1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 *
6 * Copyright (C) 2000-2016, International Business Machines
7 * Corporation and others. All Rights Reserved.
8 *
9 *******************************************************************************
10 * file name: genmbcs.cpp
11 * encoding: UTF-8
12 * tab size: 8 (not used)
13 * indentation:4
14 *
15 * created on: 2000jul06
16 * created by: Markus W. Scherer
17 */
18
19 #include <stdio.h>
20 #include "unicode/utypes.h"
21 #include "cstring.h"
22 #include "cmemory.h"
23 #include "unewdata.h"
24 #include "ucnv_cnv.h"
25 #include "ucnvmbcs.h"
26 #include "ucm.h"
27 #include "makeconv.h"
28 #include "genmbcs.h"
29 #include "toolutil.h"
30
31 /*
32 * TODO: Split this file into toUnicode, SBCSFromUnicode and MBCSFromUnicode files.
33 * Reduce tests for maxCharLength.
34 */
35
36 struct MBCSData {
37 NewConverter newConverter;
38
39 UCMFile *ucm;
40
41 /* toUnicode (state table in ucm->states) */
42 _MBCSToUFallback toUFallbacks[MBCS_MAX_FALLBACK_COUNT];
43 int32_t countToUFallbacks;
44 uint16_t *unicodeCodeUnits;
45
46 /* fromUnicode */
47 uint16_t stage1[MBCS_STAGE_1_SIZE];
48 uint16_t stage2Single[MBCS_STAGE_2_SIZE]; /* stage 2 for single-byte codepages */
49 uint32_t stage2[MBCS_STAGE_2_SIZE]; /* stage 2 for MBCS */
50 uint8_t *fromUBytes;
51 uint32_t stage2Top, stage3Top;
52
53 /* fromUTF8 */
54 uint16_t stageUTF8[0x10000>>MBCS_UTF8_STAGE_SHIFT]; /* allow for utf8Max=0xffff */
55
56 /*
57 * Maximum UTF-8-friendly code point.
58 * 0 if !utf8Friendly, otherwise 0x01ff..0xffff in steps of 0x100.
59 * If utf8Friendly, utf8Max is normally either MBCS_UTF8_MAX or 0xffff.
60 */
61 uint16_t utf8Max;
62
63 UBool utf8Friendly;
64 UBool omitFromU;
65 };
66
67 /* prototypes */
68 U_CDECL_BEGIN
69 static void
70 MBCSClose(NewConverter *cnvData);
71
72 static UBool
73 MBCSStartMappings(MBCSData *mbcsData);
74
75 static UBool
76 MBCSAddToUnicode(MBCSData *mbcsData,
77 const uint8_t *bytes, int32_t length,
78 UChar32 c,
79 int8_t flag);
80
81 static UBool
82 MBCSIsValid(NewConverter *cnvData,
83 const uint8_t *bytes, int32_t length);
84
85 static UBool
86 MBCSSingleAddFromUnicode(MBCSData *mbcsData,
87 const uint8_t *bytes, int32_t length,
88 UChar32 c,
89 int8_t flag);
90
91 static UBool
92 MBCSAddFromUnicode(MBCSData *mbcsData,
93 const uint8_t *bytes, int32_t length,
94 UChar32 c,
95 int8_t flag);
96
97 static void
98 MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData);
99
100 static UBool
101 MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData);
102
103 static uint32_t
104 MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
105 UNewDataMemory *pData, int32_t tableType);
106 U_CDECL_END
107
108 /* helper ------------------------------------------------------------------- */
109
110 static inline char
hexDigit(uint8_t digit)111 hexDigit(uint8_t digit) {
112 return digit<=9 ? (char)('0'+digit) : (char)('a'-10+digit);
113 }
114
115 static inline char *
printBytes(char * buffer,const uint8_t * bytes,int32_t length)116 printBytes(char *buffer, const uint8_t *bytes, int32_t length) {
117 char *s=buffer;
118 while(length>0) {
119 *s++=hexDigit((uint8_t)(*bytes>>4));
120 *s++=hexDigit((uint8_t)(*bytes&0xf));
121 ++bytes;
122 --length;
123 }
124
125 *s=0;
126 return buffer;
127 }
128
129 /* implementation ----------------------------------------------------------- */
130
131 static MBCSData gDummy;
132
133
134 U_CFUNC const MBCSData *
MBCSGetDummy()135 MBCSGetDummy() {
136 uprv_memset(&gDummy, 0, sizeof(MBCSData));
137
138 /*
139 * Set "pessimistic" values which may sometimes move too many
140 * mappings to the extension table (but never too few).
141 * These values cause MBCSOkForBaseFromUnicode() to return false for the
142 * largest set of mappings.
143 * Assume maxCharLength>1.
144 */
145 gDummy.utf8Friendly=true;
146 if(SMALL) {
147 gDummy.utf8Max=0xffff;
148 gDummy.omitFromU=true;
149 } else {
150 gDummy.utf8Max=MBCS_UTF8_MAX;
151 }
152 return &gDummy;
153 }
154
155 static void
MBCSInit(MBCSData * mbcsData,UCMFile * ucm)156 MBCSInit(MBCSData *mbcsData, UCMFile *ucm) {
157 uprv_memset(mbcsData, 0, sizeof(MBCSData));
158
159 mbcsData->ucm=ucm; /* aliased, not owned */
160
161 mbcsData->newConverter.close=MBCSClose;
162 mbcsData->newConverter.isValid=MBCSIsValid;
163 mbcsData->newConverter.addTable=MBCSAddTable;
164 mbcsData->newConverter.write=MBCSWrite;
165 }
166
167 U_CFUNC NewConverter *
MBCSOpen(UCMFile * ucm)168 MBCSOpen(UCMFile *ucm) {
169 MBCSData *mbcsData=(MBCSData *)uprv_malloc(sizeof(MBCSData));
170 if(mbcsData==NULL) {
171 printf("out of memory\n");
172 exit(U_MEMORY_ALLOCATION_ERROR);
173 }
174
175 MBCSInit(mbcsData, ucm);
176 return &mbcsData->newConverter;
177 }
178
179 static void
MBCSDestruct(MBCSData * mbcsData)180 MBCSDestruct(MBCSData *mbcsData) {
181 uprv_free(mbcsData->unicodeCodeUnits);
182 uprv_free(mbcsData->fromUBytes);
183 }
184
185 U_CDECL_BEGIN
186 static void
MBCSClose(NewConverter * cnvData)187 MBCSClose(NewConverter *cnvData) {
188 MBCSData *mbcsData=(MBCSData *)cnvData;
189 if(mbcsData!=NULL) {
190 MBCSDestruct(mbcsData);
191 uprv_free(mbcsData);
192 }
193 }
194 U_CDECL_END
195
196 static UBool
MBCSStartMappings(MBCSData * mbcsData)197 MBCSStartMappings(MBCSData *mbcsData) {
198 int32_t i, sum, maxCharLength,
199 stage2NullLength, stage2AllocLength,
200 stage3NullLength, stage3AllocLength;
201
202 /* toUnicode */
203
204 /* allocate the code unit array and prefill it with "unassigned" values */
205 sum=mbcsData->ucm->states.countToUCodeUnits;
206 if(VERBOSE) {
207 printf("the total number of offsets is 0x%lx=%ld\n", (long)sum, (long)sum);
208 }
209
210 if(sum>0) {
211 mbcsData->unicodeCodeUnits=(uint16_t *)uprv_malloc(sum*sizeof(uint16_t));
212 if(mbcsData->unicodeCodeUnits==NULL) {
213 fprintf(stderr, "error: out of memory allocating %ld 16-bit code units\n",
214 (long)sum);
215 return false;
216 }
217 for(i=0; i<sum; ++i) {
218 mbcsData->unicodeCodeUnits[i]=0xfffe;
219 }
220 }
221
222 /* fromUnicode */
223 maxCharLength=mbcsData->ucm->states.maxCharLength;
224
225 /* allocate the codepage mappings and preset the first 16 characters to 0 */
226 if(maxCharLength==1) {
227 /* allocate 64k 16-bit results for single-byte codepages */
228 sum=0x20000;
229 } else {
230 /* allocate 1M * maxCharLength bytes for at most 1M mappings */
231 sum=0x100000*maxCharLength;
232 }
233 mbcsData->fromUBytes=(uint8_t *)uprv_malloc(sum);
234 if(mbcsData->fromUBytes==NULL) {
235 fprintf(stderr, "error: out of memory allocating %ld B for target mappings\n", (long)sum);
236 return false;
237 }
238 uprv_memset(mbcsData->fromUBytes, 0, sum);
239
240 /*
241 * UTF-8-friendly fromUnicode tries: allocate multiple blocks at a time.
