1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file brw_vec4_tcs.cpp
26 *
27 * Tessellaton control shader specific code derived from the vec4_visitor class.
28 */
29
30 #include "brw_nir.h"
31 #include "brw_vec4_tcs.h"
32 #include "brw_fs.h"
33 #include "dev/intel_debug.h"
34
35 namespace brw {
36
vec4_tcs_visitor(const struct brw_compiler * compiler,void * log_data,const struct brw_tcs_prog_key * key,struct brw_tcs_prog_data * prog_data,const nir_shader * nir,void * mem_ctx,bool debug_enabled)37 vec4_tcs_visitor::vec4_tcs_visitor(const struct brw_compiler *compiler,
38 void *log_data,
39 const struct brw_tcs_prog_key *key,
40 struct brw_tcs_prog_data *prog_data,
41 const nir_shader *nir,
42 void *mem_ctx,
43 bool debug_enabled)
44 : vec4_visitor(compiler, log_data, &key->base.tex, &prog_data->base,
45 nir, mem_ctx, false, debug_enabled),
46 key(key)
47 {
48 }
49
50
51 void
setup_payload()52 vec4_tcs_visitor::setup_payload()
53 {
54 int reg = 0;
55
56 /* The payload always contains important data in r0, which contains
57 * the URB handles that are passed on to the URB write at the end
58 * of the thread.
59 */
60 reg++;
61
62 /* r1.0 - r4.7 may contain the input control point URB handles,
63 * which we use to pull vertex data.
64 */
65 reg += 4;
66
67 /* Push constants may start at r5.0 */
68 reg = setup_uniforms(reg);
69
70 this->first_non_payload_grf = reg;
71 }
72
73
74 void
emit_prolog()75 vec4_tcs_visitor::emit_prolog()
76 {
77 invocation_id = src_reg(this, glsl_type::uint_type);
78 emit(TCS_OPCODE_GET_INSTANCE_ID, dst_reg(invocation_id));
79
80 /* HS threads are dispatched with the dispatch mask set to 0xFF.
81 * If there are an odd number of output vertices, then the final
82 * HS instance dispatched will only have its bottom half doing real
83 * work, and so we need to disable the upper half:
84 */
85 if (nir->info.tess.tcs_vertices_out % 2) {
86 emit(CMP(dst_null_d(), invocation_id,
87 brw_imm_ud(nir->info.tess.tcs_vertices_out),
88 BRW_CONDITIONAL_L));
89
90 /* Matching ENDIF is in emit_thread_end() */
91 emit(IF(BRW_PREDICATE_NORMAL));
92 }
93 }
94
95
96 void
emit_thread_end()97 vec4_tcs_visitor::emit_thread_end()
98 {
99 vec4_instruction *inst;
100 current_annotation = "thread end";
101
102 if (nir->info.tess.tcs_vertices_out % 2) {
103 emit(BRW_OPCODE_ENDIF);
104 }
105
106 if (devinfo->ver == 7) {
107 struct brw_tcs_prog_data *tcs_prog_data =
108 (struct brw_tcs_prog_data *) prog_data;
109
110 current_annotation = "release input vertices";
111
112 /* Synchronize all threads, so we know that no one is still
113 * using the input URB handles.
114 */
115 if (tcs_prog_data->instances > 1) {
116 dst_reg header = dst_reg(this, glsl_type::uvec4_type);
117 emit(TCS_OPCODE_CREATE_BARRIER_HEADER, header);
118 emit(SHADER_OPCODE_BARRIER, dst_null_ud(), src_reg(header));
119 }
120
121 /* Make thread 0 (invocations <1, 0>) release pairs of ICP handles.
122 * We want to compare the bottom half of invocation_id with 0, but
123 * use that truth value for the top half as well. Unfortunately,
124 * we don't have stride in the vec4 world, nor UV immediates in
125 * align16, so we need an opcode to get invocation_id<0,4,0>.
126 */
127 set_condmod(BRW_CONDITIONAL_Z,
128 emit(TCS_OPCODE_SRC0_010_IS_ZERO, dst_null_d(),
129 invocation_id));
130 emit(IF(BRW_PREDICATE_NORMAL));
131 for (unsigned i = 0; i < key->input_vertices; i += 2) {
132 /* If we have an odd number of input vertices, the last will be
133 * unpaired. We don't want to use an interleaved URB write in
134 * that case.
