1 // © 2018 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 //
4 // From the double-conversion library. Original license:
5 //
6 // Copyright 2010 the V8 project authors. All rights reserved.
7 // Redistribution and use in source and binary forms, with or without
8 // modification, are permitted provided that the following conditions are
9 // met:
10 //
11 // * Redistributions of source code must retain the above copyright
12 // notice, this list of conditions and the following disclaimer.
13 // * Redistributions in binary form must reproduce the above
14 // copyright notice, this list of conditions and the following
15 // disclaimer in the documentation and/or other materials provided
16 // with the distribution.
17 // * Neither the name of Google Inc. nor the names of its
18 // contributors may be used to endorse or promote products derived
19 // from this software without specific prior written permission.
20 //
21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32
33 // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
34 #include "unicode/utypes.h"
35 #if !UCONFIG_NO_FORMATTING
36
37 #include <algorithm>
38 #include <cstring>
39
40 // ICU PATCH: Customize header file paths for ICU.
41
42 #include "double-conversion-bignum.h"
43 #include "double-conversion-utils.h"
44
45 // ICU PATCH: Wrap in ICU namespace
46 U_NAMESPACE_BEGIN
47
48 namespace double_conversion {
49
RawBigit(const int index)50 Bignum::Chunk& Bignum::RawBigit(const int index) {
51 DOUBLE_CONVERSION_ASSERT(static_cast<unsigned>(index) < kBigitCapacity);
52 return bigits_buffer_[index];
53 }
54
55
RawBigit(const int index) const56 const Bignum::Chunk& Bignum::RawBigit(const int index) const {
57 DOUBLE_CONVERSION_ASSERT(static_cast<unsigned>(index) < kBigitCapacity);
58 return bigits_buffer_[index];
59 }
60
61
62 template<typename S>
BitSize(const S value)63 static int BitSize(const S value) {
64 (void) value; // Mark variable as used.
65 return 8 * sizeof(value);
66 }
67
68 // Guaranteed to lie in one Bigit.
AssignUInt16(const uint16_t value)69 void Bignum::AssignUInt16(const uint16_t value) {
70 DOUBLE_CONVERSION_ASSERT(kBigitSize >= BitSize(value));
71 Zero();
72 if (value > 0) {
73 RawBigit(0) = value;
74 used_bigits_ = 1;
75 }
76 }
77
78
AssignUInt64(uint64_t value)79 void Bignum::AssignUInt64(uint64_t value) {
80 Zero();
81 for(int i = 0; value > 0; ++i) {
82 RawBigit(i) = value & kBigitMask;
83 value >>= kBigitSize;
84 ++used_bigits_;
85 }
86 }
87
88
AssignBignum(const Bignum & other)89 void Bignum::AssignBignum(const Bignum& other) {
90 exponent_ = other.exponent_;
91 for (int i = 0; i < other.used_bigits_; ++i) {
92 RawBigit(i) = other.RawBigit(i);
93 }
94 used_bigits_ = other.used_bigits_;
95 }
96
97
ReadUInt64(const Vector<const char> buffer,const int from,const int digits_to_read)98 static uint64_t ReadUInt64(const Vector<const char> buffer,
99 const int from,
100 const int digits_to_read) {
101 uint64_t result = 0;
102 for (int i = from; i < from + digits_to_read; ++i) {
103 const int digit = buffer[i] - '0';
104 DOUBLE_CONVERSION_ASSERT(0 <= digit && digit <= 9);
105 result = result * 10 + digit;
106 }
107 return result;
108 }
109
110
AssignDecimalString(const Vector<const char> value)111 void Bignum::AssignDecimalString(const Vector<const char> value) {
112 // 2^64 = 18446744073709551616 > 10^19
113 static const int kMaxUint64DecimalDigits = 19;
114 Zero();
115 int length = value.length();
116 unsigned pos = 0;
117 // Let's just say that each digit needs 4 bits.
