1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32
33 // The original source code covered by the above license above has been modified
34 // significantly by Google Inc.
35 // Copyright 2014 the V8 project authors. All rights reserved.
36
37 #ifndef V8_CODEGEN_S390_ASSEMBLER_S390_INL_H_
38 #define V8_CODEGEN_S390_ASSEMBLER_S390_INL_H_
39
40 #include "src/codegen/s390/assembler-s390.h"
41
42 #include "src/codegen/assembler.h"
43 #include "src/debug/debug.h"
44 #include "src/objects/objects-inl.h"
45
46 namespace v8 {
47 namespace internal {
48
SupportsOptimizer()49 bool CpuFeatures::SupportsOptimizer() { return true; }
50
apply(intptr_t delta)51 void RelocInfo::apply(intptr_t delta) {
52 // Absolute code pointer inside code object moves with the code object.
53 if (IsInternalReference(rmode_)) {
54 // Jump table entry
55 Address target = Memory<Address>(pc_);
56 Memory<Address>(pc_) = target + delta;
57 } else if (IsCodeTarget(rmode_)) {
58 SixByteInstr instr =
59 Instruction::InstructionBits(reinterpret_cast<const byte*>(pc_));
60 int32_t dis = static_cast<int32_t>(instr & 0xFFFFFFFF) * 2 // halfwords
61 - static_cast<int32_t>(delta);
62 instr >>= 32; // Clear the 4-byte displacement field.
63 instr <<= 32;
64 instr |= static_cast<uint32_t>(dis / 2);
65 Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc_),
66 instr);
67 } else {
68 // mov sequence
69 DCHECK(IsInternalReferenceEncoded(rmode_));
70 Address target = Assembler::target_address_at(pc_, constant_pool_);
71 Assembler::set_target_address_at(pc_, constant_pool_, target + delta,
72 SKIP_ICACHE_FLUSH);
73 }
74 }
75
target_internal_reference()76 Address RelocInfo::target_internal_reference() {
77 if (IsInternalReference(rmode_)) {
78 // Jump table entry
79 return Memory<Address>(pc_);
80 } else {
81 // mov sequence
82 DCHECK(IsInternalReferenceEncoded(rmode_));
83 return Assembler::target_address_at(pc_, constant_pool_);
84 }
85 }
86
target_internal_reference_address()87 Address RelocInfo::target_internal_reference_address() {
88 DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
89 return pc_;
90 }
91
target_address()92 Address RelocInfo::target_address() {
93 DCHECK(IsRelativeCodeTarget(rmode_) || IsCodeTarget(rmode_) ||
94 IsRuntimeEntry(rmode_) || IsWasmCall(rmode_));
95 return Assembler::target_address_at(pc_, constant_pool_);
96 }
97
target_address_address()98 Address RelocInfo::target_address_address() {
99 DCHECK(HasTargetAddressAddress());
100
101 // Read the address of the word containing the target_address in an
102 // instruction stream.
103 // The only architecture-independent user of this function is the serializer.
104 // The serializer uses it to find out how many raw bytes of instruction to
105 // output before the next target.
106 // For an instruction like LIS/ORI where the target bits are mixed into the
107 // instruction bits, the size of the target will be zero, indicating that the
108 // serializer should not step forward in memory after a target is resolved
109 // and written.
110 return pc_;
111 }
112
constant_pool_entry_address()113 Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); }
114
set_target_compressed_address_at(Address pc,Address constant_pool,Tagged_t target,ICacheFlushMode icache_flush_mode)115 void Assembler::set_target_compressed_address_at(
116 Address pc, Address constant_pool, Tagged_t target,
117 ICacheFlushMode icache_flush_mode) {
118 Assembler::set_target_address_at(
119 pc, constant_pool, static_cast<Address>(target), icache_flush_mode);
120 }
121
target_address_size()122 int RelocInfo::target_address_size() {
123 if (IsCodedSpecially()) {
124 return Assembler::kSpecialTargetSize;
125 } else {
126 return kSystemPointerSize;
127 }
128 }
129
target_compressed_address_at(Address pc,Address constant_pool)130 Tagged_t Assembler::target_compressed_address_at(Address pc,
131 Address constant_pool) {
132 return static_cast<Tagged_t>(target_address_at(pc, constant_pool));
133 }
134
code_target_object_handle_at(Address pc)135 Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
136 SixByteInstr instr =
137 Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
138 int index = instr & 0xFFFFFFFF;
139 return GetCodeTarget(index);
140 }
141
target_object(PtrComprCageBase cage_base)142 HeapObject RelocInfo::target_object(PtrComprCageBase cage_base) {
143 DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_));
144 if (IsDataEmbeddedObject(rmode_)) {
145 return HeapObject::cast(Object(ReadUnalignedValue<Address>(pc_)));
146 } else if (IsCompressedEmbeddedObject(rmode_)) {
147 return HeapObject::cast(Object(DecompressTaggedAny(
