• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/base/utils/random-number-generator.h"
6 
7 #include <stdio.h>
8 #include <stdlib.h>
9 #if defined(V8_OS_STARBOARD)
10 #include "starboard/system.h"
11 #endif  //  V8_OS_STARBOARD
12 
13 #include <algorithm>
14 #include <new>
15 
16 #include "src/base/bits.h"
17 #include "src/base/macros.h"
18 #include "src/base/platform/mutex.h"
19 #include "src/base/platform/time.h"
20 #include "src/base/platform/wrappers.h"
21 
22 namespace v8 {
23 namespace base {
24 
25 static LazyMutex entropy_mutex = LAZY_MUTEX_INITIALIZER;
26 static RandomNumberGenerator::EntropySource entropy_source = nullptr;
27 
28 // static
SetEntropySource(EntropySource source)29 void RandomNumberGenerator::SetEntropySource(EntropySource source) {
30   MutexGuard lock_guard(entropy_mutex.Pointer());
31   entropy_source = source;
32 }
33 
34 
RandomNumberGenerator()35 RandomNumberGenerator::RandomNumberGenerator() {
36   // Check if embedder supplied an entropy source.
37   {
38     MutexGuard lock_guard(entropy_mutex.Pointer());
39     if (entropy_source != nullptr) {
40       int64_t seed;
41       if (entropy_source(reinterpret_cast<unsigned char*>(&seed),
42                          sizeof(seed))) {
43         SetSeed(seed);
44         return;
45       }
46     }
47   }
48 
49 #if V8_OS_CYGWIN || V8_OS_WIN
50   // Use rand_s() to gather entropy on Windows. See:
51   // https://code.google.com/p/v8/issues/detail?id=2905
52   unsigned first_half, second_half;
53   errno_t result = rand_s(&first_half);
54   DCHECK_EQ(0, result);
55   result = rand_s(&second_half);
56   DCHECK_EQ(0, result);
57   USE(result);
58   SetSeed((static_cast<int64_t>(first_half) << 32) + second_half);
59 #elif V8_OS_DARWIN || V8_OS_FREEBSD || V8_OS_OPENBSD
60   // Despite its prefix suggests it is not RC4 algorithm anymore.
61   // It always succeeds while having decent performance and
62   // no file descriptor involved.
63   int64_t seed;
64   arc4random_buf(&seed, sizeof(seed));
65   SetSeed(seed);
66 #elif V8_OS_STARBOARD
67   SetSeed(SbSystemGetRandomUInt64());
68 #else
69   // Gather entropy from /dev/urandom if available.
70   FILE* fp = base::Fopen("/dev/urandom", "rb");
71   if (fp != nullptr) {
72     int64_t seed;
73     size_t n = fread(&seed, sizeof(seed), 1, fp);
74     base::Fclose(fp);
75     if (n == 1) {
76       SetSeed(seed);
77       return;
78     }
79   }
80 
81   // We cannot assume that random() or rand() were seeded
82   // properly, so instead of relying on random() or rand(),
83   // we just seed our PRNG using timing data as fallback.
84   // This is weak entropy, but it's sufficient, because
85   // it is the responsibility of the embedder to install
86   // an entropy source using v8::V8::SetEntropySource(),
87   // which provides reasonable entropy, see:
88   // https://code.google.com/p/v8/issues/detail?id=2905
89   int64_t seed = Time::NowFromSystemTime().ToInternalValue() << 24;
90   seed ^= TimeTicks::Now().ToInternalValue();
91   SetSeed(seed);
92 #endif  // V8_OS_CYGWIN || V8_OS_WIN
93 }
94 
95 
NextInt(int max)96 int RandomNumberGenerator::NextInt(int max) {
97   DCHECK_LT(0, max);
98 
99   // Fast path if max is a power of 2.