118 while (length >= kMaxUint64DecimalDigits) {
119 const uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
120 pos += kMaxUint64DecimalDigits;
121 length -= kMaxUint64DecimalDigits;
122 MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
123 AddUInt64(digits);
124 }
125 const uint64_t digits = ReadUInt64(value, pos, length);
126 MultiplyByPowerOfTen(length);
127 AddUInt64(digits);
128 Clamp();
129 }
130
131
HexCharValue(const int c)132 static uint64_t HexCharValue(const int c) {
133 if ('0' <= c && c <= '9') {
134 return c - '0';
135 }
136 if ('a' <= c && c <= 'f') {
137 return 10 + c - 'a';
138 }
139 DOUBLE_CONVERSION_ASSERT('A' <= c && c <= 'F');
140 return 10 + c - 'A';
141 }
142
143
144 // Unlike AssignDecimalString(), this function is "only" used
145 // for unit-tests and therefore not performance critical.
AssignHexString(Vector<const char> value)146 void Bignum::AssignHexString(Vector<const char> value) {
147 Zero();
148 // Required capacity could be reduced by ignoring leading zeros.
149 EnsureCapacity(((value.length() * 4) + kBigitSize - 1) / kBigitSize);
150 DOUBLE_CONVERSION_ASSERT(sizeof(uint64_t) * 8 >= kBigitSize + 4); // TODO: static_assert
151 // Accumulates converted hex digits until at least kBigitSize bits.
152 // Works with non-factor-of-four kBigitSizes.
153 uint64_t tmp = 0;
154 for (int cnt = 0; !value.is_empty(); value.pop_back()) {
155 tmp |= (HexCharValue(value.last()) << cnt);
156 if ((cnt += 4) >= kBigitSize) {
157 RawBigit(used_bigits_++) = (tmp & kBigitMask);
158 cnt -= kBigitSize;
159 tmp >>= kBigitSize;
160 }
161 }
162 if (tmp > 0) {
163 DOUBLE_CONVERSION_ASSERT(tmp <= kBigitMask);
164 RawBigit(used_bigits_++) = static_cast<Bignum::Chunk>(tmp & kBigitMask);
165 }
166 Clamp();
167 }
168
169
AddUInt64(const uint64_t operand)170 void Bignum::AddUInt64(const uint64_t operand) {
171 if (operand == 0) {
172 return;
173 }
174 Bignum other;
175 other.AssignUInt64(operand);
176 AddBignum(other);
177 }
178
179
AddBignum(const Bignum & other)180 void Bignum::AddBignum(const Bignum& other) {
181 DOUBLE_CONVERSION_ASSERT(IsClamped());
182 DOUBLE_CONVERSION_ASSERT(other.IsClamped());
183
184 // If this has a greater exponent than other append zero-bigits to this.
185 // After this call exponent_ <= other.exponent_.
186 Align(other);
187
188 // There are two possibilities:
189 // aaaaaaaaaaa 0000 (where the 0s represent a's exponent)
190 // bbbbb 00000000
191 // ----------------
192 // ccccccccccc 0000
193 // or
194 // aaaaaaaaaa 0000
195 // bbbbbbbbb 0000000
196 // -----------------
197 // cccccccccccc 0000
198 // In both cases we might need a carry bigit.
199
200 EnsureCapacity(1 + (std::max)(BigitLength(), other.BigitLength()) - exponent_);
201 Chunk carry = 0;
202 int bigit_pos = other.exponent_ - exponent_;
203 DOUBLE_CONVERSION_ASSERT(bigit_pos >= 0);
204 for (int i = used_bigits_; i < bigit_pos; ++i) {
205 RawBigit(i) = 0;
206 }
207 for (int i = 0; i < other.used_bigits_; ++i) {
208 const Chunk my = (bigit_pos < used_bigits_) ? RawBigit(bigit_pos) : 0;
209 const Chunk sum = my + other.RawBigit(i) + carry;
210 RawBigit(bigit_pos) = sum & kBigitMask;
211 carry = sum >> kBigitSize;
212 ++bigit_pos;
213 }
214 while (carry != 0) {
215 const Chunk my = (bigit_pos < used_bigits_) ? RawBigit(bigit_pos) : 0;
216 const Chunk sum = my + carry;
217 RawBigit(bigit_pos) = sum & kBigitMask;
218 carry = sum >> kBigitSize;
219 ++bigit_pos;
220 }
221 used_bigits_ = static_cast<int16_t>(std::max(bigit_pos, static_cast<int>(used_bigits_)));
222 DOUBLE_CONVERSION_ASSERT(IsClamped());
223 }
224
225
SubtractBignum(const Bignum & other)226 void Bignum::SubtractBignum(const Bignum& other) {
227 DOUBLE_CONVERSION_ASSERT(IsClamped());
228 DOUBLE_CONVERSION_ASSERT(other.IsClamped());
229 // We require this to be bigger than other.
