1 /*
2 * Copyright © 2018 Valve Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include "aco_ir.h"
26
27 #include "common/sid.h"
28
29 #include <map>
30 #include <stack>
31 #include <vector>
32
33 namespace aco {
34
35 namespace {
36
37 /**
38 * The general idea of this pass is:
39 * The CFG is traversed in reverse postorder (forward) and loops are processed
40 * several times until no progress is made.
41 * Per BB two wait_ctx is maintained: an in-context and out-context.
42 * The in-context is the joined out-contexts of the predecessors.
43 * The context contains a map: gpr -> wait_entry
44 * consisting of the information about the cnt values to be waited for.
45 * Note: After merge-nodes, it might occur that for the same register
46 * multiple cnt values are to be waited for.
47 *
48 * The values are updated according to the encountered instructions:
49 * - additional events increment the counter of waits of the same type
50 * - or erase gprs with counters higher than to be waited for.
51 */
52
53 // TODO: do a more clever insertion of wait_cnt (lgkm_cnt)
54 // when there is a load followed by a use of a previous load
55
56 /* Instructions of the same event will finish in-order except for smem
57 * and maybe flat. Instructions of different events may not finish in-order. */
58 enum wait_event : uint16_t {
59 event_smem = 1 << 0,
60 event_lds = 1 << 1,
61 event_gds = 1 << 2,
62 event_vmem = 1 << 3,
63 event_vmem_store = 1 << 4, /* GFX10+ */
64 event_flat = 1 << 5,
65 event_exp_pos = 1 << 6,
66 event_exp_param = 1 << 7,
67 event_exp_mrt_null = 1 << 8,
68 event_gds_gpr_lock = 1 << 9,
69 event_vmem_gpr_lock = 1 << 10,
70 event_sendmsg = 1 << 11,
71 num_events = 12,
72 };
73
74 enum counter_type : uint8_t {
75 counter_exp = 1 << 0,
76 counter_lgkm = 1 << 1,
77 counter_vm = 1 << 2,
78 counter_vs = 1 << 3,
79 num_counters = 4,
80 };
81
82 enum vmem_type : uint8_t {
83 vmem_nosampler = 1 << 0,
84 vmem_sampler = 1 << 1,
85 vmem_bvh = 1 << 2,
86 };
87
88 static const uint16_t exp_events =
89 event_exp_pos | event_exp_param | event_exp_mrt_null | event_gds_gpr_lock | event_vmem_gpr_lock;
90 static const uint16_t lgkm_events = event_smem | event_lds | event_gds | event_flat | event_sendmsg;
91 static const uint16_t vm_events = event_vmem | event_flat;
92 static const uint16_t vs_events = event_vmem_store;
93
94 uint8_t
get_counters_for_event(wait_event ev)95 get_counters_for_event(wait_event ev)
96 {
97 switch (ev) {
98 case event_smem:
99 case event_lds:
100 case event_gds:
101 case event_sendmsg: return counter_lgkm;
102 case event_vmem: return counter_vm;
103 case event_vmem_store: return counter_vs;
104 case event_flat: return counter_vm | counter_lgkm;
105 case event_exp_pos:
106 case event_exp_param:
107 case event_exp_mrt_null:
108 case event_gds_gpr_lock:
109 case event_vmem_gpr_lock: return counter_exp;
110 default: return 0;
111 }
112 }
113
114 struct wait_entry {
115 wait_imm imm;
116 uint16_t events; /* use wait_event notion */
117 uint8_t counters; /* use counter_type notion */
118 bool wait_on_read : 1;
119 bool logical : 1;
120 uint8_t vmem_types : 4;
121
wait_entryaco::__anon6454fd820111::wait_entry122 wait_entry(wait_event event_, wait_imm imm_, bool logical_, bool wait_on_read_)
123 : imm(imm_), events(event_), counters(get_counters_for_event(event_)),
124 wait_on_read(wait_on_read_), logical(logical_), vmem_types(0)
125 {}
126
joinaco::__anon6454fd820111::wait_entry127 bool join(const wait_entry& other)
128 {
129 bool changed = (other.events & ~events) || (other.counters & ~counters) ||
130 (other.wait_on_read && !wait_on_read) || (other.vmem_types & !vmem_types);
131 events |= other.events;
132 counters |= other.counters;
133 changed |= imm.combine(other.imm);
134 wait_on_read |= other.wait_on_read;
135 vmem_types |= other.vmem_types;
136 assert(logical == other.logical);
