• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/base/numbers/bignum-dtoa.h"
6 
7 #include <cmath>
8 
9 #include "src/base/logging.h"
10 #include "src/base/numbers/bignum.h"
11 #include "src/base/numbers/double.h"
12 
13 namespace v8 {
14 namespace base {
15 
NormalizedExponent(uint64_t significand,int exponent)16 static int NormalizedExponent(uint64_t significand, int exponent) {
17   DCHECK_NE(significand, 0);
18   while ((significand & Double::kHiddenBit) == 0) {
19     significand = significand << 1;
20     exponent = exponent - 1;
21   }
22   return exponent;
23 }
24 
25 // Forward declarations:
26 // Returns an estimation of k such that 10^(k-1) <= v < 10^k.
27 static int EstimatePower(int exponent);
28 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
29 // and denominator.
30 static void InitialScaledStartValues(double v, int estimated_power,
31                                      bool need_boundary_deltas,
32                                      Bignum* numerator, Bignum* denominator,
33                                      Bignum* delta_minus, Bignum* delta_plus);
34 // Multiplies numerator/denominator so that its values lies in the range 1-10.
35 // Returns decimal_point s.t.
36 //  v = numerator'/denominator' * 10^(decimal_point-1)
37 //     where numerator' and denominator' are the values of numerator and
38 //     denominator after the call to this function.
39 static void FixupMultiply10(int estimated_power, bool is_even,
40                             int* decimal_point, Bignum* numerator,
41                             Bignum* denominator, Bignum* delta_minus,
42                             Bignum* delta_plus);
43 // Generates digits from the left to the right and stops when the generated
44 // digits yield the shortest decimal representation of v.
45 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
46                                    Bignum* delta_minus, Bignum* delta_plus,
47                                    bool is_even, Vector<char> buffer,
48                                    int* length);
49 // Generates 'requested_digits' after the decimal point.
50 static void BignumToFixed(int requested_digits, int* decimal_point,
51                           Bignum* numerator, Bignum* denominator,
52                           Vector<char>(buffer), int* length);
53 // Generates 'count' digits of numerator/denominator.
54 // Once 'count' digits have been produced rounds the result depending on the
55 // remainder (remainders of exactly .5 round upwards). Might update the
56 // decimal_point when rounding up (for example for 0.9999).
57 static void GenerateCountedDigits(int count, int* decimal_point,
58                                   Bignum* numerator, Bignum* denominator,
59                                   Vector<char>(buffer), int* length);
60 
BignumDtoa(double v,BignumDtoaMode mode,int requested_digits,Vector<char> buffer,int * length,int * decimal_point)61 void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
62                 Vector<char> buffer, int* length, int* decimal_point) {
63   DCHECK_GT(v, 0);
64   DCHECK(!Double(v).IsSpecial());
65   uint64_t significand = Double(v).Significand();
66   bool is_even = (significand & 1) == 0;
67   int exponent = Double(v).Exponent();
68   int normalized_exponent = NormalizedExponent(significand, exponent);
69   // estimated_power might be too low by 1.
70   int estimated_power = EstimatePower(normalized_exponent);
71 
72   // Shortcut for Fixed.
73   // The requested digits correspond to the digits after the point. If the
74   // number is much too small, then there is no need in trying to get any
75   // digits.
76   if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
77     buffer[0] = '\0';
78     *length = 0;
79     // Set decimal-point to -requested_digits. This is what Gay does.
80     // Note that it should not have any effect anyways since the string is
81     // empty.
82     *decimal_point = -requested_digits;
83     return;
84   }
85 
86   Bignum numerator;
87   Bignum denominator;
88   Bignum delta_minus;
89   Bignum delta_plus;
90   // Make sure the bignum can grow large enough. The smallest double equals
91   // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
92   // The maximum double is 1.7976931348623157e308 which needs fewer than
93   // 308*4 binary digits.
94   DCHECK_GE(Bignum::kMaxSignificantBits, 324 * 4);
95   bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST);
96   InitialScaledStartValues(v, estimated_power, need_boundary_deltas, &numerator,
97                            &denominator, &delta_minus, &delta_plus);
98   // We now have v = (numerator / denominator) * 10^estimated_power.