242 * See ucnvmbcs.h for details.
243 *
244 * There is code, for example in ucnv_MBCSGetUnicodeSetForUnicode(), which
245 * assumes that the initial stage 2/3 blocks are the all-unassigned ones.
246 * Therefore, we refine the data structure while maintaining this placement
247 * even though it would be convenient to allocate the ASCII block at the
248 * beginning of stage 3, for example.
249 *
250 * UTF-8-friendly fromUnicode tries work from sorted tables and are built
251 * pre-compacted, overlapping adjacent stage 2/3 blocks.
252 * This is necessary because the block allocation and compaction changes
253 * at SBCS_UTF8_MAX or MBCS_UTF8_MAX, and for MBCS tables the additional
254 * stage table uses direct indexes into stage 3, without a multiplier and
255 * thus with a smaller reach.
256 *
257 * Non-UTF-8-friendly fromUnicode tries work from unsorted tables
258 * (because implicit precision is used), and are compacted
259 * in post-processing.
260 *
261 * Preallocation for UTF-8-friendly fromUnicode tries:
262 *
263 * Stage 3:
264 * 64-entry all-unassigned first block followed by ASCII (128 entries).
265 *
266 * Stage 2:
267 * 64-entry all-unassigned first block followed by preallocated
268 * 64-block for ASCII.
269 */
270
271 /* Preallocate ASCII as a linear 128-entry stage 3 block. */
272 stage2NullLength=MBCS_STAGE_2_BLOCK_SIZE;
273 stage2AllocLength=MBCS_STAGE_2_BLOCK_SIZE;
274
275 stage3NullLength=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
276 stage3AllocLength=128; /* ASCII U+0000..U+007f */
277
278 /* Initialize stage 1 for the preallocated blocks. */
279 sum=stage2NullLength;
280 for(i=0; i<(stage2AllocLength>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT); ++i) {
281 mbcsData->stage1[i]=sum;
282 sum+=MBCS_STAGE_2_BLOCK_SIZE;
283 }
284 mbcsData->stage2Top=stage2NullLength+stage2AllocLength; /* ==sum */
285
286 /*
287 * Stage 2 indexes count 16-blocks in stage 3 as follows:
288 * SBCS: directly, indexes increment by 16
289 * MBCS: indexes need to be multiplied by 16*maxCharLength, indexes increment by 1
290 * MBCS UTF-8: directly, indexes increment by 16
291 */
292 if(maxCharLength==1) {
293 sum=stage3NullLength;
294 for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) {
295 mbcsData->stage2Single[mbcsData->stage1[0]+i]=sum;
296 sum+=MBCS_STAGE_3_BLOCK_SIZE;
297 }
298 } else {
299 sum=stage3NullLength/MBCS_STAGE_3_GRANULARITY;
300 for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) {
301 mbcsData->stage2[mbcsData->stage1[0]+i]=sum;
302 sum+=MBCS_STAGE_3_BLOCK_SIZE/MBCS_STAGE_3_GRANULARITY;
303 }
304 }
305
306 sum=stage3NullLength;
307 for(i=0; i<(stage3AllocLength/MBCS_UTF8_STAGE_3_BLOCK_SIZE); ++i) {
308 mbcsData->stageUTF8[i]=sum;
309 sum+=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
310 }
311
312 /*
313 * Allocate a 64-entry all-unassigned first stage 3 block,
314 * for UTF-8-friendly lookup with a trail byte,
315 * plus 128 entries for ASCII.
316 */
317 mbcsData->stage3Top=(stage3NullLength+stage3AllocLength)*maxCharLength; /* ==sum*maxCharLength */
318
319 return true;
320 }
321
322 /* return true for success */
323 static UBool
setFallback(MBCSData * mbcsData,uint32_t offset,UChar32 c)324 setFallback(MBCSData *mbcsData, uint32_t offset, UChar32 c) {
325 int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset);
326 if(i>=0) {
327 /* if there is already a fallback for this offset, then overwrite it */
328 mbcsData->toUFallbacks[i].codePoint=c;
329 return true;
330 } else {
331 /* if there is no fallback for this offset, then add one */
332 i=mbcsData->countToUFallbacks;
333 if(i>=MBCS_MAX_FALLBACK_COUNT) {
334 fprintf(stderr, "error: too many toUnicode fallbacks, currently at: U+%x\n", (int)c);
335 return false;
336 } else {
337 mbcsData->toUFallbacks[i].offset=offset;
338 mbcsData->toUFallbacks[i].codePoint=c;
339 mbcsData->countToUFallbacks=i+1;
340 return true;
341 }
342 }
343 }
344
345 /* remove fallback if there is one with this offset; return the code point if there was such a fallback, otherwise -1 */
346 static int32_t
removeFallback(MBCSData * mbcsData,uint32_t offset)347 removeFallback(MBCSData *mbcsData, uint32_t offset) {
348 int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset);
349 if(i>=0) {
350 _MBCSToUFallback *toUFallbacks;
351 int32_t limit, old;
352
353 toUFallbacks=mbcsData->toUFallbacks;
354 limit=mbcsData->countToUFallbacks;
355 old=(int32_t)toUFallbacks[i].codePoint;
356
357 /* copy the last fallback entry here to keep the list contiguous */
358 toUFallbacks[i].offset=toUFallbacks[limit-1].offset;
359 toUFallbacks[i].codePoint=toUFallbacks[limit-1].codePoint;
360 mbcsData->countToUFallbacks=limit-1;
361 return old;
362 } else {
363 return -1;
364 }
365 }
366
367 /*
368 * isFallback is almost a boolean:
369 * 1 (true) this is a fallback mapping
370 * 0 (false) this is a precise mapping
371 * -1 the precision of this mapping is not specified
372 */
373 static UBool
MBCSAddToUnicode(MBCSData * mbcsData,const uint8_t * bytes,int32_t length,UChar32 c,int8_t flag)374 MBCSAddToUnicode(MBCSData *mbcsData,
375 const uint8_t *bytes, int32_t length,
376 UChar32 c,
377 int8_t flag) {
378 char buffer[10];
379 uint32_t offset=0;
380 int32_t i=0, entry, old;
381 uint8_t state=0;
382
383 if(mbcsData->ucm->states.countStates==0) {
384 fprintf(stderr, "error: there is no state information!\n");
385 return false;
386 }
387
388 /* for SI/SO (like EBCDIC-stateful), double-byte sequences start in state 1 */
389 if(length==2 && mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO) {
390 state=1;
391 }
392
393 /*
394 * Walk down the state table like in conversion,
395 * much like getNextUChar().
396 * We assume that c<=0x10ffff.