137 return changed;
138 }
139
remove_counteraco::__anon6454fd820111::wait_entry140 void remove_counter(counter_type counter)
141 {
142 counters &= ~counter;
143
144 if (counter == counter_lgkm) {
145 imm.lgkm = wait_imm::unset_counter;
146 events &= ~(event_smem | event_lds | event_gds | event_sendmsg);
147 }
148
149 if (counter == counter_vm) {
150 imm.vm = wait_imm::unset_counter;
151 events &= ~event_vmem;
152 vmem_types = 0;
153 }
154
155 if (counter == counter_exp) {
156 imm.exp = wait_imm::unset_counter;
157 events &= ~(event_exp_pos | event_exp_param | event_exp_mrt_null | event_gds_gpr_lock |
158 event_vmem_gpr_lock);
159 }
160
161 if (counter == counter_vs) {
162 imm.vs = wait_imm::unset_counter;
163 events &= ~event_vmem_store;
164 }
165
166 if (!(counters & counter_lgkm) && !(counters & counter_vm))
167 events &= ~event_flat;
168 }
169 };
170
171 struct wait_ctx {
172 Program* program;
173 enum amd_gfx_level gfx_level;
174 uint16_t max_vm_cnt;
175 uint16_t max_exp_cnt;
176 uint16_t max_lgkm_cnt;
177 uint16_t max_vs_cnt;
178 uint16_t unordered_events = event_smem | event_flat;
179
180 uint8_t vm_cnt = 0;
181 uint8_t exp_cnt = 0;
182 uint8_t lgkm_cnt = 0;
183 uint8_t vs_cnt = 0;
184 bool pending_flat_lgkm = false;
185 bool pending_flat_vm = false;
186 bool pending_s_buffer_store = false; /* GFX10 workaround */
187
188 wait_imm barrier_imm[storage_count];
189 uint16_t barrier_events[storage_count] = {}; /* use wait_event notion */
190
191 std::map<PhysReg, wait_entry> gpr_map;
192
wait_ctxaco::__anon6454fd820111::wait_ctx193 wait_ctx() {}
wait_ctxaco::__anon6454fd820111::wait_ctx194 wait_ctx(Program* program_)
195 : program(program_), gfx_level(program_->gfx_level),
196 max_vm_cnt(program_->gfx_level >= GFX9 ? 62 : 14), max_exp_cnt(6),
197 max_lgkm_cnt(program_->gfx_level >= GFX10 ? 62 : 14),
198 max_vs_cnt(program_->gfx_level >= GFX10 ? 62 : 0),
199 unordered_events(event_smem | (program_->gfx_level < GFX10 ? event_flat : 0))
200 {}
201
joinaco::__anon6454fd820111::wait_ctx202 bool join(const wait_ctx* other, bool logical)
203 {
204 bool changed = other->exp_cnt > exp_cnt || other->vm_cnt > vm_cnt ||
205 other->lgkm_cnt > lgkm_cnt || other->vs_cnt > vs_cnt ||
206 (other->pending_flat_lgkm && !pending_flat_lgkm) ||
207 (other->pending_flat_vm && !pending_flat_vm);
208
209 exp_cnt = std::max(exp_cnt, other->exp_cnt);
210 vm_cnt = std::max(vm_cnt, other->vm_cnt);
211 lgkm_cnt = std::max(lgkm_cnt, other->lgkm_cnt);
212 vs_cnt = std::max(vs_cnt, other->vs_cnt);
213 pending_flat_lgkm |= other->pending_flat_lgkm;
214 pending_flat_vm |= other->pending_flat_vm;
215 pending_s_buffer_store |= other->pending_s_buffer_store;
216
217 for (const auto& entry : other->gpr_map) {
218 if (entry.second.logical != logical)
219 continue;
220
221 using iterator = std::map<PhysReg, wait_entry>::iterator;
222 const std::pair<iterator, bool> insert_pair = gpr_map.insert(entry);
223 if (insert_pair.second) {
224 changed = true;
225 } else {
226 changed |= insert_pair.first->second.join(entry.second);
227 }
228 }
229
230 for (unsigned i = 0; i < storage_count; i++) {
231 changed |= barrier_imm[i].combine(other->barrier_imm[i]);
232 changed |= (other->barrier_events[i] & ~barrier_events[i]) != 0;
233 barrier_events[i] |= other->barrier_events[i];
234 }
235
236 return changed;
237 }
238
wait_and_remove_from_entryaco::__anon6454fd820111::wait_ctx239 void wait_and_remove_from_entry(PhysReg reg, wait_entry& entry, counter_type counter)
240 {
241 entry.remove_counter(counter);
242 }
243 };
244
245 uint8_t
get_vmem_type(Instruction * instr)246 get_vmem_type(Instruction* instr)
247 {
248 if (instr->opcode == aco_opcode::image_bvh64_intersect_ray)
249 return vmem_bvh;
250 else if (instr->isMIMG() && !instr->operands[1].isUndefined() &&
251 instr->operands[1].regClass() == s4)
252 return vmem_sampler;
