))
2674             return false;
2675         }
2676       }
2677 
2678       return true;
2679     }
2680 
2681    private:
2682     const Matcher<InnerMatcherArg> mono_tuple_matcher_;
2683     const RhsStlContainer rhs_;
2684   };
2685 
2686  private:
2687   const TupleMatcher tuple_matcher_;
2688   const RhsStlContainer rhs_;
2689 };
2690 
2691 // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl.
2692 template <typename Container>
2693 class QuantifierMatcherImpl : public MatcherInterface<Container> {
2694  public:
2695   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
2696   typedef StlContainerView<RawContainer> View;
2697   typedef typename View::type StlContainer;
2698   typedef typename View::const_reference StlContainerReference;
2699   typedef typename StlContainer::value_type Element;
2700 
2701   template <typename InnerMatcher>
2702   explicit QuantifierMatcherImpl(InnerMatcher inner_matcher)
2703       : inner_matcher_(
2704             testing::SafeMatcherCast<const Element&>(inner_matcher)) {}
2705 
2706   // Checks whether:
2707   // * All elements in the container match, if all_elements_should_match.
2708   // * Any element in the container matches, if !all_elements_should_match.
2709   bool MatchAndExplainImpl(bool all_elements_should_match, Container container,
2710                            MatchResultListener* listener) const {
2711     StlContainerReference stl_container = View::ConstReference(container);
2712     size_t i = 0;
2713     for (auto it = stl_container.begin(); it != stl_container.end();
2714          ++it, ++i) {
2715       StringMatchResultListener inner_listener;
2716       const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2717 
2718       if (matches != all_elements_should_match) {
2719         *listener << "whose element #" << i
2720                   << (matches ? " matches" : " doesn't match");
2721         PrintIfNotEmpty(inner_listener.str(), listener->stream());
2722         return !all_elements_should_match;
2723       }
2724     }
2725     return all_elements_should_match;
2726   }
2727 
2728   bool MatchAndExplainImpl(const Matcher<size_t>& count_matcher,
2729                            Container container,
2730                            MatchResultListener* listener) const {
2731     StlContainerReference stl_container = View::ConstReference(container);
2732     size_t i = 0;
2733     std::vector<size_t> match_elements;
2734     for (auto it = stl_container.begin(); it != stl_container.end();
2735          ++it, ++i) {
2736       StringMatchResultListener inner_listener;
2737       const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener);
2738       if (matches) {
2739         match_elements.push_back(i);
2740       }
2741     }
2742     if (listener->IsInterested()) {
2743       if (match_elements.empty()) {
2744         *listener << "has no element that matches";
2745       } else if (match_elements.size() == 1) {
2746         *listener << "whose element #" << match_elements[0] << " matches";
2747       } else {
2748         *listener << "whose elements (";
2749         std::string sep = "";
2750         for (size_t e : match_elements) {
2751           *listener << sep << e;
2752           sep = ", ";
2753         }
2754         *listener << ") match";
2755       }
2756     }
2757     StringMatchResultListener count_listener;
2758     if (count_matcher.MatchAndExplain(match_elements.size(), &count_listener)) {
2759       *listener << " and whose match quantity of " << match_elements.size()
2760                 << " matches";
2761       PrintIfNotEmpty(count_listener.str(), listener->stream());
2762       return true;
2763     } else {
2764       if (match_elements.empty()) {
2765         *listener << " and";
2766       } else {
2767         *listener << " but";
2768       }
2769       *listener << " whose match quantity of " << match_elements.size()
2770                 << " does not match";
2771       PrintIfNotEmpty(count_listener.str(), listener->stream());
2772       return false;
2773     }
2774   }
2775 
2776  protected:
2777   const Matcher<const Element&> inner_matcher_;
2778 };
2779 
2780 // Implements Contains(element_matcher) for the given argument type Container.
2781 // Symmetric to EachMatcherImpl.
2782 template <typename Container>
2783 class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> {
2784  public:
2785   template <typename InnerMatcher>
2786   explicit ContainsMatcherImpl(InnerMatcher inner_matcher)
2787       : QuantifierMatcherImpl<Container>(inner_matcher) {}
2788 
2789   // Describes what this matcher does.
2790   void DescribeTo(::std::ostream* os) const override {
2791     *os << "contains at least one element that ";
2792     this->inner_matcher_.DescribeTo(os);
2793   }
2794 
2795   void DescribeNegationTo(::std::ostream* os) const override {
2796     *os << "doesn't contain any element that ";
2797     this->inner_matcher_.DescribeTo(os);
2798   }
2799 
2800   bool MatchAndExplain(Container container,
2801                        MatchResultListener* listener) const override {
2802     return this->MatchAndExplainImpl(false, container, listener);
2803   }
2804 };
2805 
2806 // Implements Each(element_matcher) for the given argument type Container.
2807 // Symmetric to ContainsMatcherImpl.
2808 template <typename Container>
2809 class EachMatcherImpl : public QuantifierMatcherImpl<Container> {
2810  public:
2811   template <typename InnerMatcher>
2812   explicit EachMatcherImpl(InnerMatcher inner_matcher)
2813       : QuantifierMatcherImpl<Container>(inner_matcher) {}
2814 
2815   // Describes what this matcher does.
2816   void DescribeTo(::std::ostream* os) const override {
2817     *os << "only contains elements that ";
2818     this->inner_matcher_.DescribeTo(os);
2819   }
2820 
2821   void DescribeNegationTo(::std::ostream* os) const override {
2822     *os << "contains some element that ";
2823     this->inner_matcher_.DescribeNegationTo(os);
2824   }
2825 
2826   bool MatchAndExplain(Container container,
2827                        MatchResultListener* listener) const override {
2828     return this->MatchAndExplainImpl(true, container, listener);
2829   }
2830 };
2831 
2832 // Implements Contains(element_matcher).Times(n) for the given argument type
2833 // Container.
2834 template <typename Container>
2835 class ContainsTimesMatcherImpl : public QuantifierMatcherImpl<Container> {
2836  public:
2837   template <typename InnerMatcher>
2838   explicit ContainsTimesMatcherImpl(InnerMatcher inner_matcher,
2839                                     Matcher<size_t> count_matcher)
2840       : QuantifierMatcherImpl<Container>(inner_matcher),
2841         count_matcher_(std::move(count_matcher)) {}
2842 
2843   void DescribeTo(::std::ostream* os) const override {
2844     *os << "quantity of elements that match ";
2845     this->inner_matcher_.DescribeTo(os);
2846     *os << " ";
2847     count_matcher_.DescribeTo(os);
2848   }
2849 
2850   void DescribeNegationTo(::std::ostream* os) const override {
2851     *os << "quantity of elements that match ";
2852     this->inner_matcher_.DescribeTo(os);
2853     *os << " ";
2854     count_matcher_.DescribeNegationTo(os);
2855   }
2856 
2857   bool MatchAndExplain(Container container,
2858                        MatchResultListener* listener) const override {
2859     return this->MatchAndExplainImpl(count_matcher_, container, listener);
2860   }
2861 
2862  private:
2863   const Matcher<size_t> count_matcher_;
2864 };
2865 
2866 // Implements polymorphic Contains(element_matcher).Times(n).
2867 template <typename M>
2868 class ContainsTimesMatcher {
2869  public:
2870   explicit ContainsTimesMatcher(M m, Matcher<size_t> count_matcher)
2871       : inner_matcher_(m), count_matcher_(std::move(count_matcher)) {}
2872 
2873   template <typename Container>
2874   operator Matcher<Container>() const {  // NOLINT
2875     return Matcher<Container>(new ContainsTimesMatcherImpl<const Container&>(
2876         inner_matcher_, count_matcher_));
2877   }
2878 
2879  private:
2880   const M inner_matcher_;
2881   const Matcher<size_t> count_matcher_;
2882 };
2883 
2884 // Implements polymorphic Contains(element_matcher).
2885 template <typename M>
2886 class ContainsMatcher {
2887  public:
2888   explicit ContainsMatcher(M m) : inner_matcher_(m) {}
2889 
2890   template <typename Container>
2891   operator Matcher<Container>() const {  // NOLINT
2892     return Matcher<Container>(
2893         new ContainsMatcherImpl<const Container&>(inner_matcher_));
2894   }
2895 
2896   ContainsTimesMatcher<M> Times(Matcher<size_t> count_matcher) const {
2897     return ContainsTimesMatcher<M>(inner_matcher_, std::move(count_matcher));
2898   }
2899 
2900  private:
2901   const M inner_matcher_;
2902 };
2903 
2904 // Implements polymorphic Each(element_matcher).
2905 template <typename M>
2906 class EachMatcher {
2907  public:
2908   explicit EachMatcher(M m) : inner_matcher_(m) {}
2909 
2910   template <typename Container>
2911   operator Matcher<Container>() const {  // NOLINT
2912     return Matcher<Container>(
2913         new EachMatcherImpl<const Container&>(inner_matcher_));
2914   }
2915 
2916  private:
2917   const M inner_matcher_;
2918 };
2919 
2920 struct Rank1 {};
2921 struct Rank0 : Rank1 {};
2922 
2923 namespace pair_getters {
2924 using std::get;
2925 template <typename T>
2926 auto First(T& x, Rank1) -> decltype(get<0>(x)) {  // NOLINT
2927   return get<0>(x);
2928 }
2929 template <typename T>
2930 auto First(T& x, Rank0) -> decltype((x.first)) {  // NOLINT
2931   return x.first;
2932 }
2933 
2934 template <typename T>
2935 auto Second(T& x, Rank1) -> decltype(get<1>(x)) {  // NOLINT
2936   return get<1>(x);
2937 }
2938 template <typename T>
2939 auto Second(T& x, Rank0) -> decltype((x.second)) {  // NOLINT
2940   return x.second;
2941 }
2942 }  // namespace pair_getters
2943 
2944 // Implements Key(inner_matcher) for the given argument pair type.
2945 // Key(inner_matcher) matches an std::pair whose 'first' field matches
2946 // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
2947 // std::map that contains at least one element whose key is >= 5.
2948 template <typename PairType>
2949 class KeyMatcherImpl : public MatcherInterface<PairType> {
2950  public:
2951   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
2952   typedef typename RawPairType::first_type KeyType;
2953 
2954   template <typename InnerMatcher>
2955   explicit KeyMatcherImpl(InnerMatcher inner_matcher)
2956       : inner_matcher_(
2957             testing::SafeMatcherCast<const KeyType&>(inner_matcher)) {}
2958 
2959   // Returns true if and only if 'key_value.first' (the key) matches the inner
2960   // matcher.
2961   bool MatchAndExplain(PairType key_value,
2962                        MatchResultListener* listener) const override {
2963     StringMatchResultListener inner_listener;
2964     const bool match = inner_matcher_.MatchAndExplain(
2965         pair_getters::First(key_value, Rank0()), &inner_listener);
2966     const std::string explanation = inner_listener.str();
2967     if (explanation != "") {
2968       *listener << "whose first field is a value " << explanation;
2969     }
2970     return match;
2971   }
2972 
2973   // Describes what this matcher does.
2974   void DescribeTo(::std::ostream* os) const override {
2975     *os << "has a key that ";
2976     inner_matcher_.DescribeTo(os);
2977   }
2978 
2979   // Describes what the negation of this matcher does.
2980   void DescribeNegationTo(::std::ostream* os) const override {
2981     *os << "doesn't have a key that ";
2982     inner_matcher_.DescribeTo(os);
2983   }
2984 
2985  private:
2986   const Matcher<const KeyType&> inner_matcher_;
2987 };
2988 
2989 // Implements polymorphic Key(matcher_for_key).
2990 template <typename M>
2991 class KeyMatcher {
2992  public:
2993   explicit KeyMatcher(M m) : matcher_for_key_(m) {}
2994 
2995   template <typename PairType>
2996   operator Matcher<PairType>() const {
2997     return Matcher<PairType>(
2998         new KeyMatcherImpl<const PairType&>(matcher_for_key_));
2999   }
3000 
3001  private:
3002   const M matcher_for_key_;
3003 };
3004 
3005 // Implements polymorphic Address(matcher_for_address).
3006 template <typename InnerMatcher>
3007 class AddressMatcher {
3008  public:
3009   explicit AddressMatcher(InnerMatcher m) : matcher_(m) {}
3010 
3011   template <typename Type>
3012   operator Matcher<Type>() const {  // NOLINT
3013     return Matcher<Type>(new Impl<const Type&>(matcher_));
3014   }
3015 
3016  private:
3017   // The monomorphic implementation that works for a particular object type.
3018   template <typename Type>
3019   class Impl : public MatcherInterface<Type> {
3020    public:
3021     using Address = const GTEST_REMOVE_REFERENCE_AND_CONST_(Type) *;
3022     explicit Impl(const InnerMatcher& matcher)
3023         : matcher_(MatcherCast<Address>(matcher)) {}
3024 
3025     void DescribeTo(::std::ostream* os) const override {
3026       *os << "has address that ";
3027       matcher_.DescribeTo(os);
3028     }
3029 
3030     void DescribeNegationTo(::std::ostream* os) const override {
3031       *os << "does not have address that ";
3032       matcher_.DescribeTo(os);
3033     }
3034 
3035     bool MatchAndExplain(Type object,
3036                          MatchResultListener* listener) const override {
3037       *listener << "which has address ";
3038       Address address = std::addressof(object);
3039       return MatchPrintAndExplain(address, matcher_, listener);
3040     }
3041 
3042    private:
3043     const Matcher<Address> matcher_;
3044   };
3045   const InnerMatcher matcher_;
3046 };
3047 
3048 // Implements Pair(first_matcher, second_matcher) for the given argument pair
3049 // type with its two matchers. See Pair() function below.
3050 template <typename PairType>
3051 class PairMatcherImpl : public MatcherInterface<PairType> {
3052  public:
3053   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType;
3054   typedef typename RawPairType::first_type FirstType;
3055   typedef typename RawPairType::second_type SecondType;
3056 
3057   template <typename FirstMatcher, typename SecondMatcher>
3058   PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher)
3059       : first_matcher_(
3060             testing::SafeMatcherCast<const FirstType&>(first_matcher)),
3061         second_matcher_(
3062             testing::SafeMatcherCast<const SecondType&>(second_matcher)) {}
3063 
3064   // Describes what this matcher does.
3065   void DescribeTo(::std::ostream* os) const override {
3066     *os << "has a first field that ";
3067     first_matcher_.DescribeTo(os);
3068     *os << ", and has a second field that ";
3069     second_matcher_.DescribeTo(os);
3070   }
3071 
3072   // Describes what the negation of this matcher does.
3073   void DescribeNegationTo(::std::ostream* os) const override {
3074     *os << "has a first field that ";
3075     first_matcher_.DescribeNegationTo(os);
3076     *os << ", or has a second field that ";
3077     second_matcher_.DescribeNegationTo(os);
3078   }
3079 
3080   // Returns true if and only if 'a_pair.first' matches first_matcher and
3081   // 'a_pair.second' matches second_matcher.
3082   bool MatchAndExplain(PairType a_pair,
3083                        MatchResultListener* listener) const override {
3084     if (!listener->IsInterested()) {
3085       // If the listener is not interested, we don't need to construct the
3086       // explanation.
