1 /*
2 * Copyright 2020 Axel Davy <davyaxel0@gmail.com>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
22
23 /*
24 * Memory util function to allocate RAM backing for textures.
25 * DEFAULT textures are stored on GPU
26 * MANAGED textures have a RAM backing and upload the content to a GPU texture for use
27 * SYSTEMMEM textures are stored in RAM and are meant to be uploaded to DEFAULT textures.
28 * Basically SYSTEMMEM + DEFAULT enables to do manually what MANAGED does automatically.
29 *
30 * Once the GPU texture is created, the RAM backing of MANAGED textures can be used in
31 * two occasions:
32 * . Recreating the GPU texture (for example lod change, or GPU memory eviction)
33 * . Reading the texture content (some games do that to fill higher res versions of the texture)
34 *
35 * When a lot of textures are used, the amount of addressing space (virtual memory) taken by MANAGED
36 * and SYSTEMMEM textures can be significant and cause virtual memory exhaustion for 32 bits programs.
37 *
38 * One way to reduce the virtual memory taken is to ignore lod and delete the RAM backing of
39 * MANAGED textures once it is uploaded. If the texture is read, or evicted from GPU memory, the RAM
40 * backing would be recreated (Note that mapping the GPU memory is not acceptable as RAM memory is supposed
41 * to have smaller (fixed) stride constraints).
42 *
43 * Instead the approach taken here is to keep the RAM backing alive, but free its addressing space.
44 * In other words virtual memory usage is reduced, but the RAM usage of the app is the same.
45 * To do so, we use the memfd feature of the linux kernel. It enables to allocate a file
46 * stored in RAM and visible only to the app. We can map/unmap portions of the file as we need.
47 * When a portion is mapped, it takes virtual memory space. When it is not, it doesn't.
48 * The file is stored in RAM, and thus the access speed is the same as normal RAM. Using such
49 * file to allocate data enables to use more than 4GB RAM on 32 bits.
50 *
51 * This approach adds some overhead: when accessing mapped content the first time, pages are allocated
52 * by the system. This has a lot of overhead (several times the time to memset the area).
53 * Releasing these pages (when unmapping) has overhead too, though significantly less.
54 *
55 * This overhead however is much less significant than the overhead of downloading the GPU content.
56 * In addition, we reduce significantly the overhead spent in Gallium nine for new allocations by
57 * using the fact new contents of the file are zero-allocated. By not calling memset in Gallium nine,
58 * the overhead of page allocation happens client side, thus outside the d3d mutex. This should give
59 * a performance boost for multithreaded applications. As malloc also has this overhead (at least for
60 * large enough allocations which use mmap internally), allocating ends up faster than with the standard
61 * allocation path.
62 * By far the overhead induced by page allocation/deallocation is the biggest overhead involved in this
63 * code. It is reduced significantly with huge pages, but it is too complex to configure for the user
64 * to use it (and it has some memory management downsides too). The memset trick enables to move most of
65 * the overhead outside Nine anyway.
66 *
67 * To prevent useless unmappings quickly followed by mapping again, we do not unmap right away allocations
68 * that are not locked for access anymore. Indeed it is likely the allocation will be accessed several times
69 * in a row, for example first to fill it, then to upload it.
70 * We keep everything mapped until we reach a threshold of memory allocated. Then we use hints to prioritize
71 * which regions to unmap first. Thus virtual memory usage is only reduced when the threshold is reached.
72 *
73 * Multiple memfd files are used, each of 100MB. Thus memory usage (but not virtual memory usage) increases
74 * by amounts of 100MB. When not on x86 32 bits, we do use the standard malloc.
75 *
76 * Finally, for ease of use, we do not implement packing of allocation inside page-aligned regions.
77 * One allocation is given one page-aligned region inside a memfd file.
78 * Allocations smaller than a page (4KB on x86) go through malloc.
79 * As texture sizes are usually multiples of powers of two, allocations above the page size are typically
80 * multiples of the page size, thus space is not wasted in practice.
81 *
82 */
83
84 #include <errno.h>
85 #include <fcntl.h>
86 #include <limits.h>
87 #include <linux/memfd.h>
88 #include <pthread.h>
89 #include <stdio.h>
90 #include <sys/mman.h>
91 #include <sys/types.h>
92 #include <sys/stat.h>
93 #include <ulimit.h>
94 #include <unistd.h>
95
96 #include "util/list.h"
97 #include "util/u_memory.h"
98 #include "util/slab.h"
99
100 #include "nine_debug.h"
101 #include "nine_memory_helper.h"
102 #include "nine_state.h"
103
104
105 #define DIVUP(a,b) (((a)+(b)-1)/(b))
106
107 /* Required alignment for allocations */
108 #define NINE_ALLOCATION_ALIGNMENT 32
109
110 #define DBG_CHANNEL (DBG_BASETEXTURE|DBG_SURFACE|DBG_VOLUME|DBG_TEXTURE|DBG_CUBETEXTURE)
111
112 /* Use memfd only for 32 bits. Check for memfd_create support */
113 #if defined(PIPE_ARCH_X86) && defined(HAVE_MEMFD_CREATE)
114 #define NINE_ENABLE_MEMFD
115 #endif
116
117 #ifdef NINE_ENABLE_MEMFD
118
119 struct nine_memfd_file_region {
120 unsigned offset;
121 unsigned size;
122 void *map; /* pointer to the mapped content of the file. Can be NULL */
123 int num_locks; /* Total number of locks blocking the munmap */
124 int num_weak_unlocks; /* Number of users which weakly block the munmap */
125 bool zero_filled;
126 struct list_head list;
127 };
128
129 struct nine_memfd_file {
130 int fd;
131 int filesize; /* Size of the file */
132 struct list_head free_regions; /* This list is sorted by the offset, and consecutive regions are merged */
133 struct list_head unmapped_allocated_regions; /* This list and the following ones are not sorted */
134 struct list_head locked_mapped_allocated_regions;
135 struct list_head weak_unlocked_mapped_allocated_regions;
136 struct list_head unlocked_mapped_allocated_regions;
137 };
138
139 /* The allocation is stored inside a memfd */
140 #define NINE_MEMFD_ALLOC 1
141 /* The allocation is part of another allocation, which is stored inside a memfd */
142 #define NINE_MEMFD_SUBALLOC 2
143 /* The allocation was allocated with malloc and will have to be freed */
144 #define NINE_MALLOC_ALLOC 3
145 /* The pointer doesn't need memory management */
146 #define NINE_EXTERNAL_ALLOC 4
147
148 struct nine_memfd_allocation {
149 struct nine_memfd_file *file; /* File in which the data is allocated */
150 struct nine_memfd_file_region *region; /* Corresponding file memory region. Max 1 allocation per region */
151 };
152
153 /* 'Suballocations' are used to represent subregions of an allocation.
