1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 **********************************************************************
5 * Copyright (C) 1999-2011, International Business Machines
6 * Corporation and others. All Rights Reserved.
7 **********************************************************************
8 * Date Name Description
9 * 11/17/99 aliu Creation.
10 **********************************************************************
11 */
12
13 #include "unicode/utypes.h"
14
15 #if !UCONFIG_NO_TRANSLITERATION
16
17 #include "unicode/unifilt.h"
18 #include "unicode/uniset.h"
19 #include "cpdtrans.h"
20 #include "uvector.h"
21 #include "tridpars.h"
22 #include "cmemory.h"
23
24 // keep in sync with Transliterator
25 //static const char16_t ID_SEP = 0x002D; /*-*/
26 static const char16_t ID_DELIM = 0x003B; /*;*/
27 static const char16_t NEWLINE = 10;
28
29 static const char16_t COLON_COLON[] = {0x3A, 0x3A, 0}; //"::"
30
31 U_NAMESPACE_BEGIN
32
33 const char16_t CompoundTransliterator::PASS_STRING[] = { 0x0025, 0x0050, 0x0061, 0x0073, 0x0073, 0 }; // "%Pass"
34
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CompoundTransliterator)35 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CompoundTransliterator)
36
37 /**
38 * Constructs a new compound transliterator given an array of
39 * transliterators. The array of transliterators may be of any
40 * length, including zero or one, however, useful compound
41 * transliterators have at least two components.
42 * @param transliterators array of <code>Transliterator</code>
43 * objects
44 * @param transliteratorCount The number of
45 * <code>Transliterator</code> objects in transliterators.
46 * @param filter the filter. Any character for which
47 * <tt>filter.contains()</tt> returns <tt>false</tt> will not be
48 * altered by this transliterator. If <tt>filter</tt> is
49 * <tt>null</tt> then no filtering is applied.
50 */
51 CompoundTransliterator::CompoundTransliterator(
52 Transliterator* const transliterators[],
53 int32_t transliteratorCount,
54 UnicodeFilter* adoptedFilter) :
55 Transliterator(joinIDs(transliterators, transliteratorCount), adoptedFilter),
56 trans(0), count(0), numAnonymousRBTs(0) {
57 setTransliterators(transliterators, transliteratorCount);
58 }
59
60 /**
61 * Splits an ID of the form "ID;ID;..." into a compound using each
62 * of the IDs.
63 * @param id of above form
64 * @param forward if false, does the list in reverse order, and
65 * takes the inverse of each ID.
66 */
CompoundTransliterator(const UnicodeString & id,UTransDirection direction,UnicodeFilter * adoptedFilter,UParseError &,UErrorCode & status)67 CompoundTransliterator::CompoundTransliterator(const UnicodeString& id,
68 UTransDirection direction,
69 UnicodeFilter* adoptedFilter,
70 UParseError& /*parseError*/,
71 UErrorCode& status) :
72 Transliterator(id, adoptedFilter),
73 trans(0), numAnonymousRBTs(0) {
74 // TODO add code for parseError...currently unused, but
75 // later may be used by parsing code...
76 init(id, direction, true, status);
77 }
78
CompoundTransliterator(const UnicodeString & id,UParseError &,UErrorCode & status)79 CompoundTransliterator::CompoundTransliterator(const UnicodeString& id,
80 UParseError& /*parseError*/,
81 UErrorCode& status) :
82 Transliterator(id, 0), // set filter to 0 here!
83 trans(0), numAnonymousRBTs(0) {
84 // TODO add code for parseError...currently unused, but
85 // later may be used by parsing code...
