1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25 #include "nir.h"
26 #include "nir_builder.h"
27
28 #include <math.h>
29 #include <float.h>
30
31 /*
32 * Lowers some unsupported double operations, using only:
33 *
34 * - pack/unpackDouble2x32
35 * - conversion to/from single-precision
36 * - double add, mul, and fma
37 * - conditional select
38 * - 32-bit integer and floating point arithmetic
39 */
40
41 /* Creates a double with the exponent bits set to a given integer value */
42 static nir_ssa_def *
set_exponent(nir_builder * b,nir_ssa_def * src,nir_ssa_def * exp)43 set_exponent(nir_builder *b, nir_ssa_def *src, nir_ssa_def *exp)
44 {
45 /* Split into bits 0-31 and 32-63 */
46 nir_ssa_def *lo = nir_unpack_64_2x32_split_x(b, src);
47 nir_ssa_def *hi = nir_unpack_64_2x32_split_y(b, src);
48
49 /* The exponent is bits 52-62, or 20-30 of the high word, so set the exponent
50 * to 1023
51 */
52 nir_ssa_def *new_hi = nir_bitfield_insert(b, hi, exp,
53 nir_imm_int(b, 20),
54 nir_imm_int(b, 11));
55 /* recombine */
56 return nir_pack_64_2x32_split(b, lo, new_hi);
57 }
58
59 static nir_ssa_def *
get_exponent(nir_builder * b,nir_ssa_def * src)60 get_exponent(nir_builder *b, nir_ssa_def *src)
61 {
62 /* get bits 32-63 */
63 nir_ssa_def *hi = nir_unpack_64_2x32_split_y(b, src);
64
65 /* extract bits 20-30 of the high word */
66 return nir_ubitfield_extract(b, hi, nir_imm_int(b, 20), nir_imm_int(b, 11));
67 }
68
69 /* Return infinity with the sign of the given source which is +/-0 */
70
71 static nir_ssa_def *
get_signed_inf(nir_builder * b,nir_ssa_def * zero)72 get_signed_inf(nir_builder *b, nir_ssa_def *zero)
73 {
74 nir_ssa_def *zero_hi = nir_unpack_64_2x32_split_y(b, zero);
75
76 /* The bit pattern for infinity is 0x7ff0000000000000, where the sign bit
77 * is the highest bit. Only the sign bit can be non-zero in the passed in
78 * source. So we essentially need to OR the infinity and the zero, except
79 * the low 32 bits are always 0 so we can construct the correct high 32
80 * bits and then pack it together with zero low 32 bits.
81 */
82 nir_ssa_def *inf_hi = nir_ior(b, nir_imm_int(b, 0x7ff00000), zero_hi);
83 return nir_pack_64_2x32_split(b, nir_imm_int(b, 0), inf_hi);
84 }
85
86 /*
87 * Generates the correctly-signed infinity if the source was zero, and flushes
88 * the result to 0 if the source was infinity or the calculated exponent was
89 * too small to be representable.
90 */
91
92 static nir_ssa_def *
fix_inv_result(nir_builder * b,nir_ssa_def * res,nir_ssa_def * src,nir_ssa_def * exp)93 fix_inv_result(nir_builder *b, nir_ssa_def *res, nir_ssa_def *src,
94 nir_ssa_def *exp)
95 {
96 /* If the exponent is too small or the original input was infinity/NaN,
97 * force the result to 0 (flush denorms) to avoid the work of handling
98 * denorms properly. Note that this doesn't preserve positive/negative
99 * zeros, but GLSL doesn't require it.