154 * For example a given layer of a texture. These are not allocations,
155 * but can be accessed separately. To correctly handle accessing them,
156 * we encapsulate them into this structure. */
157 struct nine_memfd_suballocation {
158 struct nine_memfd_allocation *parent; /* Parent allocation */
159 int relative_offset; /* Offset relative to the parent */
160 };
161
162 /* A standard allocation with malloc */
163 struct nine_malloc_allocation {
164 void *buf;
165 unsigned allocation_size;
166 };
167
168 /* A pointer with no need of memory management.
169 * For example a pointer passed by the application,
170 * or a 'suballocation' inside a malloc-ed allocation. */
171 struct nine_external_allocation {
172 void *buf;
173 };
174
175 /* Encapsulates all allocations */
176 struct nine_allocation {
177 unsigned allocation_type; /* Type of allocation */
178 union {
179 struct nine_memfd_allocation memfd;
180 struct nine_memfd_suballocation submemfd;
181 struct nine_malloc_allocation malloc;
182 struct nine_external_allocation external;
183 } memory;
184 struct list_head list_free; /* for pending frees */
185 /* The fields below are only used for memfd/submemfd allocations */
186 struct list_head list_release; /* for pending releases */
187 /* Handling of the CSMT thread:
188 * API calls are singled thread (global mutex protection).
189 * However we multithreading internally (CSMT worker thread).
190 * To handle this thread, we map/lock the allocation in the
191 * main thread and increase pending_counter. When the worker thread
192 * is done with the scheduled function, the pending_counter is decreased.
193 * If pending_counter is 0, locks_on_counter can be subtracted from
194 * active_locks (in the main thread). */
195 unsigned locks_on_counter;
196 unsigned *pending_counter;
197 /* Hint from the last unlock indicating the data might be locked again soon */
198 bool weak_unlock;
199 };
200
201 struct nine_allocator {
202 struct NineDevice9 *device;
203 int page_size; /* Page size */
204 int num_fd_max; /* Max number of memfd files */
205 int min_file_size; /* Minimum memfd file size */
206 /* Tracking of all allocations */
207 long long total_allocations; /* Amount of memory allocated */
208 long long total_locked_memory; /* TODO */ /* Amount of memory blocked by a lock */
209 long long total_virtual_memory; /* Current virtual memory used by our allocations */
210 long long total_virtual_memory_limit; /* Target maximum virtual memory used. Above that, tries to unmap memfd files whenever possible. */
211
212 int num_fd; /* Number of memfd files */ /* TODO release unused memfd files */
213 struct slab_mempool allocation_pool;
214 struct slab_mempool region_pool;
215 struct nine_memfd_file *memfd_pool; /* Table (of size num_fd) of memfd files */
216 struct list_head pending_releases; /* List of allocations with unlocks depending on pending_counter */ /* TODO: Elements seem removed only on flush. Destruction ? */
217
218 pthread_mutex_t mutex_pending_frees;
219 struct list_head pending_frees;
220 };
221
222 #ifdef DEBUG
223
224 static void
debug_dump_memfd_state(struct nine_memfd_file * memfd_file,bool details)225 debug_dump_memfd_state(struct nine_memfd_file *memfd_file, bool details)
226 {
227 struct nine_memfd_file_region *region;
228
229 DBG("fd: %d, filesize: %d\n", memfd_file->fd, memfd_file->filesize);
230 if (!details)
231 return;
232 LIST_FOR_EACH_ENTRY(region, &memfd_file->free_regions, list) {
233 DBG("FREE block: offset %d, size %d, map=%p, locks=%d, weak=%d, z=%d\n",
234 region->offset, region->size, region->map,
235 region->num_locks, region->num_weak_unlocks, (int)region->zero_filled);
236 }
237 LIST_FOR_EACH_ENTRY(region, &memfd_file->unmapped_allocated_regions, list) {
238 DBG("UNMAPPED ALLOCATED block: offset %d, size %d, map=%p, locks=%d, weak=%d, z=%d\n",
239 region->offset, region->size, region->map,
240 region->num_locks, region->num_weak_unlocks, (int)region->zero_filled);
241 }
242 LIST_FOR_EACH_ENTRY(region, &memfd_file->locked_mapped_allocated_regions, list) {
243 DBG("LOCKED MAPPED ALLOCATED block: offset %d, size %d, map=%p, locks=%d, weak=%d, z=%d\n",
244 region->offset, region->size, region->map,
245 region->num_locks, region->num_weak_unlocks, (int)region->zero_filled);
246 }
247 LIST_FOR_EACH_ENTRY(region, &memfd_file->unlocked_mapped_allocated_regions, list) {
248 DBG("UNLOCKED MAPPED ALLOCATED block: offset %d, size %d, map=%p, locks=%d, weak=%d, z=%d\n",
249 region->offset, region->size, region->map,
250 region->num_locks, region->num_weak_unlocks, (int)region->zero_filled);
251 }
252 LIST_FOR_EACH_ENTRY(region, &memfd_file->weak_unlocked_mapped_allocated_regions, list) {
253 DBG("WEAK UNLOCKED MAPPED ALLOCATED block: offset %d, size %d, map=%p, locks=%d, weak=%d, z=%d\n",
254 region->offset, region->size, region->map,
255 region->num_locks, region->num_weak_unlocks, (int)region->zero_filled);
256 }
257 }
258
259 static void
debug_dump_allocation_state(struct nine_allocation * allocation)260 debug_dump_allocation_state(struct nine_allocation *allocation)
261 {
262 switch(allocation->allocation_type) {
263 case NINE_MEMFD_ALLOC:
264 DBG("Allocation is stored in this memfd file:\n");
265 debug_dump_memfd_state(allocation->memory.memfd.file, true);
266 DBG("Allocation is offset: %d, size: %d\n",
267 allocation->memory.memfd.region->offset, allocation->memory.memfd.region->size);
268 break;
269 case NINE_MEMFD_SUBALLOC:
270 DBG("Allocation is suballocation at relative offset %d of this allocation:\n",
271 allocation->memory.submemfd.relative_offset);
272 DBG("Parent allocation is stored in this memfd file:\n");
273 debug_dump_memfd_state(allocation->memory.submemfd.parent->file, false);
274 DBG("Parent allocation is offset: %d, size: %d\n",
275 allocation->memory.submemfd.parent->region->offset,
276 allocation->memory.submemfd.parent->region->size);
277 break;
278 case NINE_MALLOC_ALLOC:
279 DBG("Allocation is a standard malloc\n");
280 break;
281 case NINE_EXTERNAL_ALLOC:
282 DBG("Allocation is a suballocation of a standard malloc or an external allocation\n");
283 break;
284 default:
285 assert(false);
286 }
287 }
288
289 #else
290
291 static void
debug_dump_memfd_state(struct nine_memfd_file * memfd_file,bool details)292 debug_dump_memfd_state(struct nine_memfd_file *memfd_file, bool details)
293 {
294 (void)memfd_file;
295 (void)details;
296 }
297
298 static void
debug_dump_allocation_state(struct nine_allocation * allocation)299 debug_dump_allocation_state(struct nine_allocation *allocation)
300 {
301 (void)allocation;
302 }
303
304 #endif
305
306 static void
debug_dump_allocator_state(struct nine_allocator * allocator)307 debug_dump_allocator_state(struct nine_allocator *allocator)
308 {
309 DBG("SURFACE ALLOCATOR STATUS:\n");
310 DBG("Total allocated: %lld\n", allocator->total_allocations);
311 DBG("Total virtual memory locked: %lld\n", allocator->total_locked_memory);
312 DBG("Virtual memory used: %lld / %lld\n", allocator->total_virtual_memory, allocator->total_virtual_memory_limit);
313 DBG("Num memfd files: %d / %d\n", allocator->num_fd, allocator->num_fd_max);
314 }
315
316
317 /* Retrieve file used for the storage of the content of this allocation.