86 init(id, UTRANS_FORWARD, true, status);
87 }
88
89
90 /**
91 * Private constructor for use of TransliteratorAlias
92 */
CompoundTransliterator(const UnicodeString & newID,UVector & list,UnicodeFilter * adoptedFilter,int32_t anonymousRBTs,UParseError &,UErrorCode & status)93 CompoundTransliterator::CompoundTransliterator(const UnicodeString& newID,
94 UVector& list,
95 UnicodeFilter* adoptedFilter,
96 int32_t anonymousRBTs,
97 UParseError& /*parseError*/,
98 UErrorCode& status) :
99 Transliterator(newID, adoptedFilter),
100 trans(0), numAnonymousRBTs(anonymousRBTs)
101 {
102 init(list, UTRANS_FORWARD, false, status);
103 }
104
105 /**
106 * Private constructor for Transliterator from a vector of
107 * transliterators. The caller is responsible for fixing up the
108 * ID.
109 */
CompoundTransliterator(UVector & list,UParseError &,UErrorCode & status)110 CompoundTransliterator::CompoundTransliterator(UVector& list,
111 UParseError& /*parseError*/,
112 UErrorCode& status) :
113 Transliterator(UnicodeString(), nullptr),
114 trans(0), numAnonymousRBTs(0)
115 {
116 // TODO add code for parseError...currently unused, but
117 // later may be used by parsing code...
118 init(list, UTRANS_FORWARD, false, status);
119 // assume caller will fixup ID
120 }
121
CompoundTransliterator(UVector & list,int32_t anonymousRBTs,UParseError &,UErrorCode & status)122 CompoundTransliterator::CompoundTransliterator(UVector& list,
123 int32_t anonymousRBTs,
124 UParseError& /*parseError*/,
125 UErrorCode& status) :
126 Transliterator(UnicodeString(), nullptr),
127 trans(0), numAnonymousRBTs(anonymousRBTs)
128 {
129 init(list, UTRANS_FORWARD, false, status);
130 }
131
132 /**
133 * Finish constructing a transliterator: only to be called by
134 * constructors. Before calling init(), set trans and filter to nullptr.
135 * @param id the id containing ';'-separated entries
136 * @param direction either FORWARD or REVERSE
137 * @param idSplitPoint the index into id at which the
138 * adoptedSplitTransliterator should be inserted, if there is one, or
139 * -1 if there is none.
140 * @param adoptedSplitTransliterator a transliterator to be inserted
141 * before the entry at offset idSplitPoint in the id string. May be
142 * nullptr to insert no entry.
143 * @param fixReverseID if true, then reconstruct the ID of reverse
144 * entries by calling getID() of component entries. Some constructors
145 * do not require this because they apply a facade ID anyway.
146 * @param status the error code indicating success or failure
147 */
init(const UnicodeString & id,UTransDirection direction,UBool fixReverseID,UErrorCode & status)148 void CompoundTransliterator::init(const UnicodeString& id,
149 UTransDirection direction,
150 UBool fixReverseID,
151 UErrorCode& status) {
152 // assert(trans == 0);
153
154 if (U_FAILURE(status)) {
155 return;
156 }
157
158 UVector list(status);
159 UnicodeSet* compoundFilter = nullptr;
160 UnicodeString regenID;
161 if (!TransliteratorIDParser::parseCompoundID(id, direction,
162 regenID, list, compoundFilter)) {
163 status = U_INVALID_ID;
164 delete compoundFilter;
165 return;
166 }
167
168 TransliteratorIDParser::instantiateList(list, status);
169
170 init(list, direction, fixReverseID, status);
171
172 if (compoundFilter != nullptr) {
173 adoptFilter(compoundFilter);
174 }
175 }
176
177 /**
178 * Finish constructing a transliterator: only to be called by
179 * constructors. Before calling init(), set trans and filter to nullptr.
180 * @param list a vector of transliterator objects to be adopted. It
181 * should NOT be empty. The list should be in declared order. That
182 * is, it should be in the FORWARD order; if direction is REVERSE then
183 * the list order will be reversed.
184 * @param direction either FORWARD or REVERSE
185 * @param fixReverseID if true, then reconstruct the ID of reverse
186 * entries by calling getID() of component entries. Some constructors
187 * do not require this because they apply a facade ID anyway.