135 */
136 const bool is_unpaired = i == key->input_vertices - 1;
137
138 dst_reg header(this, glsl_type::uvec4_type);
139 emit(TCS_OPCODE_RELEASE_INPUT, header, brw_imm_ud(i),
140 brw_imm_ud(is_unpaired));
141 }
142 emit(BRW_OPCODE_ENDIF);
143 }
144
145 inst = emit(TCS_OPCODE_THREAD_END);
146 inst->base_mrf = 14;
147 inst->mlen = 2;
148 }
149
150
151 void
emit_input_urb_read(const dst_reg & dst,const src_reg & vertex_index,unsigned base_offset,unsigned first_component,const src_reg & indirect_offset)152 vec4_tcs_visitor::emit_input_urb_read(const dst_reg &dst,
153 const src_reg &vertex_index,
154 unsigned base_offset,
155 unsigned first_component,
156 const src_reg &indirect_offset)
157 {
158 vec4_instruction *inst;
159 dst_reg temp(this, glsl_type::ivec4_type);
160 temp.type = dst.type;
161
162 /* Set up the message header to reference the proper parts of the URB */
163 dst_reg header = dst_reg(this, glsl_type::uvec4_type);
164 inst = emit(VEC4_TCS_OPCODE_SET_INPUT_URB_OFFSETS, header, vertex_index,
165 indirect_offset);
166 inst->force_writemask_all = true;
167
168 /* Read into a temporary, ignoring writemasking. */
169 inst = emit(VEC4_OPCODE_URB_READ, temp, src_reg(header));
170 inst->offset = base_offset;
171 inst->mlen = 1;
172 inst->base_mrf = -1;
173
174 /* Copy the temporary to the destination to deal with writemasking.
175 *
176 * Also attempt to deal with gl_PointSize being in the .w component.
177 */
178 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
179 emit(MOV(dst, swizzle(src_reg(temp), BRW_SWIZZLE_WWWW)));
180 } else {
181 src_reg src = src_reg(temp);
182 src.swizzle = BRW_SWZ_COMP_INPUT(first_component);
183 emit(MOV(dst, src));
184 }
185 }
186
187 void
emit_output_urb_read(const dst_reg & dst,unsigned base_offset,unsigned first_component,const src_reg & indirect_offset)188 vec4_tcs_visitor::emit_output_urb_read(const dst_reg &dst,
189 unsigned base_offset,
190 unsigned first_component,
191 const src_reg &indirect_offset)
192 {
193 vec4_instruction *inst;
194
195 /* Set up the message header to reference the proper parts of the URB */
196 dst_reg header = dst_reg(this, glsl_type::uvec4_type);
197 inst = emit(VEC4_TCS_OPCODE_SET_OUTPUT_URB_OFFSETS, header,
198 brw_imm_ud(dst.writemask << first_component), indirect_offset);
199 inst->force_writemask_all = true;
200
201 vec4_instruction *read = emit(VEC4_OPCODE_URB_READ, dst, src_reg(header));
202 read->offset = base_offset;
203 read->mlen = 1;
204 read->base_mrf = -1;
205
206 if (first_component) {
207 /* Read into a temporary and copy with a swizzle and writemask. */
208 read->dst = retype(dst_reg(this, glsl_type::ivec4_type), dst.type);
209 emit(MOV(dst, swizzle(src_reg(read->dst),
210 BRW_SWZ_COMP_INPUT(first_component))));
211 }
212 }
213
214 void
emit_urb_write(const src_reg & value,unsigned writemask,unsigned base_offset,const src_reg & indirect_offset)215 vec4_tcs_visitor::emit_urb_write(const src_reg &value,
216 unsigned writemask,
217 unsigned base_offset,
218 const src_reg &indirect_offset)
219 {
220 if (writemask == 0)
221 return;
222
223 src_reg message(this, glsl_type::uvec4_type, 2);
224 vec4_instruction *inst;
225
226 inst = emit(VEC4_TCS_OPCODE_SET_OUTPUT_URB_OFFSETS, dst_reg(message),
227 brw_imm_ud(writemask), indirect_offset);
228 inst->force_writemask_all = true;
229 inst = emit(MOV(byte_offset(dst_reg(retype(message, value.type)), REG_SIZE),
230 value));