318 * NULL if not using memfd */
319 static struct nine_memfd_file *
nine_get_memfd_file_backing(struct nine_allocation * allocation)320 nine_get_memfd_file_backing(struct nine_allocation *allocation)
321 {
322 if (allocation->allocation_type > NINE_MEMFD_SUBALLOC)
323 return NULL;
324 if (allocation->allocation_type == NINE_MEMFD_ALLOC)
325 return allocation->memory.memfd.file;
326 return allocation->memory.submemfd.parent->file;
327 }
328
329 /* Retrieve region used for the storage of the content of this allocation.
330 * NULL if not using memfd */
331 static struct nine_memfd_file_region *
nine_get_memfd_region_backing(struct nine_allocation * allocation)332 nine_get_memfd_region_backing(struct nine_allocation *allocation)
333 {
334 if (allocation->allocation_type > NINE_MEMFD_SUBALLOC)
335 return NULL;
336 if (allocation->allocation_type == NINE_MEMFD_ALLOC)
337 return allocation->memory.memfd.region;
338 return allocation->memory.submemfd.parent->region;
339 }
340
move_region(struct list_head * tail,struct nine_memfd_file_region * region)341 static void move_region(struct list_head *tail, struct nine_memfd_file_region *region)
342 {
343 /* Remove from previous list (if any) */
344 list_delinit(®ion->list);
345 /* Insert in new list (last) */
346 list_addtail(®ion->list, tail);
347 }
348
349 #if 0
350 static void move_region_ordered(struct list_head *tail, struct nine_memfd_file_region *region)
351 {
352 struct nine_memfd_file_region *cur_region;
353 struct list_head *insertion_point = tail;
354
355 /* Remove from previous list (if any) */
356 list_delinit(®ion->list);
357
358 LIST_FOR_EACH_ENTRY(cur_region, tail, list) {
359 if (cur_region->offset > region->offset)
360 break;
361 insertion_point = &cur_region->list;
362 }
363 /* Insert just before cur_region */
364 list_add(®ion->list, insertion_point);
365 }
366 #endif
367
move_region_ordered_merge(struct nine_allocator * allocator,struct list_head * tail,struct nine_memfd_file_region * region)368 static void move_region_ordered_merge(struct nine_allocator *allocator, struct list_head *tail, struct nine_memfd_file_region *region)
369 {
370 struct nine_memfd_file_region *p, *cur_region = NULL, *prev_region = NULL;
371
372 /* Remove from previous list (if any) */
373 list_delinit(®ion->list);
374
375 LIST_FOR_EACH_ENTRY(p, tail, list) {
376 cur_region = p;
377 if (cur_region->offset > region->offset)
378 break;
379 prev_region = cur_region;
380 }
381
382 /* Insert after prev_region and before cur_region. Try to merge */
383 if (prev_region && ((prev_region->offset + prev_region->size) == region->offset)) {
384 if (cur_region && (cur_region->offset == (region->offset + region->size))) {
385 /* Merge all three regions */
386 prev_region->size += region->size + cur_region->size;
387 prev_region->zero_filled = prev_region->zero_filled && region->zero_filled && cur_region->zero_filled;
388 list_del(&cur_region->list);
389 slab_free_st(&allocator->region_pool, region);
390 slab_free_st(&allocator->region_pool, cur_region);
391 } else {
392 prev_region->size += region->size;
393 prev_region->zero_filled = prev_region->zero_filled && region->zero_filled;
394 slab_free_st(&allocator->region_pool, region);
395 }
396 } else if (cur_region && (cur_region->offset == (region->offset + region->size))) {
397 cur_region->offset = region->offset;
398 cur_region->size += region->size;
399 cur_region->zero_filled = region->zero_filled && cur_region->zero_filled;
400 slab_free_st(&allocator->region_pool, region);
401 } else {
402 list_add(®ion->list, prev_region ? &prev_region->list : tail);
403 }
404 }
405
allocate_region(struct nine_allocator * allocator,unsigned offset,unsigned size)406 static struct nine_memfd_file_region *allocate_region(struct nine_allocator *allocator, unsigned offset, unsigned size) {
407 struct nine_memfd_file_region *region = slab_alloc_st(&allocator->allocation_pool);
408 if (!region)
409 return NULL;
410 region->offset = offset;
411 region->size = size;
412 region->num_locks = 0;
413 region->num_weak_unlocks = 0;
414 region->map = NULL;
415 region->zero_filled = false;
416 list_inithead(®ion->list);
417 return region;
418 }
419
420 /* Go through memfd allocated files, and try to use unused memory for the requested allocation.
421 * Returns whether it suceeded */
422 static bool
insert_new_allocation(struct nine_allocator * allocator,struct nine_allocation * new_allocation,unsigned allocation_size)423 insert_new_allocation(struct nine_allocator *allocator, struct nine_allocation *new_allocation, unsigned allocation_size)
424 {
425 int memfd_index;
426 struct nine_memfd_file *memfd_file, *best_memfd_file;
427 struct nine_memfd_file_region *region, *best_region, *new_region;
428
429
430 /* Find the smallest - but bigger than the requested size - unused memory
431 * region inside the memfd files. */
432 int min_blocksize = INT_MAX;
433
434 for (memfd_index = 0; memfd_index < allocator->num_fd; memfd_index++) {
435 memfd_file = (void*)allocator->memfd_pool + memfd_index*sizeof(struct nine_memfd_file);
436
437 LIST_FOR_EACH_ENTRY(region, &memfd_file->free_regions, list) {
438 if (region->size <= min_blocksize && region->size >= allocation_size) {
439 min_blocksize = region->size;
440 best_region = region;
441 best_memfd_file = memfd_file;
442 }
443 }
444 if (min_blocksize == allocation_size)
445 break;
446 }
447
448 /* The allocation doesn't fit in any memfd file */
449 if (min_blocksize == INT_MAX)
450 return false;
451
452 /* Target region found */
453 /* Move from free to unmapped allocated */
454 best_region->size = DIVUP(allocation_size, allocator->page_size) * allocator->page_size;
455 assert(min_blocksize >= best_region->size);
456 move_region(&best_memfd_file->unmapped_allocated_regions, best_region);
457 new_allocation->memory.memfd.region = best_region;
458 new_allocation->memory.memfd.file = best_memfd_file;
459
460 /* If the original region is bigger than needed, add new region with remaining space */
461 min_blocksize -= best_region->size;
462 if (min_blocksize > 0) {
463 new_region = allocate_region(allocator, best_region->offset + best_region->size, min_blocksize);
464 new_region->zero_filled = best_region->zero_filled;
465 move_region_ordered_merge(allocator, &best_memfd_file->free_regions, new_region);
466 }
467 allocator->total_allocations += best_region->size;
468 return true;
469 }
470
471 /* Go through allocations with unlocks waiting on pending_counter being 0.