188 * @param status the error code indicating success or failure
189 */
init(UVector & list,UTransDirection direction,UBool fixReverseID,UErrorCode & status)190 void CompoundTransliterator::init(UVector& list,
191 UTransDirection direction,
192 UBool fixReverseID,
193 UErrorCode& status) {
194 // assert(trans == 0);
195
196 // Allocate array
197 if (U_SUCCESS(status)) {
198 count = list.size();
199 trans = (Transliterator **)uprv_malloc(count * sizeof(Transliterator *));
200 /* test for nullptr */
201 if (trans == 0) {
202 status = U_MEMORY_ALLOCATION_ERROR;
203 return;
204 }
205 }
206
207 if (U_FAILURE(status) || trans == 0) {
208 // assert(trans == 0);
209 return;
210 }
211
212 // Move the transliterators from the vector into an array.
213 // Reverse the order if necessary.
214 int32_t i;
215 for (i=0; i<count; ++i) {
216 int32_t j = (direction == UTRANS_FORWARD) ? i : count - 1 - i;
217 trans[i] = (Transliterator*) list.elementAt(j);
218 }
219
220 // If the direction is UTRANS_REVERSE then we may need to fix the
221 // ID.
222 if (direction == UTRANS_REVERSE && fixReverseID) {
223 UnicodeString newID;
224 for (i=0; i<count; ++i) {
225 if (i > 0) {
226 newID.append(ID_DELIM);
227 }
228 newID.append(trans[i]->getID());
229 }
230 setID(newID);
231 }
232
233 computeMaximumContextLength();
234 }
235
236 /**
237 * Return the IDs of the given list of transliterators, concatenated
238 * with ID_DELIM delimiting them. Equivalent to the perlish expression
239 * join(ID_DELIM, map($_.getID(), transliterators).
240 */
joinIDs(Transliterator * const transliterators[],int32_t transCount)241 UnicodeString CompoundTransliterator::joinIDs(Transliterator* const transliterators[],
242 int32_t transCount) {
243 UnicodeString id;
244 for (int32_t i=0; i<transCount; ++i) {
245 if (i > 0) {
246 id.append(ID_DELIM);
247 }
248 id.append(transliterators[i]->getID());
249 }
250 return id; // Return temporary
251 }
252
253 /**
254 * Copy constructor.
255 */
CompoundTransliterator(const CompoundTransliterator & t)256 CompoundTransliterator::CompoundTransliterator(const CompoundTransliterator& t) :
257 Transliterator(t), trans(0), count(0), numAnonymousRBTs(-1) {
258 *this = t;
259 }
260
261 /**
262 * Destructor
263 */
~CompoundTransliterator()264 CompoundTransliterator::~CompoundTransliterator() {
265 freeTransliterators();
266 }
267
freeTransliterators()268 void CompoundTransliterator::freeTransliterators() {
269 if (trans != 0) {
270 for (int32_t i=0; i<count; ++i) {
271 delete trans[i];
272 }
273 uprv_free(trans);
274 }
275 trans = 0;
276 count = 0;
277 }
278
279 /**
280 * Assignment operator.
281 */
operator =(const CompoundTransliterator & t)282 CompoundTransliterator& CompoundTransliterator::operator=(
283 const CompoundTransliterator& t)
284 {
285 if (this == &t) { return *this; } // self-assignment: no-op
286 Transliterator::operator=(t);
287 int32_t i = 0;
288 UBool failed = false;
289 if (trans != nullptr) {
290 for (i=0; i<count; ++i) {
291 delete trans[i];
292 trans[i] = 0;
293 }
294 }
295 if (t.count > count) {
296 if (trans != nullptr) {
297 uprv_free(trans);
298 }
299 trans = (Transliterator **)uprv_malloc(t.count * sizeof(Transliterator *));
300 }
301 count = t.count;
302 if (trans != nullptr) {
303 for (i=0; i<count; ++i) {
304 trans[i] = t.trans[i]->clone();
305 if (trans[i] == nullptr) {
306 failed = true;
307 break;
308 }
309 }
310 }
311
312 // if memory allocation failed delete backwards trans array
313 if (failed && i > 0) {
314 int32_t n;
315 for (n = i-1; n >= 0; n--) {
316 uprv_free(trans[n]);
317 trans[n] = nullptr;
318 }
319 }
320 numAnonymousRBTs = t.numAnonymousRBTs;
321 return *this;
322 }
323
324 /**
325 * Transliterator API.