3087       return first_matcher_.Matches(pair_getters::First(a_pair, Rank0())) &&
3088              second_matcher_.Matches(pair_getters::Second(a_pair, Rank0()));
3089     }
3090     StringMatchResultListener first_inner_listener;
3091     if (!first_matcher_.MatchAndExplain(pair_getters::First(a_pair, Rank0()),
3092                                         &first_inner_listener)) {
3093       *listener << "whose first field does not match";
3094       PrintIfNotEmpty(first_inner_listener.str(), listener->stream());
3095       return false;
3096     }
3097     StringMatchResultListener second_inner_listener;
3098     if (!second_matcher_.MatchAndExplain(pair_getters::Second(a_pair, Rank0()),
3099                                          &second_inner_listener)) {
3100       *listener << "whose second field does not match";
3101       PrintIfNotEmpty(second_inner_listener.str(), listener->stream());
3102       return false;
3103     }
3104     ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(),
3105                    listener);
3106     return true;
3107   }
3108 
3109  private:
3110   void ExplainSuccess(const std::string& first_explanation,
3111                       const std::string& second_explanation,
3112                       MatchResultListener* listener) const {
3113     *listener << "whose both fields match";
3114     if (first_explanation != "") {
3115       *listener << ", where the first field is a value " << first_explanation;
3116     }
3117     if (second_explanation != "") {
3118       *listener << ", ";
3119       if (first_explanation != "") {
3120         *listener << "and ";
3121       } else {
3122         *listener << "where ";
3123       }
3124       *listener << "the second field is a value " << second_explanation;
3125     }
3126   }
3127 
3128   const Matcher<const FirstType&> first_matcher_;
3129   const Matcher<const SecondType&> second_matcher_;
3130 };
3131 
3132 // Implements polymorphic Pair(first_matcher, second_matcher).
3133 template <typename FirstMatcher, typename SecondMatcher>
3134 class PairMatcher {
3135  public:
3136   PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher)
3137       : first_matcher_(first_matcher), second_matcher_(second_matcher) {}
3138 
3139   template <typename PairType>
3140   operator Matcher<PairType>() const {
3141     return Matcher<PairType>(
3142         new PairMatcherImpl<const PairType&>(first_matcher_, second_matcher_));
3143   }
3144 
3145  private:
3146   const FirstMatcher first_matcher_;
3147   const SecondMatcher second_matcher_;
3148 };
3149 
3150 template <typename T, size_t... I>
3151 auto UnpackStructImpl(const T& t, IndexSequence<I...>, int)
3152     -> decltype(std::tie(get<I>(t)...)) {
3153   static_assert(std::tuple_size<T>::value == sizeof...(I),
3154                 "Number of arguments doesn't match the number of fields.");
3155   return std::tie(get<I>(t)...);
3156 }
3157 
3158 #if defined(__cpp_structured_bindings) && __cpp_structured_bindings >= 201606
3159 template <typename T>
3160 auto UnpackStructImpl(const T& t, MakeIndexSequence<1>, char) {
3161   const auto& [a] = t;
3162   return std::tie(a);
3163 }
3164 template <typename T>
3165 auto UnpackStructImpl(const T& t, MakeIndexSequence<2>, char) {
3166   const auto& [a, b] = t;
3167   return std::tie(a, b);
3168 }
3169 template <typename T>
3170 auto UnpackStructImpl(const T& t, MakeIndexSequence<3>, char) {
3171   const auto& [a, b, c] = t;
3172   return std::tie(a, b, c);
3173 }
3174 template <typename T>
3175 auto UnpackStructImpl(const T& t, MakeIndexSequence<4>, char) {
3176   const auto& [a, b, c, d] = t;
3177   return std::tie(a, b, c, d);
3178 }
3179 template <typename T>
3180 auto UnpackStructImpl(const T& t, MakeIndexSequence<5>, char) {
3181   const auto& [a, b, c, d, e] = t;
3182   return std::tie(a, b, c, d, e);
3183 }
3184 template <typename T>
3185 auto UnpackStructImpl(const T& t, MakeIndexSequence<6>, char) {
3186   const auto& [a, b, c, d, e, f] = t;
3187   return std::tie(a, b, c, d, e, f);
3188 }
3189 template <typename T>
3190 auto UnpackStructImpl(const T& t, MakeIndexSequence<7>, char) {
3191   const auto& [a, b, c, d, e, f, g] = t;
3192   return std::tie(a, b, c, d, e, f, g);
3193 }
3194 template <typename T>
3195 auto UnpackStructImpl(const T& t, MakeIndexSequence<8>, char) {
3196   const auto& [a, b, c, d, e, f, g, h] = t;
3197   return std::tie(a, b, c, d, e, f, g, h);
3198 }
3199 template <typename T>
3200 auto UnpackStructImpl(const T& t, MakeIndexSequence<9>, char) {
3201   const auto& [a, b, c, d, e, f, g, h, i] = t;
3202   return std::tie(a, b, c, d, e, f, g, h, i);
3203 }
3204 template <typename T>
3205 auto UnpackStructImpl(const T& t, MakeIndexSequence<10>, char) {
3206   const auto& [a, b, c, d, e, f, g, h, i, j] = t;
3207   return std::tie(a, b, c, d, e, f, g, h, i, j);
3208 }
3209 template <typename T>
3210 auto UnpackStructImpl(const T& t, MakeIndexSequence<11>, char) {
3211   const auto& [a, b, c, d, e, f, g, h, i, j, k] = t;
3212   return std::tie(a, b, c, d, e, f, g, h, i, j, k);
3213 }
3214 template <typename T>
3215 auto UnpackStructImpl(const T& t, MakeIndexSequence<12>, char) {
3216   const auto& [a, b, c, d, e, f, g, h, i, j, k, l] = t;
3217   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l);
3218 }
3219 template <typename T>
3220 auto UnpackStructImpl(const T& t, MakeIndexSequence<13>, char) {
3221   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m] = t;
3222   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m);
3223 }
3224 template <typename T>
3225 auto UnpackStructImpl(const T& t, MakeIndexSequence<14>, char) {
3226   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n] = t;
3227   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n);
3228 }
3229 template <typename T>
3230 auto UnpackStructImpl(const T& t, MakeIndexSequence<15>, char) {
3231   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o] = t;
3232   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o);
3233 }
3234 template <typename T>
3235 auto UnpackStructImpl(const T& t, MakeIndexSequence<16>, char) {
3236   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p] = t;
3237   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p);
3238 }
3239 template <typename T>
3240 auto UnpackStructImpl(const T& t, MakeIndexSequence<17>, char) {
3241   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q] = t;
3242   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q);
3243 }
3244 template <typename T>
3245 auto UnpackStructImpl(const T& t, MakeIndexSequence<18>, char) {
3246   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r] = t;
3247   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r);
3248 }
3249 template <typename T>
3250 auto UnpackStructImpl(const T& t, MakeIndexSequence<19>, char) {
3251   const auto& [a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s] = t;
3252   return std::tie(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s);
3253 }
3254 #endif  // defined(__cpp_structured_bindings)
3255 
3256 template <size_t I, typename T>
3257 auto UnpackStruct(const T& t)
3258     -> decltype((UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0)) {
3259   return (UnpackStructImpl)(t, MakeIndexSequence<I>{}, 0);
3260 }
3261 
3262 // Helper function to do comma folding in C++11.
3263 // The array ensures left-to-right order of evaluation.
3264 // Usage: VariadicExpand({expr...});
3265 template <typename T, size_t N>
3266 void VariadicExpand(const T (&)[N]) {}
3267 
3268 template <typename Struct, typename StructSize>
3269 class FieldsAreMatcherImpl;
3270 
3271 template <typename Struct, size_t... I>
3272 class FieldsAreMatcherImpl<Struct, IndexSequence<I...>>
3273     : public MatcherInterface<Struct> {
3274   using UnpackedType =
3275       decltype(UnpackStruct<sizeof...(I)>(std::declval<const Struct&>()));
3276   using MatchersType = std::tuple<
3277       Matcher<const typename std::tuple_element<I, UnpackedType>::type&>...>;
3278 
3279  public:
3280   template <typename Inner>
3281   explicit FieldsAreMatcherImpl(const Inner& matchers)
3282       : matchers_(testing::SafeMatcherCast<
3283                   const typename std::tuple_element<I, UnpackedType>::type&>(
3284             std::get<I>(matchers))...) {}
3285 
3286   void DescribeTo(::std::ostream* os) const override {
3287     const char* separator = "";
3288     VariadicExpand(
3289         {(*os << separator << "has field #" << I << " that ",
3290           std::get<I>(matchers_).DescribeTo(os), separator = ", and ")...});
3291   }
3292 
3293   void DescribeNegationTo(::std::ostream* os) const override {
3294     const char* separator = "";
3295     VariadicExpand({(*os << separator << "has field #" << I << " that ",
3296                      std::get<I>(matchers_).DescribeNegationTo(os),
3297                      separator = ", or ")...});
3298   }
3299 
3300   bool MatchAndExplain(Struct t, MatchResultListener* listener) const override {
3301     return MatchInternal((UnpackStruct<sizeof...(I)>)(t), listener);
3302   }
3303 
3304  private:
3305   bool MatchInternal(UnpackedType tuple, MatchResultListener* listener) const {
3306     if (!listener->IsInterested()) {
3307       // If the listener is not interested, we don't need to construct the
3308       // explanation.
3309       bool good = true;
3310       VariadicExpand({good = good && std::get<I>(matchers_).Matches(
3311                                          std::get<I>(tuple))...});
3312       return good;
3313     }
3314 
3315     size_t failed_pos = ~size_t{};
3316 
3317     std::vector<StringMatchResultListener> inner_listener(sizeof...(I));
3318 
3319     VariadicExpand(
3320         {failed_pos == ~size_t{}&& !std::get<I>(matchers_).MatchAndExplain(
3321                            std::get<I>(tuple), &inner_listener[I])
3322              ? failed_pos = I
3323              : 0 ...});
3324     if (failed_pos != ~size_t{}) {
3325       *listener << "whose field #" << failed_pos << " does not match";
3326       PrintIfNotEmpty(inner_listener[failed_pos].str(), listener->stream());
3327       return false;
3328     }
3329 
3330     *listener << "whose all elements match";
3331     const char* separator = ", where";
3332     for (size_t index = 0; index < sizeof...(I); ++index) {
3333       const std::string str = inner_listener[index].str();
3334       if (!str.empty()) {
3335         *listener << separator << " field #" << index << " is a value " << str;
3336         separator = ", and";
3337       }
3338     }
3339 
3340     return true;
3341   }
3342 
3343   MatchersType matchers_;
3344 };
3345 
3346 template <typename... Inner>
3347 class FieldsAreMatcher {
3348  public:
3349   explicit FieldsAreMatcher(Inner... inner) : matchers_(std::move(inner)...) {}
3350 
3351   template <typename Struct>
3352   operator Matcher<Struct>() const {  // NOLINT
3353     return Matcher<Struct>(
3354         new FieldsAreMatcherImpl<const Struct&, IndexSequenceFor<Inner...>>(
3355             matchers_));
3356   }
3357 
3358  private:
3359   std::tuple<Inner...> matchers_;
3360 };
3361 
3362 // Implements ElementsAre() and ElementsAreArray().
3363 template <typename Container>
3364 class ElementsAreMatcherImpl : public MatcherInterface<Container> {
3365  public:
3366   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3367   typedef internal::StlContainerView<RawContainer> View;
3368   typedef typename View::type StlContainer;
3369   typedef typename View::const_reference StlContainerReference;
3370   typedef typename StlContainer::value_type Element;
3371 
3372   // Constructs the matcher from a sequence of element values or
3373   // element matchers.
3374   template <typename InputIter>
3375   ElementsAreMatcherImpl(InputIter first, InputIter last) {
3376     while (first != last) {
3377       matchers_.push_back(MatcherCast<const Element&>(*first++));
3378     }
3379   }
3380 
3381   // Describes what this matcher does.
3382   void DescribeTo(::std::ostream* os) const override {
3383     if (count() == 0) {
3384       *os << "is empty";
3385     } else if (count() == 1) {
3386       *os << "has 1 element that ";
3387       matchers_[0].DescribeTo(os);
3388     } else {
3389       *os << "has " << Elements(count()) << " where\n";
3390       for (size_t i = 0; i != count(); ++i) {
3391         *os << "element #" << i << " ";
3392         matchers_[i].DescribeTo(os);
3393         if (i + 1 < count()) {
3394           *os << ",\n";
3395         }
3396       }
3397     }
3398   }
3399 
3400   // Describes what the negation of this matcher does.
3401   void DescribeNegationTo(::std::ostream* os) const override {
3402     if (count() == 0) {
3403       *os << "isn't empty";
3404       return;
3405     }
3406 
3407     *os << "doesn't have " << Elements(count()) << ", or\n";
3408     for (size_t i = 0; i != count(); ++i) {
3409       *os << "element #" << i << " ";
3410       matchers_[i].DescribeNegationTo(os);
3411       if (i + 1 < count()) {
3412         *os << ", or\n";
3413       }
3414     }
3415   }
3416 
3417   bool MatchAndExplain(Container container,
3418                        MatchResultListener* listener) const override {
3419     // To work with stream-like "containers", we must only walk
3420     // through the elements in one pass.
3421 
3422     const bool listener_interested = listener->IsInterested();
3423 
3424     // explanations[i] is the explanation of the element at index i.
3425     ::std::vector<std::string> explanations(count());
3426     StlContainerReference stl_container = View::ConstReference(container);
3427     auto it = stl_container.begin();
3428     size_t exam_pos = 0;
3429     bool mismatch_found = false;  // Have we found a mismatched element yet?
3430 
3431     // Go through the elements and matchers in pairs, until we reach
3432     // the end of either the elements or the matchers, or until we find a
3433     // mismatch.
3434     for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) {
3435       bool match;  // Does the current element match the current matcher?
3436       if (listener_interested) {
3437         StringMatchResultListener s;
3438         match = matchers_[exam_pos].MatchAndExplain(*it, &s);
3439         explanations[exam_pos] = s.str();
3440       } else {
3441         match = matchers_[exam_pos].Matches(*it);
3442       }
3443 
3444       if (!match) {
3445         mismatch_found = true;
3446         break;
3447       }
3448     }
3449     // If mismatch_found is true, 'exam_pos' is the index of the mismatch.
3450 
3451     // Find how many elements the actual container has.  We avoid
3452     // calling size() s.t. this code works for stream-like "containers"
3453     // that don't define size().
3454     size_t actual_count = exam_pos;
3455     for (; it != stl_container.end(); ++it) {
3456       ++actual_count;
3457     }
3458 
3459     if (actual_count != count()) {
3460       // The element count doesn't match.  If the container is empty,
3461       // there's no need to explain anything as Google Mock already
3462       // prints the empty container.  Otherwise we just need to show
3463       // how many elements there actually are.
3464       if (listener_interested && (actual_count != 0)) {
3465         *listener << "which has " << Elements(actual_count);
3466       }
3467       return false;
3468     }
3469 
3470     if (mismatch_found) {
3471       // The element count matches, but the exam_pos-th element doesn't match.
3472       if (listener_interested) {
3473         *listener << "whose element #" << exam_pos << " doesn't match";
3474         PrintIfNotEmpty(explanations[exam_pos], listener->stream());
3475       }
3476       return false;
3477     }
3478 
3479     // Every element matches its expectation.  We need to explain why
3480     // (the obvious ones can be skipped).