397 */
398 for(i=0;;) {
399 entry=mbcsData->ucm->states.stateTable[state][bytes[i++]];
400 if(MBCS_ENTRY_IS_TRANSITION(entry)) {
401 if(i==length) {
402 fprintf(stderr, "error: byte sequence too short, ends in non-final state %hu: 0x%s (U+%x)\n",
403 (short)state, printBytes(buffer, bytes, length), (int)c);
404 return false;
405 }
406 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
407 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
408 } else {
409 if(i<length) {
410 fprintf(stderr, "error: byte sequence too long by %d bytes, final state %u: 0x%s (U+%x)\n",
411 (int)(length-i), state, printBytes(buffer, bytes, length), (int)c);
412 return false;
413 }
414 switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
415 case MBCS_STATE_ILLEGAL:
416 fprintf(stderr, "error: byte sequence ends in illegal state at U+%04x<->0x%s\n",
417 (int)c, printBytes(buffer, bytes, length));
418 return false;
419 case MBCS_STATE_CHANGE_ONLY:
420 fprintf(stderr, "error: byte sequence ends in state-change-only at U+%04x<->0x%s\n",
421 (int)c, printBytes(buffer, bytes, length));
422 return false;
423 case MBCS_STATE_UNASSIGNED:
424 fprintf(stderr, "error: byte sequence ends in unassigned state at U+%04x<->0x%s\n",
425 (int)c, printBytes(buffer, bytes, length));
426 return false;
427 case MBCS_STATE_FALLBACK_DIRECT_16:
428 case MBCS_STATE_VALID_DIRECT_16:
429 case MBCS_STATE_FALLBACK_DIRECT_20:
430 case MBCS_STATE_VALID_DIRECT_20:
431 if(MBCS_ENTRY_SET_STATE(entry, 0)!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, 0xfffe)) {
432 /* the "direct" action's value is not "valid-direct-16-unassigned" any more */
433 if(MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_DIRECT_16 || MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_FALLBACK_DIRECT_16) {
434 old=MBCS_ENTRY_FINAL_VALUE(entry);
435 } else {
436 old=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
437 }
438 if(flag>=0) {
439 fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
440 (int)c, printBytes(buffer, bytes, length), (int)old);
441 return false;
442 } else if(VERBOSE) {
443 fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
444 (int)c, printBytes(buffer, bytes, length), (int)old);
445 }
446 /*
447 * Continue after the above warning
448 * if the precision of the mapping is unspecified.
449 */
450 }
451 /* reassign the correct action code */
452 entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, (MBCS_STATE_VALID_DIRECT_16+(flag==3 ? 2 : 0)+(c>=0x10000 ? 1 : 0)));
453
454 /* put the code point into bits 22..7 for BMP, c-0x10000 into 26..7 for others */
455 if(c<=0xffff) {
456 entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c);
457 } else {
458 entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c-0x10000);
459 }
460 mbcsData->ucm->states.stateTable[state][bytes[i-1]]=entry;
461 break;
462 case MBCS_STATE_VALID_16:
463 /* bits 26..16 are not used, 0 */
464 /* bits 15..7 contain the final offset delta to one 16-bit code unit */
465 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
466 /* check that this byte sequence is still unassigned */
467 if((old=mbcsData->unicodeCodeUnits[offset])!=0xfffe || (old=removeFallback(mbcsData, offset))!=-1) {
468 if(flag>=0) {
469 fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
470 (int)c, printBytes(buffer, bytes, length), (int)old);
471 return false;
472 } else if(VERBOSE) {
473 fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
474 (int)c, printBytes(buffer, bytes, length), (int)old);
475 }
476 }
477 if(c>=0x10000) {
478 fprintf(stderr, "error: code point does not fit into valid-16-bit state at U+%04x<->0x%s\n",
479 (int)c, printBytes(buffer, bytes, length));
480 return false;
481 }
482 if(flag>0) {
483 /* assign only if there is no precise mapping */
484 if(mbcsData->unicodeCodeUnits[offset]==0xfffe) {
485 return setFallback(mbcsData, offset, c);
486 }
487 } else {
488 mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
489 }
490 break;
491 case MBCS_STATE_VALID_16_PAIR:
492 /* bits 26..16 are not used, 0 */
493 /* bits 15..7 contain the final offset delta to two 16-bit code units */
494 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
495 /* check that this byte sequence is still unassigned */
496 old=mbcsData->unicodeCodeUnits[offset];
497 if(old<0xfffe) {
498 int32_t real;
499 if(old<0xd800) {
500 real=old;
501 } else if(old<=0xdfff) {
502 real=0x10000+((old&0x3ff)<<10)+((mbcsData->unicodeCodeUnits[offset+1])&0x3ff);
503 } else /* old<=0xe001 */ {
504 real=mbcsData->unicodeCodeUnits[offset+1];
505 }
506 if(flag>=0) {
507 fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
508 (int)c, printBytes(buffer, bytes, length), (int)real);
509 return false;
510 } else if(VERBOSE) {
511 fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
512 (int)c, printBytes(buffer, bytes, length), (int)real);
513 }
514 }
515 if(flag>0) {
516 /* assign only if there is no precise mapping */
517 if(old<=0xdbff || old==0xe000) {
518 /* do nothing */
519 } else if(c<=0xffff) {
520 /* set a BMP fallback code point as a pair with 0xe001 */
521 mbcsData->unicodeCodeUnits[offset++]=0xe001;
522 mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
523 } else {
524 /* set a fallback surrogate pair with two second surrogates */
525 mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xdbc0+(c>>10));
526 mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
527 }
528 } else {
529 if(c<0xd800) {
530 /* set a BMP code point */
531 mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
532 } else if(c<=0xffff) {
533 /* set a BMP code point above 0xd800 as a pair with 0xe000 */
534 mbcsData->unicodeCodeUnits[offset++]=0xe000;
535 mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
536 } else {
537 /* set a surrogate pair */
538 mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xd7c0+(c>>10));
539 mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
540 }
541 }
542 break;
543 default:
544 /* reserved, must never occur */
545 fprintf(stderr, "internal error: byte sequence reached reserved action code, entry 0x%02x: 0x%s (U+%x)\n",
546 (int)entry, printBytes(buffer, bytes, length), (int)c);
547 return false;
548 }
549
550 return true;
551 }
552 }
553 }
554
555 U_CDECL_BEGIN
556 /* is this byte sequence valid? (this is almost the same as MBCSAddToUnicode()) */
557 static UBool
MBCSIsValid(NewConverter * cnvData,const uint8_t * bytes,int32_t length)558 MBCSIsValid(NewConverter *cnvData,
559 const uint8_t *bytes, int32_t length) {
560 MBCSData *mbcsData=(MBCSData *)cnvData;
561
562 return (UBool)(1==ucm_countChars(&mbcsData->ucm->states, bytes, length));
563 }
564 U_CDECL_END
565 static UBool
MBCSSingleAddFromUnicode(MBCSData * mbcsData,const uint8_t * bytes,int32_t,UChar32 c,int8_t flag)566 MBCSSingleAddFromUnicode(MBCSData *mbcsData,
567 const uint8_t *bytes, int32_t /*length*/,
568 UChar32 c,
569 int8_t flag) {
570 uint16_t *stage3, *p;
571 uint32_t idx;
572 uint16_t old;
573 uint8_t b;
574
575 uint32_t blockSize, newTop, i, nextOffset, newBlock, min;
576
577 /* ignore |2 SUB mappings */
578 if(flag==2) {
579 return true;
580 }
581
582 /*
583 * Walk down the triple-stage compact array ("trie") and
584 * allocate parts as necessary.
585 * Note that the first stage 2 and 3 blocks are reserved for all-unassigned mappings.
586 * We assume that length<=maxCharLength and that c<=0x10ffff.