253 else if (instr->isVMEM() || instr->isScratch() || instr->isGlobal())
254 return vmem_nosampler;
255 return 0;
256 }
257
258 void
check_instr(wait_ctx & ctx,wait_imm & wait,Instruction * instr)259 check_instr(wait_ctx& ctx, wait_imm& wait, Instruction* instr)
260 {
261 for (const Operand op : instr->operands) {
262 if (op.isConstant() || op.isUndefined())
263 continue;
264
265 /* check consecutively read gprs */
266 for (unsigned j = 0; j < op.size(); j++) {
267 PhysReg reg{op.physReg() + j};
268 std::map<PhysReg, wait_entry>::iterator it = ctx.gpr_map.find(reg);
269 if (it == ctx.gpr_map.end() || !it->second.wait_on_read)
270 continue;
271
272 wait.combine(it->second.imm);
273 }
274 }
275
276 for (const Definition& def : instr->definitions) {
277 /* check consecutively written gprs */
278 for (unsigned j = 0; j < def.getTemp().size(); j++) {
279 PhysReg reg{def.physReg() + j};
280
281 std::map<PhysReg, wait_entry>::iterator it = ctx.gpr_map.find(reg);
282 if (it == ctx.gpr_map.end())
283 continue;
284
285 /* Vector Memory reads and writes return in the order they were issued */
286 uint8_t vmem_type = get_vmem_type(instr);
287 if (vmem_type && ((it->second.events & vm_events) == event_vmem) &&
288 it->second.vmem_types == vmem_type)
289 continue;
290
291 /* LDS reads and writes return in the order they were issued. same for GDS */
292 if (instr->isDS() &&
293 (it->second.events & lgkm_events) == (instr->ds().gds ? event_gds : event_lds))
294 continue;
295
296 wait.combine(it->second.imm);
297 }
298 }
299 }
300
301 bool
parse_wait_instr(wait_ctx & ctx,wait_imm & imm,Instruction * instr)302 parse_wait_instr(wait_ctx& ctx, wait_imm& imm, Instruction* instr)
303 {
304 if (instr->opcode == aco_opcode::s_waitcnt_vscnt &&
305 instr->definitions[0].physReg() == sgpr_null) {
306 imm.vs = std::min<uint8_t>(imm.vs, instr->sopk().imm);
307 return true;
308 } else if (instr->opcode == aco_opcode::s_waitcnt) {
309 imm.combine(wait_imm(ctx.gfx_level, instr->sopp().imm));
310 return true;
311 }
312 return false;
313 }
314
315 void
perform_barrier(wait_ctx & ctx,wait_imm & imm,memory_sync_info sync,unsigned semantics)316 perform_barrier(wait_ctx& ctx, wait_imm& imm, memory_sync_info sync, unsigned semantics)
317 {
318 sync_scope subgroup_scope =
319 ctx.program->workgroup_size <= ctx.program->wave_size ? scope_workgroup : scope_subgroup;
320 if ((sync.semantics & semantics) && sync.scope > subgroup_scope) {
321 unsigned storage = sync.storage;
322 while (storage) {
323 unsigned idx = u_bit_scan(&storage);
324
325 /* LDS is private to the workgroup */
326 sync_scope bar_scope_lds = MIN2(sync.scope, scope_workgroup);
327
328 uint16_t events = ctx.barrier_events[idx];
329 if (bar_scope_lds <= subgroup_scope)
330 events &= ~event_lds;
331
332 /* in non-WGP, the L1 (L0 on GFX10+) cache keeps all memory operations
333 * in-order for the same workgroup */
334 if (!ctx.program->wgp_mode && sync.scope <= scope_workgroup)
335 events &= ~(event_vmem | event_vmem_store | event_smem);
336
337 if (events)
338 imm.combine(ctx.barrier_imm[idx]);
339 }
340 }
341 }
342
343 void
force_waitcnt(wait_ctx & ctx,wait_imm & imm)344 force_waitcnt(wait_ctx& ctx, wait_imm& imm)
345 {
346 if (ctx.vm_cnt)
347 imm.vm = 0;
348 if (ctx.exp_cnt)
349 imm.exp = 0;
350 if (ctx.lgkm_cnt)
351 imm.lgkm = 0;
352
353 if (ctx.gfx_level >= GFX10) {
354 if (ctx.vs_cnt)
355 imm.vs = 0;
356 }
357 }
358
359 void
kill(wait_imm & imm,Instruction * instr,wait_ctx & ctx,memory_sync_info sync_info)360 kill(wait_imm& imm, Instruction* instr, wait_ctx& ctx, memory_sync_info sync_info)
361 {
362 if (instr->opcode == aco_opcode::s_setpc_b64 || (debug_flags & DEBUG_FORCE_WAITCNT)) {
363 /* Force emitting waitcnt states right after the instruction if there is
364 * something to wait for. This is also applied for s_setpc_b64 to ensure
365 * waitcnt states are inserted before jumping to the PS epilog.