472 * If 0 is indeed reached, update the allocation status */
473 static void
nine_flush_pending_releases(struct nine_allocator * allocator)474 nine_flush_pending_releases(struct nine_allocator *allocator)
475 {
476 struct nine_allocation *allocation, *ptr;
477 LIST_FOR_EACH_ENTRY_SAFE(allocation, ptr, &allocator->pending_releases, list_release) {
478 assert(allocation->locks_on_counter > 0);
479 /* If pending_releases reached 0, remove from the list and update the status */
480 if (*allocation->pending_counter == 0) {
481 struct nine_memfd_file *memfd_file = nine_get_memfd_file_backing(allocation);
482 struct nine_memfd_file_region *region = nine_get_memfd_region_backing(allocation);
483 region->num_locks -= allocation->locks_on_counter;
484 allocation->locks_on_counter = 0;
485 list_delinit(&allocation->list_release);
486 if (region->num_locks == 0) {
487 /* Move to the correct list */
488 if (region->num_weak_unlocks)
489 move_region(&memfd_file->weak_unlocked_mapped_allocated_regions, region);
490 else
491 move_region(&memfd_file->unlocked_mapped_allocated_regions, region);
492 allocator->total_locked_memory -= region->size;
493 }
494 }
495 }
496 }
497
498 static void
499 nine_free_internal(struct nine_allocator *allocator, struct nine_allocation *allocation);
500
501 static void
nine_flush_pending_frees(struct nine_allocator * allocator)502 nine_flush_pending_frees(struct nine_allocator *allocator)
503 {
504 struct nine_allocation *allocation, *ptr;
505
506 pthread_mutex_lock(&allocator->mutex_pending_frees);
507 /* The order of release matters as suballocations are supposed to be released first */
508 LIST_FOR_EACH_ENTRY_SAFE(allocation, ptr, &allocator->pending_frees, list_free) {
509 /* Set the allocation in an unlocked state, and then free it */
510 if (allocation->allocation_type == NINE_MEMFD_ALLOC ||
511 allocation->allocation_type == NINE_MEMFD_SUBALLOC) {
512 struct nine_memfd_file *memfd_file = nine_get_memfd_file_backing(allocation);
513 struct nine_memfd_file_region *region = nine_get_memfd_region_backing(allocation);
514 if (region->num_locks != 0) {
515 region->num_locks = 0;
516 allocator->total_locked_memory -= region->size;
517 /* Useless, but to keep consistency */
518 move_region(&memfd_file->unlocked_mapped_allocated_regions, region);
519 }
520 region->num_weak_unlocks = 0;
521 allocation->weak_unlock = false;
522 allocation->locks_on_counter = 0;
523 list_delinit(&allocation->list_release);
524 }
525 list_delinit(&allocation->list_free);
526 nine_free_internal(allocator, allocation);
527 }
528 pthread_mutex_unlock(&allocator->mutex_pending_frees);
529 }
530
531 /* Try to unmap the memfd_index-th file if not already unmapped.
532 * If even_if_weak is False, will not unmap if there are weak unlocks */
533 static void
nine_memfd_unmap_region(struct nine_allocator * allocator,struct nine_memfd_file * memfd_file,struct nine_memfd_file_region * region)534 nine_memfd_unmap_region(struct nine_allocator *allocator,
535 struct nine_memfd_file *memfd_file,
536 struct nine_memfd_file_region *region)
537 {
538 DBG("Unmapping memfd mapped region at %d: size: %d, map=%p, locks=%d, weak=%d\n",
539 region->offset, region->size, region->map,
540 region->num_locks, region->num_weak_unlocks);
541 assert(region->map != NULL);
542
543 if (munmap(region->map, region->size) != 0)
544 fprintf(stderr, "Error on unmapping, errno=%d\n", (int)errno);
545
546 region->map = NULL;
547 /* Move from one of the mapped region list to the unmapped one */
548 move_region(&memfd_file->unmapped_allocated_regions, region);
549 allocator->total_virtual_memory -= region->size;
550 }
551
552 /* Unallocate a region of a memfd file */
553 static void
remove_allocation(struct nine_allocator * allocator,struct nine_memfd_file * memfd_file,struct nine_memfd_file_region * region)554 remove_allocation(struct nine_allocator *allocator, struct nine_memfd_file *memfd_file, struct nine_memfd_file_region *region)
555 {
556 assert(region->num_locks == 0);
557 region->num_weak_unlocks = 0;
558 /* Move from mapped region to unmapped region */
559 if (region->map) {
560 if (likely(!region->zero_filled)) {
561 /* As the region is mapped, it is likely the pages are allocated.
562 * Do the memset now for when we allocate again. It is much faster now,
563 * as the pages are allocated. */
564 DBG("memset on data=%p, size %d\n", region->map, region->size);
565 memset(region->map, 0, region->size);
566 region->zero_filled = true;
567 }
568 nine_memfd_unmap_region(allocator, memfd_file, region);
569 }
570 /* Move from unmapped region to free region */
571 allocator->total_allocations -= region->size;
572 move_region_ordered_merge(allocator, &memfd_file->free_regions, region);
573 }
574
575 /* Try to unmap the regions of the memfd_index-th file if not already unmapped.
576 * If even_if_weak is False, will not unmap if there are weak unlocks */
577 static void
nine_memfd_try_unmap_file(struct nine_allocator * allocator,int memfd_index,bool weak)578 nine_memfd_try_unmap_file(struct nine_allocator *allocator,
579 int memfd_index,
580 bool weak)
581 {
582 struct nine_memfd_file *memfd_file = (void*)allocator->memfd_pool + memfd_index*sizeof(struct nine_memfd_file);
583 struct nine_memfd_file_region *region, *ptr;
584 DBG("memfd file at %d: fd: %d, filesize: %d\n",
585 memfd_index, memfd_file->fd, memfd_file->filesize);
586 debug_dump_memfd_state(memfd_file, true);
587 LIST_FOR_EACH_ENTRY_SAFE(region, ptr,
588 weak ?