587 */
588 stage3=(uint16_t *)mbcsData->fromUBytes;
589 b=*bytes;
590
591 /* inspect stage 1 */
592 idx=c>>MBCS_STAGE_1_SHIFT;
593 if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) {
594 nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1);
595 } else {
596 nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK;
597 }
598 if(mbcsData->stage1[idx]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) {
599 /* allocate another block in stage 2 */
600 newBlock=mbcsData->stage2Top;
601 if(mbcsData->utf8Friendly) {
602 min=newBlock-nextOffset; /* minimum block start with overlap */
603 while(min<newBlock && mbcsData->stage2Single[newBlock-1]==0) {
604 --newBlock;
605 }
606 }
607 newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE;
608
609 if(newTop>MBCS_MAX_STAGE_2_TOP) {
610 fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%02x\n", (int)c, b);
611 return false;
612 }
613
614 /*
615 * each stage 2 block contains 64 16-bit words:
616 * 6 code point bits 9..4 with 1 stage 3 index
617 */
618 mbcsData->stage1[idx]=(uint16_t)newBlock;
619 mbcsData->stage2Top=newTop;
620 }
621
622 /* inspect stage 2 */
623 idx=mbcsData->stage1[idx]+nextOffset;
624 if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) {
625 /* allocate 64-entry blocks for UTF-8-friendly lookup */
626 blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
627 nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK;
628 } else {
629 blockSize=MBCS_STAGE_3_BLOCK_SIZE;
630 nextOffset=c&MBCS_STAGE_3_BLOCK_MASK;
631 }
632 if(mbcsData->stage2Single[idx]==0) {
633 /* allocate another block in stage 3 */
634 newBlock=mbcsData->stage3Top;
635 if(mbcsData->utf8Friendly) {
636 min=newBlock-nextOffset; /* minimum block start with overlap */
637 while(min<newBlock && stage3[newBlock-1]==0) {
638 --newBlock;
639 }
640 }
641 newTop=newBlock+blockSize;
642
643 if(newTop>MBCS_STAGE_3_SBCS_SIZE) {
644 fprintf(stderr, "error: too many code points at U+%04x<->0x%02x\n", (int)c, b);
645 return false;
646 }
647 /* each block has 16 uint16_t entries */
648 i=idx;
649 while(newBlock<newTop) {
650 mbcsData->stage2Single[i++]=(uint16_t)newBlock;
651 newBlock+=MBCS_STAGE_3_BLOCK_SIZE;
652 }
653 mbcsData->stage3Top=newTop; /* ==newBlock */
654 }
655
656 /* write the codepage entry into stage 3 and get the previous entry */
657 p=stage3+mbcsData->stage2Single[idx]+nextOffset;
658 old=*p;
659 if(flag<=0) {
660 *p=(uint16_t)(0xf00|b);
661 } else if(IS_PRIVATE_USE(c)) {
662 *p=(uint16_t)(0xc00|b);
663 } else {
664 *p=(uint16_t)(0x800|b);
665 }
666
667 /* check that this Unicode code point was still unassigned */
668 if(old>=0x100) {
669 if(flag>=0) {
670 fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n",
671 (int)c, b, old&0xff);
672 return false;
673 } else if(VERBOSE) {
674 fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n",
675 (int)c, b, old&0xff);
676 }
677 /* continue after the above warning if the precision of the mapping is unspecified */
678 }
679
680 return true;
681 }
682
683 static UBool
MBCSAddFromUnicode(MBCSData * mbcsData,const uint8_t * bytes,int32_t length,UChar32 c,int8_t flag)684 MBCSAddFromUnicode(MBCSData *mbcsData,
685 const uint8_t *bytes, int32_t length,
686 UChar32 c,
687 int8_t flag) {
688 char buffer[10];
689 const uint8_t *pb;
690 uint8_t *stage3, *p;
691 uint32_t idx, b, old, stage3Index;
692 int32_t maxCharLength;
693
694 uint32_t blockSize, newTop, i, nextOffset, newBlock, min, overlap, maxOverlap;
695
696 maxCharLength=mbcsData->ucm->states.maxCharLength;
697
698 if( mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO &&
699 (!IGNORE_SISO_CHECK && (*bytes==0xe || *bytes==0xf))
700 ) {
701 fprintf(stderr, "error: illegal mapping to SI or SO for SI/SO codepage: U+%04x<->0x%s\n",
702 (int)c, printBytes(buffer, bytes, length));
703 return false;
704 }
705
706 if(flag==1 && length==1 && *bytes==0) {
707 fprintf(stderr, "error: unable to encode a |1 fallback from U+%04x to 0x%02x\n",
708 (int)c, *bytes);
709 return false;
710 }
711
712 /*
713 * Walk down the triple-stage compact array ("trie") and
714 * allocate parts as necessary.
715 * Note that the first stage 2 and 3 blocks are reserved for
716 * all-unassigned mappings.
717 * We assume that length<=maxCharLength and that c<=0x10ffff.
718 */
719 stage3=mbcsData->fromUBytes;
720
721 /* inspect stage 1 */
722 idx=c>>MBCS_STAGE_1_SHIFT;
723 if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) {
724 nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1);
725 } else {
726 nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK;
727 }
728 if(mbcsData->stage1[idx]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) {
729 /* allocate another block in stage 2 */
730 newBlock=mbcsData->stage2Top;
731 if(mbcsData->utf8Friendly) {
732 min=newBlock-nextOffset; /* minimum block start with overlap */
733 while(min<newBlock && mbcsData->stage2[newBlock-1]==0) {
734 --newBlock;
735 }
736 }
737 newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE;
738
739 if(newTop>MBCS_MAX_STAGE_2_TOP) {
740 fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%s\n",
741 (int)c, printBytes(buffer, bytes, length));
742 return false;
743 }
744
745 /*
746 * each stage 2 block contains 64 32-bit words:
747 * 6 code point bits 9..4 with value with bits 31..16 "assigned" flags and bits 15..0 stage 3 index
748 */
749 i=idx;
750 while(newBlock<newTop) {
751 mbcsData->stage1[i++]=(uint16_t)newBlock;
752 newBlock+=MBCS_STAGE_2_BLOCK_SIZE;
753 }
754 mbcsData->stage2Top=newTop; /* ==newBlock */
755 }
756
757 /* inspect stage 2 */
758 idx=mbcsData->stage1[idx]+nextOffset;
759 if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) {
760 /* allocate 64-entry blocks for UTF-8-friendly lookup */
761 blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE*maxCharLength;
762 nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK;
763 } else {
764 blockSize=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength;
765 nextOffset=c&MBCS_STAGE_3_BLOCK_MASK;
766 }
767 if(mbcsData->stage2[idx]==0) {
768 /* allocate another block in stage 3 */
769 newBlock=mbcsData->stage3Top;
770 if(mbcsData->utf8Friendly && nextOffset>=MBCS_STAGE_3_GRANULARITY) {
771 /*
772 * Overlap stage 3 blocks only in multiples of 16-entry blocks
773 * because of the indexing granularity in stage 2.
774 */
775 maxOverlap=(nextOffset&~(MBCS_STAGE_3_GRANULARITY-1))*maxCharLength;
776 for(overlap=0;
777 overlap<maxOverlap && stage3[newBlock-overlap-1]==0;
778 ++overlap) {}
779
780 overlap=(overlap/MBCS_STAGE_3_GRANULARITY)/maxCharLength;
781 overlap=(overlap*MBCS_STAGE_3_GRANULARITY)*maxCharLength;
782
783 newBlock-=overlap;
784 }
785 newTop=newBlock+blockSize;
786
787 if(newTop>MBCS_STAGE_3_MBCS_SIZE*(uint32_t)maxCharLength) {
788 fprintf(stderr, "error: too many code points at U+%04x<->0x%s\n",
789 (int)c, printBytes(buffer, bytes, length));
790 return false;
791 }
792 /* each block has 16*maxCharLength bytes */
793 i=idx;
794 while(newBlock<newTop) {
795 mbcsData->stage2[i++]=(newBlock/MBCS_STAGE_3_GRANULARITY)/maxCharLength;
796 newBlock+=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength;
797 }
798 mbcsData->stage3Top=newTop; /* ==newBlock */
799 }
800
801 stage3Index=MBCS_STAGE_3_GRANULARITY*(uint32_t)(uint16_t)mbcsData->stage2[idx];
802
803 /* Build an alternate, UTF-8-friendly stage table as well. */
804 if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) {
805 /* Overflow for uint16_t entries in stageUTF8? */
806 if(stage3Index>0xffff) {
807 /*
808 * This can occur only if the mapping table is nearly perfectly filled and if
809 * utf8Max==0xffff.