326 */
clone() const327 CompoundTransliterator* CompoundTransliterator::clone() const {
328 return new CompoundTransliterator(*this);
329 }
330
331 /**
332 * Returns the number of transliterators in this chain.
333 * @return number of transliterators in this chain.
334 */
getCount() const335 int32_t CompoundTransliterator::getCount() const {
336 return count;
337 }
338
339 /**
340 * Returns the transliterator at the given index in this chain.
341 * @param index index into chain, from 0 to <code>getCount() - 1</code>
342 * @return transliterator at the given index
343 */
getTransliterator(int32_t index) const344 const Transliterator& CompoundTransliterator::getTransliterator(int32_t index) const {
345 return *trans[index];
346 }
347
setTransliterators(Transliterator * const transliterators[],int32_t transCount)348 void CompoundTransliterator::setTransliterators(Transliterator* const transliterators[],
349 int32_t transCount) {
350 Transliterator** a = (Transliterator **)uprv_malloc(transCount * sizeof(Transliterator *));
351 if (a == nullptr) {
352 return;
353 }
354 int32_t i = 0;
355 UBool failed = false;
356 for (i=0; i<transCount; ++i) {
357 a[i] = transliterators[i]->clone();
358 if (a[i] == nullptr) {
359 failed = true;
360 break;
361 }
362 }
363 if (failed && i > 0) {
364 int32_t n;
365 for (n = i-1; n >= 0; n--) {
366 uprv_free(a[n]);
367 a[n] = nullptr;
368 }
369 return;
370 }
371 adoptTransliterators(a, transCount);
372 }
373
adoptTransliterators(Transliterator * adoptedTransliterators[],int32_t transCount)374 void CompoundTransliterator::adoptTransliterators(Transliterator* adoptedTransliterators[],
375 int32_t transCount) {
376 // First free trans[] and set count to zero. Once this is done,
377 // orphan the filter. Set up the new trans[].
378 freeTransliterators();
379 trans = adoptedTransliterators;
380 count = transCount;
381 computeMaximumContextLength();
382 setID(joinIDs(trans, count));
383 }
384
385 /**
386 * Append c to buf, unless buf is empty or buf already ends in c.
387 */
_smartAppend(UnicodeString & buf,char16_t c)388 static void _smartAppend(UnicodeString& buf, char16_t c) {
389 if (buf.length() != 0 &&
390 buf.charAt(buf.length() - 1) != c) {
391 buf.append(c);
392 }
393 }
394
toRules(UnicodeString & rulesSource,UBool escapeUnprintable) const395 UnicodeString& CompoundTransliterator::toRules(UnicodeString& rulesSource,
396 UBool escapeUnprintable) const {
397 // We do NOT call toRules() on our component transliterators, in
398 // general. If we have several rule-based transliterators, this
399 // yields a concatenation of the rules -- not what we want. We do
400 // handle compound RBT transliterators specially -- those for which
401 // compoundRBTIndex >= 0. For the transliterator at compoundRBTIndex,
402 // we do call toRules() recursively.
403 rulesSource.truncate(0);
404 if (numAnonymousRBTs >= 1 && getFilter() != nullptr) {
405 // If we are a compound RBT and if we have a global
406 // filter, then emit it at the top.
