• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/base/numbers/strtod.h"
6 
7 #include <stdarg.h>
8 
9 #include <cmath>
10 #include <limits>
11 
12 #include "src/base/numbers/bignum.h"
13 #include "src/base/numbers/cached-powers.h"
14 #include "src/base/numbers/double.h"
15 
16 namespace v8 {
17 namespace base {
18 
19 // 2^53 = 9007199254740992.
20 // Any integer with at most 15 decimal digits will hence fit into a double
21 // (which has a 53bit significand) without loss of precision.
22 static const int kMaxExactDoubleIntegerDecimalDigits = 15;
23 // 2^64 = 18446744073709551616 > 10^19
24 static const int kMaxUint64DecimalDigits = 19;
25 
26 // Max double: 1.7976931348623157 x 10^308
27 // Min non-zero double: 4.9406564584124654 x 10^-324
28 // Any x >= 10^309 is interpreted as +infinity.
29 // Any x <= 10^-324 is interpreted as 0.
30 // Note that 2.5e-324 (despite being smaller than the min double) will be read
31 // as non-zero (equal to the min non-zero double).
32 static const int kMaxDecimalPower = 309;
33 static const int kMinDecimalPower = -324;
34 
35 // 2^64 = 18446744073709551616
36 static const uint64_t kMaxUint64 = 0xFFFF'FFFF'FFFF'FFFF;
37 
38 // clang-format off
39 static const double exact_powers_of_ten[] = {
40   1.0,  // 10^0
41   10.0,
42   100.0,
43   1000.0,
44   10000.0,
45   100000.0,
46   1000000.0,
47   10000000.0,
48   100000000.0,
49   1000000000.0,
50   10000000000.0,  // 10^10
51   100000000000.0,
52   1000000000000.0,
53   10000000000000.0,
54   100000000000000.0,
55   1000000000000000.0,
56   10000000000000000.0,
57   100000000000000000.0,
58   1000000000000000000.0,
59   10000000000000000000.0,
60   100000000000000000000.0,  // 10^20
61   1000000000000000000000.0,
62   // 10^22 = 0x21E19E0C9BAB2400000 = 0x878678326EAC9 * 2^22
63   10000000000000000000000.0
64 };
65 // clang-format on
66 static const int kExactPowersOfTenSize = arraysize(exact_powers_of_ten);
67 
68 // Maximum number of significant digits in the decimal representation.
69 // In fact the value is 772 (see conversions.cc), but to give us some margin
70 // we round up to 780.
71 static const int kMaxSignificantDecimalDigits = 780;
72 
TrimLeadingZeros(Vector<const char> buffer)73 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
74   for (int i = 0; i < buffer.length(); i++) {
75     if (buffer[i] != '0') {
76       return buffer.SubVector(i, buffer.length());
77     }
78   }
79   return Vector<const char>(buffer.begin(), 0);
80 }
81 
TrimTrailingZeros(Vector<const char> buffer)82 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
83   for (int i = buffer.length() - 1; i >= 0; --i) {
84     if (buffer[i] != '0') {
85       return buffer.SubVector(0, i + 1);
86     }
87   }
88   return Vector<const char>(buffer.begin(), 0);
89 }
90 
TrimToMaxSignificantDigits(Vector<const char> buffer,int exponent,char * significant_buffer,int * significant_exponent)91 static void TrimToMaxSignificantDigits(Vector<const char> buffer, int exponent,
92                                        char* significant_buffer,
93                                        int* significant_exponent) {
94   for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
95     significant_buffer[i] = buffer[i];
96   }
97   // The input buffer has been trimmed. Therefore the last digit must be
98   // different from '0'.
99   DCHECK_NE(buffer[buffer.length() - 1], '0');
100   // Set the last digit to be non-zero. This is sufficient to guarantee
101   // correct rounding.
102   significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
103   *significant_exponent =
104       exponent + (buffer.length() - kMaxSignificantDecimalDigits);
105 }
106 
107 // Reads digits from the buffer and converts them to a uint64.
108 // Reads in as many digits as fit into a uint64.
109 // When the string starts with "1844674407370955161" no further digit is read.
110 // Since 2^64 = 18446744073709551616 it would still be possible read another
111 // digit if it was less or equal than 6, but this would complicate the code.