810 * (There is no known charset like this. GB 18030 does not map
811 * surrogate code points and LMBCS does not map 256 PUA code points.)
812 *
813 * Otherwise, stage3Index<=MBCS_UTF8_LIMIT<0xffff
814 * (stage3Index can at most reach exactly MBCS_UTF8_LIMIT)
815 * because we have a sorted table and there are at most MBCS_UTF8_LIMIT
816 * mappings with 0<=c<MBCS_UTF8_LIMIT, and there is only also
817 * the initial all-unassigned block in stage3.
818 *
819 * Solution for the overflow: Reduce utf8Max to the next lower value, 0xfeff.
820 *
821 * (See svn revision 20866 of the markus/ucnvutf8 feature branch for
822 * code that causes MBCSAddTable() to rebuild the table not utf8Friendly
823 * in case of overflow. That code was not tested.)
824 */
825 mbcsData->utf8Max=0xfeff;
826 } else {
827 /*
828 * The stage 3 block has been assigned for the regular trie.
829 * Just copy its index into stageUTF8[], without the granularity.
830 */
831 mbcsData->stageUTF8[c>>MBCS_UTF8_STAGE_SHIFT]=(uint16_t)stage3Index;
832 }
833 }
834
835 /* write the codepage bytes into stage 3 and get the previous bytes */
836
837 /* assemble the bytes into a single integer */
838 pb=bytes;
839 b=0;
840 switch(length) {
841 case 4:
842 b=*pb++;
843 U_FALLTHROUGH;
844 case 3:
845 b=(b<<8)|*pb++;
846 U_FALLTHROUGH;
847 case 2:
848 b=(b<<8)|*pb++;
849 U_FALLTHROUGH;
850 case 1:
851 default:
852 b=(b<<8)|*pb++;
853 break;
854 }
855
856 old=0;
857 p=stage3+(stage3Index+nextOffset)*maxCharLength;
858 switch(maxCharLength) {
859 case 2:
860 old=*(uint16_t *)p;
861 *(uint16_t *)p=(uint16_t)b;
862 break;
863 case 3:
864 old=(uint32_t)*p<<16;
865 *p++=(uint8_t)(b>>16);
866 old|=(uint32_t)*p<<8;
867 *p++=(uint8_t)(b>>8);
868 old|=*p;
869 *p=(uint8_t)b;
870 break;
871 case 4:
872 old=*(uint32_t *)p;
873 *(uint32_t *)p=b;
874 break;
875 default:
876 /* will never occur */
877 break;
878 }
879
880 /* check that this Unicode code point was still unassigned */
881 if((mbcsData->stage2[idx+(nextOffset>>MBCS_STAGE_2_SHIFT)]&(1UL<<(16+(c&0xf))))!=0 || old!=0) {
882 if(flag>=0) {
883 fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n",
884 (int)c, printBytes(buffer, bytes, length), (int)old);
885 return false;
886 } else if(VERBOSE) {
887 fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n",
888 (int)c, printBytes(buffer, bytes, length), (int)old);
889 }
890 /* continue after the above warning if the precision of the mapping is
891 unspecified */
892 }
893 if(flag<=0) {
894 /* set the roundtrip flag */
895 mbcsData->stage2[idx+(nextOffset>>4)]|=(1UL<<(16+(c&0xf)));
896 }
897
898 return true;
899 }
900
901 U_CFUNC UBool
MBCSOkForBaseFromUnicode(const MBCSData * mbcsData,const uint8_t * bytes,int32_t length,UChar32 c,int8_t flag)902 MBCSOkForBaseFromUnicode(const MBCSData *mbcsData,
903 const uint8_t *bytes, int32_t length,
904 UChar32 c, int8_t flag) {
905 /*
906 * A 1:1 mapping does not fit into the MBCS base table's fromUnicode table under
907 * the following conditions:
908 *
909 * - a |2 SUB mapping for <subchar1> (no base table data structure for them)
910 * - a |1 fallback to 0x00 (result value 0, indistinguishable from unmappable entry)
911 * - a multi-byte mapping with leading 0x00 bytes (no explicit length field)
912 *
913 * Some of these tests are redundant with ucm_mappingType().
914 */
915 if( (flag==2 && length==1) ||
916 (flag==1 && bytes[0]==0) || /* testing length==1 would be redundant with the next test */
917 (flag<=1 && length>1 && bytes[0]==0)
918 ) {
919 return false;
920 }
921
922 /*
923 * Additional restrictions for UTF-8-friendly fromUnicode tables,
924 * for code points up to the maximum optimized one:
925 *
926 * - any mapping to 0x00 (result value 0, indistinguishable from unmappable entry)
927 * - any |1 fallback (no roundtrip flags in the optimized table)
928 */
929 if(mbcsData->utf8Friendly && flag<=1 && c<=mbcsData->utf8Max && (bytes[0]==0 || flag==1)) {
930 return false;
931 }
932
933 /*
934 * If we omit the fromUnicode data, we can only store roundtrips there
935 * because only they are recoverable from the toUnicode data.
936 * Fallbacks must go into the extension table.
937 */
938 if(mbcsData->omitFromU && flag!=0) {
939 return false;
940 }
941
942 /* All other mappings do fit into the base table. */
943 return true;
944 }
945
946 U_CDECL_BEGIN
947 /* we can assume that the table only contains 1:1 mappings with <=4 bytes each */
948 static UBool
MBCSAddTable(NewConverter * cnvData,UCMTable * table,UConverterStaticData * staticData)949 MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) {
950 MBCSData *mbcsData;
951 UCMapping *m;
952 UChar32 c;
953 int32_t i, maxCharLength;
954 int8_t f;
955 UBool isOK, utf8Friendly;
956
957 staticData->unicodeMask=table->unicodeMask;
958 if(staticData->unicodeMask==3) {
959 fprintf(stderr, "error: contains mappings for both supplementary and surrogate code points\n");
960 return false;
961 }
962
963 staticData->conversionType=UCNV_MBCS;
964
965 mbcsData=(MBCSData *)cnvData;
966 maxCharLength=mbcsData->ucm->states.maxCharLength;
967
968 /*
969 * Generation of UTF-8-friendly data requires
970 * a sorted table, which makeconv generates when explicit precision
971 * indicators are used.
972 */
973 mbcsData->utf8Friendly=utf8Friendly=(UBool)((table->flagsType&UCM_FLAGS_EXPLICIT)!=0);
974 if(utf8Friendly) {
975 mbcsData->utf8Max=MBCS_UTF8_MAX;
976 if(SMALL && maxCharLength>1) {
977 mbcsData->omitFromU=true;
978 }
979 } else {
980 mbcsData->utf8Max=0;
981 if(SMALL && maxCharLength>1) {
982 fprintf(stderr,
983 "makeconv warning: --small not available for .ucm files without |0 etc.\n");
984 }
985 }
986
987 if(!MBCSStartMappings(mbcsData)) {
988 return false;
989 }
990
991 staticData->hasFromUnicodeFallback=false;
992 staticData->hasToUnicodeFallback=false;
993
994 isOK=true;
995
996 m=table->mappings;
997 for(i=0; i<table->mappingsLength; ++m, ++i) {
998 c=m->u;
999 f=m->f;
1000
1001 /*
1002 * Small optimization for --small .cnv files:
1003 *
1004 * If there are fromUnicode mappings above MBCS_UTF8_MAX,
1005 * then the file size will be smaller if we make utf8Max larger
1006 * because the size increase in stageUTF8 will be more than balanced by
1007 * how much less of stage2 needs to be stored.
1008 *
1009 * There is no point in doing this incrementally because stageUTF8
1010 * uses so much less space per block than stage2,
1011 * so we immediately increase utf8Max to 0xffff.