366 */
367 force_waitcnt(ctx, imm);
368 }
369
370 if (ctx.exp_cnt || ctx.vm_cnt || ctx.lgkm_cnt)
371 check_instr(ctx, imm, instr);
372
373 /* It's required to wait for scalar stores before "writing back" data.
374 * It shouldn't cost anything anyways since we're about to do s_endpgm.
375 */
376 if (ctx.lgkm_cnt && instr->opcode == aco_opcode::s_dcache_wb) {
377 assert(ctx.gfx_level >= GFX8);
378 imm.lgkm = 0;
379 }
380
381 if (ctx.gfx_level >= GFX10 && instr->isSMEM()) {
382 /* GFX10: A store followed by a load at the same address causes a problem because
383 * the load doesn't load the correct values unless we wait for the store first.
384 * This is NOT mitigated by an s_nop.
385 *
386 * TODO: Refine this when we have proper alias analysis.
387 */
388 if (ctx.pending_s_buffer_store && !instr->smem().definitions.empty() &&
389 !instr->smem().sync.can_reorder()) {
390 imm.lgkm = 0;
391 }
392 }
393
394 if (ctx.program->early_rast && instr->opcode == aco_opcode::exp) {
395 if (instr->exp().dest >= V_008DFC_SQ_EXP_POS && instr->exp().dest < V_008DFC_SQ_EXP_PRIM) {
396
397 /* With early_rast, the HW will start clipping and rasterization after the 1st DONE pos
398 * export. Wait for all stores (and atomics) to complete, so PS can read them.
399 * TODO: This only really applies to DONE pos exports.
400 * Consider setting the DONE bit earlier.
401 */
402 if (ctx.vs_cnt > 0)
403 imm.vs = 0;
404 if (ctx.vm_cnt > 0)
405 imm.vm = 0;
406 }
407 }
408
409 if (instr->opcode == aco_opcode::p_barrier)
410 perform_barrier(ctx, imm, instr->barrier().sync, semantic_acqrel);
411 else
412 perform_barrier(ctx, imm, sync_info, semantic_release);
413
414 if (!imm.empty()) {
415 if (ctx.pending_flat_vm && imm.vm != wait_imm::unset_counter)
416 imm.vm = 0;
417 if (ctx.pending_flat_lgkm && imm.lgkm != wait_imm::unset_counter)
418 imm.lgkm = 0;
419
420 /* reset counters */
421 ctx.exp_cnt = std::min(ctx.exp_cnt, imm.exp);
422 ctx.vm_cnt = std::min(ctx.vm_cnt, imm.vm);
423 ctx.lgkm_cnt = std::min(ctx.lgkm_cnt, imm.lgkm);
424 ctx.vs_cnt = std::min(ctx.vs_cnt, imm.vs);
425
426 /* update barrier wait imms */
427 for (unsigned i = 0; i < storage_count; i++) {
428 wait_imm& bar = ctx.barrier_imm[i];
429 uint16_t& bar_ev = ctx.barrier_events[i];
430 if (bar.exp != wait_imm::unset_counter && imm.exp <= bar.exp) {
431 bar.exp = wait_imm::unset_counter;
432 bar_ev &= ~exp_events;
433 }
434 if (bar.vm != wait_imm::unset_counter && imm.vm <= bar.vm) {
435 bar.vm = wait_imm::unset_counter;
436 bar_ev &= ~(vm_events & ~event_flat);
437 }
438 if (bar.lgkm != wait_imm::unset_counter && imm.lgkm <= bar.lgkm) {
439 bar.lgkm = wait_imm::unset_counter;
440 bar_ev &= ~(lgkm_events & ~event_flat);
441 }
442 if (bar.vs != wait_imm::unset_counter && imm.vs <= bar.vs) {
443 bar.vs = wait_imm::unset_counter;
444 bar_ev &= ~vs_events;
445 }
446 if (bar.vm == wait_imm::unset_counter && bar.lgkm == wait_imm::unset_counter)
447 bar_ev &= ~event_flat;
448 }
449
450 /* remove all gprs with higher counter from map */
451 std::map<PhysReg, wait_entry>::iterator it = ctx.gpr_map.begin();
452 while (it != ctx.gpr_map.end()) {
453 if (imm.exp != wait_imm::unset_counter && imm.exp <= it->second.imm.exp)