231 inst->force_writemask_all = true;
232
233 inst = emit(VEC4_TCS_OPCODE_URB_WRITE, dst_null_f(), message);
234 inst->offset = base_offset;
235 inst->mlen = 2;
236 inst->base_mrf = -1;
237 }
238
239 void
nir_emit_intrinsic(nir_intrinsic_instr * instr)240 vec4_tcs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
241 {
242 switch (instr->intrinsic) {
243 case nir_intrinsic_load_invocation_id:
244 emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_UD),
245 invocation_id));
246 break;
247 case nir_intrinsic_load_primitive_id:
248 emit(TCS_OPCODE_GET_PRIMITIVE_ID,
249 get_nir_dest(instr->dest, BRW_REGISTER_TYPE_UD));
250 break;
251 case nir_intrinsic_load_patch_vertices_in:
252 emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_D),
253 brw_imm_d(key->input_vertices)));
254 break;
255 case nir_intrinsic_load_per_vertex_input: {
256 assert(nir_dest_bit_size(instr->dest) == 32);
257 src_reg indirect_offset = get_indirect_offset(instr);
258 unsigned imm_offset = instr->const_index[0];
259
260 src_reg vertex_index = retype(get_nir_src_imm(instr->src[0]),
261 BRW_REGISTER_TYPE_UD);
262
263 unsigned first_component = nir_intrinsic_component(instr);
264 dst_reg dst = get_nir_dest(instr->dest, BRW_REGISTER_TYPE_D);
265 dst.writemask = brw_writemask_for_size(instr->num_components);
266 emit_input_urb_read(dst, vertex_index, imm_offset,
267 first_component, indirect_offset);
268 break;
269 }
270 case nir_intrinsic_load_input:
271 unreachable("nir_lower_io should use load_per_vertex_input intrinsics");
272 break;
273 case nir_intrinsic_load_output:
274 case nir_intrinsic_load_per_vertex_output: {
275 src_reg indirect_offset = get_indirect_offset(instr);
276 unsigned imm_offset = instr->const_index[0];
277
278 dst_reg dst = get_nir_dest(instr->dest, BRW_REGISTER_TYPE_D);
279 dst.writemask = brw_writemask_for_size(instr->num_components);
280
281 emit_output_urb_read(dst, imm_offset, nir_intrinsic_component(instr),
282 indirect_offset);
283 break;
284 }
285 case nir_intrinsic_store_output:
286 case nir_intrinsic_store_per_vertex_output: {
287 assert(nir_src_bit_size(instr->src[0]) == 32);
288 src_reg value = get_nir_src(instr->src[0]);
289 unsigned mask = instr->const_index[1];
290 unsigned swiz = BRW_SWIZZLE_XYZW;
291
292 src_reg indirect_offset = get_indirect_offset(instr);
293 unsigned imm_offset = instr->const_index[0];
294
295 unsigned first_component = nir_intrinsic_component(instr);
296 if (first_component) {
297 assert(swiz == BRW_SWIZZLE_XYZW);
298 swiz = BRW_SWZ_COMP_OUTPUT(first_component);
299 mask = mask << first_component;
300 }
301
302 emit_urb_write(swizzle(value, swiz), mask,
303 imm_offset, indirect_offset);
304 break;
305 }
306
307 case nir_intrinsic_control_barrier: {
308 dst_reg header = dst_reg(this, glsl_type::uvec4_type);
309 emit(TCS_OPCODE_CREATE_BARRIER_HEADER, header);
310 emit(SHADER_OPCODE_BARRIER, dst_null_ud(), src_reg(header));
311 break;
312 }
313
314 case nir_intrinsic_memory_barrier_tcs_patch:
315 break;
316
317 default:
318 vec4_visitor::nir_emit_intrinsic(instr);
319 }
320 }
321
322 /**
323 * Return the number of patches to accumulate before an 8_PATCH mode thread is
324 * launched. In cases with a large number of input control points and a large
325 * amount of VS outputs, the VS URB space needed to store an entire 8 patches
326 * worth of data can be prohibitive, so it can be beneficial to launch threads
327 * early.