230 DOUBLE_CONVERSION_ASSERT(LessEqual(other, *this));
231
232 Align(other);
233
234 const int offset = other.exponent_ - exponent_;
235 Chunk borrow = 0;
236 int i;
237 for (i = 0; i < other.used_bigits_; ++i) {
238 DOUBLE_CONVERSION_ASSERT((borrow == 0) || (borrow == 1));
239 const Chunk difference = RawBigit(i + offset) - other.RawBigit(i) - borrow;
240 RawBigit(i + offset) = difference & kBigitMask;
241 borrow = difference >> (kChunkSize - 1);
242 }
243 while (borrow != 0) {
244 const Chunk difference = RawBigit(i + offset) - borrow;
245 RawBigit(i + offset) = difference & kBigitMask;
246 borrow = difference >> (kChunkSize - 1);
247 ++i;
248 }
249 Clamp();
250 }
251
252
ShiftLeft(const int shift_amount)253 void Bignum::ShiftLeft(const int shift_amount) {
254 if (used_bigits_ == 0) {
255 return;
256 }
257 exponent_ += static_cast<int16_t>(shift_amount / kBigitSize);
258 const int local_shift = shift_amount % kBigitSize;
259 EnsureCapacity(used_bigits_ + 1);
260 BigitsShiftLeft(local_shift);
261 }
262
263
MultiplyByUInt32(const uint32_t factor)264 void Bignum::MultiplyByUInt32(const uint32_t factor) {
265 if (factor == 1) {
266 return;
267 }
268 if (factor == 0) {
269 Zero();
270 return;
271 }
272 if (used_bigits_ == 0) {
273 return;
274 }
275 // The product of a bigit with the factor is of size kBigitSize + 32.
276 // Assert that this number + 1 (for the carry) fits into double chunk.
277 DOUBLE_CONVERSION_ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
278 DoubleChunk carry = 0;
279 for (int i = 0; i < used_bigits_; ++i) {
280 const DoubleChunk product = static_cast<DoubleChunk>(factor) * RawBigit(i) + carry;
281 RawBigit(i) = static_cast<Chunk>(product & kBigitMask);
282 carry = (product >> kBigitSize);
283 }
284 while (carry != 0) {
285 EnsureCapacity(used_bigits_ + 1);
286 RawBigit(used_bigits_) = carry & kBigitMask;
287 used_bigits_++;
288 carry >>= kBigitSize;
289 }
290 }
291
292
MultiplyByUInt64(const uint64_t factor)293 void Bignum::MultiplyByUInt64(const uint64_t factor) {
294 if (factor == 1) {
295 return;
296 }
297 if (factor == 0) {
298 Zero();
299 return;
300 }
301 if (used_bigits_ == 0) {
302 return;
303 }
304 DOUBLE_CONVERSION_ASSERT(kBigitSize < 32);
305 uint64_t carry = 0;
306 const uint64_t low = factor & 0xFFFFFFFF;
307 const uint64_t high = factor >> 32;
308 for (int i = 0; i < used_bigits_; ++i) {
309 const uint64_t product_low = low * RawBigit(i);
310 const uint64_t product_high = high * RawBigit(i);
311 const uint64_t tmp = (carry & kBigitMask) + product_low;
312 RawBigit(i) = tmp & kBigitMask;
313 carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
314 (product_high << (32 - kBigitSize));
315 }
316 while (carry != 0) {
317 EnsureCapacity(used_bigits_ + 1);
318 RawBigit(used_bigits_) = carry & kBigitMask;
319 used_bigits_++;
320 carry >>= kBigitSize;