454 ctx.wait_and_remove_from_entry(it->first, it->second, counter_exp);
455 if (imm.vm != wait_imm::unset_counter && imm.vm <= it->second.imm.vm)
456 ctx.wait_and_remove_from_entry(it->first, it->second, counter_vm);
457 if (imm.lgkm != wait_imm::unset_counter && imm.lgkm <= it->second.imm.lgkm)
458 ctx.wait_and_remove_from_entry(it->first, it->second, counter_lgkm);
459 if (imm.vs != wait_imm::unset_counter && imm.vs <= it->second.imm.vs)
460 ctx.wait_and_remove_from_entry(it->first, it->second, counter_vs);
461 if (!it->second.counters)
462 it = ctx.gpr_map.erase(it);
463 else
464 it++;
465 }
466 }
467
468 if (imm.vm == 0)
469 ctx.pending_flat_vm = false;
470 if (imm.lgkm == 0) {
471 ctx.pending_flat_lgkm = false;
472 ctx.pending_s_buffer_store = false;
473 }
474 }
475
476 void
update_barrier_counter(uint8_t * ctr,unsigned max)477 update_barrier_counter(uint8_t* ctr, unsigned max)
478 {
479 if (*ctr != wait_imm::unset_counter && *ctr < max)
480 (*ctr)++;
481 }
482
483 void
update_barrier_imm(wait_ctx & ctx,uint8_t counters,wait_event event,memory_sync_info sync)484 update_barrier_imm(wait_ctx& ctx, uint8_t counters, wait_event event, memory_sync_info sync)
485 {
486 for (unsigned i = 0; i < storage_count; i++) {
487 wait_imm& bar = ctx.barrier_imm[i];
488 uint16_t& bar_ev = ctx.barrier_events[i];
489 if (sync.storage & (1 << i) && !(sync.semantics & semantic_private)) {
490 bar_ev |= event;
491 if (counters & counter_lgkm)
492 bar.lgkm = 0;
493 if (counters & counter_vm)
494 bar.vm = 0;
495 if (counters & counter_exp)
496 bar.exp = 0;
497 if (counters & counter_vs)
498 bar.vs = 0;
499 } else if (!(bar_ev & ctx.unordered_events) && !(ctx.unordered_events & event)) {
500 if (counters & counter_lgkm && (bar_ev & lgkm_events) == event)
501 update_barrier_counter(&bar.lgkm, ctx.max_lgkm_cnt);
502 if (counters & counter_vm && (bar_ev & vm_events) == event)
503 update_barrier_counter(&bar.vm, ctx.max_vm_cnt);
504 if (counters & counter_exp && (bar_ev & exp_events) == event)
505 update_barrier_counter(&bar.exp, ctx.max_exp_cnt);
506 if (counters & counter_vs && (bar_ev & vs_events) == event)
507 update_barrier_counter(&bar.vs, ctx.max_vs_cnt);
508 }
509 }
510 }
511
512 void
update_counters(wait_ctx & ctx,wait_event event,memory_sync_info sync=memory_sync_info ())513 update_counters(wait_ctx& ctx, wait_event event, memory_sync_info sync = memory_sync_info())
514 {
515 uint8_t counters = get_counters_for_event(event);
516
517 if (counters & counter_lgkm && ctx.lgkm_cnt <= ctx.max_lgkm_cnt)
518 ctx.lgkm_cnt++;
519 if (counters & counter_vm && ctx.vm_cnt <= ctx.max_vm_cnt)
520 ctx.vm_cnt++;
521 if (counters & counter_exp && ctx.exp_cnt <= ctx.max_exp_cnt)
522 ctx.exp_cnt++;
523 if (counters & counter_vs && ctx.vs_cnt <= ctx.max_vs_cnt)
524 ctx.vs_cnt++;
525
526 update_barrier_imm(ctx, counters, event, sync);
527
528 if (ctx.unordered_events & event)
529 return;
530
531 if (ctx.pending_flat_lgkm)
532 counters &= ~counter_lgkm;
533 if (ctx.pending_flat_vm)
534 counters &= ~counter_vm;
535
536 for (std::pair<const PhysReg, wait_entry>& e : ctx.gpr_map) {
537 wait_entry& entry = e.second;
538
539 if (entry.events & ctx.unordered_events)
540 continue;
541
542 assert(entry.events);