100   if (bits::IsPowerOfTwo(max)) {
101     return static_cast<int>((max * static_cast<int64_t>(Next(31))) >> 31);
102   }
103 
104   while (true) {
105     int rnd = Next(31);
106     int val = rnd % max;
107     if (std::numeric_limits<int>::max() - (rnd - val) >= (max - 1)) {
108       return val;
109     }
110   }
111 }
112 
113 
NextDouble()114 double RandomNumberGenerator::NextDouble() {
115   XorShift128(&state0_, &state1_);
116   return ToDouble(state0_);
117 }
118 
119 
NextInt64()120 int64_t RandomNumberGenerator::NextInt64() {
121   XorShift128(&state0_, &state1_);
122   return bit_cast<int64_t>(state0_ + state1_);
123 }
124 
125 
NextBytes(void * buffer,size_t buflen)126 void RandomNumberGenerator::NextBytes(void* buffer, size_t buflen) {
127   for (size_t n = 0; n < buflen; ++n) {
128     static_cast<uint8_t*>(buffer)[n] = static_cast<uint8_t>(Next(8));
129   }
130 }
131 
ComplementSample(const std::unordered_set<uint64_t> & set,uint64_t max)132 static std::vector<uint64_t> ComplementSample(
133     const std::unordered_set<uint64_t>& set, uint64_t max) {
134   std::vector<uint64_t> result;
135   result.reserve(max - set.size());
136   for (uint64_t i = 0; i < max; i++) {
137     if (!set.count(i)) {
138       result.push_back(i);
139     }
140   }
141   return result;
142 }
143 
NextSample(uint64_t max,size_t n)144 std::vector<uint64_t> RandomNumberGenerator::NextSample(uint64_t max,
145                                                         size_t n) {
146   CHECK_LE(n, max);
147 
148   if (n == 0) {
149     return std::vector<uint64_t>();
150   }
151 
152   // Choose to select or exclude, whatever needs fewer generator calls.
153   size_t smaller_part = static_cast<size_t>(
154       std::min(max - static_cast<uint64_t>(n), static_cast<uint64_t>(n)));
155   std::unordered_set<uint64_t> selected;
156 
157   size_t counter = 0;
158   while (selected.size() != smaller_part && counter / 3 < smaller_part) {
159     uint64_t x = static_cast<uint64_t>(NextDouble() * max);
160     CHECK_LT(x, max);
161 
162     selected.insert(x);
163     counter++;
164   }
165 
166   if (selected.size() == smaller_part) {
167     if (smaller_part != n) {
168       return ComplementSample(selected, max);
169     }
170     return std::vector<uint64_t>(selected.begin(), selected.end());
171   }
172 
173   // Failed to select numbers in smaller_part * 3 steps, try different approach.
174   return NextSampleSlow(max, n, selected);
175 }
176 
NextSampleSlow(uint64_t max,size_t n,const std::unordered_set<uint64_t> & excluded)177 std::vector<uint64_t> RandomNumberGenerator::NextSampleSlow(
178     uint64_t max, size_t n, const std::unordered_set<uint64_t>& excluded) {
179   CHECK_GE(max - excluded.size(), n);
180 
181   std::vector<uint64_t> result;
182   result.reserve(max - excluded.size());
183 
184   for (uint64_t i = 0; i < max; i++) {
185     if (!excluded.count(i)) {
186       result.push_back(i);
187     }
188   }
189 
190   // Decrease result vector until it contains values to select or exclude,
191   // whatever needs fewer generator calls.
192   size_t larger_part = static_cast<size_t>(
193       std::max(max - static_cast<uint64_t>(n), static_cast<uint64_t>(n)));
194 
195   // Excluded set may cause that initial result is already smaller than
196   // larget_part.
197   while (result.size() != larger_part && result.size() > n) {
198     size_t x = static_cast<size_t>(NextDouble() * result.size());
199     CHECK_LT(x, result.size());
200 
201     std::swap(result[x], result.back());
202     result.pop_back();
203   }
204 
205   if (result.size() != n) {
206     return ComplementSample(
207         std::unordered_set<uint64_t>(result.begin(), result.end()), max);
208   }
209   return result;
210 }
211 
Next(int bits)212 int RandomNumberGenerator::Next(int bits) {
213   DCHECK_LT(0, bits);
214   DCHECK_GE(32, bits);
215   XorShift128(&state0_, &state1_);
216   return static_cast<int>((state0_ + state1_) >> (64 - bits));
217 }
218 
219 
SetSeed(int64_t seed)220 void RandomNumberGenerator::SetSeed(int64_t seed) {
221   initial_seed_ = seed;
222   state0_ = MurmurHash3(bit_cast<uint64_t>(seed));
223   state1_ = MurmurHash3(~state0_);
224   CHECK(state0_ != 0 || state1_ != 0);
225 }
226 
227 
MurmurHash3(uint64_t h)228 uint64_t RandomNumberGenerator::MurmurHash3(uint64_t h) {
229   h ^= h >> 33;
230   h *= uint64_t{0xFF51AFD7ED558CCD};
231   h ^= h >> 33;
232   h *= uint64_t{0xC4CEB9FE1A85EC53};
233   h ^= h >> 33;
234   return h;
235 }
236 
237 }  // namespace base
238 }  // namespace v8
239