148 cage_base,
149 Assembler::target_compressed_address_at(pc_, constant_pool_))));
150 } else {
151 return HeapObject::cast(
152 Object(Assembler::target_address_at(pc_, constant_pool_)));
153 }
154 }
155
compressed_embedded_object_handle_at(Address pc,Address const_pool)156 Handle<HeapObject> Assembler::compressed_embedded_object_handle_at(
157 Address pc, Address const_pool) {
158 return GetEmbeddedObject(target_compressed_address_at(pc, const_pool));
159 }
160
target_object_handle(Assembler * origin)161 Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
162 DCHECK(IsRelativeCodeTarget(rmode_) || IsCodeTarget(rmode_) ||
163 IsEmbeddedObjectMode(rmode_));
164 if (IsDataEmbeddedObject(rmode_)) {
165 return Handle<HeapObject>::cast(ReadUnalignedValue<Handle<Object>>(pc_));
166 } else if (IsCodeTarget(rmode_) || IsRelativeCodeTarget(rmode_)) {
167 return Handle<HeapObject>::cast(origin->code_target_object_handle_at(pc_));
168 } else {
169 if (IsCompressedEmbeddedObject(rmode_)) {
170 return origin->compressed_embedded_object_handle_at(pc_, constant_pool_);
171 }
172 return Handle<HeapObject>(reinterpret_cast<Address*>(
173 Assembler::target_address_at(pc_, constant_pool_)));
174 }
175 }
176
set_target_object(Heap * heap,HeapObject target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)177 void RelocInfo::set_target_object(Heap* heap, HeapObject target,
178 WriteBarrierMode write_barrier_mode,
179 ICacheFlushMode icache_flush_mode) {
180 DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_));
181 if (IsDataEmbeddedObject(rmode_)) {
182 WriteUnalignedValue(pc_, target.ptr());
183 // No need to flush icache since no instructions were changed.
184 } else if (IsCompressedEmbeddedObject(rmode_)) {
185 Assembler::set_target_compressed_address_at(
186 pc_, constant_pool_, CompressTagged(target.ptr()), icache_flush_mode);
187 } else {
188 DCHECK(IsFullEmbeddedObject(rmode_));
189 Assembler::set_target_address_at(pc_, constant_pool_, target.ptr(),
190 icache_flush_mode);
191 }
192 if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null() &&
193 !FLAG_disable_write_barriers) {
194 WriteBarrierForCode(host(), this, target);
195 }
196 }
197
target_external_reference()198 Address RelocInfo::target_external_reference() {
199 DCHECK(rmode_ == EXTERNAL_REFERENCE);
200 return Assembler::target_address_at(pc_, constant_pool_);
201 }
202
set_target_external_reference(Address target,ICacheFlushMode icache_flush_mode)203 void RelocInfo::set_target_external_reference(
204 Address target, ICacheFlushMode icache_flush_mode) {
205 DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
206 Assembler::set_target_address_at(pc_, constant_pool_, target,
207 icache_flush_mode);
208 }
209
target_runtime_entry(Assembler * origin)210 Address RelocInfo::target_runtime_entry(Assembler* origin) {
211 DCHECK(IsRuntimeEntry(rmode_));
212 return target_address();
213 }
214
target_off_heap_target()215 Address RelocInfo::target_off_heap_target() {
216 DCHECK(IsOffHeapTarget(rmode_));
217 return Assembler::target_address_at(pc_, constant_pool_);
218 }
219
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)220 void RelocInfo::set_target_runtime_entry(Address target,
221 WriteBarrierMode write_barrier_mode,
222 ICacheFlushMode icache_flush_mode) {
223 DCHECK(IsRuntimeEntry(rmode_));
224 if (target_address() != target)
225 set_target_address(target, write_barrier_mode, icache_flush_mode);
226 }
227
WipeOut()228 void RelocInfo::WipeOut() {
229 DCHECK(IsEmbeddedObjectMode(rmode_) || IsCodeTarget(rmode_) ||
230 IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
231 IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_) ||
232 IsOffHeapTarget(rmode_));
233 if (IsInternalReference(rmode_)) {
234 // Jump table entry
235 Memory<Address>(pc_) = kNullAddress;
236 } else if (IsCompressedEmbeddedObject(rmode_)) {
237 Assembler::set_target_compressed_address_at(pc_, constant_pool_,
238 kNullAddress);
239 } else if (IsInternalReferenceEncoded(rmode_) || IsOffHeapTarget(rmode_)) {
240 // mov sequence
241 // Currently used only by deserializer, no need to flush.
242 Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress,
243 SKIP_ICACHE_FLUSH);
244 } else {
245 Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress);
246 }
247 }
248
249 // Operand constructors
Operand(Register rm)250 Operand::Operand(Register rm) : rm_(rm), rmode_(RelocInfo::NO_INFO) {}
251
252 // Fetch the 32bit value from the FIXED_SEQUENCE IIHF / IILF
target_address_at(Address pc,Address constant_pool)253 Address Assembler::target_address_at(Address pc, Address constant_pool) {
254 // S390 Instruction!
