• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) 2021 Richard Palethorpe <rpalethorpe@suse.com>
4  */
5 /*\
6  * [Description]
7  *
8  * This verifies Fuzzy Sync's ability to reproduce a particular
9  * outcome to a data race when multiple races are present.
10  *
11  * We make the simplifying assumptions that:
12  * - There is one data race we want to hit and one to avoid.
13  * - Each thread contains two contiguous critical sections. One for each race.
14  * - The threads only interact through two variables, one for each race.
15  * - If we hit the race we want to avoid then it causes thread A to exit early.
16  *
17  * We don't consider more complicated dynamic interactions between the
18  * two threads. Fuzzy Sync will eventually trigger a race so long as
19  * the delay range is large enough. Assuming the race is possible to
20  * reproduce without further tampering to increase the race window (a
21  * technique specific to each race). So I conject that beyond a lower
22  * threshold of complexity, increasing the complexity of the race is
23  * no different from adding random noise.
24  *
25  * Emperically this appears to be true. So far we have seen in
26  * reproducers that there are no more than two significant data
27  * races. One we wish to reproduce and one we wish to avoid. It is
28  * possible that the code contains multiple data races, but that they
29  * appear only as two to us.
30  *
31  * Indeed it is also only possible to add a delay to A or B. So
32  * regardless of the underlying complexity we really only have two
33  * options.
34  *
35  * Here we only test a bias to delay B. A delay of A would be
36  * identical except that the necessary delay bias would be negative.
37  *
38 \*/
39 
40 #include "tst_test.h"
41 #include "tst_fuzzy_sync.h"
42 
43 /* The time signature of a code path containing a critical section. */
44 struct window {
45 	/* The delay until the start of the critical section */
46 	const int critical_s;
47 	/* The length of the critical section */
48 	const int critical_t;
49 	/* The remaining delay until the method returns */
50 	const int return_t;
51 };
52 
53 /* The time signatures of threads A and B. We interlace the two
54  * windows for each thread. bd.return_t is ignored, but ad.return_t is
55  * used instead of a.return_t if the ad and bd critical sections
56  * overlap. This may result in the critical section of a never being
57  * reached.
58  */
59 struct race {
60 	const struct window ad;
61 	const struct window a;
62 	const struct window bd;
63 	const struct window b;
64 };
65 
66 static int c, d;
67 static struct tst_fzsync_pair pair;
68 
69 static const struct race races[] = {
70 	{ .a =  { 1, 1, 1 }, .b =  { 1, 1, 1 },
71 	  .ad = { 0, 1, 0 }, .bd = { 0, 1, 0 } },
72 	{ .a =  { 30, 1, 1 }, .b =  { 1, 1,  1 },
73 	  .ad = { 0,  1, 0 }, .bd = { 0, 20, 0 } },
74 	{ .a =  { 40, 1,  0 }, .b =  { 1, 1,  20 },
75 	  .ad = { 1,  10, 0 }, .bd = { 1, 10, 0 } },
76 };
77 
cleanup(void)78 static void cleanup(void)
79 {
80 	tst_fzsync_pair_cleanup(&pair);
81 }
82 
setup(void)83 static void setup(void)
84 {
85 	pair.min_samples = 10000;
86 
87 	tst_fzsync_pair_init(&pair);
88 }
89 
to_abs(const struct window w)90 static struct window to_abs(const struct window w)
91 {
92 	const struct window wc = {
93 		w.critical_s,
94 		w.critical_s + w.critical_t,
95 		w.critical_s + w.critical_t + w.return_t,
96 	};
97 
98 	return wc;
99 }
100 
worker(void * v)101 static void *worker(void *v)
102 {
103 	unsigned int i = *(unsigned int *)v;
104 	const struct window b = to_abs(races[i].b);
105 	const struct window bd = to_abs(races[i].bd);
106 	int now, fin = MAX(b.return_t, bd.return_t);
107 
108 	while (tst_fzsync_run_b(&pair)) {
109 		tst_fzsync_start_race_b(&pair);
110 		for (now = 0; now <= fin; now++) {
111 			if (now == b.critical_s || now == b.critical_t)
112 				tst_atomic_add_return(1, &c);
113 			if (now == bd.critical_s || now == bd.critical_t)
114 				tst_atomic_add_return(1, &d);
115 
116 			sched_yield();
117 		}
118 		tst_fzsync_end_race_b(&pair);
119 	}
120 
121 	return NULL;
122 }
123 
run(unsigned int i)124 static void run(unsigned int i)
125 {
126 	const struct window a = to_abs(races[i].a);
127 	const struct window ad = to_abs(races[i].ad);
128 	struct tst_fzsync_run_thread wrap_run_b = {
129 		.func = worker,
130 		.arg = &i,
131 	};
132 	int critical = 0;
133 	int now, fin;
134 
135 	tst_fzsync_pair_reset(&pair, NULL);
136 	SAFE_PTHREAD_CREATE(&pair.thread_b, 0, tst_fzsync_thread_wrapper,
137 			    &wrap_run_b);
138 
139 	while (tst_fzsync_run_a(&pair)) {
140 		c = 0;
141 		d = 0;
142 		fin = a.return_t;
143 
144 		tst_fzsync_start_race_a(&pair);
145 		for (now = 0; now <= fin; now++) {
146 			if (now >= ad.critical_s &&
147 			    now <= ad.critical_t && tst_atomic_load(&d) > 0)
148 				fin = ad.return_t;
149 
150 			if (now >= a.critical_s &&
151 			    now <= a.critical_t && tst_atomic_load(&c) == 1) {
152 				tst_atomic_add_return(1, &c);
153 				critical++;
154 			}
155 
156 			sched_yield();
157 		}
158 		tst_fzsync_end_race_a(&pair);
159 
160 		if (fin == ad.return_t)
161 			tst_fzsync_pair_add_bias(&pair, 1);
162 
163 		if (critical > 100) {
164 			tst_fzsync_pair_cleanup(&pair);
165 			break;
166 		}
167 	}
168 
169 	tst_res(critical > 50 ? TPASS : TFAIL, "%d| =:%-4d", i, critical);
170 }
171 
172 static struct tst_test test = {
173 	.tcnt = ARRAY_SIZE(races),
174 	.test = run,
175 	.setup = setup,
176 	.cleanup = cleanup,
177 };
178