543
544 if ((counters & counter_exp) && (entry.events & exp_events) == event &&
545 entry.imm.exp < ctx.max_exp_cnt)
546 entry.imm.exp++;
547 if ((counters & counter_lgkm) && (entry.events & lgkm_events) == event &&
548 entry.imm.lgkm < ctx.max_lgkm_cnt)
549 entry.imm.lgkm++;
550 if ((counters & counter_vm) && (entry.events & vm_events) == event &&
551 entry.imm.vm < ctx.max_vm_cnt)
552 entry.imm.vm++;
553 if ((counters & counter_vs) && (entry.events & vs_events) == event &&
554 entry.imm.vs < ctx.max_vs_cnt)
555 entry.imm.vs++;
556 }
557 }
558
559 void
update_counters_for_flat_load(wait_ctx & ctx,memory_sync_info sync=memory_sync_info ())560 update_counters_for_flat_load(wait_ctx& ctx, memory_sync_info sync = memory_sync_info())
561 {
562 assert(ctx.gfx_level < GFX10);
563
564 if (ctx.lgkm_cnt <= ctx.max_lgkm_cnt)
565 ctx.lgkm_cnt++;
566 if (ctx.vm_cnt <= ctx.max_vm_cnt)
567 ctx.vm_cnt++;
568
569 update_barrier_imm(ctx, counter_vm | counter_lgkm, event_flat, sync);
570
571 for (std::pair<PhysReg, wait_entry> e : ctx.gpr_map) {
572 if (e.second.counters & counter_vm)
573 e.second.imm.vm = 0;
574 if (e.second.counters & counter_lgkm)
575 e.second.imm.lgkm = 0;
576 }
577 ctx.pending_flat_lgkm = true;
578 ctx.pending_flat_vm = true;
579 }
580
581 void
insert_wait_entry(wait_ctx & ctx,PhysReg reg,RegClass rc,wait_event event,bool wait_on_read,uint8_t vmem_types=0)582 insert_wait_entry(wait_ctx& ctx, PhysReg reg, RegClass rc, wait_event event, bool wait_on_read,
583 uint8_t vmem_types = 0)
584 {
585 uint16_t counters = get_counters_for_event(event);
586 wait_imm imm;
587 if (counters & counter_lgkm)
588 imm.lgkm = 0;
589 if (counters & counter_vm)
590 imm.vm = 0;
591 if (counters & counter_exp)
592 imm.exp = 0;
593 if (counters & counter_vs)
594 imm.vs = 0;
595
596 wait_entry new_entry(event, imm, !rc.is_linear(), wait_on_read);
597 new_entry.vmem_types |= vmem_types;
598
599 for (unsigned i = 0; i < rc.size(); i++) {
600 auto it = ctx.gpr_map.emplace(PhysReg{reg.reg() + i}, new_entry);
601 if (!it.second)
602 it.first->second.join(new_entry);
603 }
604 }
605
606 void
insert_wait_entry(wait_ctx & ctx,Operand op,wait_event event,uint8_t vmem_types=0)607 insert_wait_entry(wait_ctx& ctx, Operand op, wait_event event, uint8_t vmem_types = 0)
608 {
609 if (!op.isConstant() && !op.isUndefined())
610 insert_wait_entry(ctx, op.physReg(), op.regClass(), event, false, vmem_types);
611 }
612
613 void
insert_wait_entry(wait_ctx & ctx,Definition def,wait_event event,uint8_t vmem_types=0)614 insert_wait_entry(wait_ctx& ctx, Definition def, wait_event event, uint8_t vmem_types = 0)
615 {
616 insert_wait_entry(ctx, def.physReg(), def.regClass(), event, true, vmem_types);
617 }
618
619 void
gen(Instruction * instr,wait_ctx & ctx)620 gen(Instruction* instr, wait_ctx& ctx)
621 {
622 switch (instr->format) {
623 case Format::EXP: {
624 Export_instruction& exp_instr = instr->exp();
625
626 wait_event ev;
627 if (exp_instr.dest <= 9)
628 ev = event_exp_mrt_null;
629 else if (exp_instr.dest <= 15)
630 ev = event_exp_pos;
631 else
632 ev = event_exp_param;
633 update_counters(ctx, ev);
634
635 /* insert new entries for exported vgprs */
636 for (unsigned i = 0; i < 4; i++) {
