• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
3  * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
4  * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
5  */
6 
7 #include	<stdio.h>
8 #include	<assert.h>
9 
10 #include "gsm610_priv.h"
11 
12 /*	4.2.0 .. 4.2.3	PREPROCESSING SECTION
13  *
14  *  	After A-law to linear conversion (or directly from the
15  *   	Ato D converter) the following scaling is assumed for
16  * 	input to the RPE-LTP algorithm:
17  *
18  *      in:  0.1.....................12
19  *	     S.v.v.v.v.v.v.v.v.v.v.v.v.*.*.*
20  *
21  *	Where S is the sign bit, v a valid bit, and * a "don't care" bit.
22  * 	The original signal is called sop[..]
23  *
24  *      out:   0.1................... 12
25  *	     S.S.v.v.v.v.v.v.v.v.v.v.v.v.0.0
26  */
27 
28 
Gsm_Preprocess(struct gsm_state * S,int16_t * s,int16_t * so)29 void Gsm_Preprocess (
30 	struct gsm_state * S,
31 	int16_t		* s,
32 	int16_t		* so)		/* [0..159] 	IN/OUT	*/
33 {
34 
35 	int16_t		z1 = S->z1 ;
36 	int32_t 	L_z2 = S->L_z2 ;
37 	int16_t		mp = S->mp ;
38 
39 	int16_t		s1 ;
40 	int32_t	L_s2 ;
41 
42 	int32_t	L_temp ;
43 
44 	int16_t		msp, lsp ;
45 	int16_t		SO ;
46 
47 	register int		k = 160 ;
48 
49 	while (k--)
50 	{
51 
52 		/*  4.2.1   Downscaling of the input signal */
53 		SO = arith_shift_left (SASR_W (*s, 3), 2) ;
54 		s++ ;
55 
56 		assert (SO >= -0x4000) ;	/* downscaled by     */
57 		assert (SO <= 0x3FFC) ;		/* previous routine. */
58 
59 
60 		/*  4.2.2   Offset compensation
61 		 *
62 		 *  This part implements a high-pass filter and requires extended
63 		 *  arithmetic precision for the recursive part of this filter.
64 		 *  The input of this procedure is the array so[0...159] and the
65 		 *  output the array sof[ 0...159 ].
66 		 */
67 
68 		/*   Compute the non-recursive part */
69 
70 		s1 = SO - z1 ;			/* s1 = gsm_sub (*so, z1) ; */
71 		z1 = SO ;
72 
73 		assert (s1 != MIN_WORD) ;
74 
75 		/*   Compute the recursive part */
76 		L_s2 = s1 ;
77 		L_s2 = arith_shift_left (L_s2, 15) ;
78 
79 		/*   Execution of a 31 bv 16 bits multiplication */
80 
81 		msp = SASR_L (L_z2, 15) ;
82 		lsp = L_z2 - arith_shift_left ((int32_t) msp, 15) ; /* gsm_L_sub (L_z2,(msp<<15)) ; */
83 
84 		L_s2 += GSM_MULT_R (lsp, 32735) ;
85 		L_temp = (int32_t) msp * 32735 ; /* GSM_L_MULT (msp,32735) >> 1 ;*/
86 		L_z2 = GSM_L_ADD (L_temp, L_s2) ;
87 
88 		/*    Compute sof[k] with rounding */
89 		L_temp = GSM_L_ADD (L_z2, 16384) ;
90 
91 		/*   4.2.3  Preemphasis */
92 
93 		msp	= GSM_MULT_R (mp, -28180) ;
94 		mp	= SASR_L (L_temp, 15) ;
95 		*so++ = GSM_ADD (mp, msp) ;
96 		}
97 
98 	S->z1	= z1 ;
99 	S->L_z2	= L_z2 ;
100 	S->mp	= mp ;
101 }
102