1012 *
1013 * Do not increase utf8Max if it is already at 0xfeff because MBCSAddFromUnicode()
1014 * sets it to that value when stageUTF8 overflows.
1015 */
1016 if( mbcsData->omitFromU && f<=1 &&
1017 mbcsData->utf8Max<c && c<=0xffff &&
1018 mbcsData->utf8Max<0xfeff
1019 ) {
1020 mbcsData->utf8Max=0xffff;
1021 }
1022
1023 switch(f) {
1024 case -1:
1025 /* there was no precision/fallback indicator */
1026 /* fall through to set the mappings */
1027 U_FALLTHROUGH;
1028 case 0:
1029 /* set roundtrip mappings */
1030 isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
1031
1032 if(maxCharLength==1) {
1033 isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
1034 } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) {
1035 isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
1036 } else {
1037 m->f|=MBCS_FROM_U_EXT_FLAG;
1038 m->moveFlag=UCM_MOVE_TO_EXT;
1039 }
1040 break;
1041 case 1:
1042 /* set only a fallback mapping from Unicode to codepage */
1043 if(maxCharLength==1) {
1044 staticData->hasFromUnicodeFallback=true;
1045 isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
1046 } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) {
1047 staticData->hasFromUnicodeFallback=true;
1048 isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
1049 } else {
1050 m->f|=MBCS_FROM_U_EXT_FLAG;
1051 m->moveFlag=UCM_MOVE_TO_EXT;
1052 }
1053 break;
1054 case 2:
1055 /* ignore |2 SUB mappings, except to move <subchar1> mappings to the extension table */
1056 if(maxCharLength>1 && m->bLen==1) {
1057 m->f|=MBCS_FROM_U_EXT_FLAG;
1058 m->moveFlag=UCM_MOVE_TO_EXT;
1059 }
1060 break;
1061 case 3:
1062 /* set only a fallback mapping from codepage to Unicode */
1063 staticData->hasToUnicodeFallback=true;
1064 isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
1065 break;
1066 case 4:
1067 /* move "good one-way" mappings to the extension table */
1068 m->f|=MBCS_FROM_U_EXT_FLAG;
1069 m->moveFlag=UCM_MOVE_TO_EXT;
1070 break;
1071 default:
1072 /* will not occur because the parser checked it already */
1073 fprintf(stderr, "error: illegal fallback indicator %d\n", f);
1074 return false;
1075 }
1076 }
1077
1078 MBCSPostprocess(mbcsData, staticData);
1079
1080 return isOK;
1081 }
1082 U_CDECL_END
1083 static UBool
transformEUC(MBCSData * mbcsData)1084 transformEUC(MBCSData *mbcsData) {
1085 uint8_t *p8;
1086 uint32_t i, value, oldLength, old3Top;
1087 uint8_t b;
1088
1089 oldLength=mbcsData->ucm->states.maxCharLength;
1090 if(oldLength<3) {
1091 return false;
1092 }
1093
1094 old3Top=mbcsData->stage3Top;
1095
1096 /* careful: 2-byte and 4-byte codes are stored in platform endianness! */
1097
1098 /* test if all first bytes are in {0, 0x8e, 0x8f} */
1099 p8=mbcsData->fromUBytes;
1100
1101 #if !U_IS_BIG_ENDIAN
1102 if(oldLength==4) {
1103 p8+=3;
1104 }
1105 #endif
1106
1107 for(i=0; i<old3Top; i+=oldLength) {
1108 b=p8[i];
1109 if(b!=0 && b!=0x8e && b!=0x8f) {
1110 /* some first byte does not fit the EUC pattern, nothing to be done */
1111 return false;
1112 }
1113 }
1114 /* restore p if it was modified above */
1115 p8=mbcsData->fromUBytes;
1116
1117 /* modify outputType and adjust stage3Top */
1118 mbcsData->ucm->states.outputType=(int8_t)(MBCS_OUTPUT_3_EUC+oldLength-3);
1119 mbcsData->stage3Top=(old3Top*(oldLength-1))/oldLength;
1120
1121 /*
1122 * EUC-encode all byte sequences;
1123 * see "CJKV Information Processing" (1st ed. 1999) from Ken Lunde, O'Reilly,
1124 * p. 161 in chapter 4 "Encoding Methods"
1125 *
1126 * This also must reverse the byte order if the platform is little-endian!
1127 */
1128 if(oldLength==3) {
1129 uint16_t *q=(uint16_t *)p8;
1130 for(i=0; i<old3Top; i+=oldLength) {
1131 b=*p8;
1132 if(b==0) {
1133 /* short sequences are stored directly */
1134 /* code set 0 or 1 */
1135 (*q++)=(uint16_t)((p8[1]<<8)|p8[2]);
1136 } else if(b==0x8e) {
1137 /* code set 2 */
1138 (*q++)=(uint16_t)(((p8[1]&0x7f)<<8)|p8[2]);
1139 } else /* b==0x8f */ {
1140 /* code set 3 */
1141 (*q++)=(uint16_t)((p8[1]<<8)|(p8[2]&0x7f));
1142 }
1143 p8+=3;
1144 }
1145 } else /* oldLength==4 */ {
1146 uint8_t *q=p8;
1147 uint32_t *p32=(uint32_t *)p8;
1148 for(i=0; i<old3Top; i+=4) {
1149 value=(*p32++);
1150 if(value<=0xffffff) {
1151 /* short sequences are stored directly */
1152 /* code set 0 or 1 */
1153 (*q++)=(uint8_t)(value>>16);
1154 (*q++)=(uint8_t)(value>>8);
1155 (*q++)=(uint8_t)value;
1156 } else if(value<=0x8effffff) {
1157 /* code set 2 */
1158 (*q++)=(uint8_t)((value>>16)&0x7f);
1159 (*q++)=(uint8_t)(value>>8);
1160 (*q++)=(uint8_t)value;
1161 } else /* first byte is 0x8f */ {
1162 /* code set 3 */
1163 (*q++)=(uint8_t)(value>>16);
1164 (*q++)=(uint8_t)((value>>8)&0x7f);
1165 (*q++)=(uint8_t)value;
1166 }
1167 }
1168 }
1169
1170 return true;
1171 }
1172
1173 /*
1174 * Compact stage 2 for SBCS by overlapping adjacent stage 2 blocks as far
1175 * as possible. Overlapping is done on unassigned head and tail
1176 * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER.
1177 * Stage 1 indexes need to be adjusted accordingly.
1178 * This function is very similar to genprops/store.c/compactStage().