321 }
322 }
323
324
MultiplyByPowerOfTen(const int exponent)325 void Bignum::MultiplyByPowerOfTen(const int exponent) {
326 static const uint64_t kFive27 = DOUBLE_CONVERSION_UINT64_2PART_C(0x6765c793, fa10079d);
327 static const uint16_t kFive1 = 5;
328 static const uint16_t kFive2 = kFive1 * 5;
329 static const uint16_t kFive3 = kFive2 * 5;
330 static const uint16_t kFive4 = kFive3 * 5;
331 static const uint16_t kFive5 = kFive4 * 5;
332 static const uint16_t kFive6 = kFive5 * 5;
333 static const uint32_t kFive7 = kFive6 * 5;
334 static const uint32_t kFive8 = kFive7 * 5;
335 static const uint32_t kFive9 = kFive8 * 5;
336 static const uint32_t kFive10 = kFive9 * 5;
337 static const uint32_t kFive11 = kFive10 * 5;
338 static const uint32_t kFive12 = kFive11 * 5;
339 static const uint32_t kFive13 = kFive12 * 5;
340 static const uint32_t kFive1_to_12[] =
341 { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
342 kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
343
344 DOUBLE_CONVERSION_ASSERT(exponent >= 0);
345
346 if (exponent == 0) {
347 return;
348 }
349 if (used_bigits_ == 0) {
350 return;
351 }
352 // We shift by exponent at the end just before returning.
353 int remaining_exponent = exponent;
354 while (remaining_exponent >= 27) {
355 MultiplyByUInt64(kFive27);
356 remaining_exponent -= 27;
357 }
358 while (remaining_exponent >= 13) {
359 MultiplyByUInt32(kFive13);
360 remaining_exponent -= 13;
361 }
362 if (remaining_exponent > 0) {
363 MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
364 }
365 ShiftLeft(exponent);
366 }
367
368
Square()369 void Bignum::Square() {
370 DOUBLE_CONVERSION_ASSERT(IsClamped());
371 const int product_length = 2 * used_bigits_;
372 EnsureCapacity(product_length);
373
374 // Comba multiplication: compute each column separately.
375 // Example: r = a2a1a0 * b2b1b0.
376 // r = 1 * a0b0 +
377 // 10 * (a1b0 + a0b1) +
378 // 100 * (a2b0 + a1b1 + a0b2) +
379 // 1000 * (a2b1 + a1b2) +
380 // 10000 * a2b2
381 //
382 // In the worst case we have to accumulate nb-digits products of digit*digit.
383 //
384 // Assert that the additional number of bits in a DoubleChunk are enough to
385 // sum up used_digits of Bigit*Bigit.
386 if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_bigits_) {
387 DOUBLE_CONVERSION_UNIMPLEMENTED();
388 }
389 DoubleChunk accumulator = 0;
390 // First shift the digits so we don't overwrite them.
391 const int copy_offset = used_bigits_;
392 for (int i = 0; i < used_bigits_; ++i) {
393 RawBigit(copy_offset + i) = RawBigit(i);
394 }
395 // We have two loops to avoid some 'if's in the loop.
396 for (int i = 0; i < used_bigits_; ++i) {
397 // Process temporary digit i with power i.
398 // The sum of the two indices must be equal to i.
399 int bigit_index1 = i;
400 int bigit_index2 = 0;
401 // Sum all of the sub-products.