407 UnicodeString pat;
408 rulesSource.append(COLON_COLON, 2).append(getFilter()->toPattern(pat, escapeUnprintable)).append(ID_DELIM);
409 }
410 for (int32_t i=0; i<count; ++i) {
411 UnicodeString rule;
412
413 // Anonymous RuleBasedTransliterators (inline rules and
414 // ::BEGIN/::END blocks) are given IDs that begin with
415 // "%Pass": use toRules() to write all the rules to the output
416 // (and insert "::Null;" if we have two in a row)
417 if (trans[i]->getID().startsWith(PASS_STRING, 5)) {
418 trans[i]->toRules(rule, escapeUnprintable);
419 if (numAnonymousRBTs > 1 && i > 0 && trans[i - 1]->getID().startsWith(PASS_STRING, 5))
420 rule = UNICODE_STRING_SIMPLE("::Null;") + rule;
421
422 // we also use toRules() on CompoundTransliterators (which we
423 // check for by looking for a semicolon in the ID)-- this gets
424 // the list of their child transliterators output in the right
425 // format
426 } else if (trans[i]->getID().indexOf(ID_DELIM) >= 0) {
427 trans[i]->toRules(rule, escapeUnprintable);
428
429 // for everything else, use Transliterator::toRules()
430 } else {
431 trans[i]->Transliterator::toRules(rule, escapeUnprintable);
432 }
433 _smartAppend(rulesSource, NEWLINE);
434 rulesSource.append(rule);
435 _smartAppend(rulesSource, ID_DELIM);
436 }
437 return rulesSource;
438 }
439
440 /**
441 * Implement Transliterator framework
442 */
handleGetSourceSet(UnicodeSet & result) const443 void CompoundTransliterator::handleGetSourceSet(UnicodeSet& result) const {
444 UnicodeSet set;
445 result.clear();
446 for (int32_t i=0; i<count; ++i) {
447 result.addAll(trans[i]->getSourceSet(set));
448 // Take the example of Hiragana-Latin. This is really
449 // Hiragana-Katakana; Katakana-Latin. The source set of
450 // these two is roughly [:Hiragana:] and [:Katakana:].
451 // But the source set for the entire transliterator is
452 // actually [:Hiragana:] ONLY -- that is, the first
453 // non-empty source set.
454
455 // This is a heuristic, and not 100% reliable.
456 if (!result.isEmpty()) {
457 break;
458 }
459 }
460 }
461
462 /**
463 * Override Transliterator framework
464 */
getTargetSet(UnicodeSet & result) const465 UnicodeSet& CompoundTransliterator::getTargetSet(UnicodeSet& result) const {
466 UnicodeSet set;
467 result.clear();
468 for (int32_t i=0; i<count; ++i) {
469 // This is a heuristic, and not 100% reliable.
470 result.addAll(trans[i]->getTargetSet(set));
471 }
472 return result;
473 }
474
475 /**
476 * Implements {@link Transliterator#handleTransliterate}.
477 */
handleTransliterate(Replaceable & text,UTransPosition & index,UBool incremental) const478 void CompoundTransliterator::handleTransliterate(Replaceable& text, UTransPosition& index,
479 UBool incremental) const {
480 /* Call each transliterator with the same contextStart and
481 * start, but with the limit as modified
482 * by preceding transliterators. The start index must be
483 * reset for each transliterator to give each a chance to
484 * transliterate the text. The initial contextStart index is known
485 * to still point to the same place after each transliterator
486 * is called because each transliterator will not change the
487 * text between contextStart and the initial start index.
488 *
489 * IMPORTANT: After the first transliterator, each subsequent
490 * transliterator only gets to transliterate text committed by
491 * preceding transliterators; that is, the start (output
492 * value) of transliterator i becomes the limit (input value)
493 * of transliterator i+1. Finally, the overall limit is fixed
494 * up before we return.