100 */
101 res = nir_bcsel(b, nir_ior(b, nir_ige(b, nir_imm_int(b, 0), exp),
102 nir_feq(b, nir_fabs(b, src),
103 nir_imm_double(b, INFINITY))),
104 nir_imm_double(b, 0.0f), res);
105
106 /* If the original input was 0, generate the correctly-signed infinity */
107 res = nir_bcsel(b, nir_fneu(b, src, nir_imm_double(b, 0.0f)),
108 res, get_signed_inf(b, src));
109
110 return res;
111
112 }
113
114 static nir_ssa_def *
lower_rcp(nir_builder * b,nir_ssa_def * src)115 lower_rcp(nir_builder *b, nir_ssa_def *src)
116 {
117 /* normalize the input to avoid range issues */
118 nir_ssa_def *src_norm = set_exponent(b, src, nir_imm_int(b, 1023));
119
120 /* cast to float, do an rcp, and then cast back to get an approximate
121 * result
122 */
123 nir_ssa_def *ra = nir_f2f64(b, nir_frcp(b, nir_f2f32(b, src_norm)));
124
125 /* Fixup the exponent of the result - note that we check if this is too
126 * small below.
127 */
128 nir_ssa_def *new_exp = nir_isub(b, get_exponent(b, ra),
129 nir_isub(b, get_exponent(b, src),
130 nir_imm_int(b, 1023)));
131
132 ra = set_exponent(b, ra, new_exp);
133
134 /* Do a few Newton-Raphson steps to improve precision.
135 *
136 * Each step doubles the precision, and we started off with around 24 bits,
137 * so we only need to do 2 steps to get to full precision. The step is:
138 *
139 * x_new = x * (2 - x*src)
140 *
141 * But we can re-arrange this to improve precision by using another fused
142 * multiply-add:
143 *
144 * x_new = x + x * (1 - x*src)
145 *
146 * See https://en.wikipedia.org/wiki/Division_algorithm for more details.
147 */
148
149 ra = nir_ffma(b, nir_fneg(b, ra), nir_ffma(b, ra, src, nir_imm_double(b, -1)), ra);
150 ra = nir_ffma(b, nir_fneg(b, ra), nir_ffma(b, ra, src, nir_imm_double(b, -1)), ra);
151
152 return fix_inv_result(b, ra, src, new_exp);
153 }
154
155 static nir_ssa_def *
lower_sqrt_rsq(nir_builder * b,nir_ssa_def * src,bool sqrt)156 lower_sqrt_rsq(nir_builder *b, nir_ssa_def *src, bool sqrt)
157 {
158 /* We want to compute:
159 *
160 * 1/sqrt(m * 2^e)
161 *
162 * When the exponent is even, this is equivalent to:
163 *
164 * 1/sqrt(m) * 2^(-e/2)
165 *
166 * and then the exponent is odd, this is equal to:
167 *
168 * 1/sqrt(m * 2) * 2^(-(e - 1)/2)
169 *
170 * where the m * 2 is absorbed into the exponent. So we want the exponent
171 * inside the square root to be 1 if e is odd and 0 if e is even, and we
172 * want to subtract off e/2 from the final exponent, rounded to negative
173 * infinity. We can do the former by first computing the unbiased exponent,
174 * and then AND'ing it with 1 to get 0 or 1, and we can do the latter by
175 * shifting right by 1.
176 */
177
178 nir_ssa_def *unbiased_exp = nir_isub(b, get_exponent(b, src),
179 nir_imm_int(b, 1023));
180 nir_ssa_def *even = nir_iand_imm(b, unbiased_exp, 1);
181 nir_ssa_def *half = nir_ishr_imm(b, unbiased_exp, 1);
182
183 nir_ssa_def *src_norm = set_exponent(b, src,
184 nir_iadd(b, nir_imm_int(b, 1023),
185 even));
186
187 nir_ssa_def *ra = nir_f2f64(b, nir_frsq(b, nir_f2f32(b, src_norm)));
188 nir_ssa_def *new_exp = nir_isub(b, get_exponent(b, ra), half);
189 ra = set_exponent(b, ra, new_exp);
190
191 /*
192 * The following implements an iterative algorithm that's very similar
193 * between sqrt and rsqrt. We start with an iteration of Goldschmit's
194 * algorithm, which looks like:
195 *
196 * a = the source
197 * y_0 = initial (single-precision) rsqrt estimate
198 *
199 * h_0 = .5 * y_0
200 * g_0 = a * y_0
201 * r_0 = .5 - h_0 * g_0
202 * g_1 = g_0 * r_0 + g_0
203 * h_1 = h_0 * r_0 + h_0
204 *
205 * Now g_1 ~= sqrt(a), and h_1 ~= 1/(2 * sqrt(a)). We could continue
206 * applying another round of Goldschmit, but since we would never refer
207 * back to a (the original source), we would add too much rounding error.