ReadUint64(Vector<const char> buffer,int * number_of_read_digits)112 static uint64_t ReadUint64(Vector<const char> buffer,
113                            int* number_of_read_digits) {
114   uint64_t result = 0;
115   int i = 0;
116   while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
117     int digit = buffer[i++] - '0';
118     DCHECK(0 <= digit && digit <= 9);
119     result = 10 * result + digit;
120   }
121   *number_of_read_digits = i;
122   return result;
123 }
124 
125 // Reads a DiyFp from the buffer.
126 // The returned DiyFp is not necessarily normalized.
127 // If remaining_decimals is zero then the returned DiyFp is accurate.
128 // Otherwise it has been rounded and has error of at most 1/2 ulp.
ReadDiyFp(Vector<const char> buffer,DiyFp * result,int * remaining_decimals)129 static void ReadDiyFp(Vector<const char> buffer, DiyFp* result,
130                       int* remaining_decimals) {
131   int read_digits;
132   uint64_t significand = ReadUint64(buffer, &read_digits);
133   if (buffer.length() == read_digits) {
134     *result = DiyFp(significand, 0);
135     *remaining_decimals = 0;
136   } else {
137     // Round the significand.
138     if (buffer[read_digits] >= '5') {
139       significand++;
140     }
141     // Compute the binary exponent.
142     int exponent = 0;
143     *result = DiyFp(significand, exponent);
144     *remaining_decimals = buffer.length() - read_digits;
145   }
146 }
147 
DoubleStrtod(Vector<const char> trimmed,int exponent,double * result)148 static bool DoubleStrtod(Vector<const char> trimmed, int exponent,
149                          double* result) {
150 #if (V8_TARGET_ARCH_IA32 || defined(USE_SIMULATOR)) && !defined(_MSC_VER)
151   // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
152   // 80 bits wide (as is the case on Linux) then double-rounding occurs and the
153   // result is not accurate.
154   // We know that Windows32 with MSVC, unlike with MinGW32, uses 64 bits and is
155   // therefore accurate.
156   // Note that the ARM and MIPS simulators are compiled for 32bits. They
157   // therefore exhibit the same problem.
158   USE(exact_powers_of_ten);
159   USE(kMaxExactDoubleIntegerDecimalDigits);
160   USE(kExactPowersOfTenSize);
161   return false;
162 #else
163   if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
164     int read_digits;
165     // The trimmed input fits into a double.
166     // If the 10^exponent (resp. 10^-exponent) fits into a double too then we
167     // can compute the result-double simply by multiplying (resp. dividing) the
168     // two numbers.
169     // This is possible because IEEE guarantees that floating-point operations
170     // return the best possible approximation.
171     if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
172       // 10^-exponent fits into a double.
173       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
174       DCHECK(read_digits == trimmed.length());
175       *result /= exact_powers_of_ten[-exponent];
176       return true;
177     }
178     if (0 <= exponent && exponent < kExactPowersOfTenSize) {
179       // 10^exponent fits into a double.
180       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
181       DCHECK(read_digits == trimmed.length());
182       *result *= exact_powers_of_ten[exponent];
183       return true;
184     }
185     int remaining_digits =
186         kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
187     if ((0 <= exponent) &&
188         (exponent - remaining_digits < kExactPowersOfTenSize)) {
189       // The trimmed string was short and we can multiply it with
190       // 10^remaining_digits. As a result the remaining exponent now fits
191       // into a double too.
192       *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
193       DCHECK(read_digits == trimmed.length());
194       *result *= exact_powers_of_ten[remaining_digits];
195       *result *= exact_powers_of_ten[exponent - remaining_digits];
196       return true;
197     }
198   }
199   return false;
200 #endif
201 }
202 
203 // Returns 10^exponent as an exact DiyFp.
204 // The given exponent must be in the range [1; kDecimalExponentDistance[.
AdjustmentPowerOfTen(int exponent)205 static DiyFp AdjustmentPowerOfTen(int exponent) {
206   DCHECK_LT(0, exponent);
207   DCHECK_LT(exponent, PowersOfTenCache::kDecimalExponentDistance);
208   // Simply hardcode the remaining powers for the given decimal exponent
209   // distance.