637 if (exp_instr.enabled_mask & (1 << i)) {
638 unsigned idx = exp_instr.compressed ? i >> 1 : i;
639 assert(idx < exp_instr.operands.size());
640 insert_wait_entry(ctx, exp_instr.operands[idx], ev);
641 }
642 }
643 insert_wait_entry(ctx, exec, s2, ev, false);
644 break;
645 }
646 case Format::FLAT: {
647 FLAT_instruction& flat = instr->flat();
648 if (ctx.gfx_level < GFX10 && !instr->definitions.empty())
649 update_counters_for_flat_load(ctx, flat.sync);
650 else
651 update_counters(ctx, event_flat, flat.sync);
652
653 if (!instr->definitions.empty())
654 insert_wait_entry(ctx, instr->definitions[0], event_flat);
655 break;
656 }
657 case Format::SMEM: {
658 SMEM_instruction& smem = instr->smem();
659 update_counters(ctx, event_smem, smem.sync);
660
661 if (!instr->definitions.empty())
662 insert_wait_entry(ctx, instr->definitions[0], event_smem);
663 else if (ctx.gfx_level >= GFX10 && !smem.sync.can_reorder())
664 ctx.pending_s_buffer_store = true;
665
666 break;
667 }
668 case Format::DS: {
669 DS_instruction& ds = instr->ds();
670 update_counters(ctx, ds.gds ? event_gds : event_lds, ds.sync);
671 if (ds.gds)
672 update_counters(ctx, event_gds_gpr_lock);
673
674 if (!instr->definitions.empty())
675 insert_wait_entry(ctx, instr->definitions[0], ds.gds ? event_gds : event_lds);
676
677 if (ds.gds) {
678 for (const Operand& op : instr->operands)
679 insert_wait_entry(ctx, op, event_gds_gpr_lock);
680 insert_wait_entry(ctx, exec, s2, event_gds_gpr_lock, false);
681 }
682 break;
683 }
684 case Format::MUBUF:
685 case Format::MTBUF:
686 case Format::MIMG:
687 case Format::GLOBAL:
688 case Format::SCRATCH: {
689 wait_event ev =
690 !instr->definitions.empty() || ctx.gfx_level < GFX10 ? event_vmem : event_vmem_store;
691 update_counters(ctx, ev, get_sync_info(instr));
692
693 if (!instr->definitions.empty())
694 insert_wait_entry(ctx, instr->definitions[0], ev, get_vmem_type(instr));
695
696 if (ctx.gfx_level == GFX6 && instr->format != Format::MIMG && instr->operands.size() == 4) {
697 update_counters(ctx, event_vmem_gpr_lock);
698 insert_wait_entry(ctx, instr->operands[3], event_vmem_gpr_lock);
699 } else if (ctx.gfx_level == GFX6 && instr->isMIMG() && !instr->operands[2].isUndefined()) {
700 update_counters(ctx, event_vmem_gpr_lock);
701 insert_wait_entry(ctx, instr->operands[2], event_vmem_gpr_lock);
702 }
703
704 break;
705 }
706 case Format::SOPP: {
707 if (instr->opcode == aco_opcode::s_sendmsg || instr->opcode == aco_opcode::s_sendmsghalt)
708 update_counters(ctx, event_sendmsg);
709 break;
710 }
711 default: break;
712 }
713 }
714
715 void
emit_waitcnt(wait_ctx & ctx,std::vector<aco_ptr<Instruction>> & instructions,wait_imm & imm)716 emit_waitcnt(wait_ctx& ctx, std::vector<aco_ptr<Instruction>>& instructions, wait_imm& imm)
717 {
718 if (imm.vs != wait_imm::unset_counter) {
719 assert(ctx.gfx_level >= GFX10);
720 SOPK_instruction* waitcnt_vs =
721 create_instruction<SOPK_instruction>(aco_opcode::s_waitcnt_vscnt, Format::SOPK, 0, 1);
722 waitcnt_vs->definitions[0] = Definition(sgpr_null, s1);
723 waitcnt_vs->imm = imm.vs;
724 instructions.emplace_back(waitcnt_vs);
725 imm.vs = wait_imm::unset_counter;
726 }
727 if (!imm.empty()) {