99   FixupMultiply10(estimated_power, is_even, decimal_point, &numerator,
100                   &denominator, &delta_minus, &delta_plus);
101   // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
102   //  1 <= (numerator + delta_plus) / denominator < 10
103   switch (mode) {
104     case BIGNUM_DTOA_SHORTEST:
105       GenerateShortestDigits(&numerator, &denominator, &delta_minus,
106                              &delta_plus, is_even, buffer, length);
107       break;
108     case BIGNUM_DTOA_FIXED:
109       BignumToFixed(requested_digits, decimal_point, &numerator, &denominator,
110                     buffer, length);
111       break;
112     case BIGNUM_DTOA_PRECISION:
113       GenerateCountedDigits(requested_digits, decimal_point, &numerator,
114                             &denominator, buffer, length);
115       break;
116     default:
117       UNREACHABLE();
118   }
119   buffer[*length] = '\0';
120 }
121 
122 // The procedure starts generating digits from the left to the right and stops
123 // when the generated digits yield the shortest decimal representation of v. A
124 // decimal representation of v is a number lying closer to v than to any other
125 // double, so it converts to v when read.
126 //
127 // This is true if d, the decimal representation, is between m- and m+, the
128 // upper and lower boundaries. d must be strictly between them if !is_even.
129 //           m- := (numerator - delta_minus) / denominator
130 //           m+ := (numerator + delta_plus) / denominator
131 //
132 // Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
133 //   If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
134 //   will be produced. This should be the standard precondition.
GenerateShortestDigits(Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus,bool is_even,Vector<char> buffer,int * length)135 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
136                                    Bignum* delta_minus, Bignum* delta_plus,
137                                    bool is_even, Vector<char> buffer,
138                                    int* length) {
139   // Small optimization: if delta_minus and delta_plus are the same just reuse
140   // one of the two bignums.
141   if (Bignum::Equal(*delta_minus, *delta_plus)) {
142     delta_plus = delta_minus;
143   }
144   *length = 0;
145   while (true) {
146     uint16_t digit;
147     digit = numerator->DivideModuloIntBignum(*denominator);
148     DCHECK_LE(digit, 9);  // digit is a uint16_t and therefore always positive.
149     // digit = numerator / denominator (integer division).
150     // numerator = numerator % denominator.
151     buffer[(*length)++] = digit + '0';
152 
153     // Can we stop already?
154     // If the remainder of the division is less than the distance to the lower
155     // boundary we can stop. In this case we simply round down (discarding the
156     // remainder).
157     // Similarly we test if we can round up (using the upper boundary).
158     bool in_delta_room_minus;
159     bool in_delta_room_plus;
160     if (is_even) {
161       in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
162     } else {
163       in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
164     }
165     if (is_even) {
166       in_delta_room_plus =
167           Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
168     } else {
169       in_delta_room_plus =
170           Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
171     }
172     if (!in_delta_room_minus && !in_delta_room_plus) {
173       // Prepare for next iteration.
174       numerator->Times10();
175       delta_minus->Times10();
176       // We optimized delta_plus to be equal to delta_minus (if they share the
177       // same value). So don't multiply delta_plus if they point to the same
178       // object.
179       if (delta_minus != delta_plus) {
180         delta_plus->Times10();
181       }
182     } else if (in_delta_room_minus && in_delta_room_plus) {
183       // Let's see if 2*numerator < denominator.
184       // If yes, then the next digit would be < 5 and we can round down.
185       int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
186       if (compare < 0) {
187         // Remaining digits are less than .5. -> Round down (== do nothing).
188       } else if (compare > 0) {
189         // Remaining digits are more than .5 of denominator. -> Round up.
190         // Note that the last digit could not be a '9' as otherwise the whole
191         // loop would have stopped earlier.
192         // We still have an assert here in case the preconditions were not
193         // satisfied.
194         DCHECK_NE(buffer[(*length) - 1], '9');
195         buffer[(*length) - 1]++;
196       } else {
197         // Halfway case.
198         // TODO(floitsch): need a way to solve half-way cases.
199         //   For now let's round towards even (since this is what Gay seems to
200         //   do).
201 
202         if ((buffer[(*length) - 1] - '0') % 2 == 0) {
203           // Round down => Do nothing.
204         } else {
205           DCHECK_NE(buffer[(*length) - 1], '9');
206           buffer[(*length) - 1]++;
207         }
208       }
209       return;
210     } else if (in_delta_room_minus) {
211       // Round down (== do nothing).
212       return;
213     } else {  // in_delta_room_plus
214       // Round up.