589 &memfd_file->weak_unlocked_mapped_allocated_regions :
590 &memfd_file->unlocked_mapped_allocated_regions,
591 list) {
592 nine_memfd_unmap_region(allocator, memfd_file, region);
593 }
594 }
595
596 /* Unmap files until we are below the virtual memory target limit.
597 * If unmap_everything_possible is set, ignore the limit and unmap
598 * all that can be unmapped. */
599 static void
nine_memfd_files_unmap(struct nine_allocator * allocator,bool unmap_everything_possible)600 nine_memfd_files_unmap(struct nine_allocator *allocator,
601 bool unmap_everything_possible)
602 {
603 long long memory_limit = unmap_everything_possible ?
604 0 : allocator->total_virtual_memory_limit;
605 int i;
606
607 /* We are below the limit. Do nothing */
608 if (memory_limit >= allocator->total_virtual_memory)
609 return;
610
611 /* Update allocations with pending releases */
612 nine_flush_pending_releases(allocator);
613
614 DBG("Trying to unmap files with no weak unlock (%lld / %lld)\n",
615 allocator->total_virtual_memory, memory_limit);
616
617 /* Try to release everything with no weak releases.
618 * Those have data not needed for a long time (and
619 * possibly ever). */
620 for (i = 0; i < allocator->num_fd; i++) {
621 nine_memfd_try_unmap_file(allocator, i, false);
622 if (memory_limit >= allocator->total_virtual_memory) {
623 return;}
624 }
625
626 DBG("Trying to unmap files even with weak unlocks (%lld / %lld)\n",
627 allocator->total_virtual_memory, memory_limit);
628
629 /* This wasn't enough. Also release files with weak releases */
630 for (i = 0; i < allocator->num_fd; i++) {
631 nine_memfd_try_unmap_file(allocator, i, true);
632 /* Stop if the target is reached */
633 if (memory_limit >= allocator->total_virtual_memory) {
634 return;}
635 }
636
637 if (!unmap_everything_possible)
638 return;
639
640 /* If there are some pending uploads, execute them,
641 * and retry. */
642 if (list_is_empty(&allocator->pending_releases)) {
643 return;}
644 nine_csmt_process(allocator->device);
645 nine_flush_pending_releases(allocator);
646
647 DBG("Retrying after flushing (%lld / %lld)\n",
648 allocator->total_virtual_memory, memory_limit);
649
650 for (i = 0; i < allocator->num_fd; i++) {
651 nine_memfd_try_unmap_file(allocator, i, false);
652 nine_memfd_try_unmap_file(allocator, i, true);
653 }
654 /* We have done all we could */
655 }
656
657 /* Map a given memfd file */
658 static bool
nine_memfd_region_map(struct nine_allocator * allocator,struct nine_memfd_file * memfd_file,struct nine_memfd_file_region * region)659 nine_memfd_region_map(struct nine_allocator *allocator, struct nine_memfd_file *memfd_file, struct nine_memfd_file_region *region)
660 {
661 if (region->map != NULL)
662 return true;
663
664 debug_dump_memfd_state(memfd_file, true);
665 nine_memfd_files_unmap(allocator, false);
666
667 void *buf = mmap(NULL, region->size, PROT_READ | PROT_WRITE, MAP_SHARED, memfd_file->fd, region->offset);
668
669 if (buf == MAP_FAILED && errno == ENOMEM) {
670 DBG("Failed to mmap a memfd file - trying to unmap other files\n");
671 nine_memfd_files_unmap(allocator, true);
672 buf = mmap(NULL, region->size, PROT_READ | PROT_WRITE, MAP_SHARED, memfd_file->fd, region->offset);
673 }
674 if (buf == MAP_FAILED) {
675 DBG("Failed to mmap a memfd file, errno=%d\n", (int)errno);
676 return false;
677 }
678 region->map = buf;
679 /* no need to move to an unlocked mapped regions list, the caller will handle the list */
680 allocator->total_virtual_memory += region->size;
681 assert((uintptr_t)buf % NINE_ALLOCATION_ALIGNMENT == 0); /* mmap should be page_size aligned, so it should be fine */
682
683 return true;
684 }
685
686 /* Allocate with memfd some memory. Returns True if successful. */
687 static bool
nine_memfd_allocator(struct nine_allocator * allocator,struct nine_allocation * new_allocation,unsigned allocation_size)688 nine_memfd_allocator(struct nine_allocator *allocator,
689 struct nine_allocation *new_allocation,
690 unsigned allocation_size)
691 {
692 struct nine_memfd_file *memfd_file;
693 struct nine_memfd_file_region *region;
694
695 allocation_size = DIVUP(allocation_size, allocator->page_size) * allocator->page_size;
696 new_allocation->allocation_type = NINE_MEMFD_ALLOC;
697 new_allocation->locks_on_counter = 0;
698 new_allocation->pending_counter = NULL;
699 new_allocation->weak_unlock = false;
700 list_inithead(&new_allocation->list_free);
701 list_inithead(&new_allocation->list_release);
702
703 /* Try to find free space in a file already allocated */
704 if (insert_new_allocation(allocator, new_allocation, allocation_size))
705 return true;
706
707 /* No - allocate new memfd file */
708
709 if (allocator->num_fd == allocator->num_fd_max)
710 return false; /* Too many memfd files */
711
712 allocator->num_fd++;
713 memfd_file = (void*)allocator->memfd_pool + (allocator->num_fd-1)*sizeof(struct nine_memfd_file);
714 /* If the allocation size is above the memfd file default size, use a bigger size */
715 memfd_file->filesize = MAX2(allocation_size, allocator->min_file_size);
716
717 memfd_file->fd = memfd_create("gallium_nine_ram", 0);
718 if (memfd_file->fd == -1) {
719 DBG("Failed to created a memfd file, errno=%d\n", (int)errno);
720 allocator->num_fd--;
721 return false;
722 }
723
724 if (ftruncate(memfd_file->fd, memfd_file->filesize) != 0) {
725 DBG("Failed to resize a memfd file, errno=%d\n", (int)errno);
726 close(memfd_file->fd);
727 allocator->num_fd--;
728 return false;
729 }
730
731 list_inithead(&memfd_file->free_regions);
732 list_inithead(&memfd_file->unmapped_allocated_regions);
733 list_inithead(&memfd_file->locked_mapped_allocated_regions);
734 list_inithead(&memfd_file->unlocked_mapped_allocated_regions);
735 list_inithead(&memfd_file->weak_unlocked_mapped_allocated_regions);
736
737 /* Initialize the memfd file with empty region and the allocation */
738 region = allocate_region(allocator, 0, allocation_size);
739 region->zero_filled = true; /* ftruncate does zero-fill the new data */
740 list_add(®ion->list, &memfd_file->unmapped_allocated_regions);
741 new_allocation->memory.memfd.file = memfd_file;
742 new_allocation->memory.memfd.region = region;
743 allocator->total_allocations += allocation_size;
744
745 if (allocation_size == memfd_file->filesize)
746 return true;
747
748 /* Add empty region */
749 region = allocate_region(allocator, allocation_size, memfd_file->filesize - allocation_size);
750 region->zero_filled = true; /* ftruncate does zero-fill the new data */
751 list_add(®ion->list, &memfd_file->free_regions);
752
753 return true;
754 }
755
756 /* Allocate memory */
757 struct nine_allocation *
nine_allocate(struct nine_allocator * allocator,unsigned size)758 nine_allocate(struct nine_allocator *allocator, unsigned size)
759 {
760
761 struct nine_allocation *new_allocation = slab_alloc_st(&allocator->allocation_pool);
762 debug_dump_allocator_state(allocator);
763 if (!new_allocation)
764 return NULL;
765
766 nine_flush_pending_frees(allocator);
767
768 /* Restrict to >= page_size to prevent having too much fragmentation, as the size of
769 * allocations is rounded to the next page_size multiple. */
770 if (size >= allocator->page_size && allocator->total_virtual_memory_limit >= 0 &&
771 nine_memfd_allocator(allocator, new_allocation, size)) {
772 struct nine_memfd_file_region *region = new_allocation->memory.memfd.region;
773 if (!region->zero_filled) {
774 void *data = nine_get_pointer(allocator, new_allocation);
775 if (!data) {
776 ERR("INTERNAL MMAP FOR NEW ALLOCATION FAILED\n");
777 nine_free(allocator, new_allocation);
778 return NULL;
779 }
780 DBG("memset on data=%p, size %d\n", data, region->size);
781 memset(data, 0, region->size);
782 region->zero_filled = true;
783 /* Even though the user usually fills afterward, we don't weakrelease.