328 *
329 * See the 3DSTATE_HS::Patch Count Threshold documentation for the recommended
330 * values. Note that 0 means to "disable" early dispatch, meaning to wait for
331 * a full 8 patches as normal.
332 */
333 static int
get_patch_count_threshold(int input_control_points)334 get_patch_count_threshold(int input_control_points)
335 {
336 if (input_control_points <= 4)
337 return 0;
338 else if (input_control_points <= 6)
339 return 5;
340 else if (input_control_points <= 8)
341 return 4;
342 else if (input_control_points <= 10)
343 return 3;
344 else if (input_control_points <= 14)
345 return 2;
346
347 /* Return patch count 1 for PATCHLIST_15 - PATCHLIST_32 */
348 return 1;
349 }
350
351 } /* namespace brw */
352
353 extern "C" const unsigned *
brw_compile_tcs(const struct brw_compiler * compiler,void * mem_ctx,struct brw_compile_tcs_params * params)354 brw_compile_tcs(const struct brw_compiler *compiler,
355 void *mem_ctx,
356 struct brw_compile_tcs_params *params)
357 {
358 const struct intel_device_info *devinfo = compiler->devinfo;
359 nir_shader *nir = params->nir;
360 const struct brw_tcs_prog_key *key = params->key;
361 struct brw_tcs_prog_data *prog_data = params->prog_data;
362 struct brw_vue_prog_data *vue_prog_data = &prog_data->base;
363
364 const bool is_scalar = compiler->scalar_stage[MESA_SHADER_TESS_CTRL];
365 const bool debug_enabled = INTEL_DEBUG(DEBUG_TCS);
366 const unsigned *assembly;
367
368 vue_prog_data->base.stage = MESA_SHADER_TESS_CTRL;
369 prog_data->base.base.ray_queries = nir->info.ray_queries;
370 prog_data->base.base.total_scratch = 0;
371
372 nir->info.outputs_written = key->outputs_written;
373 nir->info.patch_outputs_written = key->patch_outputs_written;
374
375 struct brw_vue_map input_vue_map;
376 brw_compute_vue_map(devinfo, &input_vue_map, nir->info.inputs_read,
377 nir->info.separate_shader, 1);
378 brw_compute_tess_vue_map(&vue_prog_data->vue_map,
379 nir->info.outputs_written,
380 nir->info.patch_outputs_written);
381
382 brw_nir_apply_key(nir, compiler, &key->base, 8, is_scalar);
383 brw_nir_lower_vue_inputs(nir, &input_vue_map);
384 brw_nir_lower_tcs_outputs(nir, &vue_prog_data->vue_map,
385 key->_tes_primitive_mode);
386 if (key->quads_workaround)
387 brw_nir_apply_tcs_quads_workaround(nir);
388
389 brw_postprocess_nir(nir, compiler, is_scalar, debug_enabled,
390 key->base.robust_buffer_access);
391
392 bool has_primitive_id =
393 BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_PRIMITIVE_ID);
394
395 prog_data->patch_count_threshold = brw::get_patch_count_threshold(key->input_vertices);
396
397 if (compiler->use_tcs_8_patch &&
398 nir->info.tess.tcs_vertices_out <= (devinfo->ver >= 12 ? 32 : 16) &&
399 2 + has_primitive_id + key->input_vertices <= (devinfo->ver >= 12 ? 63 : 31)) {
400 /* 3DSTATE_HS imposes two constraints on using 8_PATCH mode. First, the
401 * "Instance" field limits the number of output vertices to [1, 16] on
402 * gfx11 and below, or [1, 32] on gfx12 and above. Secondly, the
403 * "Dispatch GRF Start Register for URB Data" field is limited to [0,
404 * 31] - which imposes a limit on the input vertices.