3481     if (listener_interested) {
3482       bool reason_printed = false;
3483       for (size_t i = 0; i != count(); ++i) {
3484         const std::string& s = explanations[i];
3485         if (!s.empty()) {
3486           if (reason_printed) {
3487             *listener << ",\nand ";
3488           }
3489           *listener << "whose element #" << i << " matches, " << s;
3490           reason_printed = true;
3491         }
3492       }
3493     }
3494     return true;
3495   }
3496 
3497  private:
3498   static Message Elements(size_t count) {
3499     return Message() << count << (count == 1 ? " element" : " elements");
3500   }
3501 
3502   size_t count() const { return matchers_.size(); }
3503 
3504   ::std::vector<Matcher<const Element&>> matchers_;
3505 };
3506 
3507 // Connectivity matrix of (elements X matchers), in element-major order.
3508 // Initially, there are no edges.
3509 // Use NextGraph() to iterate over all possible edge configurations.
3510 // Use Randomize() to generate a random edge configuration.
3511 class GTEST_API_ MatchMatrix {
3512  public:
3513   MatchMatrix(size_t num_elements, size_t num_matchers)
3514       : num_elements_(num_elements),
3515         num_matchers_(num_matchers),
3516         matched_(num_elements_ * num_matchers_, 0) {}
3517 
3518   size_t LhsSize() const { return num_elements_; }
3519   size_t RhsSize() const { return num_matchers_; }
3520   bool HasEdge(size_t ilhs, size_t irhs) const {
3521     return matched_[SpaceIndex(ilhs, irhs)] == 1;
3522   }
3523   void SetEdge(size_t ilhs, size_t irhs, bool b) {
3524     matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0;
3525   }
3526 
3527   // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number,
3528   // adds 1 to that number; returns false if incrementing the graph left it
3529   // empty.
3530   bool NextGraph();
3531 
3532   void Randomize();
3533 
3534   std::string DebugString() const;
3535 
3536  private:
3537   size_t SpaceIndex(size_t ilhs, size_t irhs) const {
3538     return ilhs * num_matchers_ + irhs;
3539   }
3540 
3541   size_t num_elements_;
3542   size_t num_matchers_;
3543 
3544   // Each element is a char interpreted as bool. They are stored as a
3545   // flattened array in lhs-major order, use 'SpaceIndex()' to translate
3546   // a (ilhs, irhs) matrix coordinate into an offset.
3547   ::std::vector<char> matched_;
3548 };
3549 
3550 typedef ::std::pair<size_t, size_t> ElementMatcherPair;
3551 typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs;
3552 
3553 // Returns a maximum bipartite matching for the specified graph 'g'.
3554 // The matching is represented as a vector of {element, matcher} pairs.
3555 GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g);
3556 
3557 struct UnorderedMatcherRequire {
3558   enum Flags {
3559     Superset = 1 << 0,
3560     Subset = 1 << 1,
3561     ExactMatch = Superset | Subset,
3562   };
3563 };
3564 
3565 // Untyped base class for implementing UnorderedElementsAre.  By
3566 // putting logic that's not specific to the element type here, we
3567 // reduce binary bloat and increase compilation speed.
3568 class GTEST_API_ UnorderedElementsAreMatcherImplBase {
3569  protected:
3570   explicit UnorderedElementsAreMatcherImplBase(
3571       UnorderedMatcherRequire::Flags matcher_flags)
3572       : match_flags_(matcher_flags) {}
3573 
3574   // A vector of matcher describers, one for each element matcher.
3575   // Does not own the describers (and thus can be used only when the
3576   // element matchers are alive).
3577   typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec;
3578 
3579   // Describes this UnorderedElementsAre matcher.
3580   void DescribeToImpl(::std::ostream* os) const;
3581 
3582   // Describes the negation of this UnorderedElementsAre matcher.
3583   void DescribeNegationToImpl(::std::ostream* os) const;
3584 
3585   bool VerifyMatchMatrix(const ::std::vector<std::string>& element_printouts,
3586                          const MatchMatrix& matrix,
3587                          MatchResultListener* listener) const;
3588 
3589   bool FindPairing(const MatchMatrix& matrix,
3590                    MatchResultListener* listener) const;
3591 
3592   MatcherDescriberVec& matcher_describers() { return matcher_describers_; }
3593 
3594   static Message Elements(size_t n) {
3595     return Message() << n << " element" << (n == 1 ? "" : "s");
3596   }
3597 
3598   UnorderedMatcherRequire::Flags match_flags() const { return match_flags_; }
3599 
3600  private:
3601   UnorderedMatcherRequire::Flags match_flags_;
3602   MatcherDescriberVec matcher_describers_;
3603 };
3604 
3605 // Implements UnorderedElementsAre, UnorderedElementsAreArray, IsSubsetOf, and
3606 // IsSupersetOf.
3607 template <typename Container>
3608 class UnorderedElementsAreMatcherImpl
3609     : public MatcherInterface<Container>,
3610       public UnorderedElementsAreMatcherImplBase {
3611  public:
3612   typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3613   typedef internal::StlContainerView<RawContainer> View;
3614   typedef typename View::type StlContainer;
3615   typedef typename View::const_reference StlContainerReference;
3616   typedef typename StlContainer::value_type Element;
3617 
3618   template <typename InputIter>
3619   UnorderedElementsAreMatcherImpl(UnorderedMatcherRequire::Flags matcher_flags,
3620                                   InputIter first, InputIter last)
3621       : UnorderedElementsAreMatcherImplBase(matcher_flags) {
3622     for (; first != last; ++first) {
3623       matchers_.push_back(MatcherCast<const Element&>(*first));
3624     }
3625     for (const auto& m : matchers_) {
3626       matcher_describers().push_back(m.GetDescriber());
3627     }
3628   }
3629 
3630   // Describes what this matcher does.
3631   void DescribeTo(::std::ostream* os) const override {
3632     return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os);
3633   }
3634 
3635   // Describes what the negation of this matcher does.
3636   void DescribeNegationTo(::std::ostream* os) const override {
3637     return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os);
3638   }
3639 
3640   bool MatchAndExplain(Container container,
3641                        MatchResultListener* listener) const override {
3642     StlContainerReference stl_container = View::ConstReference(container);
3643     ::std::vector<std::string> element_printouts;
3644     MatchMatrix matrix =
3645         AnalyzeElements(stl_container.begin(), stl_container.end(),
3646                         &element_printouts, listener);
3647 
3648     return VerifyMatchMatrix(element_printouts, matrix, listener) &&
3649            FindPairing(matrix, listener);
3650   }
3651 
3652  private:
3653   template <typename ElementIter>
3654   MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last,
3655                               ::std::vector<std::string>* element_printouts,
3656                               MatchResultListener* listener) const {
3657     element_printouts->clear();
3658     ::std::vector<char> did_match;
3659     size_t num_elements = 0;
3660     DummyMatchResultListener dummy;
3661     for (; elem_first != elem_last; ++num_elements, ++elem_first) {
3662       if (listener->IsInterested()) {
3663         element_printouts->push_back(PrintToString(*elem_first));
3664       }
3665       for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3666         did_match.push_back(
3667             matchers_[irhs].MatchAndExplain(*elem_first, &dummy));
3668       }
3669     }
3670 
3671     MatchMatrix matrix(num_elements, matchers_.size());
3672     ::std::vector<char>::const_iterator did_match_iter = did_match.begin();
3673     for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) {
3674       for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) {
3675         matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0);
3676       }
3677     }
3678     return matrix;
3679   }
3680 
3681   ::std::vector<Matcher<const Element&>> matchers_;
3682 };
3683 
3684 // Functor for use in TransformTuple.
3685 // Performs MatcherCast<Target> on an input argument of any type.
3686 template <typename Target>
3687 struct CastAndAppendTransform {
3688   template <typename Arg>
3689   Matcher<Target> operator()(const Arg& a) const {
3690     return MatcherCast<Target>(a);
3691   }
3692 };
3693 
3694 // Implements UnorderedElementsAre.
3695 template <typename MatcherTuple>
3696 class UnorderedElementsAreMatcher {
3697  public:
3698   explicit UnorderedElementsAreMatcher(const MatcherTuple& args)
3699       : matchers_(args) {}
3700 
3701   template <typename Container>
3702   operator Matcher<Container>() const {
3703     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3704     typedef typename internal::StlContainerView<RawContainer>::type View;
3705     typedef typename View::value_type Element;
3706     typedef ::std::vector<Matcher<const Element&>> MatcherVec;
3707     MatcherVec matchers;
3708     matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3709     TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3710                          ::std::back_inserter(matchers));
3711     return Matcher<Container>(
3712         new UnorderedElementsAreMatcherImpl<const Container&>(
3713             UnorderedMatcherRequire::ExactMatch, matchers.begin(),
3714             matchers.end()));
3715   }
3716 
3717  private:
3718   const MatcherTuple matchers_;
3719 };
3720 
3721 // Implements ElementsAre.
3722 template <typename MatcherTuple>
3723 class ElementsAreMatcher {
3724  public:
3725   explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {}
3726 
3727   template <typename Container>
3728   operator Matcher<Container>() const {
3729     static_assert(
3730         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value ||
3731             ::std::tuple_size<MatcherTuple>::value < 2,
3732         "use UnorderedElementsAre with hash tables");
3733 
3734     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer;
3735     typedef typename internal::StlContainerView<RawContainer>::type View;
3736     typedef typename View::value_type Element;
3737     typedef ::std::vector<Matcher<const Element&>> MatcherVec;
3738     MatcherVec matchers;
3739     matchers.reserve(::std::tuple_size<MatcherTuple>::value);
3740     TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_,
3741                          ::std::back_inserter(matchers));
3742     return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3743         matchers.begin(), matchers.end()));
3744   }
3745 
3746  private:
3747   const MatcherTuple matchers_;
3748 };
3749 
3750 // Implements UnorderedElementsAreArray(), IsSubsetOf(), and IsSupersetOf().
3751 template <typename T>
3752 class UnorderedElementsAreArrayMatcher {
3753  public:
3754   template <typename Iter>
3755   UnorderedElementsAreArrayMatcher(UnorderedMatcherRequire::Flags match_flags,
3756                                    Iter first, Iter last)
3757       : match_flags_(match_flags), matchers_(first, last) {}
3758 
3759   template <typename Container>
3760   operator Matcher<Container>() const {
3761     return Matcher<Container>(
3762         new UnorderedElementsAreMatcherImpl<const Container&>(
3763             match_flags_, matchers_.begin(), matchers_.end()));
3764   }
3765 
3766  private:
3767   UnorderedMatcherRequire::Flags match_flags_;
3768   ::std::vector<T> matchers_;
3769 };
3770 
3771 // Implements ElementsAreArray().
3772 template <typename T>
3773 class ElementsAreArrayMatcher {
3774  public:
3775   template <typename Iter>
3776   ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {}
3777 
3778   template <typename Container>
3779   operator Matcher<Container>() const {
3780     static_assert(
3781         !IsHashTable<GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>::value,
3782         "use UnorderedElementsAreArray with hash tables");
3783 
3784     return Matcher<Container>(new ElementsAreMatcherImpl<const Container&>(
3785         matchers_.begin(), matchers_.end()));
3786   }
3787 
3788  private:
3789   const ::std::vector<T> matchers_;
3790 };
3791 
3792 // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second
3793 // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm,
3794 // second) is a polymorphic matcher that matches a value x if and only if
3795 // tm matches tuple (x, second).  Useful for implementing
3796 // UnorderedPointwise() in terms of UnorderedElementsAreArray().
3797 //
3798 // BoundSecondMatcher is copyable and assignable, as we need to put
3799 // instances of this class in a vector when implementing
3800 // UnorderedPointwise().
3801 template <typename Tuple2Matcher, typename Second>
3802 class BoundSecondMatcher {
3803  public:
3804   BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second)
3805       : tuple2_matcher_(tm), second_value_(second) {}
3806 
3807   BoundSecondMatcher(const BoundSecondMatcher& other) = default;
3808 
3809   template <typename T>
3810   operator Matcher<T>() const {
3811     return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_));
3812   }
3813 
3814   // We have to define this for UnorderedPointwise() to compile in
3815   // C++98 mode, as it puts BoundSecondMatcher instances in a vector,
3816   // which requires the elements to be assignable in C++98.  The
3817   // compiler cannot generate the operator= for us, as Tuple2Matcher
3818   // and Second may not be assignable.
3819   //
3820   // However, this should never be called, so the implementation just
3821   // need to assert.
3822   void operator=(const BoundSecondMatcher& /*rhs*/) {
3823     GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned.";
3824   }
3825 
3826  private:
3827   template <typename T>
3828   class Impl : public MatcherInterface<T> {
3829    public:
3830     typedef ::std::tuple<T, Second> ArgTuple;
3831 
3832     Impl(const Tuple2Matcher& tm, const Second& second)
3833         : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)),
3834           second_value_(second) {}
3835 
3836     void DescribeTo(::std::ostream* os) const override {
3837       *os << "and ";
3838       UniversalPrint(second_value_, os);
3839       *os << " ";
3840       mono_tuple2_matcher_.DescribeTo(os);
3841     }
3842 
3843     bool MatchAndExplain(T x, MatchResultListener* listener) const override {
3844       return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_),
3845                                                   listener);
3846     }
3847 
3848    private:
3849     const Matcher<const ArgTuple&> mono_tuple2_matcher_;
3850     const Second second_value_;
3851   };
3852 
3853   const Tuple2Matcher tuple2_matcher_;
3854   const Second second_value_;
3855 };
3856 
3857 // Given a 2-tuple matcher tm and a value second,
3858 // MatcherBindSecond(tm, second) returns a matcher that matches a
3859 // value x if and only if tm matches tuple (x, second).  Useful for
3860 // implementing UnorderedPointwise() in terms of UnorderedElementsAreArray().
3861 template <typename Tuple2Matcher, typename Second>
3862 BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond(
3863     const Tuple2Matcher& tm, const Second& second) {
3864   return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second);
3865 }
3866 
3867 // Returns the description for a matcher defined using the MATCHER*()
3868 // macro where the user-supplied description string is "", if
3869 // 'negation' is false; otherwise returns the description of the
3870 // negation of the matcher.  'param_values' contains a list of strings
3871 // that are the print-out of the matcher's parameters.
3872 GTEST_API_ std::string FormatMatcherDescription(
3873     bool negation, const char* matcher_name,
3874     const std::vector<const char*>& param_names, const Strings& param_values);
3875 
3876 // Implements a matcher that checks the value of a optional<> type variable.