215       // Note again that the last digit could not be '9' since this would have
216       // stopped the loop earlier.
217       // We still have an DCHECK here, in case the preconditions were not
218       // satisfied.
219       DCHECK_NE(buffer[(*length) - 1], '9');
220       buffer[(*length) - 1]++;
221       return;
222     }
223   }
224 }
225 
226 // Let v = numerator / denominator < 10.
227 // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
228 // from left to right. Once 'count' digits have been produced we decide wether
229 // to round up or down. Remainders of exactly .5 round upwards. Numbers such
230 // as 9.999999 propagate a carry all the way, and change the
231 // exponent (decimal_point), when rounding upwards.
GenerateCountedDigits(int count,int * decimal_point,Bignum * numerator,Bignum * denominator,Vector<char> (buffer),int * length)232 static void GenerateCountedDigits(int count, int* decimal_point,
233                                   Bignum* numerator, Bignum* denominator,
234                                   Vector<char>(buffer), int* length) {
235   DCHECK_GE(count, 0);
236   for (int i = 0; i < count - 1; ++i) {
237     uint16_t digit;
238     digit = numerator->DivideModuloIntBignum(*denominator);
239     DCHECK_LE(digit, 9);  // digit is a uint16_t and therefore always positive.
240     // digit = numerator / denominator (integer division).
241     // numerator = numerator % denominator.
242     buffer[i] = digit + '0';
243     // Prepare for next iteration.
244     numerator->Times10();
245   }
246   // Generate the last digit.
247   uint16_t digit;
248   digit = numerator->DivideModuloIntBignum(*denominator);
249   if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
250     digit++;
251   }
252   buffer[count - 1] = digit + '0';
253   // Correct bad digits (in case we had a sequence of '9's). Propagate the
254   // carry until we hat a non-'9' or til we reach the first digit.
255   for (int i = count - 1; i > 0; --i) {
256     if (buffer[i] != '0' + 10) break;
257     buffer[i] = '0';
258     buffer[i - 1]++;
259   }
260   if (buffer[0] == '0' + 10) {
261     // Propagate a carry past the top place.
262     buffer[0] = '1';
263     (*decimal_point)++;
264   }
265   *length = count;
266 }
267 
268 // Generates 'requested_digits' after the decimal point. It might omit
269 // trailing '0's. If the input number is too small then no digits at all are
270 // generated (ex.: 2 fixed digits for 0.00001).
271 //
272 // Input verifies:  1 <= (numerator + delta) / denominator < 10.
BignumToFixed(int requested_digits,int * decimal_point,Bignum * numerator,Bignum * denominator,Vector<char> (buffer),int * length)273 static void BignumToFixed(int requested_digits, int* decimal_point,
274                           Bignum* numerator, Bignum* denominator,
275                           Vector<char>(buffer), int* length) {
276   // Note that we have to look at more than just the requested_digits, since
277   // a number could be rounded up. Example: v=0.5 with requested_digits=0.
278   // Even though the power of v equals 0 we can't just stop here.
279   if (-(*decimal_point) > requested_digits) {
280     // The number is definitively too small.
281     // Ex: 0.001 with requested_digits == 1.
282     // Set decimal-point to -requested_digits. This is what Gay does.
283     // Note that it should not have any effect anyways since the string is
284     // empty.
285     *decimal_point = -requested_digits;
286     *length = 0;
287     return;
288   } else if (-(*decimal_point) == requested_digits) {
289     // We only need to verify if the number rounds down or up.
290     // Ex: 0.04 and 0.06 with requested_digits == 1.
291     DCHECK(*decimal_point == -requested_digits);
292     // Initially the fraction lies in range (1, 10]. Multiply the denominator
293     // by 10 so that we can compare more easily.
294     denominator->Times10();
295     if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
296       // If the fraction is >= 0.5 then we have to include the rounded
297       // digit.
298       buffer[0] = '1';
299       *length = 1;
300       (*decimal_point)++;
301     } else {
302       // Note that we caught most of similar cases earlier.
303       *length = 0;
304     }
305     return;
306   } else {
307     // The requested digits correspond to the digits after the point.
308     // The variable 'needed_digits' includes the digits before the point.