405 */
406 vue_prog_data->dispatch_mode = DISPATCH_MODE_TCS_8_PATCH;
407 prog_data->instances = nir->info.tess.tcs_vertices_out;
408 prog_data->include_primitive_id = has_primitive_id;
409 } else {
410 unsigned verts_per_thread = is_scalar ? 8 : 2;
411 vue_prog_data->dispatch_mode = DISPATCH_MODE_TCS_SINGLE_PATCH;
412 prog_data->instances =
413 DIV_ROUND_UP(nir->info.tess.tcs_vertices_out, verts_per_thread);
414 }
415
416 /* Compute URB entry size. The maximum allowed URB entry size is 32k.
417 * That divides up as follows:
418 *
419 * 32 bytes for the patch header (tessellation factors)
420 * 480 bytes for per-patch varyings (a varying component is 4 bytes and
421 * gl_MaxTessPatchComponents = 120)
422 * 16384 bytes for per-vertex varyings (a varying component is 4 bytes,
423 * gl_MaxPatchVertices = 32 and
424 * gl_MaxTessControlOutputComponents = 128)
425 *
426 * 15808 bytes left for varying packing overhead
427 */
428 const int num_per_patch_slots = vue_prog_data->vue_map.num_per_patch_slots;
429 const int num_per_vertex_slots = vue_prog_data->vue_map.num_per_vertex_slots;
430 unsigned output_size_bytes = 0;
431 /* Note that the patch header is counted in num_per_patch_slots. */
432 output_size_bytes += num_per_patch_slots * 16;
433 output_size_bytes += nir->info.tess.tcs_vertices_out *
434 num_per_vertex_slots * 16;
435
436 assert(output_size_bytes >= 1);
437 if (output_size_bytes > GFX7_MAX_HS_URB_ENTRY_SIZE_BYTES)
438 return NULL;
439
440 /* URB entry sizes are stored as a multiple of 64 bytes. */
441 vue_prog_data->urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
442
443 /* HS does not use the usual payload pushing from URB to GRFs,
444 * because we don't have enough registers for a full-size payload, and
445 * the hardware is broken on Haswell anyway.
446 */
447 vue_prog_data->urb_read_length = 0;
448
449 if (unlikely(debug_enabled)) {
450 fprintf(stderr, "TCS Input ");
451 brw_print_vue_map(stderr, &input_vue_map, MESA_SHADER_TESS_CTRL);
452 fprintf(stderr, "TCS Output ");
453 brw_print_vue_map(stderr, &vue_prog_data->vue_map, MESA_SHADER_TESS_CTRL);
454 }
455
456 if (is_scalar) {
457 fs_visitor v(compiler, params->log_data, mem_ctx, &key->base,
458 &prog_data->base.base, nir, 8, debug_enabled);
459 if (!v.run_tcs()) {
460 params->error_str = ralloc_strdup(mem_ctx, v.fail_msg);
461 return NULL;
462 }
463
464 prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
465
466 fs_generator g(compiler, params->log_data, mem_ctx,
467 &prog_data->base.base, false, MESA_SHADER_TESS_CTRL);
468 if (unlikely(debug_enabled)) {
469 g.enable_debug(ralloc_asprintf(mem_ctx,
470 "%s tessellation control shader %s",
471 nir->info.label ? nir->info.label
472 : "unnamed",
473 nir->info.name));
474 }
475
476 g.generate_code(v.cfg, 8, v.shader_stats,
477 v.performance_analysis.require(), params->stats);
478
479 g.add_const_data(nir->constant_data, nir->constant_data_size);
480
481 assembly = g.get_assembly();
482 } else {
483 brw::vec4_tcs_visitor v(compiler, params->log_data, key, prog_data,
484 nir, mem_ctx, debug_enabled);
485 if (!v.run()) {
486 params->error_str = ralloc_strdup(mem_ctx, v.fail_msg);
487 return NULL;
488 }
489
490 if (INTEL_DEBUG(DEBUG_TCS))
491 v.dump_instructions();
492
493
494 assembly = brw_vec4_generate_assembly(compiler, params->log_data, mem_ctx, nir,
495 &prog_data->base, v.cfg,
496 v.performance_analysis.require(),
497 params->stats, debug_enabled);
498 }
499
500 return assembly;
501 }
502