210   DCHECK_EQ(PowersOfTenCache::kDecimalExponentDistance, 8);
211   switch (exponent) {
212     case 1:
213       return DiyFp(0xA000'0000'0000'0000, -60);
214     case 2:
215       return DiyFp(0xC800'0000'0000'0000, -57);
216     case 3:
217       return DiyFp(0xFA00'0000'0000'0000, -54);
218     case 4:
219       return DiyFp(0x9C40'0000'0000'0000, -50);
220     case 5:
221       return DiyFp(0xC350'0000'0000'0000, -47);
222     case 6:
223       return DiyFp(0xF424'0000'0000'0000, -44);
224     case 7:
225       return DiyFp(0x9896'8000'0000'0000, -40);
226     default:
227       UNREACHABLE();
228   }
229 }
230 
231 // If the function returns true then the result is the correct double.
232 // Otherwise it is either the correct double or the double that is just below
233 // the correct double.
DiyFpStrtod(Vector<const char> buffer,int exponent,double * result)234 static bool DiyFpStrtod(Vector<const char> buffer, int exponent,
235                         double* result) {
236   DiyFp input;
237   int remaining_decimals;
238   ReadDiyFp(buffer, &input, &remaining_decimals);
239   // Since we may have dropped some digits the input is not accurate.
240   // If remaining_decimals is different than 0 than the error is at most
241   // .5 ulp (unit in the last place).
242   // We don't want to deal with fractions and therefore keep a common
243   // denominator.
244   const int kDenominatorLog = 3;
245   const int kDenominator = 1 << kDenominatorLog;
246   // Move the remaining decimals into the exponent.
247   exponent += remaining_decimals;
248   int64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
249 
250   int old_e = input.e();
251   input.Normalize();
252   error <<= old_e - input.e();
253 
254   DCHECK_LE(exponent, PowersOfTenCache::kMaxDecimalExponent);
255   if (exponent < PowersOfTenCache::kMinDecimalExponent) {
256     *result = 0.0;
257     return true;
258   }
259   DiyFp cached_power;
260   int cached_decimal_exponent;
261   PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent, &cached_power,
262                                                      &cached_decimal_exponent);
263 
264   if (cached_decimal_exponent != exponent) {
265     int adjustment_exponent = exponent - cached_decimal_exponent;
266     DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
267     input.Multiply(adjustment_power);
268     if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
269       // The product of input with the adjustment power fits into a 64 bit
270       // integer.
271       DCHECK_EQ(DiyFp::kSignificandSize, 64);
272     } else {
273       // The adjustment power is exact. There is hence only an error of 0.5.
274       error += kDenominator / 2;
275     }
276   }
277 
278   input.Multiply(cached_power);
279   // The error introduced by a multiplication of a*b equals
280   //   error_a + error_b + error_a*error_b/2^64 + 0.5
281   // Substituting a with 'input' and b with 'cached_power' we have
282   //   error_b = 0.5  (all cached powers have an error of less than 0.5 ulp),
283   //   error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
284   int error_b = kDenominator / 2;
285   int error_ab = (error == 0 ? 0 : 1);  // We round up to 1.
286   int fixed_error = kDenominator / 2;
287   error += error_b + error_ab + fixed_error;
288 
289   old_e = input.e();
290   input.Normalize();
291   error <<= old_e - input.e();
292 
293   // See if the double's significand changes if we add/subtract the error.
294   int order_of_magnitude = DiyFp::kSignificandSize + input.e();
295   int effective_significand_size =
296       Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
297   int precision_digits_count =
298       DiyFp::kSignificandSize - effective_significand_size;
299   if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
300     // This can only happen for very small denormals. In this case the
301     // half-way multiplied by the denominator exceeds the range of an uint64.
302     // Simply shift everything to the right.
303     int shift_amount = (precision_digits_count + kDenominatorLog) -
304                        DiyFp::kSignificandSize + 1;
305     input.set_f(input.f() >> shift_amount);
306     input.set_e(input.e() + shift_amount);
307     // We add 1 for the lost precision of error, and kDenominator for
308     // the lost precision of input.f().