309     int needed_digits = (*decimal_point) + requested_digits;
310     GenerateCountedDigits(needed_digits, decimal_point, numerator, denominator,
311                           buffer, length);
312   }
313 }
314 
315 // Returns an estimation of k such that 10^(k-1) <= v < 10^k where
316 // v = f * 2^exponent and 2^52 <= f < 2^53.
317 // v is hence a normalized double with the given exponent. The output is an
318 // approximation for the exponent of the decimal approimation .digits * 10^k.
319 //
320 // The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
321 // Note: this property holds for v's upper boundary m+ too.
322 //    10^k <= m+ < 10^k+1.
323 //   (see explanation below).
324 //
325 // Examples:
326 //  EstimatePower(0)   => 16
327 //  EstimatePower(-52) => 0
328 //
329 // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
EstimatePower(int exponent)330 static int EstimatePower(int exponent) {
331   // This function estimates log10 of v where v = f*2^e (with e == exponent).
332   // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
333   // Note that f is bounded by its container size. Let p = 53 (the double's
334   // significand size). Then 2^(p-1) <= f < 2^p.
335   //
336   // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
337   // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
338   // The computed number undershoots by less than 0.631 (when we compute log3
339   // and not log10).
340   //
341   // Optimization: since we only need an approximated result this computation
342   // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
343   // not really measurable, though.
344   //
345   // Since we want to avoid overshooting we decrement by 1e10 so that
346   // floating-point imprecisions don't affect us.
347   //
348   // Explanation for v's boundary m+: the computation takes advantage of
349   // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
350   // (even for denormals where the delta can be much more important).
351 
352   const double k1Log10 = 0.30102999566398114;  // 1/lg(10)
353 
354   // For doubles len(f) == 53 (don't forget the hidden bit).
355   const int kSignificandSize = 53;
356   double estimate =
357       std::ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
358   return static_cast<int>(estimate);
359 }
360 
361 // See comments for InitialScaledStartValues.
InitialScaledStartValuesPositiveExponent(double v,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)362 static void InitialScaledStartValuesPositiveExponent(
363     double v, int estimated_power, bool need_boundary_deltas, Bignum* numerator,
364     Bignum* denominator, Bignum* delta_minus, Bignum* delta_plus) {
365   // A positive exponent implies a positive power.
366   DCHECK_GE(estimated_power, 0);
367   // Since the estimated_power is positive we simply multiply the denominator
368   // by 10^estimated_power.
369 
370   // numerator = v.
371   numerator->AssignUInt64(Double(v).Significand());
372   numerator->ShiftLeft(Double(v).Exponent());
373   // denominator = 10^estimated_power.
374   denominator->AssignPowerUInt16(10, estimated_power);
375 
376   if (need_boundary_deltas) {
377     // Introduce a common denominator so that the deltas to the boundaries are
378     // integers.
379     denominator->ShiftLeft(1);
380     numerator->ShiftLeft(1);
381     // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
382     // denominator (of 2) delta_plus equals 2^e.
383     delta_plus->AssignUInt16(1);
384     delta_plus->ShiftLeft(Double(v).Exponent());
385     // Same for delta_minus (with adjustments below if f == 2^p-1).
386     delta_minus->AssignUInt16(1);
387     delta_minus->ShiftLeft(Double(v).Exponent());
388 
389     // If the significand (without the hidden bit) is 0, then the lower
390     // boundary is closer than just half a ulp (unit in the last place).
391     // There is only one exception: if the next lower number is a denormal then
392     // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we
393     // have to test it in the other function where exponent < 0).
394     uint64_t v_bits = Double(v).AsUint64();
395     if ((v_bits & Double::kSignificandMask) == 0) {
396       // The lower boundary is closer at half the distance of "normal" numbers.
397       // Increase the common denominator and adapt all but the delta_minus.
398       denominator->ShiftLeft(1);  // *2
399       numerator->ShiftLeft(1);    // *2
400       delta_plus->ShiftLeft(1);   // *2
401     }
402   }
403 }
404 
405 // See comments for InitialScaledStartValues
InitialScaledStartValuesNegativeExponentPositivePower(double v,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)406 static void InitialScaledStartValuesNegativeExponentPositivePower(
407     double v, int estimated_power, bool need_boundary_deltas, Bignum* numerator,
408     Bignum* denominator, Bignum* delta_minus, Bignum* delta_plus) {
409   uint64_t significand = Double(v).Significand();
410   int exponent = Double(v).Exponent();
411   // v = f * 2^e with e < 0, and with estimated_power >= 0.