402 while (bigit_index1 >= 0) {
403 const Chunk chunk1 = RawBigit(copy_offset + bigit_index1);
404 const Chunk chunk2 = RawBigit(copy_offset + bigit_index2);
405 accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
406 bigit_index1--;
407 bigit_index2++;
408 }
409 RawBigit(i) = static_cast<Chunk>(accumulator) & kBigitMask;
410 accumulator >>= kBigitSize;
411 }
412 for (int i = used_bigits_; i < product_length; ++i) {
413 int bigit_index1 = used_bigits_ - 1;
414 int bigit_index2 = i - bigit_index1;
415 // Invariant: sum of both indices is again equal to i.
416 // Inner loop runs 0 times on last iteration, emptying accumulator.
417 while (bigit_index2 < used_bigits_) {
418 const Chunk chunk1 = RawBigit(copy_offset + bigit_index1);
419 const Chunk chunk2 = RawBigit(copy_offset + bigit_index2);
420 accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
421 bigit_index1--;
422 bigit_index2++;
423 }
424 // The overwritten RawBigit(i) will never be read in further loop iterations,
425 // because bigit_index1 and bigit_index2 are always greater
426 // than i - used_bigits_.
427 RawBigit(i) = static_cast<Chunk>(accumulator) & kBigitMask;
428 accumulator >>= kBigitSize;
429 }
430 // Since the result was guaranteed to lie inside the number the
431 // accumulator must be 0 now.
432 DOUBLE_CONVERSION_ASSERT(accumulator == 0);
433
434 // Don't forget to update the used_digits and the exponent.
435 used_bigits_ = static_cast<int16_t>(product_length);
436 exponent_ *= 2;
437 Clamp();
438 }
439
440
AssignPowerUInt16(uint16_t base,const int power_exponent)441 void Bignum::AssignPowerUInt16(uint16_t base, const int power_exponent) {
442 DOUBLE_CONVERSION_ASSERT(base != 0);
443 DOUBLE_CONVERSION_ASSERT(power_exponent >= 0);
444 if (power_exponent == 0) {
445 AssignUInt16(1);
446 return;
447 }
448 Zero();
449 int shifts = 0;
450 // We expect base to be in range 2-32, and most often to be 10.
451 // It does not make much sense to implement different algorithms for counting
452 // the bits.
453 while ((base & 1) == 0) {
454 base >>= 1;
455 shifts++;
456 }
457 int bit_size = 0;
458 int tmp_base = base;
459 while (tmp_base != 0) {
460 tmp_base >>= 1;
461 bit_size++;
462 }
463 const int final_size = bit_size * power_exponent;
464 // 1 extra bigit for the shifting, and one for rounded final_size.
465 EnsureCapacity(final_size / kBigitSize + 2);
466
467 // Left to Right exponentiation.
468 int mask = 1;
469 while (power_exponent >= mask) mask <<= 1;
470
471 // The mask is now pointing to the bit above the most significant 1-bit of
472 // power_exponent.
473 // Get rid of first 1-bit;
474 mask >>= 2;
475 uint64_t this_value = base;
476
477 bool delayed_multiplication = false;
478 const uint64_t max_32bits = 0xFFFFFFFF;
479 while (mask != 0 && this_value <= max_32bits) {
480 this_value = this_value * this_value;
481 // Verify that there is enough space in this_value to perform the
482 // multiplication. The first bit_size bits must be 0.
483 if ((power_exponent & mask) != 0) {
484 DOUBLE_CONVERSION_ASSERT(bit_size > 0);
485 const uint64_t base_bits_mask =
486 ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
487 const bool high_bits_zero = (this_value & base_bits_mask) == 0;
488 if (high_bits_zero) {
489 this_value *= base;
490 } else {
491 delayed_multiplication = true;
492 }
493 }
494 mask >>= 1;
495 }
496 AssignUInt64(this_value);
497 if (delayed_multiplication) {
498 MultiplyByUInt32(base);
499 }
500
501 // Now do the same thing as a bignum.
502 while (mask != 0) {
503 Square();
504 if ((power_exponent & mask) != 0) {
505 MultiplyByUInt32(base);
506 }
507 mask >>= 1;
508 }
509
510 // And finally add the saved shifts.