3877 template <typename ValueMatcher>
3878 class OptionalMatcher {
3879  public:
3880   explicit OptionalMatcher(const ValueMatcher& value_matcher)
3881       : value_matcher_(value_matcher) {}
3882 
3883   template <typename Optional>
3884   operator Matcher<Optional>() const {
3885     return Matcher<Optional>(new Impl<const Optional&>(value_matcher_));
3886   }
3887 
3888   template <typename Optional>
3889   class Impl : public MatcherInterface<Optional> {
3890    public:
3891     typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Optional) OptionalView;
3892     typedef typename OptionalView::value_type ValueType;
3893     explicit Impl(const ValueMatcher& value_matcher)
3894         : value_matcher_(MatcherCast<ValueType>(value_matcher)) {}
3895 
3896     void DescribeTo(::std::ostream* os) const override {
3897       *os << "value ";
3898       value_matcher_.DescribeTo(os);
3899     }
3900 
3901     void DescribeNegationTo(::std::ostream* os) const override {
3902       *os << "value ";
3903       value_matcher_.DescribeNegationTo(os);
3904     }
3905 
3906     bool MatchAndExplain(Optional optional,
3907                          MatchResultListener* listener) const override {
3908       if (!optional) {
3909         *listener << "which is not engaged";
3910         return false;
3911       }
3912       const ValueType& value = *optional;
3913       StringMatchResultListener value_listener;
3914       const bool match = value_matcher_.MatchAndExplain(value, &value_listener);
3915       *listener << "whose value " << PrintToString(value)
3916                 << (match ? " matches" : " doesn't match");
3917       PrintIfNotEmpty(value_listener.str(), listener->stream());
3918       return match;
3919     }
3920 
3921    private:
3922     const Matcher<ValueType> value_matcher_;
3923   };
3924 
3925  private:
3926   const ValueMatcher value_matcher_;
3927 };
3928 
3929 namespace variant_matcher {
3930 // Overloads to allow VariantMatcher to do proper ADL lookup.
3931 template <typename T>
3932 void holds_alternative() {}
3933 template <typename T>
3934 void get() {}
3935 
3936 // Implements a matcher that checks the value of a variant<> type variable.
3937 template <typename T>
3938 class VariantMatcher {
3939  public:
3940   explicit VariantMatcher(::testing::Matcher<const T&> matcher)
3941       : matcher_(std::move(matcher)) {}
3942 
3943   template <typename Variant>
3944   bool MatchAndExplain(const Variant& value,
3945                        ::testing::MatchResultListener* listener) const {
3946     using std::get;
3947     if (!listener->IsInterested()) {
3948       return holds_alternative<T>(value) && matcher_.Matches(get<T>(value));
3949     }
3950 
3951     if (!holds_alternative<T>(value)) {
3952       *listener << "whose value is not of type '" << GetTypeName() << "'";
3953       return false;
3954     }
3955 
3956     const T& elem = get<T>(value);
3957     StringMatchResultListener elem_listener;
3958     const bool match = matcher_.MatchAndExplain(elem, &elem_listener);
3959     *listener << "whose value " << PrintToString(elem)
3960               << (match ? " matches" : " doesn't match");
3961     PrintIfNotEmpty(elem_listener.str(), listener->stream());
3962     return match;
3963   }
3964 
3965   void DescribeTo(std::ostream* os) const {
3966     *os << "is a variant<> with value of type '" << GetTypeName()
3967         << "' and the value ";
3968     matcher_.DescribeTo(os);
3969   }
3970 
3971   void DescribeNegationTo(std::ostream* os) const {
3972     *os << "is a variant<> with value of type other than '" << GetTypeName()
3973         << "' or the value ";
3974     matcher_.DescribeNegationTo(os);
3975   }
3976 
3977  private:
3978   static std::string GetTypeName() {
3979 #if GTEST_HAS_RTTI
3980     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
3981         return internal::GetTypeName<T>());
3982 #endif
3983     return "the element type";
3984   }
3985 
3986   const ::testing::Matcher<const T&> matcher_;
3987 };
3988 
3989 }  // namespace variant_matcher
3990 
3991 namespace any_cast_matcher {
3992 
3993 // Overloads to allow AnyCastMatcher to do proper ADL lookup.
3994 template <typename T>
3995 void any_cast() {}
3996 
3997 // Implements a matcher that any_casts the value.
3998 template <typename T>
3999 class AnyCastMatcher {
4000  public:
4001   explicit AnyCastMatcher(const ::testing::Matcher<const T&>& matcher)
4002       : matcher_(matcher) {}
4003 
4004   template <typename AnyType>
4005   bool MatchAndExplain(const AnyType& value,
4006                        ::testing::MatchResultListener* listener) const {
4007     if (!listener->IsInterested()) {
4008       const T* ptr = any_cast<T>(&value);
4009       return ptr != nullptr && matcher_.Matches(*ptr);
4010     }
4011 
4012     const T* elem = any_cast<T>(&value);
4013     if (elem == nullptr) {
4014       *listener << "whose value is not of type '" << GetTypeName() << "'";
4015       return false;
4016     }
4017 
4018     StringMatchResultListener elem_listener;
4019     const bool match = matcher_.MatchAndExplain(*elem, &elem_listener);
4020     *listener << "whose value " << PrintToString(*elem)
4021               << (match ? " matches" : " doesn't match");
4022     PrintIfNotEmpty(elem_listener.str(), listener->stream());
4023     return match;
4024   }
4025 
4026   void DescribeTo(std::ostream* os) const {
4027     *os << "is an 'any' type with value of type '" << GetTypeName()
4028         << "' and the value ";
4029     matcher_.DescribeTo(os);
4030   }
4031 
4032   void DescribeNegationTo(std::ostream* os) const {
4033     *os << "is an 'any' type with value of type other than '" << GetTypeName()
4034         << "' or the value ";
4035     matcher_.DescribeNegationTo(os);
4036   }
4037 
4038  private:
4039   static std::string GetTypeName() {
4040 #if GTEST_HAS_RTTI
4041     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(
4042         return internal::GetTypeName<T>());
4043 #endif
4044     return "the element type";
4045   }
4046 
4047   const ::testing::Matcher<const T&> matcher_;
4048 };
4049 
4050 }  // namespace any_cast_matcher
4051 
4052 // Implements the Args() matcher.
4053 template <class ArgsTuple, size_t... k>
4054 class ArgsMatcherImpl : public MatcherInterface<ArgsTuple> {
4055  public:
4056   using RawArgsTuple = typename std::decay<ArgsTuple>::type;
4057   using SelectedArgs =
4058       std::tuple<typename std::tuple_element<k, RawArgsTuple>::type...>;
4059   using MonomorphicInnerMatcher = Matcher<const SelectedArgs&>;
4060 
4061   template <typename InnerMatcher>
4062   explicit ArgsMatcherImpl(const InnerMatcher& inner_matcher)
4063       : inner_matcher_(SafeMatcherCast<const SelectedArgs&>(inner_matcher)) {}
4064 
4065   bool MatchAndExplain(ArgsTuple args,
4066                        MatchResultListener* listener) const override {
4067     // Workaround spurious C4100 on MSVC<=15.7 when k is empty.
4068     (void)args;
4069     const SelectedArgs& selected_args =
4070         std::forward_as_tuple(std::get<k>(args)...);
4071     if (!listener->IsInterested()) return inner_matcher_.Matches(selected_args);
4072 
4073     PrintIndices(listener->stream());
4074     *listener << "are " << PrintToString(selected_args);
4075 
4076     StringMatchResultListener inner_listener;
4077     const bool match =
4078         inner_matcher_.MatchAndExplain(selected_args, &inner_listener);
4079     PrintIfNotEmpty(inner_listener.str(), listener->stream());
4080     return match;
4081   }
4082 
4083   void DescribeTo(::std::ostream* os) const override {
4084     *os << "are a tuple ";
4085     PrintIndices(os);
4086     inner_matcher_.DescribeTo(os);
4087   }
4088 
4089   void DescribeNegationTo(::std::ostream* os) const override {
4090     *os << "are a tuple ";
4091     PrintIndices(os);
4092     inner_matcher_.DescribeNegationTo(os);
4093   }
4094 
4095  private:
4096   // Prints the indices of the selected fields.
4097   static void PrintIndices(::std::ostream* os) {
4098     *os << "whose fields (";
4099     const char* sep = "";
4100     // Workaround spurious C4189 on MSVC<=15.7 when k is empty.
4101     (void)sep;
4102     // The static_cast to void is needed to silence Clang's -Wcomma warning.
4103     // This pattern looks suspiciously like we may have mismatched parentheses
4104     // and may have been trying to use the first operation of the comma operator
4105     // as a member of the array, so Clang warns that we may have made a mistake.
4106     const char* dummy[] = {
4107         "", (static_cast<void>(*os << sep << "#" << k), sep = ", ")...};
4108     (void)dummy;
4109     *os << ") ";
4110   }
4111 
4112   MonomorphicInnerMatcher inner_matcher_;
4113 };
4114 
4115 template <class InnerMatcher, size_t... k>
4116 class ArgsMatcher {
4117  public:
4118   explicit ArgsMatcher(InnerMatcher inner_matcher)
4119       : inner_matcher_(std::move(inner_matcher)) {}
4120 
4121   template <typename ArgsTuple>
4122   operator Matcher<ArgsTuple>() const {  // NOLINT
4123     return MakeMatcher(new ArgsMatcherImpl<ArgsTuple, k...>(inner_matcher_));
4124   }
4125 
4126  private:
4127   InnerMatcher inner_matcher_;
4128 };
4129 
4130 }  // namespace internal
4131 
4132 // ElementsAreArray(iterator_first, iterator_last)
4133 // ElementsAreArray(pointer, count)
4134 // ElementsAreArray(array)
4135 // ElementsAreArray(container)
4136 // ElementsAreArray({ e1, e2, ..., en })
4137 //
4138 // The ElementsAreArray() functions are like ElementsAre(...), except
4139 // that they are given a homogeneous sequence rather than taking each
4140 // element as a function argument. The sequence can be specified as an
4141 // array, a pointer and count, a vector, an initializer list, or an
4142 // STL iterator range. In each of these cases, the underlying sequence
4143 // can be either a sequence of values or a sequence of matchers.
4144 //
4145 // All forms of ElementsAreArray() make a copy of the input matcher sequence.
4146 
4147 template <typename Iter>
4148 inline internal::ElementsAreArrayMatcher<
4149     typename ::std::iterator_traits<Iter>::value_type>
4150 ElementsAreArray(Iter first, Iter last) {
4151   typedef typename ::std::iterator_traits<Iter>::value_type T;
4152   return internal::ElementsAreArrayMatcher<T>(first, last);
4153 }
4154 
4155 template <typename T>
4156 inline auto ElementsAreArray(const T* pointer, size_t count)
4157     -> decltype(ElementsAreArray(pointer, pointer + count)) {
4158   return ElementsAreArray(pointer, pointer + count);
4159 }
4160 
4161 template <typename T, size_t N>
4162 inline auto ElementsAreArray(const T (&array)[N])
4163     -> decltype(ElementsAreArray(array, N)) {
4164   return ElementsAreArray(array, N);
4165 }
4166 
4167 template <typename Container>
4168 inline auto ElementsAreArray(const Container& container)
4169     -> decltype(ElementsAreArray(container.begin(), container.end())) {
4170   return ElementsAreArray(container.begin(), container.end());
4171 }
4172 
4173 template <typename T>
4174 inline auto ElementsAreArray(::std::initializer_list<T> xs)
4175     -> decltype(ElementsAreArray(xs.begin(), xs.end())) {
4176   return ElementsAreArray(xs.begin(), xs.end());
4177 }
4178 
4179 // UnorderedElementsAreArray(iterator_first, iterator_last)
4180 // UnorderedElementsAreArray(pointer, count)
4181 // UnorderedElementsAreArray(array)
4182 // UnorderedElementsAreArray(container)
4183 // UnorderedElementsAreArray({ e1, e2, ..., en })
4184 //
4185 // UnorderedElementsAreArray() verifies that a bijective mapping onto a
4186 // collection of matchers exists.
4187 //
4188 // The matchers can be specified as an array, a pointer and count, a container,
4189 // an initializer list, or an STL iterator range. In each of these cases, the
4190 // underlying matchers can be either values or matchers.
4191 
4192 template <typename Iter>
4193 inline internal::UnorderedElementsAreArrayMatcher<
4194     typename ::std::iterator_traits<Iter>::value_type>
4195 UnorderedElementsAreArray(Iter first, Iter last) {
4196   typedef typename ::std::iterator_traits<Iter>::value_type T;
4197   return internal::UnorderedElementsAreArrayMatcher<T>(
4198       internal::UnorderedMatcherRequire::ExactMatch, first, last);
4199 }
4200 
4201 template <typename T>
4202 inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4203     const T* pointer, size_t count) {
4204   return UnorderedElementsAreArray(pointer, pointer + count);
4205 }
4206 
4207 template <typename T, size_t N>
4208 inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4209     const T (&array)[N]) {
4210   return UnorderedElementsAreArray(array, N);
4211 }
4212 
4213 template <typename Container>
4214 inline internal::UnorderedElementsAreArrayMatcher<
4215     typename Container::value_type>
4216 UnorderedElementsAreArray(const Container& container) {
4217   return UnorderedElementsAreArray(container.begin(), container.end());
4218 }
4219 
4220 template <typename T>
4221 inline internal::UnorderedElementsAreArrayMatcher<T> UnorderedElementsAreArray(
4222     ::std::initializer_list<T> xs) {
4223   return UnorderedElementsAreArray(xs.begin(), xs.end());
4224 }
4225 
4226 // _ is a matcher that matches anything of any type.
4227 //
4228 // This definition is fine as:
4229 //
4230 //   1. The C++ standard permits using the name _ in a namespace that
4231 //      is not the global namespace or ::std.
4232 //   2. The AnythingMatcher class has no data member or constructor,
4233 //      so it's OK to create global variables of this type.
4234 //   3. c-style has approved of using _ in this case.
4235 const internal::AnythingMatcher _ = {};
4236 // Creates a matcher that matches any value of the given type T.
4237 template <typename T>
4238 inline Matcher<T> A() {
4239   return _;
4240 }
4241 
4242 // Creates a matcher that matches any value of the given type T.
4243 template <typename T>
4244 inline Matcher<T> An() {
4245   return _;
4246 }
4247 
4248 template <typename T, typename M>
4249 Matcher<T> internal::MatcherCastImpl<T, M>::CastImpl(
4250     const M& value, std::false_type /* convertible_to_matcher */,
4251     std::false_type /* convertible_to_T */) {
4252   return Eq(value);
4253 }
4254 
4255 // Creates a polymorphic matcher that matches any NULL pointer.
4256 inline PolymorphicMatcher<internal::IsNullMatcher> IsNull() {
4257   return MakePolymorphicMatcher(internal::IsNullMatcher());
4258 }
4259 
4260 // Creates a polymorphic matcher that matches any non-NULL pointer.
4261 // This is convenient as Not(NULL) doesn't compile (the compiler
4262 // thinks that that expression is comparing a pointer with an integer).
4263 inline PolymorphicMatcher<internal::NotNullMatcher> NotNull() {
4264   return MakePolymorphicMatcher(internal::NotNullMatcher());
4265 }
4266 
4267 // Creates a polymorphic matcher that matches any argument that
4268 // references variable x.
4269 template <typename T>
4270 inline internal::RefMatcher<T&> Ref(T& x) {  // NOLINT
4271   return internal::RefMatcher<T&>(x);
4272 }
4273 
4274 // Creates a polymorphic matcher that matches any NaN floating point.
4275 inline PolymorphicMatcher<internal::IsNanMatcher> IsNan() {
4276   return MakePolymorphicMatcher(internal::IsNanMatcher());
4277 }
4278 
4279 // Creates a matcher that matches any double argument approximately
4280 // equal to rhs, where two NANs are considered unequal.