1179 */
1180 static void
singleCompactStage2(MBCSData * mbcsData)1181 singleCompactStage2(MBCSData *mbcsData) {
1182 /* this array maps the ordinal number of a stage 2 block to its new stage 1 index */
1183 uint16_t map[MBCS_STAGE_2_MAX_BLOCKS];
1184 uint16_t i, start, prevEnd, newStart;
1185
1186 /* enter the all-unassigned first stage 2 block into the map */
1187 map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
1188
1189 /* begin with the first block after the all-unassigned one */
1190 start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED;
1191 while(start<mbcsData->stage2Top) {
1192 prevEnd=(uint16_t)(newStart-1);
1193
1194 /* find the size of the overlap */
1195 for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2Single[start+i]==0 && mbcsData->stage2Single[prevEnd-i]==0; ++i) {}
1196
1197 if(i>0) {
1198 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i);
1199
1200 /* move the non-overlapping indexes to their new positions */
1201 start+=i;
1202 for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) {
1203 mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++];
1204 }
1205 } else if(newStart<start) {
1206 /* move the indexes to their new positions */
1207 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart;
1208 for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) {
1209 mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++];
1210 }
1211 } else /* no overlap && newStart==start */ {
1212 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start;
1213 start=newStart+=MBCS_STAGE_2_BLOCK_SIZE;
1214 }
1215 }
1216
1217 /* adjust stage2Top */
1218 if(VERBOSE && newStart<mbcsData->stage2Top) {
1219 printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n",
1220 (unsigned long)mbcsData->stage2Top, (unsigned long)newStart,
1221 (long)(mbcsData->stage2Top-newStart)*2);
1222 }
1223 mbcsData->stage2Top=newStart;
1224
1225 /* now adjust stage 1 */
1226 for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
1227 mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT];
1228 }
1229 }
1230
1231 /* Compact stage 3 for SBCS - same algorithm as above. */
1232 static void
singleCompactStage3(MBCSData * mbcsData)1233 singleCompactStage3(MBCSData *mbcsData) {
1234 uint16_t *stage3=(uint16_t *)mbcsData->fromUBytes;
1235
1236 /* this array maps the ordinal number of a stage 3 block to its new stage 2 index */
1237 uint16_t map[0x1000];
1238 uint16_t i, start, prevEnd, newStart;
1239
1240 /* enter the all-unassigned first stage 3 block into the map */
1241 map[0]=0;
1242
1243 /* begin with the first block after the all-unassigned one */
1244 start=newStart=16;
1245 while(start<mbcsData->stage3Top) {
1246 prevEnd=(uint16_t)(newStart-1);
1247
1248 /* find the size of the overlap */
1249 for(i=0; i<16 && stage3[start+i]==0 && stage3[prevEnd-i]==0; ++i) {}
1250
1251 if(i>0) {
1252 map[start>>4]=(uint16_t)(newStart-i);
1253
1254 /* move the non-overlapping indexes to their new positions */
1255 start+=i;
1256 for(i=(uint16_t)(16-i); i>0; --i) {
1257 stage3[newStart++]=stage3[start++];
1258 }
1259 } else if(newStart<start) {
1260 /* move the indexes to their new positions */
1261 map[start>>4]=newStart;
1262 for(i=16; i>0; --i) {
1263 stage3[newStart++]=stage3[start++];
1264 }
1265 } else /* no overlap && newStart==start */ {
1266 map[start>>4]=start;
1267 start=newStart+=16;
1268 }
1269 }
1270
1271 /* adjust stage3Top */
1272 if(VERBOSE && newStart<mbcsData->stage3Top) {
1273 printf("compacting stage 3 from stage3Top=0x%lx to 0x%lx, saving %ld bytes\n",
1274 (unsigned long)mbcsData->stage3Top, (unsigned long)newStart,
1275 (long)(mbcsData->stage3Top-newStart)*2);
1276 }
1277 mbcsData->stage3Top=newStart;
1278
1279 /* now adjust stage 2 */
1280 for(i=0; i<mbcsData->stage2Top; ++i) {
1281 mbcsData->stage2Single[i]=map[mbcsData->stage2Single[i]>>4];
1282 }
1283 }
1284
1285 /*
1286 * Compact stage 2 by overlapping adjacent stage 2 blocks as far
1287 * as possible. Overlapping is done on unassigned head and tail
1288 * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER.
1289 * Stage 1 indexes need to be adjusted accordingly.
1290 * This function is very similar to genprops/store.c/compactStage().
1291 */
1292 static void
compactStage2(MBCSData * mbcsData)1293 compactStage2(MBCSData *mbcsData) {
1294 /* this array maps the ordinal number of a stage 2 block to its new stage 1 index */
1295 uint16_t map[MBCS_STAGE_2_MAX_BLOCKS];
1296 uint16_t i, start, prevEnd, newStart;
1297
1298 /* enter the all-unassigned first stage 2 block into the map */
1299 map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
1300
1301 /* begin with the first block after the all-unassigned one */
1302 start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED;
1303 while(start<mbcsData->stage2Top) {
1304 prevEnd=(uint16_t)(newStart-1);
1305
1306 /* find the size of the overlap */
1307 for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2[start+i]==0 && mbcsData->stage2[prevEnd-i]==0; ++i) {}
1308
1309 if(i>0) {
1310 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i);
1311
1312 /* move the non-overlapping indexes to their new positions */
1313 start+=i;
1314 for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) {
1315 mbcsData->stage2[newStart++]=mbcsData->stage2[start++];
1316 }
1317 } else if(newStart<start) {
1318 /* move the indexes to their new positions */
1319 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart;
1320 for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) {
1321 mbcsData->stage2[newStart++]=mbcsData->stage2[start++];
1322 }
1323 } else /* no overlap && newStart==start */ {
1324 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start;
1325 start=newStart+=MBCS_STAGE_2_BLOCK_SIZE;
1326 }
1327 }
1328
1329 /* adjust stage2Top */
1330 if(VERBOSE && newStart<mbcsData->stage2Top) {
1331 printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n",
1332 (unsigned long)mbcsData->stage2Top, (unsigned long)newStart,
1333 (long)(mbcsData->stage2Top-newStart)*4);
1334 }
1335 mbcsData->stage2Top=newStart;
1336
1337 /* now adjust stage 1 */
1338 for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
1339 mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT];
1340 }
1341 }
1342
1343 static void
MBCSPostprocess(MBCSData * mbcsData,const UConverterStaticData *)1344 MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData * /*staticData*/) {
1345 UCMStates *states;
1346 int32_t maxCharLength, stage3Width;
1347
1348 states=&mbcsData->ucm->states;
1349 stage3Width=maxCharLength=states->maxCharLength;
1350
1351 ucm_optimizeStates(states,
1352 &mbcsData->unicodeCodeUnits,
1353 mbcsData->toUFallbacks, mbcsData->countToUFallbacks,
1354 VERBOSE);
1355
1356 /* try to compact the fromUnicode tables */
1357 if(transformEUC(mbcsData)) {
1358 --stage3Width;
1359 }
1360
1361 /*
1362 * UTF-8-friendly tries are built precompacted, to cope with variable
1363 * stage 3 allocation block sizes.
1364 *
1365 * Tables without precision indicators cannot be built that way,
1366 * because if a block was overlapped with a previous one, then a smaller
1367 * code point for the same block would not fit.
1368 * Therefore, such tables are not marked UTF-8-friendly and must be
1369 * compacted after all mappings are entered.