511 ShiftLeft(shifts * power_exponent);
512 }
513
514
515 // Precondition: this/other < 16bit.
DivideModuloIntBignum(const Bignum & other)516 uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
517 DOUBLE_CONVERSION_ASSERT(IsClamped());
518 DOUBLE_CONVERSION_ASSERT(other.IsClamped());
519 DOUBLE_CONVERSION_ASSERT(other.used_bigits_ > 0);
520
521 // Easy case: if we have less digits than the divisor than the result is 0.
522 // Note: this handles the case where this == 0, too.
523 if (BigitLength() < other.BigitLength()) {
524 return 0;
525 }
526
527 Align(other);
528
529 uint16_t result = 0;
530
531 // Start by removing multiples of 'other' until both numbers have the same
532 // number of digits.
533 while (BigitLength() > other.BigitLength()) {
534 // This naive approach is extremely inefficient if `this` divided by other
535 // is big. This function is implemented for doubleToString where
536 // the result should be small (less than 10).
537 DOUBLE_CONVERSION_ASSERT(other.RawBigit(other.used_bigits_ - 1) >= ((1 << kBigitSize) / 16));
538 DOUBLE_CONVERSION_ASSERT(RawBigit(used_bigits_ - 1) < 0x10000);
539 // Remove the multiples of the first digit.
540 // Example this = 23 and other equals 9. -> Remove 2 multiples.
541 result += static_cast<uint16_t>(RawBigit(used_bigits_ - 1));
542 SubtractTimes(other, RawBigit(used_bigits_ - 1));
543 }
544
545 DOUBLE_CONVERSION_ASSERT(BigitLength() == other.BigitLength());
546
547 // Both bignums are at the same length now.
548 // Since other has more than 0 digits we know that the access to
549 // RawBigit(used_bigits_ - 1) is safe.
550 const Chunk this_bigit = RawBigit(used_bigits_ - 1);
551 const Chunk other_bigit = other.RawBigit(other.used_bigits_ - 1);
552
553 if (other.used_bigits_ == 1) {
554 // Shortcut for easy (and common) case.
555 int quotient = this_bigit / other_bigit;
556 RawBigit(used_bigits_ - 1) = this_bigit - other_bigit * quotient;
557 DOUBLE_CONVERSION_ASSERT(quotient < 0x10000);
558 result += static_cast<uint16_t>(quotient);
559 Clamp();
560 return result;
561 }
562
563 const int division_estimate = this_bigit / (other_bigit + 1);
564 DOUBLE_CONVERSION_ASSERT(division_estimate < 0x10000);
565 result += static_cast<uint16_t>(division_estimate);
566 SubtractTimes(other, division_estimate);
567
568 if (other_bigit * (division_estimate + 1) > this_bigit) {
569 // No need to even try to subtract. Even if other's remaining digits were 0
570 // another subtraction would be too much.
571 return result;
572 }
573
574 while (LessEqual(other, *this)) {
575 SubtractBignum(other);
576 result++;
577 }
578 return result;
579 }
580
581
582 template<typename S>
SizeInHexChars(S number)583 static int SizeInHexChars(S number) {
584 DOUBLE_CONVERSION_ASSERT(number > 0);
585 int result = 0;
586 while (number != 0) {
587 number >>= 4;
588 result++;
589 }
590 return result;
591 }
592
593
HexCharOfValue(const int value)594 static char HexCharOfValue(const int value) {
595 DOUBLE_CONVERSION_ASSERT(0 <= value && value <= 16);
596 if (value < 10) {
597 return static_cast<char>(value + '0');
598 }
599 return static_cast<char>(value - 10 + 'A');
600 }
601
602
ToHexString(char * buffer,const int buffer_size) const603 bool Bignum::ToHexString(char* buffer, const int buffer_size) const {
604 DOUBLE_CONVERSION_ASSERT(IsClamped());
605 // Each bigit must be printable as separate hex-character.