4281 inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) {
4282   return internal::FloatingEqMatcher<double>(rhs, false);
4283 }
4284 
4285 // Creates a matcher that matches any double argument approximately
4286 // equal to rhs, including NaN values when rhs is NaN.
4287 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) {
4288   return internal::FloatingEqMatcher<double>(rhs, true);
4289 }
4290 
4291 // Creates a matcher that matches any double argument approximately equal to
4292 // rhs, up to the specified max absolute error bound, where two NANs are
4293 // considered unequal.  The max absolute error bound must be non-negative.
4294 inline internal::FloatingEqMatcher<double> DoubleNear(double rhs,
4295                                                       double max_abs_error) {
4296   return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error);
4297 }
4298 
4299 // Creates a matcher that matches any double argument approximately equal to
4300 // rhs, up to the specified max absolute error bound, including NaN values when
4301 // rhs is NaN.  The max absolute error bound must be non-negative.
4302 inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear(
4303     double rhs, double max_abs_error) {
4304   return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error);
4305 }
4306 
4307 // Creates a matcher that matches any float argument approximately
4308 // equal to rhs, where two NANs are considered unequal.
4309 inline internal::FloatingEqMatcher<float> FloatEq(float rhs) {
4310   return internal::FloatingEqMatcher<float>(rhs, false);
4311 }
4312 
4313 // Creates a matcher that matches any float argument approximately
4314 // equal to rhs, including NaN values when rhs is NaN.
4315 inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) {
4316   return internal::FloatingEqMatcher<float>(rhs, true);
4317 }
4318 
4319 // Creates a matcher that matches any float argument approximately equal to
4320 // rhs, up to the specified max absolute error bound, where two NANs are
4321 // considered unequal.  The max absolute error bound must be non-negative.
4322 inline internal::FloatingEqMatcher<float> FloatNear(float rhs,
4323                                                     float max_abs_error) {
4324   return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error);
4325 }
4326 
4327 // Creates a matcher that matches any float argument approximately equal to
4328 // rhs, up to the specified max absolute error bound, including NaN values when
4329 // rhs is NaN.  The max absolute error bound must be non-negative.
4330 inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear(
4331     float rhs, float max_abs_error) {
4332   return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error);
4333 }
4334 
4335 // Creates a matcher that matches a pointer (raw or smart) that points
4336 // to a value that matches inner_matcher.
4337 template <typename InnerMatcher>
4338 inline internal::PointeeMatcher<InnerMatcher> Pointee(
4339     const InnerMatcher& inner_matcher) {
4340   return internal::PointeeMatcher<InnerMatcher>(inner_matcher);
4341 }
4342 
4343 #if GTEST_HAS_RTTI
4344 // Creates a matcher that matches a pointer or reference that matches
4345 // inner_matcher when dynamic_cast<To> is applied.
4346 // The result of dynamic_cast<To> is forwarded to the inner matcher.
4347 // If To is a pointer and the cast fails, the inner matcher will receive NULL.
4348 // If To is a reference and the cast fails, this matcher returns false
4349 // immediately.
4350 template <typename To>
4351 inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To>>
4352 WhenDynamicCastTo(const Matcher<To>& inner_matcher) {
4353   return MakePolymorphicMatcher(
4354       internal::WhenDynamicCastToMatcher<To>(inner_matcher));
4355 }
4356 #endif  // GTEST_HAS_RTTI
4357 
4358 // Creates a matcher that matches an object whose given field matches
4359 // 'matcher'.  For example,
4360 //   Field(&Foo::number, Ge(5))
4361 // matches a Foo object x if and only if x.number >= 5.
4362 template <typename Class, typename FieldType, typename FieldMatcher>
4363 inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field(
4364     FieldType Class::*field, const FieldMatcher& matcher) {
4365   return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
4366       field, MatcherCast<const FieldType&>(matcher)));
4367   // The call to MatcherCast() is required for supporting inner
4368   // matchers of compatible types.  For example, it allows
4369   //   Field(&Foo::bar, m)
4370   // to compile where bar is an int32 and m is a matcher for int64.
4371 }
4372 
4373 // Same as Field() but also takes the name of the field to provide better error
4374 // messages.
4375 template <typename Class, typename FieldType, typename FieldMatcher>
4376 inline PolymorphicMatcher<internal::FieldMatcher<Class, FieldType>> Field(
4377     const std::string& field_name, FieldType Class::*field,
4378     const FieldMatcher& matcher) {
4379   return MakePolymorphicMatcher(internal::FieldMatcher<Class, FieldType>(
4380       field_name, field, MatcherCast<const FieldType&>(matcher)));
4381 }
4382 
4383 // Creates a matcher that matches an object whose given property
4384 // matches 'matcher'.  For example,
4385 //   Property(&Foo::str, StartsWith("hi"))
4386 // matches a Foo object x if and only if x.str() starts with "hi".
4387 template <typename Class, typename PropertyType, typename PropertyMatcher>
4388 inline PolymorphicMatcher<internal::PropertyMatcher<
4389     Class, PropertyType, PropertyType (Class::*)() const>>
4390 Property(PropertyType (Class::*property)() const,
4391          const PropertyMatcher& matcher) {
4392   return MakePolymorphicMatcher(
4393       internal::PropertyMatcher<Class, PropertyType,
4394                                 PropertyType (Class::*)() const>(
4395           property, MatcherCast<const PropertyType&>(matcher)));
4396   // The call to MatcherCast() is required for supporting inner
4397   // matchers of compatible types.  For example, it allows
4398   //   Property(&Foo::bar, m)
4399   // to compile where bar() returns an int32 and m is a matcher for int64.
4400 }
4401 
4402 // Same as Property() above, but also takes the name of the property to provide
4403 // better error messages.
4404 template <typename Class, typename PropertyType, typename PropertyMatcher>
4405 inline PolymorphicMatcher<internal::PropertyMatcher<
4406     Class, PropertyType, PropertyType (Class::*)() const>>
4407 Property(const std::string& property_name,
4408          PropertyType (Class::*property)() const,
4409          const PropertyMatcher& matcher) {
4410   return MakePolymorphicMatcher(
4411       internal::PropertyMatcher<Class, PropertyType,
4412                                 PropertyType (Class::*)() const>(
4413           property_name, property, MatcherCast<const PropertyType&>(matcher)));
4414 }
4415 
4416 // The same as above but for reference-qualified member functions.
4417 template <typename Class, typename PropertyType, typename PropertyMatcher>
4418 inline PolymorphicMatcher<internal::PropertyMatcher<
4419     Class, PropertyType, PropertyType (Class::*)() const&>>
4420 Property(PropertyType (Class::*property)() const&,
4421          const PropertyMatcher& matcher) {
4422   return MakePolymorphicMatcher(
4423       internal::PropertyMatcher<Class, PropertyType,
4424                                 PropertyType (Class::*)() const&>(
4425           property, MatcherCast<const PropertyType&>(matcher)));
4426 }
4427 
4428 // Three-argument form for reference-qualified member functions.
4429 template <typename Class, typename PropertyType, typename PropertyMatcher>
4430 inline PolymorphicMatcher<internal::PropertyMatcher<
4431     Class, PropertyType, PropertyType (Class::*)() const&>>
4432 Property(const std::string& property_name,
4433          PropertyType (Class::*property)() const&,
4434          const PropertyMatcher& matcher) {
4435   return MakePolymorphicMatcher(
4436       internal::PropertyMatcher<Class, PropertyType,
4437                                 PropertyType (Class::*)() const&>(
4438           property_name, property, MatcherCast<const PropertyType&>(matcher)));
4439 }
4440 
4441 // Creates a matcher that matches an object if and only if the result of
4442 // applying a callable to x matches 'matcher'. For example,
4443 //   ResultOf(f, StartsWith("hi"))
4444 // matches a Foo object x if and only if f(x) starts with "hi".
4445 // `callable` parameter can be a function, function pointer, or a functor. It is
4446 // required to keep no state affecting the results of the calls on it and make
4447 // no assumptions about how many calls will be made. Any state it keeps must be
4448 // protected from the concurrent access.
4449 template <typename Callable, typename InnerMatcher>
4450 internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
4451     Callable callable, InnerMatcher matcher) {
4452   return internal::ResultOfMatcher<Callable, InnerMatcher>(std::move(callable),
4453                                                            std::move(matcher));
4454 }
4455 
4456 // Same as ResultOf() above, but also takes a description of the `callable`
4457 // result to provide better error messages.
4458 template <typename Callable, typename InnerMatcher>
4459 internal::ResultOfMatcher<Callable, InnerMatcher> ResultOf(
4460     const std::string& result_description, Callable callable,
4461     InnerMatcher matcher) {
4462   return internal::ResultOfMatcher<Callable, InnerMatcher>(
4463       result_description, std::move(callable), std::move(matcher));
4464 }
4465 
4466 // String matchers.
4467 
4468 // Matches a string equal to str.
4469 template <typename T = std::string>
4470 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrEq(
4471     const internal::StringLike<T>& str) {
4472   return MakePolymorphicMatcher(
4473       internal::StrEqualityMatcher<std::string>(std::string(str), true, true));
4474 }
4475 
4476 // Matches a string not equal to str.
4477 template <typename T = std::string>
4478 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrNe(
4479     const internal::StringLike<T>& str) {
4480   return MakePolymorphicMatcher(
4481       internal::StrEqualityMatcher<std::string>(std::string(str), false, true));
4482 }
4483 
4484 // Matches a string equal to str, ignoring case.
4485 template <typename T = std::string>
4486 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseEq(
4487     const internal::StringLike<T>& str) {
4488   return MakePolymorphicMatcher(
4489       internal::StrEqualityMatcher<std::string>(std::string(str), true, false));
4490 }
4491 
4492 // Matches a string not equal to str, ignoring case.
4493 template <typename T = std::string>
4494 PolymorphicMatcher<internal::StrEqualityMatcher<std::string>> StrCaseNe(
4495     const internal::StringLike<T>& str) {
4496   return MakePolymorphicMatcher(internal::StrEqualityMatcher<std::string>(
4497       std::string(str), false, false));
4498 }
4499 
4500 // Creates a matcher that matches any string, std::string, or C string
4501 // that contains the given substring.
4502 template <typename T = std::string>
4503 PolymorphicMatcher<internal::HasSubstrMatcher<std::string>> HasSubstr(
4504     const internal::StringLike<T>& substring) {
4505   return MakePolymorphicMatcher(
4506       internal::HasSubstrMatcher<std::string>(std::string(substring)));
4507 }
4508 
4509 // Matches a string that starts with 'prefix' (case-sensitive).
4510 template <typename T = std::string>
4511 PolymorphicMatcher<internal::StartsWithMatcher<std::string>> StartsWith(
4512     const internal::StringLike<T>& prefix) {
4513   return MakePolymorphicMatcher(
4514       internal::StartsWithMatcher<std::string>(std::string(prefix)));
4515 }
4516 
4517 // Matches a string that ends with 'suffix' (case-sensitive).
4518 template <typename T = std::string>
4519 PolymorphicMatcher<internal::EndsWithMatcher<std::string>> EndsWith(
4520     const internal::StringLike<T>& suffix) {
4521   return MakePolymorphicMatcher(
4522       internal::EndsWithMatcher<std::string>(std::string(suffix)));
4523 }
4524 
4525 #if GTEST_HAS_STD_WSTRING
4526 // Wide string matchers.
4527 
4528 // Matches a string equal to str.
4529 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrEq(
4530     const std::wstring& str) {
4531   return MakePolymorphicMatcher(
4532       internal::StrEqualityMatcher<std::wstring>(str, true, true));
4533 }
4534 
4535 // Matches a string not equal to str.
4536 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrNe(
4537     const std::wstring& str) {
4538   return MakePolymorphicMatcher(
4539       internal::StrEqualityMatcher<std::wstring>(str, false, true));
4540 }
4541 
4542 // Matches a string equal to str, ignoring case.
4543 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseEq(
4544     const std::wstring& str) {
4545   return MakePolymorphicMatcher(
4546       internal::StrEqualityMatcher<std::wstring>(str, true, false));
4547 }
4548 
4549 // Matches a string not equal to str, ignoring case.
4550 inline PolymorphicMatcher<internal::StrEqualityMatcher<std::wstring>> StrCaseNe(
4551     const std::wstring& str) {
4552   return MakePolymorphicMatcher(
4553       internal::StrEqualityMatcher<std::wstring>(str, false, false));
4554 }
4555 
4556 // Creates a matcher that matches any ::wstring, std::wstring, or C wide string
4557 // that contains the given substring.
4558 inline PolymorphicMatcher<internal::HasSubstrMatcher<std::wstring>> HasSubstr(
4559     const std::wstring& substring) {
4560   return MakePolymorphicMatcher(
4561       internal::HasSubstrMatcher<std::wstring>(substring));
4562 }
4563 
4564 // Matches a string that starts with 'prefix' (case-sensitive).
4565 inline PolymorphicMatcher<internal::StartsWithMatcher<std::wstring>> StartsWith(
4566     const std::wstring& prefix) {
4567   return MakePolymorphicMatcher(
4568       internal::StartsWithMatcher<std::wstring>(prefix));
4569 }
4570 
4571 // Matches a string that ends with 'suffix' (case-sensitive).
4572 inline PolymorphicMatcher<internal::EndsWithMatcher<std::wstring>> EndsWith(
4573     const std::wstring& suffix) {
4574   return MakePolymorphicMatcher(
4575       internal::EndsWithMatcher<std::wstring>(suffix));
4576 }
4577 
4578 #endif  // GTEST_HAS_STD_WSTRING
4579 
4580 // Creates a polymorphic matcher that matches a 2-tuple where the
4581 // first field == the second field.
4582 inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); }
4583 
4584 // Creates a polymorphic matcher that matches a 2-tuple where the
4585 // first field >= the second field.
4586 inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); }
4587 
4588 // Creates a polymorphic matcher that matches a 2-tuple where the
4589 // first field > the second field.
4590 inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); }
4591 
4592 // Creates a polymorphic matcher that matches a 2-tuple where the
4593 // first field <= the second field.
4594 inline internal::Le2Matcher Le() { return internal::Le2Matcher(); }
4595 
4596 // Creates a polymorphic matcher that matches a 2-tuple where the
4597 // first field < the second field.
4598 inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); }
4599 
4600 // Creates a polymorphic matcher that matches a 2-tuple where the
4601 // first field != the second field.
4602 inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); }
4603 
4604 // Creates a polymorphic matcher that matches a 2-tuple where
4605 // FloatEq(first field) matches the second field.
4606 inline internal::FloatingEq2Matcher<float> FloatEq() {
4607   return internal::FloatingEq2Matcher<float>();
4608 }
4609 
4610 // Creates a polymorphic matcher that matches a 2-tuple where
4611 // DoubleEq(first field) matches the second field.
4612 inline internal::FloatingEq2Matcher<double> DoubleEq() {
4613   return internal::FloatingEq2Matcher<double>();
4614 }
4615 
4616 // Creates a polymorphic matcher that matches a 2-tuple where
4617 // FloatEq(first field) matches the second field with NaN equality.
4618 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatEq() {
4619   return internal::FloatingEq2Matcher<float>(true);
4620 }
4621 
4622 // Creates a polymorphic matcher that matches a 2-tuple where
4623 // DoubleEq(first field) matches the second field with NaN equality.