208 * So instead, we do one last round of Newton-Raphson, which has better
209 * rounding characteristics, to get the final rounding correct. This is
210 * split into two cases:
211 *
212 * 1. sqrt
213 *
214 * Normally, doing a round of Newton-Raphson for sqrt involves taking a
215 * reciprocal of the original estimate, which is slow since it isn't
216 * supported in HW. But we can take advantage of the fact that we already
217 * computed a good estimate of 1/(2 * g_1) by rearranging it like so:
218 *
219 * g_2 = .5 * (g_1 + a / g_1)
220 * = g_1 + .5 * (a / g_1 - g_1)
221 * = g_1 + (.5 / g_1) * (a - g_1^2)
222 * = g_1 + h_1 * (a - g_1^2)
223 *
224 * The second term represents the error, and by splitting it out we can get
225 * better precision by computing it as part of a fused multiply-add. Since
226 * both Newton-Raphson and Goldschmit approximately double the precision of
227 * the result, these two steps should be enough.
228 *
229 * 2. rsqrt
230 *
231 * First off, note that the first round of the Goldschmit algorithm is
232 * really just a Newton-Raphson step in disguise:
233 *
234 * h_1 = h_0 * (.5 - h_0 * g_0) + h_0
235 * = h_0 * (1.5 - h_0 * g_0)
236 * = h_0 * (1.5 - .5 * a * y_0^2)
237 * = (.5 * y_0) * (1.5 - .5 * a * y_0^2)
238 *
239 * which is the standard formula multiplied by .5. Unlike in the sqrt case,
240 * we don't need the inverse to do a Newton-Raphson step; we just need h_1,
241 * so we can skip the calculation of g_1. Instead, we simply do another
242 * Newton-Raphson step:
243 *
244 * y_1 = 2 * h_1
245 * r_1 = .5 - h_1 * y_1 * a
246 * y_2 = y_1 * r_1 + y_1
247 *
248 * Where the difference from Goldschmit is that we calculate y_1 * a
249 * instead of using g_1. Doing it this way should be as fast as computing
250 * y_1 up front instead of h_1, and it lets us share the code for the
251 * initial Goldschmit step with the sqrt case.
252 *
253 * Putting it together, the computations are:
254 *
255 * h_0 = .5 * y_0
256 * g_0 = a * y_0
257 * r_0 = .5 - h_0 * g_0
258 * h_1 = h_0 * r_0 + h_0
259 * if sqrt:
260 * g_1 = g_0 * r_0 + g_0
261 * r_1 = a - g_1 * g_1
262 * g_2 = h_1 * r_1 + g_1
263 * else:
264 * y_1 = 2 * h_1
265 * r_1 = .5 - y_1 * (h_1 * a)
266 * y_2 = y_1 * r_1 + y_1
267 *
268 * For more on the ideas behind this, see "Software Division and Square
269 * Root Using Goldschmit's Algorithms" by Markstein and the Wikipedia page
270 * on square roots
271 * (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots).