1370 */
1371 if(!mbcsData->utf8Friendly) {
1372 if(maxCharLength==1) {
1373 singleCompactStage3(mbcsData);
1374 singleCompactStage2(mbcsData);
1375 } else {
1376 compactStage2(mbcsData);
1377 }
1378 }
1379
1380 if(VERBOSE) {
1381 /*uint32_t c, i1, i2, i2Limit, i3;*/
1382
1383 printf("fromUnicode number of uint%s_t in stage 2: 0x%lx=%lu\n",
1384 maxCharLength==1 ? "16" : "32",
1385 (unsigned long)mbcsData->stage2Top,
1386 (unsigned long)mbcsData->stage2Top);
1387 printf("fromUnicode number of %d-byte stage 3 mapping entries: 0x%lx=%lu\n",
1388 (int)stage3Width,
1389 (unsigned long)mbcsData->stage3Top/stage3Width,
1390 (unsigned long)mbcsData->stage3Top/stage3Width);
1391 #if 0
1392 c=0;
1393 for(i1=0; i1<MBCS_STAGE_1_SIZE; ++i1) {
1394 i2=mbcsData->stage1[i1];
1395 if(i2==0) {
1396 c+=MBCS_STAGE_2_BLOCK_SIZE*MBCS_STAGE_3_BLOCK_SIZE;
1397 continue;
1398 }
1399 for(i2Limit=i2+MBCS_STAGE_2_BLOCK_SIZE; i2<i2Limit; ++i2) {
1400 if(maxCharLength==1) {
1401 i3=mbcsData->stage2Single[i2];
1402 } else {
1403 i3=(uint16_t)mbcsData->stage2[i2];
1404 }
1405 if(i3==0) {
1406 c+=MBCS_STAGE_3_BLOCK_SIZE;
1407 continue;
1408 }
1409 printf("U+%04lx i1=0x%02lx i2=0x%04lx i3=0x%04lx\n",
1410 (unsigned long)c,
1411 (unsigned long)i1,
1412 (unsigned long)i2,
1413 (unsigned long)i3);
1414 c+=MBCS_STAGE_3_BLOCK_SIZE;
1415 }
1416 }
1417 #endif
1418 }
1419 }
1420
1421 U_CDECL_BEGIN
1422 static uint32_t
MBCSWrite(NewConverter * cnvData,const UConverterStaticData * staticData,UNewDataMemory * pData,int32_t tableType)1423 MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
1424 UNewDataMemory *pData, int32_t tableType) {
1425 MBCSData *mbcsData=(MBCSData *)cnvData;
1426 uint32_t stage2Start, stage2Length;
1427 uint32_t top, stageUTF8Length=0;
1428 int32_t i, stage1Top;
1429 uint32_t headerLength;
1430
1431 _MBCSHeader header=UCNV_MBCS_HEADER_INITIALIZER;
1432
1433 stage2Length=mbcsData->stage2Top;
1434 if(mbcsData->omitFromU) {
1435 /* find how much of stage2 can be omitted */
1436 int32_t utf8Limit=(int32_t)mbcsData->utf8Max+1;
1437 uint32_t st2=0; /*initialized it to avoid compiler warnings */
1438
1439 i=utf8Limit>>MBCS_STAGE_1_SHIFT;
1440 if((utf8Limit&((1<<MBCS_STAGE_1_SHIFT)-1))!=0 && (st2=mbcsData->stage1[i])!=0) {
1441 /* utf8Limit is in the middle of an existing stage 2 block */
1442 stage2Start=st2+((utf8Limit>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK);
1443 } else {
1444 /* find the last stage2 block with mappings before utf8Limit */
1445 while(i>0 && (st2=mbcsData->stage1[--i])==0) {}
1446 /* stage2 up to the end of this block corresponds to stageUTF8 */
1447 stage2Start=st2+MBCS_STAGE_2_BLOCK_SIZE;
1448 }
1449 header.options|=MBCS_OPT_NO_FROM_U;
1450 header.fullStage2Length=stage2Length;
1451 stage2Length-=stage2Start;
1452 if(VERBOSE) {
1453 printf("+ omitting %lu out of %lu stage2 entries and %lu fromUBytes\n",
1454 (unsigned long)stage2Start,
1455 (unsigned long)mbcsData->stage2Top,
1456 (unsigned long)mbcsData->stage3Top);
1457 printf("+ total size savings: %lu bytes\n", (unsigned long)stage2Start*4+mbcsData->stage3Top);
1458 }
1459 } else {
1460 stage2Start=0;
1461 }
1462
1463 if(staticData->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
1464 stage1Top=MBCS_STAGE_1_SIZE; /* 0x440==1088 */
1465 } else {
1466 stage1Top=0x40; /* 0x40==64 */
1467 }
1468
1469 /* adjust stage 1 entries to include the size of stage 1 in the offsets to stage 2 */
1470 if(mbcsData->ucm->states.maxCharLength==1) {
1471 for(i=0; i<stage1Top; ++i) {
1472 mbcsData->stage1[i]+=(uint16_t)stage1Top;
1473 }
1474
1475 /* stage2Top/Length have counted 16-bit results, now we need to count bytes */
1476 /* also round up to a multiple of 4 bytes */
1477 stage2Length=(stage2Length*2+1)&~1;
1478
1479 /* stage3Top has counted 16-bit results, now we need to count bytes */
1480 mbcsData->stage3Top*=2;
1481
1482 if(mbcsData->utf8Friendly) {
1483 header.version[2]=(uint8_t)(SBCS_UTF8_MAX>>8); /* store 0x1f for max==0x1fff */
1484 }
1485 } else {
1486 for(i=0; i<stage1Top; ++i) {
1487 mbcsData->stage1[i]+=(uint16_t)stage1Top/2; /* stage 2 contains 32-bit entries, stage 1 16-bit entries */
1488 }
1489
1490 /* stage2Top/Length have counted 32-bit results, now we need to count bytes */
1491 stage2Length*=4;
1492 /* leave stage2Start counting 32-bit units */
1493
1494 if(mbcsData->utf8Friendly) {
1495 stageUTF8Length=(mbcsData->utf8Max+1)>>MBCS_UTF8_STAGE_SHIFT;
1496 header.version[2]=(uint8_t)(mbcsData->utf8Max>>8); /* store 0xd7 for max==0xd7ff */
1497 }
1498
1499 /* stage3Top has already counted bytes */
1500 }
1501
1502 /* round up stage3Top so that the sizes of all data blocks are multiples of 4 */
1503 mbcsData->stage3Top=(mbcsData->stage3Top+3)&~3;
1504
1505 /* fill the header */
1506 if(header.options&MBCS_OPT_INCOMPATIBLE_MASK) {
1507 header.version[0]=5;
1508 if(header.options&MBCS_OPT_NO_FROM_U) {
1509 headerLength=10; /* include fullStage2Length */
1510 } else {
1511 headerLength=MBCS_HEADER_V5_MIN_LENGTH; /* 9 */
1512 }
1513 } else {
1514 header.version[0]=4;
1515 headerLength=MBCS_HEADER_V4_LENGTH; /* 8 */
1516 }
1517 header.version[1]=4;
1518 /* header.version[2] set above for utf8Friendly data */
1519
1520 header.options|=(uint32_t)headerLength;
1521
1522 header.countStates=mbcsData->ucm->states.countStates;
1523 header.countToUFallbacks=mbcsData->countToUFallbacks;
1524
1525 header.offsetToUCodeUnits=
1526 headerLength*4+
1527 mbcsData->ucm->states.countStates*1024+
1528 mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback);
1529 header.offsetFromUTable=
1530 header.offsetToUCodeUnits+
1531 mbcsData->ucm->states.countToUCodeUnits*2;
1532 header.offsetFromUBytes=
1533 header.offsetFromUTable+
1534 stage1Top*2+
1535 stage2Length;
1536 header.fromUBytesLength=mbcsData->stage3Top;
1537
1538 top=header.offsetFromUBytes+stageUTF8Length*2;
1539 if(!(header.options&MBCS_OPT_NO_FROM_U)) {
1540 top+=header.fromUBytesLength;
1541 }
1542
1543 header.flags=(uint8_t)(mbcsData->ucm->states.outputType);
1544
1545 if(tableType&TABLE_EXT) {
1546 if(top>0xffffff) {
1547 fprintf(stderr, "error: offset 0x%lx to extension table exceeds 0xffffff\n", (long)top);
1548 return 0;
1549 }
1550
1551 header.flags|=top<<8;
1552 }
1553
1554 /* write the MBCS data */
1555 udata_writeBlock(pData, &header, headerLength*4);
1556 udata_writeBlock(pData, mbcsData->ucm->states.stateTable, header.countStates*1024);
1557 udata_writeBlock(pData, mbcsData->toUFallbacks, mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback));
1558 udata_writeBlock(pData, mbcsData->unicodeCodeUnits, mbcsData->ucm->states.countToUCodeUnits*2);
1559 udata_writeBlock(pData, mbcsData->stage1, stage1Top*2);
1560 if(mbcsData->ucm->states.maxCharLength==1) {
1561 udata_writeBlock(pData, mbcsData->stage2Single+stage2Start, stage2Length);
1562 } else {
1563 udata_writeBlock(pData, mbcsData->stage2+stage2Start, stage2Length);
1564 }
1565 if(!(header.options&MBCS_OPT_NO_FROM_U)) {
1566 udata_writeBlock(pData, mbcsData->fromUBytes, mbcsData->stage3Top);
1567 }
1568
1569 if(stageUTF8Length>0) {
1570 udata_writeBlock(pData, mbcsData->stageUTF8, stageUTF8Length*2);
1571 }
1572
1573 /* return the number of bytes that should have been written */
1574 return top;
1575 }
1576 U_CDECL_END
1577