4624 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleEq() {
4625   return internal::FloatingEq2Matcher<double>(true);
4626 }
4627 
4628 // Creates a polymorphic matcher that matches a 2-tuple where
4629 // FloatNear(first field, max_abs_error) matches the second field.
4630 inline internal::FloatingEq2Matcher<float> FloatNear(float max_abs_error) {
4631   return internal::FloatingEq2Matcher<float>(max_abs_error);
4632 }
4633 
4634 // Creates a polymorphic matcher that matches a 2-tuple where
4635 // DoubleNear(first field, max_abs_error) matches the second field.
4636 inline internal::FloatingEq2Matcher<double> DoubleNear(double max_abs_error) {
4637   return internal::FloatingEq2Matcher<double>(max_abs_error);
4638 }
4639 
4640 // Creates a polymorphic matcher that matches a 2-tuple where
4641 // FloatNear(first field, max_abs_error) matches the second field with NaN
4642 // equality.
4643 inline internal::FloatingEq2Matcher<float> NanSensitiveFloatNear(
4644     float max_abs_error) {
4645   return internal::FloatingEq2Matcher<float>(max_abs_error, true);
4646 }
4647 
4648 // Creates a polymorphic matcher that matches a 2-tuple where
4649 // DoubleNear(first field, max_abs_error) matches the second field with NaN
4650 // equality.
4651 inline internal::FloatingEq2Matcher<double> NanSensitiveDoubleNear(
4652     double max_abs_error) {
4653   return internal::FloatingEq2Matcher<double>(max_abs_error, true);
4654 }
4655 
4656 // Creates a matcher that matches any value of type T that m doesn't
4657 // match.
4658 template <typename InnerMatcher>
4659 inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) {
4660   return internal::NotMatcher<InnerMatcher>(m);
4661 }
4662 
4663 // Returns a matcher that matches anything that satisfies the given
4664 // predicate.  The predicate can be any unary function or functor
4665 // whose return type can be implicitly converted to bool.
4666 template <typename Predicate>
4667 inline PolymorphicMatcher<internal::TrulyMatcher<Predicate>> Truly(
4668     Predicate pred) {
4669   return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred));
4670 }
4671 
4672 // Returns a matcher that matches the container size. The container must
4673 // support both size() and size_type which all STL-like containers provide.
4674 // Note that the parameter 'size' can be a value of type size_type as well as
4675 // matcher. For instance:
4676 //   EXPECT_THAT(container, SizeIs(2));     // Checks container has 2 elements.
4677 //   EXPECT_THAT(container, SizeIs(Le(2));  // Checks container has at most 2.
4678 template <typename SizeMatcher>
4679 inline internal::SizeIsMatcher<SizeMatcher> SizeIs(
4680     const SizeMatcher& size_matcher) {
4681   return internal::SizeIsMatcher<SizeMatcher>(size_matcher);
4682 }
4683 
4684 // Returns a matcher that matches the distance between the container's begin()
4685 // iterator and its end() iterator, i.e. the size of the container. This matcher
4686 // can be used instead of SizeIs with containers such as std::forward_list which
4687 // do not implement size(). The container must provide const_iterator (with
4688 // valid iterator_traits), begin() and end().
4689 template <typename DistanceMatcher>
4690 inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> BeginEndDistanceIs(
4691     const DistanceMatcher& distance_matcher) {
4692   return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher);
4693 }
4694 
4695 // Returns a matcher that matches an equal container.
4696 // This matcher behaves like Eq(), but in the event of mismatch lists the
4697 // values that are included in one container but not the other. (Duplicate
4698 // values and order differences are not explained.)
4699 template <typename Container>
4700 inline PolymorphicMatcher<
4701     internal::ContainerEqMatcher<typename std::remove_const<Container>::type>>
4702 ContainerEq(const Container& rhs) {
4703   return MakePolymorphicMatcher(internal::ContainerEqMatcher<Container>(rhs));
4704 }
4705 
4706 // Returns a matcher that matches a container that, when sorted using
4707 // the given comparator, matches container_matcher.
4708 template <typename Comparator, typename ContainerMatcher>
4709 inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> WhenSortedBy(
4710     const Comparator& comparator, const ContainerMatcher& container_matcher) {
4711   return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>(
4712       comparator, container_matcher);
4713 }
4714 
4715 // Returns a matcher that matches a container that, when sorted using
4716 // the < operator, matches container_matcher.
4717 template <typename ContainerMatcher>
4718 inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>
4719 WhenSorted(const ContainerMatcher& container_matcher) {
4720   return internal::WhenSortedByMatcher<internal::LessComparator,
4721                                        ContainerMatcher>(
4722       internal::LessComparator(), container_matcher);
4723 }
4724 
4725 // Matches an STL-style container or a native array that contains the
4726 // same number of elements as in rhs, where its i-th element and rhs's
4727 // i-th element (as a pair) satisfy the given pair matcher, for all i.
4728 // TupleMatcher must be able to be safely cast to Matcher<std::tuple<const
4729 // T1&, const T2&> >, where T1 and T2 are the types of elements in the
4730 // LHS container and the RHS container respectively.
4731 template <typename TupleMatcher, typename Container>
4732 inline internal::PointwiseMatcher<TupleMatcher,
4733                                   typename std::remove_const<Container>::type>
4734 Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) {
4735   return internal::PointwiseMatcher<TupleMatcher, Container>(tuple_matcher,
4736                                                              rhs);
4737 }
4738 
4739 // Supports the Pointwise(m, {a, b, c}) syntax.
4740 template <typename TupleMatcher, typename T>
4741 inline internal::PointwiseMatcher<TupleMatcher, std::vector<T>> Pointwise(
4742     const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) {
4743   return Pointwise(tuple_matcher, std::vector<T>(rhs));
4744 }
4745 
4746 // UnorderedPointwise(pair_matcher, rhs) matches an STL-style
4747 // container or a native array that contains the same number of
4748 // elements as in rhs, where in some permutation of the container, its
4749 // i-th element and rhs's i-th element (as a pair) satisfy the given
4750 // pair matcher, for all i.  Tuple2Matcher must be able to be safely
4751 // cast to Matcher<std::tuple<const T1&, const T2&> >, where T1 and T2 are
4752 // the types of elements in the LHS container and the RHS container
4753 // respectively.
4754 //
4755 // This is like Pointwise(pair_matcher, rhs), except that the element
4756 // order doesn't matter.
4757 template <typename Tuple2Matcher, typename RhsContainer>
4758 inline internal::UnorderedElementsAreArrayMatcher<
4759     typename internal::BoundSecondMatcher<
4760         Tuple2Matcher,
4761         typename internal::StlContainerView<
4762             typename std::remove_const<RhsContainer>::type>::type::value_type>>
4763 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4764                    const RhsContainer& rhs_container) {
4765   // RhsView allows the same code to handle RhsContainer being a
4766   // STL-style container and it being a native C-style array.
4767   typedef typename internal::StlContainerView<RhsContainer> RhsView;
4768   typedef typename RhsView::type RhsStlContainer;
4769   typedef typename RhsStlContainer::value_type Second;
4770   const RhsStlContainer& rhs_stl_container =
4771       RhsView::ConstReference(rhs_container);
4772 
4773   // Create a matcher for each element in rhs_container.
4774   ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second>> matchers;
4775   for (auto it = rhs_stl_container.begin(); it != rhs_stl_container.end();
4776        ++it) {
4777     matchers.push_back(internal::MatcherBindSecond(tuple2_matcher, *it));
4778   }
4779 
4780   // Delegate the work to UnorderedElementsAreArray().
4781   return UnorderedElementsAreArray(matchers);
4782 }
4783 
4784 // Supports the UnorderedPointwise(m, {a, b, c}) syntax.
4785 template <typename Tuple2Matcher, typename T>
4786 inline internal::UnorderedElementsAreArrayMatcher<
4787     typename internal::BoundSecondMatcher<Tuple2Matcher, T>>
4788 UnorderedPointwise(const Tuple2Matcher& tuple2_matcher,
4789                    std::initializer_list<T> rhs) {
4790   return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs));
4791 }
4792 
4793 // Matches an STL-style container or a native array that contains at
4794 // least one element matching the given value or matcher.
4795 //
4796 // Examples:
4797 //   ::std::set<int> page_ids;
4798 //   page_ids.insert(3);
4799 //   page_ids.insert(1);
4800 //   EXPECT_THAT(page_ids, Contains(1));
4801 //   EXPECT_THAT(page_ids, Contains(Gt(2)));
4802 //   EXPECT_THAT(page_ids, Not(Contains(4)));  // See below for Times(0)
4803 //
4804 //   ::std::map<int, size_t> page_lengths;
4805 //   page_lengths[1] = 100;
4806 //   EXPECT_THAT(page_lengths,
4807 //               Contains(::std::pair<const int, size_t>(1, 100)));
4808 //
4809 //   const char* user_ids[] = { "joe", "mike", "tom" };
4810 //   EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom"))));
4811 //
4812 // The matcher supports a modifier `Times` that allows to check for arbitrary
4813 // occurrences including testing for absence with Times(0).
4814 //
4815 // Examples:
4816 //   ::std::vector<int> ids;
4817 //   ids.insert(1);
4818 //   ids.insert(1);
4819 //   ids.insert(3);
4820 //   EXPECT_THAT(ids, Contains(1).Times(2));      // 1 occurs 2 times
4821 //   EXPECT_THAT(ids, Contains(2).Times(0));      // 2 is not present
4822 //   EXPECT_THAT(ids, Contains(3).Times(Ge(1)));  // 3 occurs at least once
4823 
4824 template <typename M>
4825 inline internal::ContainsMatcher<M> Contains(M matcher) {
4826   return internal::ContainsMatcher<M>(matcher);
4827 }
4828 
4829 // IsSupersetOf(iterator_first, iterator_last)
4830 // IsSupersetOf(pointer, count)
4831 // IsSupersetOf(array)
4832 // IsSupersetOf(container)
4833 // IsSupersetOf({e1, e2, ..., en})
4834 //
4835 // IsSupersetOf() verifies that a surjective partial mapping onto a collection
4836 // of matchers exists. In other words, a container matches
4837 // IsSupersetOf({e1, ..., en}) if and only if there is a permutation
4838 // {y1, ..., yn} of some of the container's elements where y1 matches e1,
4839 // ..., and yn matches en. Obviously, the size of the container must be >= n
4840 // in order to have a match. Examples:
4841 //
4842 // - {1, 2, 3} matches IsSupersetOf({Ge(3), Ne(0)}), as 3 matches Ge(3) and
4843 //   1 matches Ne(0).
4844 // - {1, 2} doesn't match IsSupersetOf({Eq(1), Lt(2)}), even though 1 matches
4845 //   both Eq(1) and Lt(2). The reason is that different matchers must be used
4846 //   for elements in different slots of the container.
4847 // - {1, 1, 2} matches IsSupersetOf({Eq(1), Lt(2)}), as (the first) 1 matches
4848 //   Eq(1) and (the second) 1 matches Lt(2).
4849 // - {1, 2, 3} matches IsSupersetOf(Gt(1), Gt(1)), as 2 matches (the first)
4850 //   Gt(1) and 3 matches (the second) Gt(1).
4851 //
4852 // The matchers can be specified as an array, a pointer and count, a container,
4853 // an initializer list, or an STL iterator range. In each of these cases, the
4854 // underlying matchers can be either values or matchers.
4855 
4856 template <typename Iter>
4857 inline internal::UnorderedElementsAreArrayMatcher<
4858     typename ::std::iterator_traits<Iter>::value_type>
4859 IsSupersetOf(Iter first, Iter last) {
4860   typedef typename ::std::iterator_traits<Iter>::value_type T;
4861   return internal::UnorderedElementsAreArrayMatcher<T>(
4862       internal::UnorderedMatcherRequire::Superset, first, last);
4863 }
4864 
4865 template <typename T>
4866 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4867     const T* pointer, size_t count) {
4868   return IsSupersetOf(pointer, pointer + count);
4869 }
4870 
4871 template <typename T, size_t N>
4872 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4873     const T (&array)[N]) {
4874   return IsSupersetOf(array, N);
4875 }
4876 
4877 template <typename Container>
4878 inline internal::UnorderedElementsAreArrayMatcher<
4879     typename Container::value_type>
4880 IsSupersetOf(const Container& container) {
4881   return IsSupersetOf(container.begin(), container.end());
4882 }
4883 
4884 template <typename T>
4885 inline internal::UnorderedElementsAreArrayMatcher<T> IsSupersetOf(
4886     ::std::initializer_list<T> xs) {
4887   return IsSupersetOf(xs.begin(), xs.end());
4888 }
4889 
4890 // IsSubsetOf(iterator_first, iterator_last)
4891 // IsSubsetOf(pointer, count)
4892 // IsSubsetOf(array)
4893 // IsSubsetOf(container)
4894 // IsSubsetOf({e1, e2, ..., en})
4895 //
4896 // IsSubsetOf() verifies that an injective mapping onto a collection of matchers
4897 // exists.  In other words, a container matches IsSubsetOf({e1, ..., en}) if and
4898 // only if there is a subset of matchers {m1, ..., mk} which would match the
4899 // container using UnorderedElementsAre.  Obviously, the size of the container
4900 // must be <= n in order to have a match. Examples:
4901 //
4902 // - {1} matches IsSubsetOf({Gt(0), Lt(0)}), as 1 matches Gt(0).
4903 // - {1, -1} matches IsSubsetOf({Lt(0), Gt(0)}), as 1 matches Gt(0) and -1
4904 //   matches Lt(0).
4905 // - {1, 2} doesn't matches IsSubsetOf({Gt(0), Lt(0)}), even though 1 and 2 both
4906 //   match Gt(0). The reason is that different matchers must be used for
4907 //   elements in different slots of the container.
4908 //
4909 // The matchers can be specified as an array, a pointer and count, a container,
4910 // an initializer list, or an STL iterator range. In each of these cases, the
4911 // underlying matchers can be either values or matchers.
4912 
4913 template <typename Iter>
4914 inline internal::UnorderedElementsAreArrayMatcher<
4915     typename ::std::iterator_traits<Iter>::value_type>
4916 IsSubsetOf(Iter first, Iter last) {
4917   typedef typename ::std::iterator_traits<Iter>::value_type T;
4918   return internal::UnorderedElementsAreArrayMatcher<T>(
4919       internal::UnorderedMatcherRequire::Subset, first, last);
4920 }
4921 
4922 template <typename T>
4923 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4924     const T* pointer, size_t count) {
4925   return IsSubsetOf(pointer, pointer + count);
4926 }
4927 
4928 template <typename T, size_t N>
4929 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4930     const T (&array)[N]) {
4931   return IsSubsetOf(array, N);
4932 }
4933 
4934 template <typename Container>
4935 inline internal::UnorderedElementsAreArrayMatcher<
4936     typename Container::value_type>
4937 IsSubsetOf(const Container& container) {
4938   return IsSubsetOf(container.begin(), container.end());
4939 }
4940 
4941 template <typename T>
4942 inline internal::UnorderedElementsAreArrayMatcher<T> IsSubsetOf(
4943     ::std::initializer_list<T> xs) {
4944   return IsSubsetOf(xs.begin(), xs.end());
4945 }
4946 
4947 // Matches an STL-style container or a native array that contains only
4948 // elements matching the given value or matcher.