272 */
273
274 nir_ssa_def *one_half = nir_imm_double(b, 0.5);
275 nir_ssa_def *h_0 = nir_fmul(b, one_half, ra);
276 nir_ssa_def *g_0 = nir_fmul(b, src, ra);
277 nir_ssa_def *r_0 = nir_ffma(b, nir_fneg(b, h_0), g_0, one_half);
278 nir_ssa_def *h_1 = nir_ffma(b, h_0, r_0, h_0);
279 nir_ssa_def *res;
280 if (sqrt) {
281 nir_ssa_def *g_1 = nir_ffma(b, g_0, r_0, g_0);
282 nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, g_1), g_1, src);
283 res = nir_ffma(b, h_1, r_1, g_1);
284 } else {
285 nir_ssa_def *y_1 = nir_fmul(b, nir_imm_double(b, 2.0), h_1);
286 nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, y_1), nir_fmul(b, h_1, src),
287 one_half);
288 res = nir_ffma(b, y_1, r_1, y_1);
289 }
290
291 if (sqrt) {
292 /* Here, the special cases we need to handle are
293 * 0 -> 0 and
294 * +inf -> +inf
295 */
296 const bool preserve_denorms =
297 b->shader->info.float_controls_execution_mode &
298 FLOAT_CONTROLS_DENORM_PRESERVE_FP64;
299 nir_ssa_def *src_flushed = src;
300 if (!preserve_denorms) {
301 src_flushed = nir_bcsel(b,
302 nir_flt(b, nir_fabs(b, src),
303 nir_imm_double(b, DBL_MIN)),
304 nir_imm_double(b, 0.0),
305 src);
306 }
307 res = nir_bcsel(b, nir_ior(b, nir_feq(b, src_flushed, nir_imm_double(b, 0.0)),
308 nir_feq(b, src, nir_imm_double(b, INFINITY))),
309 src_flushed, res);
310 } else {
311 res = fix_inv_result(b, res, src, new_exp);
312 }
313
314 return res;
315 }
316
317 static nir_ssa_def *
lower_trunc(nir_builder * b,nir_ssa_def * src)318 lower_trunc(nir_builder *b, nir_ssa_def *src)
319 {
320 nir_ssa_def *unbiased_exp = nir_isub(b, get_exponent(b, src),
321 nir_imm_int(b, 1023));
322
323 nir_ssa_def *frac_bits = nir_isub(b, nir_imm_int(b, 52), unbiased_exp);
324
325 /*
326 * Decide the operation to apply depending on the unbiased exponent:
327 *
328 * if (unbiased_exp < 0)
329 * return 0
330 * else if (unbiased_exp > 52)
331 * return src
332 * else
333 * return src & (~0 << frac_bits)
334 *
335 * Notice that the else branch is a 64-bit integer operation that we need
336 * to implement in terms of 32-bit integer arithmetics (at least until we
337 * support 64-bit integer arithmetics).
338 */
339
340 /* Compute "~0 << frac_bits" in terms of hi/lo 32-bit integer math */
341 nir_ssa_def *mask_lo =
342 nir_bcsel(b,
343 nir_ige(b, frac_bits, nir_imm_int(b, 32)),
344 nir_imm_int(b, 0),
345 nir_ishl(b, nir_imm_int(b, ~0), frac_bits));
346
347 nir_ssa_def *mask_hi =
348 nir_bcsel(b,
349 nir_ilt(b, frac_bits, nir_imm_int(b, 33)),
350 nir_imm_int(b, ~0),
351 nir_ishl(b,
352 nir_imm_int(b, ~0),
353 nir_isub(b, frac_bits, nir_imm_int(b, 32))));
354
355 nir_ssa_def *src_lo = nir_unpack_64_2x32_split_x(b, src);
356 nir_ssa_def *src_hi = nir_unpack_64_2x32_split_y(b, src);
357
358 return
359 nir_bcsel(b,
360 nir_ilt(b, unbiased_exp, nir_imm_int(b, 0)),
361 nir_imm_double(b, 0.0),
362 nir_bcsel(b, nir_ige(b, unbiased_exp, nir_imm_int(b, 53)),
363 src,
364 nir_pack_64_2x32_split(b,