606 DOUBLE_CONVERSION_ASSERT(kBigitSize % 4 == 0);
607 static const int kHexCharsPerBigit = kBigitSize / 4;
608
609 if (used_bigits_ == 0) {
610 if (buffer_size < 2) {
611 return false;
612 }
613 buffer[0] = '0';
614 buffer[1] = '\0';
615 return true;
616 }
617 // We add 1 for the terminating '\0' character.
618 const int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
619 SizeInHexChars(RawBigit(used_bigits_ - 1)) + 1;
620 if (needed_chars > buffer_size) {
621 return false;
622 }
623 int string_index = needed_chars - 1;
624 buffer[string_index--] = '\0';
625 for (int i = 0; i < exponent_; ++i) {
626 for (int j = 0; j < kHexCharsPerBigit; ++j) {
627 buffer[string_index--] = '0';
628 }
629 }
630 for (int i = 0; i < used_bigits_ - 1; ++i) {
631 Chunk current_bigit = RawBigit(i);
632 for (int j = 0; j < kHexCharsPerBigit; ++j) {
633 buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
634 current_bigit >>= 4;
635 }
636 }
637 // And finally the last bigit.
638 Chunk most_significant_bigit = RawBigit(used_bigits_ - 1);
639 while (most_significant_bigit != 0) {
640 buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
641 most_significant_bigit >>= 4;
642 }
643 return true;
644 }
645
646
BigitOrZero(const int index) const647 Bignum::Chunk Bignum::BigitOrZero(const int index) const {
648 if (index >= BigitLength()) {
649 return 0;
650 }
651 if (index < exponent_) {
652 return 0;
653 }
654 return RawBigit(index - exponent_);
655 }
656
657
Compare(const Bignum & a,const Bignum & b)658 int Bignum::Compare(const Bignum& a, const Bignum& b) {
659 DOUBLE_CONVERSION_ASSERT(a.IsClamped());
660 DOUBLE_CONVERSION_ASSERT(b.IsClamped());
661 const int bigit_length_a = a.BigitLength();
662 const int bigit_length_b = b.BigitLength();
663 if (bigit_length_a < bigit_length_b) {
664 return -1;
665 }
666 if (bigit_length_a > bigit_length_b) {
667 return +1;
668 }
669 for (int i = bigit_length_a - 1; i >= (std::min)(a.exponent_, b.exponent_); --i) {
670 const Chunk bigit_a = a.BigitOrZero(i);
671 const Chunk bigit_b = b.BigitOrZero(i);
672 if (bigit_a < bigit_b) {
673 return -1;
674 }
675 if (bigit_a > bigit_b) {
676 return +1;
677 }
678 // Otherwise they are equal up to this digit. Try the next digit.
679 }
680 return 0;
681 }
682
683
PlusCompare(const Bignum & a,const Bignum & b,const Bignum & c)684 int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
685 DOUBLE_CONVERSION_ASSERT(a.IsClamped());
686 DOUBLE_CONVERSION_ASSERT(b.IsClamped());
687 DOUBLE_CONVERSION_ASSERT(c.IsClamped());
688 if (a.BigitLength() < b.BigitLength()) {
689 return PlusCompare(b, a, c);
690 }
691 if (a.BigitLength() + 1 < c.BigitLength()) {
692 return -1;
693 }
694 if (a.BigitLength() > c.BigitLength()) {
695 return +1;
696 }
697 // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
698 // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
699 // of 'a'.
700 if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
701 return -1;
702 }
703
704 Chunk borrow = 0;
705 // Starting at min_exponent all digits are == 0. So no need to compare them.
706 const int min_exponent = (std::min)((std::min)(a.exponent_, b.exponent_), c.exponent_);
707 for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
708 const Chunk chunk_a = a.BigitOrZero(i);
709 const Chunk chunk_b = b.BigitOrZero(i);
710 const Chunk chunk_c = c.BigitOrZero(i);
711 const Chunk sum = chunk_a + chunk_b;
712 if (sum > chunk_c + borrow) {
713 return +1;
714 } else {
715 borrow = chunk_c + borrow - sum;
716 if (borrow > 1) {
717 return -1;
718 }
719 borrow <<= kBigitSize;
720 }
721 }
722 if (borrow == 0) {
723 return 0;
724 }
725 return -1;
726 }
727
728
Clamp()729 void Bignum::Clamp() {
730 while (used_bigits_ > 0 && RawBigit(used_bigits_ - 1) == 0) {
731 used_bigits_--;
732 }
733 if (used_bigits_ == 0) {
734 // Zero.