255 // We want to check for instructions generated by Asm::mov()
256 Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc));
257 SixByteInstr instr_1 =
258 Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
259
260 if (BRASL == op1 || BRCL == op1) {
261 int32_t dis = static_cast<int32_t>(instr_1 & 0xFFFFFFFF) * 2;
262 return pc + dis;
263 }
264
265 #if V8_TARGET_ARCH_S390X
266 int instr1_length =
267 Instruction::InstructionLength(reinterpret_cast<const byte*>(pc));
268 Opcode op2 = Instruction::S390OpcodeValue(
269 reinterpret_cast<const byte*>(pc + instr1_length));
270 SixByteInstr instr_2 = Instruction::InstructionBits(
271 reinterpret_cast<const byte*>(pc + instr1_length));
272 // IIHF for hi_32, IILF for lo_32
273 if (IIHF == op1 && IILF == op2) {
274 return static_cast<Address>(((instr_1 & 0xFFFFFFFF) << 32) |
275 ((instr_2 & 0xFFFFFFFF)));
276 }
277 #else
278 // IILF loads 32-bits
279 if (IILF == op1 || CFI == op1) {
280 return static_cast<Address>((instr_1 & 0xFFFFFFFF));
281 }
282 #endif
283
284 UNIMPLEMENTED();
285 return 0;
286 }
287
288 // This sets the branch destination (which gets loaded at the call address).
289 // This is for calls and branches within generated code. The serializer
290 // has already deserialized the mov instructions etc.
291 // There is a FIXED_SEQUENCE assumption here
deserialization_set_special_target_at(Address instruction_payload,Code code,Address target)292 void Assembler::deserialization_set_special_target_at(
293 Address instruction_payload, Code code, Address target) {
294 set_target_address_at(instruction_payload,
295 !code.is_null() ? code.constant_pool() : kNullAddress,
296 target);
297 }
298
deserialization_special_target_size(Address instruction_payload)299 int Assembler::deserialization_special_target_size(
300 Address instruction_payload) {
301 return kSpecialTargetSize;
302 }
303
deserialization_set_target_internal_reference_at(Address pc,Address target,RelocInfo::Mode mode)304 void Assembler::deserialization_set_target_internal_reference_at(
305 Address pc, Address target, RelocInfo::Mode mode) {
306 if (RelocInfo::IsInternalReferenceEncoded(mode)) {
307 set_target_address_at(pc, kNullAddress, target, SKIP_ICACHE_FLUSH);
308 } else {
309 Memory<Address>(pc) = target;
310 }
311 }
312
313 // This code assumes the FIXED_SEQUENCE of IIHF/IILF
set_target_address_at(Address pc,Address constant_pool,Address target,ICacheFlushMode icache_flush_mode)314 void Assembler::set_target_address_at(Address pc, Address constant_pool,
315 Address target,
316 ICacheFlushMode icache_flush_mode) {
317 // Check for instructions generated by Asm::mov()
318 Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc));
319 SixByteInstr instr_1 =
320 Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
321 bool patched = false;
322
323 if (BRASL == op1 || BRCL == op1) {
324 instr_1 >>= 32; // Zero out the lower 32-bits
325 instr_1 <<= 32;
326 int32_t halfwords = (target - pc) / 2; // number of halfwords
327 instr_1 |= static_cast<uint32_t>(halfwords);
328 Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
329 instr_1);
330 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
331 FlushInstructionCache(pc, 6);
332 }
333 patched = true;
334 } else {
335 #if V8_TARGET_ARCH_S390X
336 int instr1_length =
337 Instruction::InstructionLength(reinterpret_cast<const byte*>(pc));
338 Opcode op2 = Instruction::S390OpcodeValue(
339 reinterpret_cast<const byte*>(pc + instr1_length));
340 SixByteInstr instr_2 = Instruction::InstructionBits(
341 reinterpret_cast<const byte*>(pc + instr1_length));
342 // IIHF for hi_32, IILF for lo_32
343 if (IIHF == op1 && IILF == op2) {
344 // IIHF
345 instr_1 >>= 32; // Zero out the lower 32-bits
346 instr_1 <<= 32;
347 instr_1 |= reinterpret_cast<uint64_t>(target) >> 32;
348
349 Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
350 instr_1);
351
352 // IILF
353 instr_2 >>= 32;
354 instr_2 <<= 32;
355 instr_2 |= reinterpret_cast<uint64_t>(target) & 0xFFFFFFFF;
356
357 Instruction::SetInstructionBits<SixByteInstr>(
358 reinterpret_cast<byte*>(pc + instr1_length), instr_2);
359 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
360 FlushInstructionCache(pc, 12);
361 }
362 patched = true;
363 }
364 #else
365 // IILF loads 32-bits
366 if (IILF == op1 || CFI == op1) {
367 instr_1 >>= 32; // Zero out the lower 32-bits
368 instr_1 <<= 32;
369 instr_1 |= reinterpret_cast<uint32_t>(target);
370
371 Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
372 instr_1);
373 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
374 FlushInstructionCache(pc, 6);
375 }
376 patched = true;
377 }
378 #endif
379 }
380 if (!patched) UNREACHABLE();
381 }
382
383 } // namespace internal
384 } // namespace v8
385
386 #endif // V8_CODEGEN_S390_ASSEMBLER_S390_INL_H_
387