784 * The reason is suballocations don't affect the weakrelease state of their
785 * parents. Thus if only suballocations are accessed, the release would stay
786 * weak forever. */
787 nine_pointer_strongrelease(allocator, new_allocation);
788 }
789 DBG("ALLOCATION SUCCESSFUL\n");
790 debug_dump_allocation_state(new_allocation);
791 return new_allocation;
792 }
793
794 void *data = align_calloc(size, NINE_ALLOCATION_ALIGNMENT);
795 if (!data) {
796 DBG("ALLOCATION FAILED\n");
797 return NULL;
798 }
799
800 new_allocation->allocation_type = NINE_MALLOC_ALLOC;
801 new_allocation->memory.malloc.buf = data;
802 new_allocation->memory.malloc.allocation_size = size;
803 list_inithead(&new_allocation->list_free);
804 allocator->total_allocations += size;
805 allocator->total_locked_memory += size;
806 allocator->total_virtual_memory += size;
807 DBG("ALLOCATION SUCCESSFUL\n");
808 debug_dump_allocation_state(new_allocation);
809 return new_allocation;
810 }
811
812 /* Release memory */
813 static void
nine_free_internal(struct nine_allocator * allocator,struct nine_allocation * allocation)814 nine_free_internal(struct nine_allocator *allocator, struct nine_allocation *allocation)
815 {
816 DBG("RELEASING ALLOCATION\n");
817 debug_dump_allocation_state(allocation);
818 if (allocation->allocation_type == NINE_MALLOC_ALLOC) {
819 allocator->total_allocations -= allocation->memory.malloc.allocation_size;
820 allocator->total_locked_memory -= allocation->memory.malloc.allocation_size;
821 allocator->total_virtual_memory -= allocation->memory.malloc.allocation_size;
822 align_free(allocation->memory.malloc.buf);
823 } else if (allocation->allocation_type == NINE_MEMFD_ALLOC ||
824 allocation->allocation_type == NINE_MEMFD_SUBALLOC) {
825 struct nine_memfd_file *memfd_file = nine_get_memfd_file_backing(allocation);
826 struct nine_memfd_file_region *region = nine_get_memfd_region_backing(allocation);
827 if (allocation->weak_unlock)
828 region->num_weak_unlocks--;
829 if (allocation->allocation_type == NINE_MEMFD_ALLOC)
830 remove_allocation(allocator, memfd_file, region);
831 }
832
833 slab_free_st(&allocator->allocation_pool, allocation);
834 debug_dump_allocator_state(allocator);
835 }
836
837
838 void
nine_free(struct nine_allocator * allocator,struct nine_allocation * allocation)839 nine_free(struct nine_allocator *allocator, struct nine_allocation *allocation)
840 {
841 nine_flush_pending_frees(allocator);
842 nine_flush_pending_releases(allocator);
843 nine_free_internal(allocator, allocation);
844 }
845
846 /* Called from the worker thread. Similar to nine_free except we are not in the main thread, thus
847 * we are disallowed to change the allocator structures except the fields reserved
848 * for the worker. In addition, the allocation is allowed to not being unlocked (the release
849 * will unlock it) */
nine_free_worker(struct nine_allocator * allocator,struct nine_allocation * allocation)850 void nine_free_worker(struct nine_allocator *allocator, struct nine_allocation *allocation)
851 {
852 /* Add the allocation to the list of pending allocations to free */
853 pthread_mutex_lock(&allocator->mutex_pending_frees);
854 /* The order of free matters as suballocations are supposed to be released first */
855 list_addtail(&allocation->list_free, &allocator->pending_frees);
856 pthread_mutex_unlock(&allocator->mutex_pending_frees);
857 }
858
859 /* Lock an allocation, and retrieve the pointer */
860 void *
nine_get_pointer(struct nine_allocator * allocator,struct nine_allocation * allocation)861 nine_get_pointer(struct nine_allocator *allocator, struct nine_allocation *allocation)
862 {
863 struct nine_memfd_file *memfd_file;
864 struct nine_memfd_file_region *region;
865
866 nine_flush_pending_releases(allocator);
867 DBG("allocation_type: %d\n", allocation->allocation_type);
868
869 if (allocation->allocation_type == NINE_MALLOC_ALLOC)
870 return allocation->memory.malloc.buf;
871 if (allocation->allocation_type == NINE_EXTERNAL_ALLOC)
872 return allocation->memory.external.buf;
873
874 memfd_file = nine_get_memfd_file_backing(allocation);
875 region = nine_get_memfd_region_backing(allocation);
876 if (!nine_memfd_region_map(allocator, memfd_file, region)) {
877 DBG("Couldn't map memfd region for get_pointer\n");
878 return NULL;
879 }
880
881 move_region(&memfd_file->locked_mapped_allocated_regions, region); /* Note: redundant if region->num_locks */
882 region->num_locks++;
883
884 if (region->num_locks == 1)
885 allocator->total_locked_memory += region->size;
886 if (allocation->weak_unlock)
887 region->num_weak_unlocks--;
888 allocation->weak_unlock = false;
889 region->zero_filled = false;
890
891
892 if (allocation->allocation_type == NINE_MEMFD_ALLOC)
893 return region->map;
894 if (allocation->allocation_type == NINE_MEMFD_SUBALLOC)
895 return region->map + allocation->memory.submemfd.relative_offset;
896
897 assert(false);
898 return NULL;
899 }
900
901 /* Unlock an allocation, but with hint that we might lock again soon */
902 void
nine_pointer_weakrelease(struct nine_allocator * allocator,struct nine_allocation * allocation)903 nine_pointer_weakrelease(struct nine_allocator *allocator, struct nine_allocation *allocation)
904 {
905 struct nine_memfd_file_region *region;
906 if (allocation->allocation_type > NINE_MEMFD_SUBALLOC)
907 return;
908
909 region = nine_get_memfd_region_backing(allocation);
910 if (!allocation->weak_unlock)
911 region->num_weak_unlocks++;
912 allocation->weak_unlock = true;
913 region->num_locks--;
914 if (region->num_locks == 0) {
915 struct nine_memfd_file *memfd_file = nine_get_memfd_file_backing(allocation);