728 SOPP_instruction* waitcnt =
729 create_instruction<SOPP_instruction>(aco_opcode::s_waitcnt, Format::SOPP, 0, 0);
730 waitcnt->imm = imm.pack(ctx.gfx_level);
731 waitcnt->block = -1;
732 instructions.emplace_back(waitcnt);
733 }
734 imm = wait_imm();
735 }
736
737 void
handle_block(Program * program,Block & block,wait_ctx & ctx)738 handle_block(Program* program, Block& block, wait_ctx& ctx)
739 {
740 std::vector<aco_ptr<Instruction>> new_instructions;
741
742 wait_imm queued_imm;
743
744 for (aco_ptr<Instruction>& instr : block.instructions) {
745 bool is_wait = parse_wait_instr(ctx, queued_imm, instr.get());
746
747 memory_sync_info sync_info = get_sync_info(instr.get());
748 kill(queued_imm, instr.get(), ctx, sync_info);
749
750 gen(instr.get(), ctx);
751
752 if (instr->format != Format::PSEUDO_BARRIER && !is_wait) {
753 if (!queued_imm.empty())
754 emit_waitcnt(ctx, new_instructions, queued_imm);
755
756 new_instructions.emplace_back(std::move(instr));
757 perform_barrier(ctx, queued_imm, sync_info, semantic_acquire);
758 }
759 }
760
761 if (!queued_imm.empty())
762 emit_waitcnt(ctx, new_instructions, queued_imm);
763
764 block.instructions.swap(new_instructions);
765 }
766
767 } /* end namespace */
768
769 void
insert_wait_states(Program * program)770 insert_wait_states(Program* program)
771 {
772 /* per BB ctx */
773 std::vector<bool> done(program->blocks.size());
774 std::vector<wait_ctx> in_ctx(program->blocks.size(), wait_ctx(program));
775 std::vector<wait_ctx> out_ctx(program->blocks.size(), wait_ctx(program));
776
777 std::stack<unsigned, std::vector<unsigned>> loop_header_indices;
778 unsigned loop_progress = 0;
779
780 if (program->stage.has(SWStage::VS) && program->info.vs.dynamic_inputs) {
781 for (Definition def : program->vs_inputs) {
782 update_counters(in_ctx[0], event_vmem);
783 insert_wait_entry(in_ctx[0], def, event_vmem);
784 }
785 }
786
787 for (unsigned i = 0; i < program->blocks.size();) {
788 Block& current = program->blocks[i++];
789 wait_ctx ctx = in_ctx[current.index];
790
791 if (current.kind & block_kind_loop_header) {
792 loop_header_indices.push(current.index);
793 } else if (current.kind & block_kind_loop_exit) {
794 bool repeat = false;
795 if (loop_progress == loop_header_indices.size()) {
796 i = loop_header_indices.top();
797 repeat = true;
798 }
799 loop_header_indices.pop();
800 loop_progress = std::min<unsigned>(loop_progress, loop_header_indices.size());
801 if (repeat)
802 continue;
803 }
804
805 bool changed = false;
806 for (unsigned b : current.linear_preds)
807 changed |= ctx.join(&out_ctx[b], false);
808 for (unsigned b : current.logical_preds)
809 changed |= ctx.join(&out_ctx[b], true);
810
811 if (done[current.index] && !changed) {
812 in_ctx[current.index] = std::move(ctx);
813 continue;
814 } else {
815 in_ctx[current.index] = ctx;
816 }
817
818 if (current.instructions.empty()) {
819 out_ctx[current.index] = std::move(ctx);
820 continue;
821 }
822
823 loop_progress = std::max<unsigned>(loop_progress, current.loop_nest_depth);
824 done[current.index] = true;
825
826 handle_block(program, current, ctx);
827
828 out_ctx[current.index] = std::move(ctx);
829 }
830 }
831
832 } // namespace aco
833