412   // This means that e is close to 0 (have a look at how estimated_power is
413   // computed).
414 
415   // numerator = significand
416   //  since v = significand * 2^exponent this is equivalent to
417   //  numerator = v * / 2^-exponent
418   numerator->AssignUInt64(significand);
419   // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
420   denominator->AssignPowerUInt16(10, estimated_power);
421   denominator->ShiftLeft(-exponent);
422 
423   if (need_boundary_deltas) {
424     // Introduce a common denominator so that the deltas to the boundaries are
425     // integers.
426     denominator->ShiftLeft(1);
427     numerator->ShiftLeft(1);
428     // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
429     // denominator (of 2) delta_plus equals 2^e.
430     // Given that the denominator already includes v's exponent the distance
431     // to the boundaries is simply 1.
432     delta_plus->AssignUInt16(1);
433     // Same for delta_minus (with adjustments below if f == 2^p-1).
434     delta_minus->AssignUInt16(1);
435 
436     // If the significand (without the hidden bit) is 0, then the lower
437     // boundary is closer than just one ulp (unit in the last place).
438     // There is only one exception: if the next lower number is a denormal
439     // then the distance is 1 ulp. Since the exponent is close to zero
440     // (otherwise estimated_power would have been negative) this cannot happen
441     // here either.
442     uint64_t v_bits = Double(v).AsUint64();
443     if ((v_bits & Double::kSignificandMask) == 0) {
444       // The lower boundary is closer at half the distance of "normal" numbers.
445       // Increase the denominator and adapt all but the delta_minus.
446       denominator->ShiftLeft(1);  // *2
447       numerator->ShiftLeft(1);    // *2
448       delta_plus->ShiftLeft(1);   // *2
449     }
450   }
451 }
452 
453 // See comments for InitialScaledStartValues
InitialScaledStartValuesNegativeExponentNegativePower(double v,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)454 static void InitialScaledStartValuesNegativeExponentNegativePower(
455     double v, int estimated_power, bool need_boundary_deltas, Bignum* numerator,
456     Bignum* denominator, Bignum* delta_minus, Bignum* delta_plus) {
457   const uint64_t kMinimalNormalizedExponent = 0x0010'0000'0000'0000;
458   uint64_t significand = Double(v).Significand();
459   int exponent = Double(v).Exponent();
460   // Instead of multiplying the denominator with 10^estimated_power we
461   // multiply all values (numerator and deltas) by 10^-estimated_power.
462 
463   // Use numerator as temporary container for power_ten.
464   Bignum* power_ten = numerator;
465   power_ten->AssignPowerUInt16(10, -estimated_power);
466 
467   if (need_boundary_deltas) {
468     // Since power_ten == numerator we must make a copy of 10^estimated_power
469     // before we complete the computation of the numerator.
470     // delta_plus = delta_minus = 10^estimated_power
471     delta_plus->AssignBignum(*power_ten);
472     delta_minus->AssignBignum(*power_ten);
473   }
474 
475   // numerator = significand * 2 * 10^-estimated_power
476   //  since v = significand * 2^exponent this is equivalent to
477   // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
478   // Remember: numerator has been abused as power_ten. So no need to assign it
479   //  to itself.
480   DCHECK(numerator == power_ten);
481   numerator->MultiplyByUInt64(significand);
482 
483   // denominator = 2 * 2^-exponent with exponent < 0.
484   denominator->AssignUInt16(1);
485   denominator->ShiftLeft(-exponent);
486 
487   if (need_boundary_deltas) {
488     // Introduce a common denominator so that the deltas to the boundaries are
489     // integers.
490     numerator->ShiftLeft(1);
491     denominator->ShiftLeft(1);
492     // With this shift the boundaries have their correct value, since
493     // delta_plus = 10^-estimated_power, and
494     // delta_minus = 10^-estimated_power.
495     // These assignments have been done earlier.
496 
497     // The special case where the lower boundary is twice as close.
498     // This time we have to look out for the exception too.
499     uint64_t v_bits = Double(v).AsUint64();
500     if ((v_bits & Double::kSignificandMask) == 0 &&
501         // The only exception where a significand == 0 has its boundaries at
502         // "normal" distances:
503         (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) {
504       numerator->ShiftLeft(1);    // *2
505       denominator->ShiftLeft(1);  // *2
506       delta_plus->ShiftLeft(1);   // *2
507     }
508   }
509 }
510 
511 // Let v = significand * 2^exponent.