916 allocator->total_locked_memory -= region->size;
917 move_region(&memfd_file->weak_unlocked_mapped_allocated_regions, region);
918 }
919 }
920
921 /* Unlock an allocation */
922 void
nine_pointer_strongrelease(struct nine_allocator * allocator,struct nine_allocation * allocation)923 nine_pointer_strongrelease(struct nine_allocator *allocator, struct nine_allocation *allocation)
924 {
925 struct nine_memfd_file_region *region;
926 if (allocation->allocation_type > NINE_MEMFD_SUBALLOC)
927 return;
928
929 region = nine_get_memfd_region_backing(allocation);
930 region->num_locks--;
931 if (region->num_locks == 0) {
932 struct nine_memfd_file *memfd_file = nine_get_memfd_file_backing(allocation);
933 allocator->total_locked_memory -= region->size;
934 if (region->num_weak_unlocks)
935 move_region(&memfd_file->weak_unlocked_mapped_allocated_regions, region);
936 else
937 move_region(&memfd_file->unlocked_mapped_allocated_regions, region);
938 }
939 }
940
941 /* Delay a release to when a given counter becomes zero */
942 void
nine_pointer_delayedstrongrelease(struct nine_allocator * allocator,struct nine_allocation * allocation,unsigned * counter)943 nine_pointer_delayedstrongrelease(struct nine_allocator *allocator, struct nine_allocation *allocation, unsigned *counter)
944 {
945 if (allocation->allocation_type > NINE_MEMFD_SUBALLOC)
946 return;
947
948 assert(allocation->pending_counter == NULL || allocation->pending_counter == counter);
949 allocation->pending_counter = counter;
950 allocation->locks_on_counter++;
951
952 if (list_is_empty(&allocation->list_release))
953 list_add(&allocation->list_release, &allocator->pending_releases);
954 }
955
956 /* Create a suballocation of an allocation */
957 struct nine_allocation *
nine_suballocate(struct nine_allocator * allocator,struct nine_allocation * allocation,int offset)958 nine_suballocate(struct nine_allocator* allocator, struct nine_allocation *allocation, int offset)
959 {
960 struct nine_allocation *new_allocation = slab_alloc_st(&allocator->allocation_pool);
961 if (!new_allocation)
962 return NULL;
963
964 DBG("Suballocate allocation at offset: %d\n", offset);
965 assert(allocation->allocation_type != NINE_MEMFD_SUBALLOC);
966 list_inithead(&new_allocation->list_free);
967
968 if (allocation->allocation_type != NINE_MEMFD_ALLOC) {
969 new_allocation->allocation_type = NINE_EXTERNAL_ALLOC;
970 if (allocation->allocation_type == NINE_MALLOC_ALLOC)
971 new_allocation->memory.external.buf = allocation->memory.malloc.buf + offset;
972 else
973 new_allocation->memory.external.buf = allocation->memory.external.buf + offset;
974 return new_allocation;
975 }
976 new_allocation->allocation_type = NINE_MEMFD_SUBALLOC;
977 new_allocation->memory.submemfd.parent = &allocation->memory.memfd;
978 new_allocation->memory.submemfd.relative_offset = offset;
979 new_allocation->locks_on_counter = 0;
980 new_allocation->pending_counter = NULL;
981 new_allocation->weak_unlock = false;
982 list_inithead(&new_allocation->list_release);
983 debug_dump_allocation_state(new_allocation);
984 return new_allocation;
985 }
986
987 /* Wrap an external pointer as an allocation */
988 struct nine_allocation *
nine_wrap_external_pointer(struct nine_allocator * allocator,void * data)989 nine_wrap_external_pointer(struct nine_allocator* allocator, void* data)
990 {
991 struct nine_allocation *new_allocation = slab_alloc_st(&allocator->allocation_pool);
992 if (!new_allocation)
993 return NULL;
994 DBG("Wrapping external pointer: %p\n", data);
995 new_allocation->allocation_type = NINE_EXTERNAL_ALLOC;
996 new_allocation->memory.external.buf = data;
997 list_inithead(&new_allocation->list_free);
998 return new_allocation;
999 }
1000
1001 struct nine_allocator *
nine_allocator_create(struct NineDevice9 * device,int memfd_virtualsizelimit)1002 nine_allocator_create(struct NineDevice9 *device, int memfd_virtualsizelimit)
1003 {
1004 struct nine_allocator* allocator = MALLOC(sizeof(struct nine_allocator));
1005
1006 if (!allocator)
1007 return NULL;
1008
1009 allocator->device = device;
1010 allocator->page_size = sysconf(_SC_PAGESIZE);
1011 assert(allocator->page_size == 4 << 10);
1012 allocator->num_fd_max = (memfd_virtualsizelimit >= 0) ? MIN2(128, sysconf(_SC_OPEN_MAX)) : 0;
1013 allocator->min_file_size = DIVUP(100 * (1 << 20), allocator->page_size) * allocator->page_size; /* 100MB files */
1014 allocator->total_allocations = 0;
1015 allocator->total_locked_memory = 0;
1016 allocator->total_virtual_memory = 0;
1017 allocator->total_virtual_memory_limit = memfd_virtualsizelimit * (1 << 20);
1018 allocator->num_fd = 0;
1019
1020 DBG("Allocator created (ps: %d; fm: %d)\n", allocator->page_size, allocator->num_fd_max);
1021
1022 slab_create(&allocator->allocation_pool, sizeof(struct nine_allocation), 4096);
1023 slab_create(&allocator->region_pool, sizeof(struct nine_memfd_file_region), 4096);
1024 allocator->memfd_pool = CALLOC(allocator->num_fd_max, sizeof(struct nine_memfd_file));
1025 list_inithead(&allocator->pending_releases);
1026 list_inithead(&allocator->pending_frees);
1027 pthread_mutex_init(&allocator->mutex_pending_frees, NULL);
1028 return allocator;
1029 }
1030
1031 void
nine_allocator_destroy(struct nine_allocator * allocator)1032 nine_allocator_destroy(struct nine_allocator* allocator)
1033 {
1034 int i;
1035 DBG("DESTROYING ALLOCATOR\n");
1036 debug_dump_allocator_state(allocator);
1037 nine_flush_pending_releases(allocator);
1038 nine_flush_pending_frees(allocator);
1039 nine_memfd_files_unmap(allocator, true);