4949 //
4950 // Each(m) is semantically equivalent to `Not(Contains(Not(m)))`. Only
4951 // the messages are different.
4952 //
4953 // Examples:
4954 //   ::std::set<int> page_ids;
4955 //   // Each(m) matches an empty container, regardless of what m is.
4956 //   EXPECT_THAT(page_ids, Each(Eq(1)));
4957 //   EXPECT_THAT(page_ids, Each(Eq(77)));
4958 //
4959 //   page_ids.insert(3);
4960 //   EXPECT_THAT(page_ids, Each(Gt(0)));
4961 //   EXPECT_THAT(page_ids, Not(Each(Gt(4))));
4962 //   page_ids.insert(1);
4963 //   EXPECT_THAT(page_ids, Not(Each(Lt(2))));
4964 //
4965 //   ::std::map<int, size_t> page_lengths;
4966 //   page_lengths[1] = 100;
4967 //   page_lengths[2] = 200;
4968 //   page_lengths[3] = 300;
4969 //   EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100))));
4970 //   EXPECT_THAT(page_lengths, Each(Key(Le(3))));
4971 //
4972 //   const char* user_ids[] = { "joe", "mike", "tom" };
4973 //   EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom")))));
4974 template <typename M>
4975 inline internal::EachMatcher<M> Each(M matcher) {
4976   return internal::EachMatcher<M>(matcher);
4977 }
4978 
4979 // Key(inner_matcher) matches an std::pair whose 'first' field matches
4980 // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an
4981 // std::map that contains at least one element whose key is >= 5.
4982 template <typename M>
4983 inline internal::KeyMatcher<M> Key(M inner_matcher) {
4984   return internal::KeyMatcher<M>(inner_matcher);
4985 }
4986 
4987 // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field
4988 // matches first_matcher and whose 'second' field matches second_matcher.  For
4989 // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used
4990 // to match a std::map<int, string> that contains exactly one element whose key
4991 // is >= 5 and whose value equals "foo".
4992 template <typename FirstMatcher, typename SecondMatcher>
4993 inline internal::PairMatcher<FirstMatcher, SecondMatcher> Pair(
4994     FirstMatcher first_matcher, SecondMatcher second_matcher) {
4995   return internal::PairMatcher<FirstMatcher, SecondMatcher>(first_matcher,
4996                                                             second_matcher);
4997 }
4998 
4999 namespace no_adl {
5000 // Conditional() creates a matcher that conditionally uses either the first or
5001 // second matcher provided. For example, we could create an `equal if, and only
5002 // if' matcher using the Conditional wrapper as follows:
5003 //
5004 //   EXPECT_THAT(result, Conditional(condition, Eq(expected), Ne(expected)));
5005 template <typename MatcherTrue, typename MatcherFalse>
5006 internal::ConditionalMatcher<MatcherTrue, MatcherFalse> Conditional(
5007     bool condition, MatcherTrue matcher_true, MatcherFalse matcher_false) {
5008   return internal::ConditionalMatcher<MatcherTrue, MatcherFalse>(
5009       condition, std::move(matcher_true), std::move(matcher_false));
5010 }
5011 
5012 // FieldsAre(matchers...) matches piecewise the fields of compatible structs.
5013 // These include those that support `get<I>(obj)`, and when structured bindings
5014 // are enabled any class that supports them.
5015 // In particular, `std::tuple`, `std::pair`, `std::array` and aggregate types.
5016 template <typename... M>
5017 internal::FieldsAreMatcher<typename std::decay<M>::type...> FieldsAre(
5018     M&&... matchers) {
5019   return internal::FieldsAreMatcher<typename std::decay<M>::type...>(
5020       std::forward<M>(matchers)...);
5021 }
5022 
5023 // Creates a matcher that matches a pointer (raw or smart) that matches
5024 // inner_matcher.
5025 template <typename InnerMatcher>
5026 inline internal::PointerMatcher<InnerMatcher> Pointer(
5027     const InnerMatcher& inner_matcher) {
5028   return internal::PointerMatcher<InnerMatcher>(inner_matcher);
5029 }
5030 
5031 // Creates a matcher that matches an object that has an address that matches
5032 // inner_matcher.
5033 template <typename InnerMatcher>
5034 inline internal::AddressMatcher<InnerMatcher> Address(
5035     const InnerMatcher& inner_matcher) {
5036   return internal::AddressMatcher<InnerMatcher>(inner_matcher);
5037 }
5038 
5039 // Matches a base64 escaped string, when the unescaped string matches the
5040 // internal matcher.
5041 template <typename MatcherType>
5042 internal::WhenBase64UnescapedMatcher WhenBase64Unescaped(
5043     const MatcherType& internal_matcher) {
5044   return internal::WhenBase64UnescapedMatcher(internal_matcher);
5045 }
5046 }  // namespace no_adl
5047 
5048 // Returns a predicate that is satisfied by anything that matches the
5049 // given matcher.
5050 template <typename M>
5051 inline internal::MatcherAsPredicate<M> Matches(M matcher) {
5052   return internal::MatcherAsPredicate<M>(matcher);
5053 }
5054 
5055 // Returns true if and only if the value matches the matcher.
5056 template <typename T, typename M>
5057 inline bool Value(const T& value, M matcher) {
5058   return testing::Matches(matcher)(value);
5059 }
5060 
5061 // Matches the value against the given matcher and explains the match
5062 // result to listener.
5063 template <typename T, typename M>
5064 inline bool ExplainMatchResult(M matcher, const T& value,
5065                                MatchResultListener* listener) {
5066   return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener);
5067 }
5068 
5069 // Returns a string representation of the given matcher.  Useful for description
5070 // strings of matchers defined using MATCHER_P* macros that accept matchers as
5071 // their arguments.  For example:
5072 //
5073 // MATCHER_P(XAndYThat, matcher,
5074 //           "X that " + DescribeMatcher<int>(matcher, negation) +
5075 //               (negation ? " or" : " and") + " Y that " +
5076 //               DescribeMatcher<double>(matcher, negation)) {
5077 //   return ExplainMatchResult(matcher, arg.x(), result_listener) &&
5078 //          ExplainMatchResult(matcher, arg.y(), result_listener);
5079 // }
5080 template <typename T, typename M>
5081 std::string DescribeMatcher(const M& matcher, bool negation = false) {
5082   ::std::stringstream ss;
5083   Matcher<T> monomorphic_matcher = SafeMatcherCast<T>(matcher);
5084   if (negation) {
5085     monomorphic_matcher.DescribeNegationTo(&ss);
5086   } else {
5087     monomorphic_matcher.DescribeTo(&ss);
5088   }
5089   return ss.str();
5090 }
5091 
5092 template <typename... Args>
5093 internal::ElementsAreMatcher<
5094     std::tuple<typename std::decay<const Args&>::type...>>
5095 ElementsAre(const Args&... matchers) {
5096   return internal::ElementsAreMatcher<
5097       std::tuple<typename std::decay<const Args&>::type...>>(
5098       std::make_tuple(matchers...));
5099 }
5100 
5101 template <typename... Args>
5102 internal::UnorderedElementsAreMatcher<
5103     std::tuple<typename std::decay<const Args&>::type...>>
5104 UnorderedElementsAre(const Args&... matchers) {
5105   return internal::UnorderedElementsAreMatcher<
5106       std::tuple<typename std::decay<const Args&>::type...>>(
5107       std::make_tuple(matchers...));
5108 }
5109 
5110 // Define variadic matcher versions.
5111 template <typename... Args>
5112 internal::AllOfMatcher<typename std::decay<const Args&>::type...> AllOf(
5113     const Args&... matchers) {
5114   return internal::AllOfMatcher<typename std::decay<const Args&>::type...>(
5115       matchers...);
5116 }
5117 
5118 template <typename... Args>
5119 internal::AnyOfMatcher<typename std::decay<const Args&>::type...> AnyOf(
5120     const Args&... matchers) {
5121   return internal::AnyOfMatcher<typename std::decay<const Args&>::type...>(
5122       matchers...);
5123 }
5124 
5125 // AnyOfArray(array)
5126 // AnyOfArray(pointer, count)
5127 // AnyOfArray(container)
5128 // AnyOfArray({ e1, e2, ..., en })
5129 // AnyOfArray(iterator_first, iterator_last)
5130 //
5131 // AnyOfArray() verifies whether a given value matches any member of a
5132 // collection of matchers.
5133 //
5134 // AllOfArray(array)
5135 // AllOfArray(pointer, count)
5136 // AllOfArray(container)
5137 // AllOfArray({ e1, e2, ..., en })
5138 // AllOfArray(iterator_first, iterator_last)
5139 //
5140 // AllOfArray() verifies whether a given value matches all members of a
5141 // collection of matchers.
5142 //
5143 // The matchers can be specified as an array, a pointer and count, a container,
5144 // an initializer list, or an STL iterator range. In each of these cases, the
5145 // underlying matchers can be either values or matchers.
5146 
5147 template <typename Iter>
5148 inline internal::AnyOfArrayMatcher<
5149     typename ::std::iterator_traits<Iter>::value_type>
5150 AnyOfArray(Iter first, Iter last) {
5151   return internal::AnyOfArrayMatcher<
5152       typename ::std::iterator_traits<Iter>::value_type>(first, last);
5153 }
5154 
5155 template <typename Iter>
5156 inline internal::AllOfArrayMatcher<
5157     typename ::std::iterator_traits<Iter>::value_type>
5158 AllOfArray(Iter first, Iter last) {
5159   return internal::AllOfArrayMatcher<
5160       typename ::std::iterator_traits<Iter>::value_type>(first, last);
5161 }
5162 
5163 template <typename T>
5164 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T* ptr, size_t count) {
5165   return AnyOfArray(ptr, ptr + count);
5166 }
5167 
5168 template <typename T>
5169 inline internal::AllOfArrayMatcher<T> AllOfArray(const T* ptr, size_t count) {
5170   return AllOfArray(ptr, ptr + count);
5171 }
5172 
5173 template <typename T, size_t N>
5174 inline internal::AnyOfArrayMatcher<T> AnyOfArray(const T (&array)[N]) {
5175   return AnyOfArray(array, N);
5176 }
5177 
5178 template <typename T, size_t N>
5179 inline internal::AllOfArrayMatcher<T> AllOfArray(const T (&array)[N]) {
5180   return AllOfArray(array, N);
5181 }
5182 
5183 template <typename Container>
5184 inline internal::AnyOfArrayMatcher<typename Container::value_type> AnyOfArray(
5185     const Container& container) {
5186   return AnyOfArray(container.begin(), container.end());
5187 }
5188 
5189 template <typename Container>
5190 inline internal::AllOfArrayMatcher<typename Container::value_type> AllOfArray(
5191     const Container& container) {
5192   return AllOfArray(container.begin(), container.end());
5193 }
5194 
5195 template <typename T>
5196 inline internal::AnyOfArrayMatcher<T> AnyOfArray(
5197     ::std::initializer_list<T> xs) {
5198   return AnyOfArray(xs.begin(), xs.end());
5199 }
5200 
5201 template <typename T>
5202 inline internal::AllOfArrayMatcher<T> AllOfArray(
5203     ::std::initializer_list<T> xs) {
5204   return AllOfArray(xs.begin(), xs.end());
5205 }
5206 
5207 // Args<N1, N2, ..., Nk>(a_matcher) matches a tuple if the selected
5208 // fields of it matches a_matcher.  C++ doesn't support default
5209 // arguments for function templates, so we have to overload it.
5210 template <size_t... k, typename InnerMatcher>
5211 internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...> Args(
5212     InnerMatcher&& matcher) {
5213   return internal::ArgsMatcher<typename std::decay<InnerMatcher>::type, k...>(
5214       std::forward<InnerMatcher>(matcher));
5215 }
5216 
5217 // AllArgs(m) is a synonym of m.  This is useful in
5218 //
5219 //   EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq()));
5220 //
5221 // which is easier to read than
5222 //
5223 //   EXPECT_CALL(foo, Bar(_, _)).With(Eq());
5224 template <typename InnerMatcher>
5225 inline InnerMatcher AllArgs(const InnerMatcher& matcher) {
5226   return matcher;
5227 }
5228 
5229 // Returns a matcher that matches the value of an optional<> type variable.
5230 // The matcher implementation only uses '!arg' and requires that the optional<>
5231 // type has a 'value_type' member type and that '*arg' is of type 'value_type'
5232 // and is printable using 'PrintToString'. It is compatible with
5233 // std::optional/std::experimental::optional.
5234 // Note that to compare an optional type variable against nullopt you should
5235 // use Eq(nullopt) and not Eq(Optional(nullopt)). The latter implies that the
5236 // optional value contains an optional itself.
5237 template <typename ValueMatcher>
5238 inline internal::OptionalMatcher<ValueMatcher> Optional(
5239     const ValueMatcher& value_matcher) {
5240   return internal::OptionalMatcher<ValueMatcher>(value_matcher);
5241 }
5242 
5243 // Returns a matcher that matches the value of a absl::any type variable.
5244 template <typename T>
5245 PolymorphicMatcher<internal::any_cast_matcher::AnyCastMatcher<T>> AnyWith(
5246     const Matcher<const T&>& matcher) {
5247   return MakePolymorphicMatcher(
5248       internal::any_cast_matcher::AnyCastMatcher<T>(matcher));
5249 }
5250 
5251 // Returns a matcher that matches the value of a variant<> type variable.
5252 // The matcher implementation uses ADL to find the holds_alternative and get
5253 // functions.
5254 // It is compatible with std::variant.
5255 template <typename T>
5256 PolymorphicMatcher<internal::variant_matcher::VariantMatcher<T>> VariantWith(
5257     const Matcher<const T&>& matcher) {
5258   return MakePolymorphicMatcher(
5259       internal::variant_matcher::VariantMatcher<T>(matcher));
5260 }
5261 
5262 #if GTEST_HAS_EXCEPTIONS
5263 
5264 // Anything inside the `internal` namespace is internal to the implementation
5265 // and must not be used in user code!