495 *
496 * Assumptions we make here:
497 * (1) contextStart <= start <= limit <= contextLimit <= text.length()
498 * (2) start <= start' <= limit' ;cursor doesn't move back
499 * (3) start <= limit' ;text before cursor unchanged
500 * - start' is the value of start after calling handleKT
501 * - limit' is the value of limit after calling handleKT
502 */
503
504 /**
505 * Example: 3 transliterators. This example illustrates the
506 * mechanics we need to implement. C, S, and L are the contextStart,
507 * start, and limit. gl is the globalLimit. contextLimit is
508 * equal to limit throughout.
509 *
510 * 1. h-u, changes hex to Unicode
511 *
512 * 4 7 a d 0 4 7 a
513 * abc/u0061/u => abca/u
514 * C S L C S L gl=f->a
515 *
516 * 2. upup, changes "x" to "XX"
517 *
518 * 4 7 a 4 7 a
519 * abca/u => abcAA/u
520 * C SL C S
521 * L gl=a->b
522 * 3. u-h, changes Unicode to hex
523 *
524 * 4 7 a 4 7 a d 0 3
525 * abcAA/u => abc/u0041/u0041/u
526 * C S L C S
527 * L gl=b->15
528 * 4. return
529 *
530 * 4 7 a d 0 3
531 * abc/u0041/u0041/u
532 * C S L
533 */
534
535 if (count < 1) {
536 index.start = index.limit;
537 return; // Short circuit for empty compound transliterators
538 }
539
540 // compoundLimit is the limit value for the entire compound
541 // operation. We overwrite index.limit with the previous
542 // index.start. After each transliteration, we update
543 // compoundLimit for insertions or deletions that have happened.
544 int32_t compoundLimit = index.limit;
545
546 // compoundStart is the start for the entire compound
547 // operation.
548 int32_t compoundStart = index.start;
549
550 int32_t delta = 0; // delta in length
551
552 // Give each transliterator a crack at the run of characters.
553 // See comments at the top of the method for more detail.
554 for (int32_t i=0; i<count; ++i) {
555 index.start = compoundStart; // Reset start
556 int32_t limit = index.limit;
557
558 if (index.start == index.limit) {
559 // Short circuit for empty range
560 break;
561 }
562
563 trans[i]->filteredTransliterate(text, index, incremental);
564
565 // In a properly written transliterator, start == limit after
566 // handleTransliterate() returns when incremental is false.
567 // Catch cases where the subclass doesn't do this, and throw
568 // an exception. (Just pinning start to limit is a bad idea,
569 // because what's probably happening is that the subclass
570 // isn't transliterating all the way to the end, and it should
571 // in non-incremental mode.)
572 if (!incremental && index.start != index.limit) {
573 // We can't throw an exception, so just fudge things
574 index.start = index.limit;
575 }
576
577 // Cumulative delta for insertions/deletions
578 delta += index.limit - limit;
579
580 if (incremental) {
581 // In the incremental case, only allow subsequent
582 // transliterators to modify what has already been
583 // completely processed by prior transliterators. In the
584 // non-incrmental case, allow each transliterator to
585 // process the entire text.
586 index.limit = index.start;
587 }
588 }
589
590 compoundLimit += delta;
591
592 // Start is good where it is -- where the last transliterator left
593 // it. Limit needs to be put back where it was, modulo
594 // adjustments for deletions/insertions.
595 index.limit = compoundLimit;
596 }
597
598 /**
599 * Sets the length of the longest context required by this transliterator.
600 * This is <em>preceding</em> context.
601 */
computeMaximumContextLength()602 void CompoundTransliterator::computeMaximumContextLength() {
603 int32_t max = 0;
604 for (int32_t i=0; i<count; ++i) {
605 int32_t len = trans[i]->getMaximumContextLength();
606 if (len > max) {
607 max = len;
608 }
609 }
610 setMaximumContextLength(max);
611 }
612
613 U_NAMESPACE_END
614
615 #endif /* #if !UCONFIG_NO_TRANSLITERATION */
616
617 /* eof */
618