1040 pthread_mutex_destroy(&allocator->mutex_pending_frees);
1041
1042 assert(list_is_empty(&allocator->pending_frees));
1043 assert(list_is_empty(&allocator->pending_releases));
1044 for (i = 0; i < allocator->num_fd; i++) {
1045 debug_dump_memfd_state(&allocator->memfd_pool[i], true);
1046 assert(list_is_empty(&allocator->memfd_pool[i].locked_mapped_allocated_regions));
1047 assert(list_is_empty(&allocator->memfd_pool[i].weak_unlocked_mapped_allocated_regions));
1048 assert(list_is_empty(&allocator->memfd_pool[i].unlocked_mapped_allocated_regions));
1049 assert(list_is_singular(&allocator->memfd_pool[i].free_regions));
1050 slab_free_st(&allocator->region_pool,
1051 list_first_entry(&allocator->memfd_pool[i].free_regions,
1052 struct nine_memfd_file_region, list));
1053 close(allocator->memfd_pool[i].fd);
1054 }
1055 slab_destroy(&allocator->allocation_pool);
1056 slab_destroy(&allocator->region_pool);
1057 FREE(allocator->memfd_pool);
1058 FREE(allocator);
1059 }
1060
1061 #else
1062
1063 struct nine_allocation {
1064 unsigned is_external;
1065 void *external;
1066 };
1067
1068 struct nine_allocator {
1069 struct slab_mempool external_allocation_pool;
1070 pthread_mutex_t mutex_slab;
1071 };
1072
1073 struct nine_allocation *
nine_allocate(struct nine_allocator * allocator,unsigned size)1074 nine_allocate(struct nine_allocator *allocator, unsigned size)
1075 {
1076 struct nine_allocation *allocation;
1077 (void)allocator;
1078 assert(sizeof(struct nine_allocation) <= NINE_ALLOCATION_ALIGNMENT);
1079 allocation = align_calloc(size + NINE_ALLOCATION_ALIGNMENT, NINE_ALLOCATION_ALIGNMENT);
1080 allocation->is_external = false;
1081 return allocation;
1082 }
1083
1084
nine_free(struct nine_allocator * allocator,struct nine_allocation * allocation)1085 void nine_free(struct nine_allocator *allocator, struct nine_allocation *allocation)
1086 {
1087 if (allocation->is_external) {
1088 pthread_mutex_lock(&allocator->mutex_slab);
1089 slab_free_st(&allocator->external_allocation_pool, allocation);
1090 pthread_mutex_unlock(&allocator->mutex_slab);
1091 } else
1092 align_free(allocation);
1093 }
1094
nine_free_worker(struct nine_allocator * allocator,struct nine_allocation * allocation)1095 void nine_free_worker(struct nine_allocator *allocator, struct nine_allocation *allocation)
1096 {
1097 nine_free(allocator, allocation);
1098 }
1099
nine_get_pointer(struct nine_allocator * allocator,struct nine_allocation * allocation)1100 void *nine_get_pointer(struct nine_allocator *allocator, struct nine_allocation *allocation)
1101 {
1102 (void)allocator;
1103 if (allocation->is_external)
1104 return allocation->external;
1105 return (uint8_t *)allocation + NINE_ALLOCATION_ALIGNMENT;
1106 }
1107
nine_pointer_weakrelease(struct nine_allocator * allocator,struct nine_allocation * allocation)1108 void nine_pointer_weakrelease(struct nine_allocator *allocator, struct nine_allocation *allocation)
1109 {
1110 (void)allocator;
1111 (void)allocation;
1112 }
1113
nine_pointer_strongrelease(struct nine_allocator * allocator,struct nine_allocation * allocation)1114 void nine_pointer_strongrelease(struct nine_allocator *allocator, struct nine_allocation *allocation)
1115 {
1116 (void)allocator;
1117 (void)allocation;
1118 }
1119
nine_pointer_delayedstrongrelease(struct nine_allocator * allocator,struct nine_allocation * allocation,unsigned * counter)1120 void nine_pointer_delayedstrongrelease(struct nine_allocator *allocator,
1121 struct nine_allocation *allocation,
1122 unsigned *counter)
1123 {
1124 (void)allocator;
1125 (void)allocation;
1126 (void)counter;
1127 }
1128
1129 struct nine_allocation *
nine_suballocate(struct nine_allocator * allocator,struct nine_allocation * allocation,int offset)1130 nine_suballocate(struct nine_allocator* allocator, struct nine_allocation *allocation, int offset)
1131 {
1132 struct nine_allocation *new_allocation;
1133 pthread_mutex_lock(&allocator->mutex_slab);
1134 new_allocation = slab_alloc_st(&allocator->external_allocation_pool);
1135 pthread_mutex_unlock(&allocator->mutex_slab);
1136 new_allocation->is_external = true;
1137 new_allocation->external = (uint8_t *)allocation + NINE_ALLOCATION_ALIGNMENT + offset;
1138 return new_allocation;
1139 }
1140
1141 struct nine_allocation *
nine_wrap_external_pointer(struct nine_allocator * allocator,void * data)1142 nine_wrap_external_pointer(struct nine_allocator* allocator, void* data)
1143 {
1144 struct nine_allocation *new_allocation;
1145 pthread_mutex_lock(&allocator->mutex_slab);
1146 new_allocation = slab_alloc_st(&allocator->external_allocation_pool);
1147 pthread_mutex_unlock(&allocator->mutex_slab);
1148 new_allocation->is_external = true;
1149 new_allocation->external = data;
1150 return new_allocation;
1151 }
1152
1153 struct nine_allocator *
nine_allocator_create(struct NineDevice9 * device,int memfd_virtualsizelimit)1154 nine_allocator_create(struct NineDevice9 *device, int memfd_virtualsizelimit)
1155 {
1156 struct nine_allocator* allocator = MALLOC(sizeof(struct nine_allocator));
1157 (void)device;
1158 (void)memfd_virtualsizelimit;
1159
1160 if (!allocator)
1161 return NULL;
1162
1163 slab_create(&allocator->external_allocation_pool, sizeof(struct nine_allocation), 4096);
1164 pthread_mutex_init(&allocator->mutex_slab, NULL);
1165
1166 return allocator;
1167 }
1168
1169 void
nine_allocator_destroy(struct nine_allocator * allocator)1170 nine_allocator_destroy(struct nine_allocator *allocator)
1171 {
1172 slab_destroy(&allocator->external_allocation_pool);
1173 pthread_mutex_destroy(&allocator->mutex_slab);
1174 }
1175
1176 #endif /* NINE_ENABLE_MEMFD */
1177