5266 namespace internal {
5267 
5268 class WithWhatMatcherImpl {
5269  public:
5270   WithWhatMatcherImpl(Matcher<std::string> matcher)
5271       : matcher_(std::move(matcher)) {}
5272 
5273   void DescribeTo(std::ostream* os) const {
5274     *os << "contains .what() that ";
5275     matcher_.DescribeTo(os);
5276   }
5277 
5278   void DescribeNegationTo(std::ostream* os) const {
5279     *os << "contains .what() that does not ";
5280     matcher_.DescribeTo(os);
5281   }
5282 
5283   template <typename Err>
5284   bool MatchAndExplain(const Err& err, MatchResultListener* listener) const {
5285     *listener << "which contains .what() (of value = " << err.what()
5286               << ") that ";
5287     return matcher_.MatchAndExplain(err.what(), listener);
5288   }
5289 
5290  private:
5291   const Matcher<std::string> matcher_;
5292 };
5293 
5294 inline PolymorphicMatcher<WithWhatMatcherImpl> WithWhat(
5295     Matcher<std::string> m) {
5296   return MakePolymorphicMatcher(WithWhatMatcherImpl(std::move(m)));
5297 }
5298 
5299 template <typename Err>
5300 class ExceptionMatcherImpl {
5301   class NeverThrown {
5302    public:
5303     const char* what() const noexcept {
5304       return "this exception should never be thrown";
5305     }
5306   };
5307 
5308   // If the matchee raises an exception of a wrong type, we'd like to
5309   // catch it and print its message and type. To do that, we add an additional
5310   // catch clause:
5311   //
5312   //     try { ... }
5313   //     catch (const Err&) { /* an expected exception */ }
5314   //     catch (const std::exception&) { /* exception of a wrong type */ }
5315   //
5316   // However, if the `Err` itself is `std::exception`, we'd end up with two
5317   // identical `catch` clauses:
5318   //
5319   //     try { ... }
5320   //     catch (const std::exception&) { /* an expected exception */ }
5321   //     catch (const std::exception&) { /* exception of a wrong type */ }
5322   //
5323   // This can cause a warning or an error in some compilers. To resolve
5324   // the issue, we use a fake error type whenever `Err` is `std::exception`:
5325   //
5326   //     try { ... }
5327   //     catch (const std::exception&) { /* an expected exception */ }
5328   //     catch (const NeverThrown&) { /* exception of a wrong type */ }
5329   using DefaultExceptionType = typename std::conditional<
5330       std::is_same<typename std::remove_cv<
5331                        typename std::remove_reference<Err>::type>::type,
5332                    std::exception>::value,
5333       const NeverThrown&, const std::exception&>::type;
5334 
5335  public:
5336   ExceptionMatcherImpl(Matcher<const Err&> matcher)
5337       : matcher_(std::move(matcher)) {}
5338 
5339   void DescribeTo(std::ostream* os) const {
5340     *os << "throws an exception which is a " << GetTypeName<Err>();
5341     *os << " which ";
5342     matcher_.DescribeTo(os);
5343   }
5344 
5345   void DescribeNegationTo(std::ostream* os) const {
5346     *os << "throws an exception which is not a " << GetTypeName<Err>();
5347     *os << " which ";
5348     matcher_.DescribeNegationTo(os);
5349   }
5350 
5351   template <typename T>
5352   bool MatchAndExplain(T&& x, MatchResultListener* listener) const {
5353     try {
5354       (void)(std::forward<T>(x)());
5355     } catch (const Err& err) {
5356       *listener << "throws an exception which is a " << GetTypeName<Err>();
5357       *listener << " ";
5358       return matcher_.MatchAndExplain(err, listener);
5359     } catch (DefaultExceptionType err) {
5360 #if GTEST_HAS_RTTI
5361       *listener << "throws an exception of type " << GetTypeName(typeid(err));
5362       *listener << " ";
5363 #else
5364       *listener << "throws an std::exception-derived type ";
5365 #endif
5366       *listener << "with description \"" << err.what() << "\"";
5367       return false;
5368     } catch (...) {
5369       *listener << "throws an exception of an unknown type";
5370       return false;
5371     }
5372 
5373     *listener << "does not throw any exception";
5374     return false;
5375   }
5376 
5377  private:
5378   const Matcher<const Err&> matcher_;
5379 };
5380 
5381 }  // namespace internal
5382 
5383 // Throws()
5384 // Throws(exceptionMatcher)
5385 // ThrowsMessage(messageMatcher)
5386 //
5387 // This matcher accepts a callable and verifies that when invoked, it throws
5388 // an exception with the given type and properties.
5389 //
5390 // Examples:
5391 //
5392 //   EXPECT_THAT(
5393 //       []() { throw std::runtime_error("message"); },
5394 //       Throws<std::runtime_error>());
5395 //
5396 //   EXPECT_THAT(
5397 //       []() { throw std::runtime_error("message"); },
5398 //       ThrowsMessage<std::runtime_error>(HasSubstr("message")));
5399 //
5400 //   EXPECT_THAT(
5401 //       []() { throw std::runtime_error("message"); },
5402 //       Throws<std::runtime_error>(
5403 //           Property(&std::runtime_error::what, HasSubstr("message"))));
5404 
5405 template <typename Err>
5406 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws() {
5407   return MakePolymorphicMatcher(
5408       internal::ExceptionMatcherImpl<Err>(A<const Err&>()));
5409 }
5410 
5411 template <typename Err, typename ExceptionMatcher>
5412 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> Throws(
5413     const ExceptionMatcher& exception_matcher) {
5414   // Using matcher cast allows users to pass a matcher of a more broad type.
5415   // For example user may want to pass Matcher<std::exception>
5416   // to Throws<std::runtime_error>, or Matcher<int64> to Throws<int32>.
5417   return MakePolymorphicMatcher(internal::ExceptionMatcherImpl<Err>(
5418       SafeMatcherCast<const Err&>(exception_matcher)));
5419 }
5420 
5421 template <typename Err, typename MessageMatcher>
5422 PolymorphicMatcher<internal::ExceptionMatcherImpl<Err>> ThrowsMessage(
5423     MessageMatcher&& message_matcher) {
5424   static_assert(std::is_base_of<std::exception, Err>::value,
5425                 "expected an std::exception-derived type");
5426   return Throws<Err>(internal::WithWhat(
5427       MatcherCast<std::string>(std::forward<MessageMatcher>(message_matcher))));
5428 }
5429 
5430 #endif  // GTEST_HAS_EXCEPTIONS
5431 
5432 // These macros allow using matchers to check values in Google Test
5433 // tests.  ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher)
5434 // succeed if and only if the value matches the matcher.  If the assertion
5435 // fails, the value and the description of the matcher will be printed.
5436 #define ASSERT_THAT(value, matcher) \
5437   ASSERT_PRED_FORMAT1(              \
5438       ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5439 #define EXPECT_THAT(value, matcher) \
5440   EXPECT_PRED_FORMAT1(              \
5441       ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value)
5442 
5443 // MATCHER* macros itself are listed below.
5444 #define MATCHER(name, description)                                             \
5445   class name##Matcher                                                          \
5446       : public ::testing::internal::MatcherBaseImpl<name##Matcher> {           \
5447    public:                                                                     \
5448     template <typename arg_type>                                               \
5449     class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> {   \
5450      public:                                                                   \
5451       gmock_Impl() {}                                                          \
5452       bool MatchAndExplain(                                                    \
5453           const arg_type& arg,                                                 \
5454           ::testing::MatchResultListener* result_listener) const override;     \
5455       void DescribeTo(::std::ostream* gmock_os) const override {               \
5456         *gmock_os << FormatDescription(false);                                 \
5457       }                                                                        \
5458       void DescribeNegationTo(::std::ostream* gmock_os) const override {       \
5459         *gmock_os << FormatDescription(true);                                  \
5460       }                                                                        \
5461                                                                                \
5462      private:                                                                  \
5463       ::std::string FormatDescription(bool negation) const {                   \
5464         /* NOLINTNEXTLINE readability-redundant-string-init */                 \
5465         ::std::string gmock_description = (description);                       \
5466         if (!gmock_description.empty()) {                                      \
5467           return gmock_description;                                            \
5468         }                                                                      \
5469         return ::testing::internal::FormatMatcherDescription(negation, #name,  \
5470                                                              {}, {});          \
5471       }                                                                        \
5472     };                                                                         \
5473   };                                                                           \
5474   inline name##Matcher GMOCK_INTERNAL_WARNING_PUSH()                           \
5475       GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-function")               \
5476           GMOCK_INTERNAL_WARNING_CLANG(ignored, "-Wunused-member-function")    \
5477               name                                                             \
5478               GMOCK_INTERNAL_WARNING_POP()() {                                 \
5479     return {};                                                                 \
5480   }                                                                            \
5481   template <typename arg_type>                                                 \
5482   bool name##Matcher::gmock_Impl<arg_type>::MatchAndExplain(                   \
5483       const arg_type& arg,                                                     \
5484       ::testing::MatchResultListener* result_listener GTEST_ATTRIBUTE_UNUSED_) \
5485       const
5486 
5487 #define MATCHER_P(name, p0, description) \
5488   GMOCK_INTERNAL_MATCHER(name, name##MatcherP, description, (#p0), (p0))
5489 #define MATCHER_P2(name, p0, p1, description)                            \
5490   GMOCK_INTERNAL_MATCHER(name, name##MatcherP2, description, (#p0, #p1), \
5491                          (p0, p1))
5492 #define MATCHER_P3(name, p0, p1, p2, description)                             \
5493   GMOCK_INTERNAL_MATCHER(name, name##MatcherP3, description, (#p0, #p1, #p2), \
5494                          (p0, p1, p2))
5495 #define MATCHER_P4(name, p0, p1, p2, p3, description)        \
5496   GMOCK_INTERNAL_MATCHER(name, name##MatcherP4, description, \
5497                          (#p0, #p1, #p2, #p3), (p0, p1, p2, p3))
5498 #define MATCHER_P5(name, p0, p1, p2, p3, p4, description)    \
5499   GMOCK_INTERNAL_MATCHER(name, name##MatcherP5, description, \
5500                          (#p0, #p1, #p2, #p3, #p4), (p0, p1, p2, p3, p4))
5501 #define MATCHER_P6(name, p0, p1, p2, p3, p4, p5, description) \
5502   GMOCK_INTERNAL_MATCHER(name, name##MatcherP6, description,  \
5503                          (#p0, #p1, #p2, #p3, #p4, #p5),      \
5504                          (p0, p1, p2, p3, p4, p5))
5505 #define MATCHER_P7(name, p0, p1, p2, p3, p4, p5, p6, description) \
5506   GMOCK_INTERNAL_MATCHER(name, name##MatcherP7, description,      \
5507                          (#p0, #p1, #p2, #p3, #p4, #p5, #p6),     \
5508                          (p0, p1, p2, p3, p4, p5, p6))
5509 #define MATCHER_P8(name, p0, p1, p2, p3, p4, p5, p6, p7, description) \
5510   GMOCK_INTERNAL_MATCHER(name, name##MatcherP8, description,          \
5511                          (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7),    \
5512                          (p0, p1, p2, p3, p4, p5, p6, p7))
5513 #define MATCHER_P9(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, description) \
5514   GMOCK_INTERNAL_MATCHER(name, name##MatcherP9, description,              \
5515                          (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8),   \
5516                          (p0, p1, p2, p3, p4, p5, p6, p7, p8))
5517 #define MATCHER_P10(name, p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, description) \
5518   GMOCK_INTERNAL_MATCHER(name, name##MatcherP10, description,                  \
5519                          (#p0, #p1, #p2, #p3, #p4, #p5, #p6, #p7, #p8, #p9),   \
5520                          (p0, p1, p2, p3, p4, p5, p6, p7, p8, p9))
5521 
5522 #define GMOCK_INTERNAL_MATCHER(name, full_name, description, arg_names, args)  \
5523   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
5524   class full_name : public ::testing::internal::MatcherBaseImpl<               \
5525                         full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>> { \
5526    public:                                                                     \
5527     using full_name::MatcherBaseImpl::MatcherBaseImpl;                         \
5528     template <typename arg_type>                                               \
5529     class gmock_Impl : public ::testing::MatcherInterface<const arg_type&> {   \
5530      public:                                                                   \
5531       explicit gmock_Impl(GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args))          \
5532           : GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) {}                       \
5533       bool MatchAndExplain(                                                    \
5534           const arg_type& arg,                                                 \
5535           ::testing::MatchResultListener* result_listener) const override;     \
5536       void DescribeTo(::std::ostream* gmock_os) const override {               \
5537         *gmock_os << FormatDescription(false);                                 \
5538       }                                                                        \
5539       void DescribeNegationTo(::std::ostream* gmock_os) const override {       \
5540         *gmock_os << FormatDescription(true);                                  \
5541       }                                                                        \
5542       GMOCK_INTERNAL_MATCHER_MEMBERS(args)                                     \
5543                                                                                \
5544      private:                                                                  \
5545       ::std::string FormatDescription(bool negation) const {                   \
5546         ::std::string gmock_description = (description);                       \
5547         if (!gmock_description.empty()) {                                      \
5548           return gmock_description;                                            \
5549         }                                                                      \
5550         return ::testing::internal::FormatMatcherDescription(                  \
5551             negation, #name, {GMOCK_PP_REMOVE_PARENS(arg_names)},              \
5552             ::testing::internal::UniversalTersePrintTupleFieldsToStrings(      \
5553                 ::std::tuple<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>(        \
5554                     GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args))));             \
5555       }                                                                        \
5556     };                                                                         \
5557   };                                                                           \
5558   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
5559   inline full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)> name(             \
5560       GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args)) {                            \
5561     return full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>(                \
5562         GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args));                              \
5563   }                                                                            \
5564   template <GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args)>                      \
5565   template <typename arg_type>                                                 \
5566   bool full_name<GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args)>::gmock_Impl<        \
5567       arg_type>::MatchAndExplain(const arg_type& arg,                          \
5568                                  ::testing::MatchResultListener*               \
5569                                      result_listener GTEST_ATTRIBUTE_UNUSED_)  \
5570       const
5571 
5572 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAMS(args) \
5573   GMOCK_PP_TAIL(                                     \
5574       GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM, , args))
5575 #define GMOCK_INTERNAL_MATCHER_TEMPLATE_PARAM(i_unused, data_unused, arg) \
5576   , typename arg##_type
5577 
5578 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAMS(args) \
5579   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_TYPE_PARAM, , args))
5580 #define GMOCK_INTERNAL_MATCHER_TYPE_PARAM(i_unused, data_unused, arg) \
5581   , arg##_type
5582 
5583 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARGS(args) \
5584   GMOCK_PP_TAIL(dummy_first GMOCK_PP_FOR_EACH(     \
5585       GMOCK_INTERNAL_MATCHER_FUNCTION_ARG, , args))
5586 #define GMOCK_INTERNAL_MATCHER_FUNCTION_ARG(i, data_unused, arg) \
5587   , arg##_type gmock_p##i
5588 
5589 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARGS(args) \
5590   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_FORWARD_ARG, , args))
5591 #define GMOCK_INTERNAL_MATCHER_FORWARD_ARG(i, data_unused, arg) \
5592   , arg(::std::forward<arg##_type>(gmock_p##i))
5593 
5594 #define GMOCK_INTERNAL_MATCHER_MEMBERS(args) \
5595   GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER, , args)
5596 #define GMOCK_INTERNAL_MATCHER_MEMBER(i_unused, data_unused, arg) \
5597   const arg##_type arg;
5598 
5599 #define GMOCK_INTERNAL_MATCHER_MEMBERS_USAGE(args) \
5600   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_MEMBER_USAGE, , args))
5601 #define GMOCK_INTERNAL_MATCHER_MEMBER_USAGE(i_unused, data_unused, arg) , arg
5602 
5603 #define GMOCK_INTERNAL_MATCHER_ARGS_USAGE(args) \
5604   GMOCK_PP_TAIL(GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_MATCHER_ARG_USAGE, , args))
5605 #define GMOCK_INTERNAL_MATCHER_ARG_USAGE(i, data_unused, arg_unused) \
5606   , gmock_p##i
5607 
5608 // To prevent ADL on certain functions we put them on a separate namespace.
5609 using namespace no_adl;  // NOLINT
5610 
5611 }  // namespace testing
5612 
5613 GTEST_DISABLE_MSC_WARNINGS_POP_()  //  4251 5046
5614 
5615 // Include any custom callback matchers added by the local installation.
5616 // We must include this header at the end to make sure it can use the
5617 // declarations from this file.
5618 #include "gmock/internal/custom/gmock-matchers.h"
5619 
5620 #endif  // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_
5621