365 nir_iand(b, mask_lo, src_lo),
366 nir_iand(b, mask_hi, src_hi))));
367 }
368
369 static nir_ssa_def *
lower_floor(nir_builder * b,nir_ssa_def * src)370 lower_floor(nir_builder *b, nir_ssa_def *src)
371 {
372 /*
373 * For x >= 0, floor(x) = trunc(x)
374 * For x < 0,
375 * - if x is integer, floor(x) = x
376 * - otherwise, floor(x) = trunc(x) - 1
377 */
378 nir_ssa_def *tr = nir_ftrunc(b, src);
379 nir_ssa_def *positive = nir_fge(b, src, nir_imm_double(b, 0.0));
380 return nir_bcsel(b,
381 nir_ior(b, positive, nir_feq(b, src, tr)),
382 tr,
383 nir_fsub(b, tr, nir_imm_double(b, 1.0)));
384 }
385
386 static nir_ssa_def *
lower_ceil(nir_builder * b,nir_ssa_def * src)387 lower_ceil(nir_builder *b, nir_ssa_def *src)
388 {
389 /* if x < 0, ceil(x) = trunc(x)
390 * else if (x - trunc(x) == 0), ceil(x) = x
391 * else, ceil(x) = trunc(x) + 1
392 */
393 nir_ssa_def *tr = nir_ftrunc(b, src);
394 nir_ssa_def *negative = nir_flt(b, src, nir_imm_double(b, 0.0));
395 return nir_bcsel(b,
396 nir_ior(b, negative, nir_feq(b, src, tr)),
397 tr,
398 nir_fadd(b, tr, nir_imm_double(b, 1.0)));
399 }
400
401 static nir_ssa_def *
lower_fract(nir_builder * b,nir_ssa_def * src)402 lower_fract(nir_builder *b, nir_ssa_def *src)
403 {
404 return nir_fsub(b, src, nir_ffloor(b, src));
405 }
406
407 static nir_ssa_def *
lower_round_even(nir_builder * b,nir_ssa_def * src)408 lower_round_even(nir_builder *b, nir_ssa_def *src)
409 {
410 /* Add and subtract 2**52 to round off any fractional bits. */
411 nir_ssa_def *two52 = nir_imm_double(b, (double)(1ull << 52));
412 nir_ssa_def *sign = nir_iand(b, nir_unpack_64_2x32_split_y(b, src),
413 nir_imm_int(b, 1ull << 31));
414
415 b->exact = true;
416 nir_ssa_def *res = nir_fsub(b, nir_fadd(b, nir_fabs(b, src), two52), two52);
417 b->exact = false;
418
419 return nir_bcsel(b, nir_flt(b, nir_fabs(b, src), two52),
420 nir_pack_64_2x32_split(b, nir_unpack_64_2x32_split_x(b, res),
421 nir_ior(b, nir_unpack_64_2x32_split_y(b, res), sign)), src);
422 }
423
424 static nir_ssa_def *
lower_mod(nir_builder * b,nir_ssa_def * src0,nir_ssa_def * src1)425 lower_mod(nir_builder *b, nir_ssa_def *src0, nir_ssa_def *src1)
426 {
427 /* mod(x,y) = x - y * floor(x/y)
428 *
429 * If the division is lowered, it could add some rounding errors that make
430 * floor() to return the quotient minus one when x = N * y. If this is the
431 * case, we should return zero because mod(x, y) output value is [0, y).
432 * But fortunately Vulkan spec allows this kind of errors; from Vulkan
433 * spec, appendix A (Precision and Operation of SPIR-V instructions:
434 *
435 * "The OpFRem and OpFMod instructions use cheap approximations of
436 * remainder, and the error can be large due to the discontinuity in
437 * trunc() and floor(). This can produce mathematically unexpected
438 * results in some cases, such as FMod(x,x) computing x rather than 0,
439 * and can also cause the result to have a different sign than the
440 * infinitely precise result."