512 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
513 // and denominator. The functions GenerateShortestDigits and
514 // GenerateCountedDigits will then convert this ratio to its decimal
515 // representation d, with the required accuracy.
516 // Then d * 10^estimated_power is the representation of v.
517 // (Note: the fraction and the estimated_power might get adjusted before
518 // generating the decimal representation.)
519 //
520 // The initial start values consist of:
521 //  - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
522 //  - a scaled (common) denominator.
523 //  optionally (used by GenerateShortestDigits to decide if it has the shortest
524 //  decimal converting back to v):
525 //  - v - m-: the distance to the lower boundary.
526 //  - m+ - v: the distance to the upper boundary.
527 //
528 // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
529 //
530 // Let ep == estimated_power, then the returned values will satisfy:
531 //  v / 10^ep = numerator / denominator.
532 //  v's boundarys m- and m+:
533 //    m- / 10^ep == v / 10^ep - delta_minus / denominator
534 //    m+ / 10^ep == v / 10^ep + delta_plus / denominator
535 //  Or in other words:
536 //    m- == v - delta_minus * 10^ep / denominator;
537 //    m+ == v + delta_plus * 10^ep / denominator;
538 //
539 // Since 10^(k-1) <= v < 10^k    (with k == estimated_power)
540 //  or       10^k <= v < 10^(k+1)
541 //  we then have 0.1 <= numerator/denominator < 1
542 //           or    1 <= numerator/denominator < 10
543 //
544 // It is then easy to kickstart the digit-generation routine.
545 //
546 // The boundary-deltas are only filled if need_boundary_deltas is set.
InitialScaledStartValues(double v,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)547 static void InitialScaledStartValues(double v, int estimated_power,
548                                      bool need_boundary_deltas,
549                                      Bignum* numerator, Bignum* denominator,
550                                      Bignum* delta_minus, Bignum* delta_plus) {
551   if (Double(v).Exponent() >= 0) {
552     InitialScaledStartValuesPositiveExponent(
553         v, estimated_power, need_boundary_deltas, numerator, denominator,
554         delta_minus, delta_plus);
555   } else if (estimated_power >= 0) {
556     InitialScaledStartValuesNegativeExponentPositivePower(
557         v, estimated_power, need_boundary_deltas, numerator, denominator,
558         delta_minus, delta_plus);
559   } else {
560     InitialScaledStartValuesNegativeExponentNegativePower(
561         v, estimated_power, need_boundary_deltas, numerator, denominator,
562         delta_minus, delta_plus);
563   }
564 }
565 
566 // This routine multiplies numerator/denominator so that its values lies in the
567 // range 1-10. That is after a call to this function we have:
568 //    1 <= (numerator + delta_plus) /denominator < 10.
569 // Let numerator the input before modification and numerator' the argument
570 // after modification, then the output-parameter decimal_point is such that
571 //  numerator / denominator * 10^estimated_power ==
572 //    numerator' / denominator' * 10^(decimal_point - 1)
573 // In some cases estimated_power was too low, and this is already the case. We
574 // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
575 // estimated_power) but do not touch the numerator or denominator.
576 // Otherwise the routine multiplies the numerator and the deltas by 10.
FixupMultiply10(int estimated_power,bool is_even,int * decimal_point,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)577 static void FixupMultiply10(int estimated_power, bool is_even,
578                             int* decimal_point, Bignum* numerator,
579                             Bignum* denominator, Bignum* delta_minus,
580                             Bignum* delta_plus) {
581   bool in_range;
582   if (is_even) {
583     // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
584     // are rounded to the closest floating-point number with even significand.
585     in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
586   } else {
587     in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
588   }
589   if (in_range) {
590     // Since numerator + delta_plus >= denominator we already have
591     // 1 <= numerator/denominator < 10. Simply update the estimated_power.
592     *decimal_point = estimated_power + 1;
593   } else {
594     *decimal_point = estimated_power;
595     numerator->Times10();
596     if (Bignum::Equal(*delta_minus, *delta_plus)) {
597       delta_minus->Times10();
598       delta_plus->AssignBignum(*delta_minus);
599     } else {
600       delta_minus->Times10();
601       delta_plus->Times10();
602     }
603   }
604 }
605 
606 }  // namespace base
607 }  // namespace v8
608