309     error = (error >> shift_amount) + 1 + kDenominator;
310     precision_digits_count -= shift_amount;
311   }
312   // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
313   DCHECK_EQ(DiyFp::kSignificandSize, 64);
314   DCHECK_LT(precision_digits_count, 64);
315   uint64_t one64 = 1;
316   uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
317   uint64_t precision_bits = input.f() & precision_bits_mask;
318   uint64_t half_way = one64 << (precision_digits_count - 1);
319   precision_bits *= kDenominator;
320   half_way *= kDenominator;
321   DiyFp rounded_input(input.f() >> precision_digits_count,
322                       input.e() + precision_digits_count);
323   if (precision_bits >= half_way + error) {
324     rounded_input.set_f(rounded_input.f() + 1);
325   }
326   // If the last_bits are too close to the half-way case than we are too
327   // inaccurate and round down. In this case we return false so that we can
328   // fall back to a more precise algorithm.
329 
330   *result = Double(rounded_input).value();
331   if (half_way - error < precision_bits && precision_bits < half_way + error) {
332     // Too imprecise. The caller will have to fall back to a slower version.
333     // However the returned number is guaranteed to be either the correct
334     // double, or the next-lower double.
335     return false;
336   } else {
337     return true;
338   }
339 }
340 
341 // Returns the correct double for the buffer*10^exponent.
342 // The variable guess should be a close guess that is either the correct double
343 // or its lower neighbor (the nearest double less than the correct one).
344 // Preconditions:
345 //   buffer.length() + exponent <= kMaxDecimalPower + 1
346 //   buffer.length() + exponent > kMinDecimalPower
347 //   buffer.length() <= kMaxDecimalSignificantDigits
BignumStrtod(Vector<const char> buffer,int exponent,double guess)348 static double BignumStrtod(Vector<const char> buffer, int exponent,
349                            double guess) {
350   if (guess == std::numeric_limits<double>::infinity()) {
351     return guess;
352   }
353 
354   DiyFp upper_boundary = Double(guess).UpperBoundary();
355 
356   DCHECK(buffer.length() + exponent <= kMaxDecimalPower + 1);
357   DCHECK_GT(buffer.length() + exponent, kMinDecimalPower);
358   DCHECK_LE(buffer.length(), kMaxSignificantDecimalDigits);
359   // Make sure that the Bignum will be able to hold all our numbers.
360   // Our Bignum implementation has a separate field for exponents. Shifts will
361   // consume at most one bigit (< 64 bits).
362   // ln(10) == 3.3219...
363   DCHECK_LT((kMaxDecimalPower + 1) * 333 / 100, Bignum::kMaxSignificantBits);
364   Bignum input;
365   Bignum boundary;
366   input.AssignDecimalString(buffer);
367   boundary.AssignUInt64(upper_boundary.f());
368   if (exponent >= 0) {
369     input.MultiplyByPowerOfTen(exponent);
370   } else {
371     boundary.MultiplyByPowerOfTen(-exponent);
372   }
373   if (upper_boundary.e() > 0) {
374     boundary.ShiftLeft(upper_boundary.e());
375   } else {
376     input.ShiftLeft(-upper_boundary.e());
377   }
378   int comparison = Bignum::Compare(input, boundary);
379   if (comparison < 0) {
380     return guess;
381   } else if (comparison > 0) {
382     return Double(guess).NextDouble();
383   } else if ((Double(guess).Significand() & 1) == 0) {
384     // Round towards even.
385     return guess;
386   } else {
387     return Double(guess).NextDouble();
388   }
389 }
390 
Strtod(Vector<const char> buffer,int exponent)391 double Strtod(Vector<const char> buffer, int exponent) {
392   Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
393   Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
394   exponent += left_trimmed.length() - trimmed.length();
395   if (trimmed.length() == 0) return 0.0;
396   if (trimmed.length() > kMaxSignificantDecimalDigits) {
397     char significant_buffer[kMaxSignificantDecimalDigits];
398     int significant_exponent;
399     TrimToMaxSignificantDigits(trimmed, exponent, significant_buffer,
400                                &significant_exponent);
401     return Strtod(
402         Vector<const char>(significant_buffer, kMaxSignificantDecimalDigits),
403         significant_exponent);
404   }
405   if (exponent + trimmed.length() - 1 >= kMaxDecimalPower)
406     return std::numeric_limits<double>::infinity();
407   if (exponent + trimmed.length() <= kMinDecimalPower) return 0.0;
408 
409   double guess;
410   if (DoubleStrtod(trimmed, exponent, &guess) ||
411       DiyFpStrtod(trimmed, exponent, &guess)) {
412     return guess;
413   }
414   return BignumStrtod(trimmed, exponent, guess);
415 }
416 
417 }  // namespace base
418 }  // namespace v8
419