441 *
442 * In practice this means the output value is actually in the interval
443 * [0, y].
444 *
445 * While Vulkan states this behaviour explicitly, OpenGL does not, and thus
446 * we need to assume that value should be in range [0, y); but on the other
447 * hand, mod(a,b) is defined as "a - b * floor(a/b)" and OpenGL allows for
448 * some error in division, so a/a could actually end up being 1.0 - 1ULP;
449 * so in this case floor(a/a) would end up as 0, and hence mod(a,a) == a.
450 *
451 * In summary, in the practice mod(a,a) can be "a" both for OpenGL and
452 * Vulkan.
453 */
454 nir_ssa_def *floor = nir_ffloor(b, nir_fdiv(b, src0, src1));
455
456 return nir_fsub(b, src0, nir_fmul(b, src1, floor));
457 }
458
459 static nir_ssa_def *
lower_doubles_instr_to_soft(nir_builder * b,nir_alu_instr * instr,const nir_shader * softfp64,nir_lower_doubles_options options)460 lower_doubles_instr_to_soft(nir_builder *b, nir_alu_instr *instr,
461 const nir_shader *softfp64,
462 nir_lower_doubles_options options)
463 {
464 if (!(options & nir_lower_fp64_full_software))
465 return NULL;
466
467 assert(instr->dest.dest.is_ssa);
468
469 const char *name;
470 const struct glsl_type *return_type = glsl_uint64_t_type();
471
472 switch (instr->op) {
473 case nir_op_f2i64:
474 if (instr->src[0].src.ssa->bit_size != 64)
475 return false;
476 name = "__fp64_to_int64";
477 return_type = glsl_int64_t_type();
478 break;
479 case nir_op_f2u64:
480 if (instr->src[0].src.ssa->bit_size != 64)
481 return false;
482 name = "__fp64_to_uint64";
483 break;
484 case nir_op_f2f64:
485 name = "__fp32_to_fp64";
486 break;
487 case nir_op_f2f32:
488 name = "__fp64_to_fp32";
489 return_type = glsl_float_type();
490 break;
491 case nir_op_f2i32:
492 name = "__fp64_to_int";
493 return_type = glsl_int_type();
494 break;
495 case nir_op_f2u32:
496 name = "__fp64_to_uint";
497 return_type = glsl_uint_type();
498 break;
499 case nir_op_f2b1:
500 case nir_op_f2b32:
501 name = "__fp64_to_bool";
502 return_type = glsl_bool_type();
503 break;
504 case nir_op_b2f64:
505 name = "__bool_to_fp64";
506 break;
507 case nir_op_i2f64:
508 if (instr->src[0].src.ssa->bit_size == 64)
509 name = "__int64_to_fp64";
510 else
511 name = "__int_to_fp64";
512 break;
513 case nir_op_u2f64:
514 if (instr->src[0].src.ssa->bit_size == 64)
515 name = "__uint64_to_fp64";
516 else
517 name = "__uint_to_fp64";
518 break;
519 case nir_op_fabs:
520 name = "__fabs64";
521 break;
522 case nir_op_fneg:
523 name = "__fneg64";
524 break;
525 case nir_op_fround_even:
526 name = "__fround64";
527 break;
528 case nir_op_ftrunc:
529 name = "__ftrunc64";
530 break;
531 case nir_op_ffloor:
532 name = "__ffloor64";
533 break;
534 case nir_op_ffract:
535 name = "__ffract64";
536 break;
537 case nir_op_fsign:
538 name = "__fsign64";
539 break;
540 case nir_op_feq:
541 name = "__feq64";
542 return_type = glsl_bool_type();
543 break;
544 case nir_op_fneu:
545 name = "__fneu64";
546 return_type = glsl_bool_type();
547 break;
548 case nir_op_flt:
549 name = "__flt64";
550 return_type = glsl_bool_type();
551 break;
552 case nir_op_fge:
553 name = "__fge64";
554 return_type = glsl_bool_type();
555 break;
556 case nir_op_fmin:
557 name = "__fmin64";
558 break;
559 case nir_op_fmax:
560 name = "__fmax64";
561 break;
562 case nir_op_fadd:
563 name = "__fadd64";
564 break;
565 case nir_op_fmul:
566 name = "__fmul64";
567 break;
568 case nir_op_ffma:
569 name = "__ffma64";
570 break;
571 case nir_op_fsat:
572 name = "__fsat64";
573 break;
574 default:
575 return false;
576 }
577
578 nir_function *func = NULL;
579 nir_foreach_function(function, softfp64) {
580 if (strcmp(function->name, name) == 0) {
581 func = function;
582 break;
583 }
584 }
585 if (!func || !func->impl) {
586 fprintf(stderr, "Cannot find function \"%s\"\n", name);
587 assert(func);
588 }
589
590 nir_ssa_def *params[4] = { NULL, };
591
592 nir_variable *ret_tmp =
593 nir_local_variable_create(b->impl, return_type, "return_tmp");
594 nir_deref_instr *ret_deref = nir_build_deref_var(b, ret_tmp);
595 params[0] = &ret_deref->dest.ssa;
596
597 assert(nir_op_infos[instr->op].num_inputs + 1 == func->num_params);
598 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
599 assert(i + 1 < ARRAY_SIZE(params));
600 params[i + 1] = nir_mov_alu(b, instr->src[i], 1);
601 }
602
603 nir_inline_function_impl(b, func->impl, params, NULL);
604
605 return nir_load_deref(b, ret_deref);
606 }
607
608 nir_lower_doubles_options
nir_lower_doubles_op_to_options_mask(nir_op opcode)609 nir_lower_doubles_op_to_options_mask(nir_op opcode)
610 {
611 switch (opcode) {
612 case nir_op_frcp: return nir_lower_drcp;
613 case nir_op_fsqrt: return nir_lower_dsqrt;
614 case nir_op_frsq: return nir_lower_drsq;
615 case nir_op_ftrunc: return nir_lower_dtrunc;
616 case nir_op_ffloor: return nir_lower_dfloor;
617 case nir_op_fceil: return nir_lower_dceil;
618 case nir_op_ffract: return nir_lower_dfract;
619 case nir_op_fround_even: return nir_lower_dround_even;
620 case nir_op_fmod: return nir_lower_dmod;
621 case nir_op_fsub: return nir_lower_dsub;
622 case nir_op_fdiv: return nir_lower_ddiv;
623 default: return 0;
624 }
625 }
626
627 struct lower_doubles_data {
628 const nir_shader *softfp64;
629 nir_lower_doubles_options options;
630 };
631
632 static bool
should_lower_double_instr(const nir_instr * instr,const void * _data)633 should_lower_double_instr(const nir_instr *instr, const void *_data)
634 {
635 const struct lower_doubles_data *data = _data;
636 const nir_lower_doubles_options options = data->options;
637
638 if (instr->type != nir_instr_type_alu)
639 return false;
640
641 const nir_alu_instr *alu = nir_instr_as_alu(instr);
642
643 assert(alu->dest.dest.is_ssa);
644 bool is_64 = alu->dest.dest.ssa.bit_size == 64;
645
646 unsigned num_srcs = nir_op_infos[alu->op].num_inputs;
647 for (unsigned i = 0; i < num_srcs; i++) {
648 is_64 |= (nir_src_bit_size(alu->src[i].src) == 64);
649 }
650
651 if (!is_64)
652 return false;
653
654 if (options & nir_lower_fp64_full_software)
655 return true;
656
657 return options & nir_lower_doubles_op_to_options_mask(alu->op);
658 }
659
660 static nir_ssa_def *