735 exponent_ = 0;
736 }
737 }
738
739
Align(const Bignum & other)740 void Bignum::Align(const Bignum& other) {
741 if (exponent_ > other.exponent_) {
742 // If "X" represents a "hidden" bigit (by the exponent) then we are in the
743 // following case (a == this, b == other):
744 // a: aaaaaaXXXX or a: aaaaaXXX
745 // b: bbbbbbX b: bbbbbbbbXX
746 // We replace some of the hidden digits (X) of a with 0 digits.
747 // a: aaaaaa000X or a: aaaaa0XX
748 const int zero_bigits = exponent_ - other.exponent_;
749 EnsureCapacity(used_bigits_ + zero_bigits);
750 for (int i = used_bigits_ - 1; i >= 0; --i) {
751 RawBigit(i + zero_bigits) = RawBigit(i);
752 }
753 for (int i = 0; i < zero_bigits; ++i) {
754 RawBigit(i) = 0;
755 }
756 used_bigits_ += static_cast<int16_t>(zero_bigits);
757 exponent_ -= static_cast<int16_t>(zero_bigits);
758
759 DOUBLE_CONVERSION_ASSERT(used_bigits_ >= 0);
760 DOUBLE_CONVERSION_ASSERT(exponent_ >= 0);
761 }
762 }
763
764
BigitsShiftLeft(const int shift_amount)765 void Bignum::BigitsShiftLeft(const int shift_amount) {
766 DOUBLE_CONVERSION_ASSERT(shift_amount < kBigitSize);
767 DOUBLE_CONVERSION_ASSERT(shift_amount >= 0);
768 Chunk carry = 0;
769 for (int i = 0; i < used_bigits_; ++i) {
770 const Chunk new_carry = RawBigit(i) >> (kBigitSize - shift_amount);
771 RawBigit(i) = ((RawBigit(i) << shift_amount) + carry) & kBigitMask;
772 carry = new_carry;
773 }
774 if (carry != 0) {
775 RawBigit(used_bigits_) = carry;
776 used_bigits_++;
777 }
778 }
779
780
SubtractTimes(const Bignum & other,const int factor)781 void Bignum::SubtractTimes(const Bignum& other, const int factor) {
782 DOUBLE_CONVERSION_ASSERT(exponent_ <= other.exponent_);
783 if (factor < 3) {
784 for (int i = 0; i < factor; ++i) {
785 SubtractBignum(other);
786 }
787 return;
788 }
789 Chunk borrow = 0;
790 const int exponent_diff = other.exponent_ - exponent_;
791 for (int i = 0; i < other.used_bigits_; ++i) {
792 const DoubleChunk product = static_cast<DoubleChunk>(factor) * other.RawBigit(i);
793 const DoubleChunk remove = borrow + product;
794 const Chunk difference = RawBigit(i + exponent_diff) - (remove & kBigitMask);
795 RawBigit(i + exponent_diff) = difference & kBigitMask;
796 borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
797 (remove >> kBigitSize));
798 }
799 for (int i = other.used_bigits_ + exponent_diff; i < used_bigits_; ++i) {
800 if (borrow == 0) {
801 return;
802 }
803 const Chunk difference = RawBigit(i) - borrow;
804 RawBigit(i) = difference & kBigitMask;
805 borrow = difference >> (kChunkSize - 1);
806 }
807 Clamp();
808 }
809
810
811 } // namespace double_conversion
812
813 // ICU PATCH: Close ICU namespace
814 U_NAMESPACE_END
815 #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING
816