• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This source code is a product of Sun Microsystems, Inc. and is provided
3  * for unrestricted use.  Users may copy or modify this source code without
4  * charge.
5  *
6  * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
7  * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
8  * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
9  *
10  * Sun source code is provided with no support and without any obligation on
11  * the part of Sun Microsystems, Inc. to assist in its use, correction,
12  * modification or enhancement.
13  *
14  * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
15  * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
16  * OR ANY PART THEREOF.
17  *
18  * In no event will Sun Microsystems, Inc. be liable for any lost revenue
19  * or profits or other special, indirect and consequential damages, even if
20  * Sun has been advised of the possibility of such damages.
21  *
22  * Sun Microsystems, Inc.
23  * 2550 Garcia Avenue
24  * Mountain View, California  94043
25  */
26 
27 /*
28  * g721.c
29  *
30  * Description:
31  *
32  * g721_encoder (), g721_decoder ()
33  *
34  * These routines comprise an implementation of the CCITT G.721 ADPCM
35  * coding algorithm.  Essentially, this implementation is identical to
36  * the bit level description except for a few deviations which
37  * take advantage of work station attributes, such as hardware 2's
38  * complement arithmetic and large memory.  Specifically, certain time
39  * consuming operations such as multiplications are replaced
40  * with lookup tables and software 2's complement operations are
41  * replaced with hardware 2's complement.
42  *
43  * The deviation from the bit level specification (lookup tables)
44  * preserves the bit level performance specifications.
45  *
46  * As outlined in the G.721 Recommendation, the algorithm is broken
47  * down into modules.  Each section of code below is preceded by
48  * the name of the module which it is implementing.
49  *
50  */
51 
52 #include "g72x.h"
53 #include "g72x_priv.h"
54 
55 static short qtab_721 [7] = { -124, 80, 178, 246, 300, 349, 400 } ;
56 /*
57  * Maps G.721 code word to reconstructed scale factor normalized log
58  * magnitude values.
59  */
60 static short _dqlntab [16] = { -2048, 4, 135, 213, 273, 323, 373, 425,
61 							425, 373, 323, 273, 213, 135, 4, -2048 } ;
62 
63 /* Maps G.721 code word to log of scale factor multiplier. */
64 static short _witab [16] = { -12, 18, 41, 64, 112, 198, 355, 1122,
65 							1122, 355, 198, 112, 64, 41, 18, -12 } ;
66 /*
67  * Maps G.721 code words to a set of values whose long and short
68  * term averages are computed and then compared to give an indication
69  * how stationary (steady state) the signal is.
70  */
71 static short _fitab [16] = { 0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
72 							0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0 } ;
73 
74 /*
75  * g721_encoder ()
76  *
77  * Encodes the input vale of linear PCM, A-law or u-law data sl and returns
78  * the resulting code. -1 is returned for unknown input coding value.
79  */
80 int
g721_encoder(int sl,G72x_STATE * state_ptr)81 g721_encoder (
82 	int		sl,
83 	G72x_STATE *state_ptr)
84 {
85 	short		sezi, se, sez ;		/* ACCUM */
86 	short		d ;			/* SUBTA */
87 	short		sr ;			/* ADDB */
88 	short		y ;			/* MIX */
89 	short		dqsez ;			/* ADDC */
90 	short		dq, i ;
91 
92 	/* linearize input sample to 14-bit PCM */
93 	sl >>= 2 ;			/* 14-bit dynamic range */
94 
95 	sezi = predictor_zero (state_ptr) ;
96 	sez = sezi >> 1 ;
97 	se = (sezi + predictor_pole (state_ptr)) >> 1 ;	/* estimated signal */
98 
99 	d = sl - se ;				/* estimation difference */
100 
101 	/* quantize the prediction difference */
102 	y = step_size (state_ptr) ;		/* quantizer step size */
103 	i = quantize (d, y, qtab_721, 7) ;	/* i = ADPCM code */
104 
105 	dq = reconstruct (i & 8, _dqlntab [i], y) ;	/* quantized est diff */
106 
107 	sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq ;	/* reconst. signal */
108 
109 	dqsez = sr + sez - se ;			/* pole prediction diff. */
110 
111 	update (4, y, arith_shift_left (_witab [i], 5), _fitab [i], dq, sr, dqsez, state_ptr) ;
112 
113 	return i ;
114 }
115 
116 /*
117  * g721_decoder ()
118  *
119  * Description:
120  *
121  * Decodes a 4-bit code of G.721 encoded data of i and
122  * returns the resulting linear PCM, A-law or u-law value.
123  * return -1 for unknown out_coding value.
124  */
125 int
g721_decoder(int i,G72x_STATE * state_ptr)126 g721_decoder (
127 	int		i,
128 	G72x_STATE *state_ptr)
129 {
130 	short		sezi, sei, sez, se ;	/* ACCUM */
131 	short		y ;			/* MIX */
132 	short		sr ;			/* ADDB */
133 	short		dq ;
134 	short		dqsez ;
135 
136 	i &= 0x0f ;			/* mask to get proper bits */
137 	sezi = predictor_zero (state_ptr) ;
138 	sez = sezi >> 1 ;
139 	sei = sezi + predictor_pole (state_ptr) ;
140 	se = sei >> 1 ;			/* se = estimated signal */
141 
142 	y = step_size (state_ptr) ;	/* dynamic quantizer step size */
143 
144 	dq = reconstruct (i & 0x08, _dqlntab [i], y) ; /* quantized diff. */
145 
146 	sr = (dq < 0) ? (se - (dq & 0x3FFF)) : se + dq ;	/* reconst. signal */
147 
148 	dqsez = sr - se + sez ;			/* pole prediction diff. */
149 
150 	update (4, y, arith_shift_left (_witab [i], 5), _fitab [i], dq, sr, dqsez, state_ptr) ;
151 
152 	/* sr was 14-bit dynamic range */
153 	return arith_shift_left (sr, 2) ;
154 }
155 
156