lower_doubles_instr(nir_builder * b,nir_instr * instr,void * _data)661 lower_doubles_instr(nir_builder *b, nir_instr *instr, void *_data)
662 {
663 const struct lower_doubles_data *data = _data;
664 const nir_lower_doubles_options options = data->options;
665 nir_alu_instr *alu = nir_instr_as_alu(instr);
666
667 nir_ssa_def *soft_def =
668 lower_doubles_instr_to_soft(b, alu, data->softfp64, options);
669 if (soft_def)
670 return soft_def;
671
672 if (!(options & nir_lower_doubles_op_to_options_mask(alu->op)))
673 return NULL;
674
675 nir_ssa_def *src = nir_mov_alu(b, alu->src[0],
676 alu->dest.dest.ssa.num_components);
677
678 switch (alu->op) {
679 case nir_op_frcp:
680 return lower_rcp(b, src);
681 case nir_op_fsqrt:
682 return lower_sqrt_rsq(b, src, true);
683 case nir_op_frsq:
684 return lower_sqrt_rsq(b, src, false);
685 case nir_op_ftrunc:
686 return lower_trunc(b, src);
687 case nir_op_ffloor:
688 return lower_floor(b, src);
689 case nir_op_fceil:
690 return lower_ceil(b, src);
691 case nir_op_ffract:
692 return lower_fract(b, src);
693 case nir_op_fround_even:
694 return lower_round_even(b, src);
695
696 case nir_op_fdiv:
697 case nir_op_fsub:
698 case nir_op_fmod: {
699 nir_ssa_def *src1 = nir_mov_alu(b, alu->src[1],
700 alu->dest.dest.ssa.num_components);
701 switch (alu->op) {
702 case nir_op_fdiv:
703 return nir_fmul(b, src, nir_frcp(b, src1));
704 case nir_op_fsub:
705 return nir_fadd(b, src, nir_fneg(b, src1));
706 case nir_op_fmod:
707 return lower_mod(b, src, src1);
708 default:
709 unreachable("unhandled opcode");
710 }
711 }
712 default:
713 unreachable("unhandled opcode");
714 }
715 }
716
717 static bool
nir_lower_doubles_impl(nir_function_impl * impl,const nir_shader * softfp64,nir_lower_doubles_options options)718 nir_lower_doubles_impl(nir_function_impl *impl,
719 const nir_shader *softfp64,
720 nir_lower_doubles_options options)
721 {
722 struct lower_doubles_data data = {
723 .softfp64 = softfp64,
724 .options = options,
725 };
726
727 bool progress =
728 nir_function_impl_lower_instructions(impl,
729 should_lower_double_instr,
730 lower_doubles_instr,
731 &data);
732
733 if (progress && (options & nir_lower_fp64_full_software)) {
734 /* SSA and register indices are completely messed up now */
735 nir_index_ssa_defs(impl);
736 nir_index_local_regs(impl);
737
738 nir_metadata_preserve(impl, nir_metadata_none);
739
740 /* And we have deref casts we need to clean up thanks to function
741 * inlining.
742 */
743 nir_opt_deref_impl(impl);
744 } else if (progress) {
745 nir_metadata_preserve(impl, nir_metadata_block_index |
746 nir_metadata_dominance);
747 } else {
748 nir_metadata_preserve(impl, nir_metadata_all);
749 }
750
751 return progress;
752 }
753
754 bool
nir_lower_doubles(nir_shader * shader,const nir_shader * softfp64,nir_lower_doubles_options options)755 nir_lower_doubles(nir_shader *shader,
756 const nir_shader *softfp64,
757 nir_lower_doubles_options options)
758 {
759 bool progress = false;
760
761 nir_foreach_function(function, shader) {
762 if (function->impl) {
763 progress |= nir_lower_doubles_impl(function->impl, softfp64, options);
764 }
765 }
766
767 return progress;
768 }
769