• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/compiler/backend/gap-resolver.h"
6 
7 #include <algorithm>
8 #include <set>
9 
10 #include "src/base/enum-set.h"
11 #include "src/codegen/register-configuration.h"
12 
13 namespace v8 {
14 namespace internal {
15 namespace compiler {
16 
17 namespace {
18 
19 // Splits a FP move between two location operands into the equivalent series of
20 // moves between smaller sub-operands, e.g. a double move to two single moves.
21 // This helps reduce the number of cycles that would normally occur under FP
22 // aliasing, and makes swaps much easier to implement.
Split(MoveOperands * move,MachineRepresentation smaller_rep,ParallelMove * moves)23 MoveOperands* Split(MoveOperands* move, MachineRepresentation smaller_rep,
24                     ParallelMove* moves) {
25   DCHECK(kFPAliasing == AliasingKind::kCombine);
26   // Splitting is only possible when the slot size is the same as float size.
27   DCHECK_EQ(kSystemPointerSize, kFloatSize);
28   const LocationOperand& src_loc = LocationOperand::cast(move->source());
29   const LocationOperand& dst_loc = LocationOperand::cast(move->destination());
30   MachineRepresentation dst_rep = dst_loc.representation();
31   DCHECK_NE(smaller_rep, dst_rep);
32   auto src_kind = src_loc.location_kind();
33   auto dst_kind = dst_loc.location_kind();
34 
35   int aliases =
36       1 << (ElementSizeLog2Of(dst_rep) - ElementSizeLog2Of(smaller_rep));
37   int base = -1;
38   USE(base);
39   DCHECK_EQ(aliases, RegisterConfiguration::Default()->GetAliases(
40                          dst_rep, 0, smaller_rep, &base));
41 
42   int src_index = -1;
43   int slot_size = (1 << ElementSizeLog2Of(smaller_rep)) / kSystemPointerSize;
44   int src_step = 1;
45   if (src_kind == LocationOperand::REGISTER) {
46     src_index = src_loc.register_code() * aliases;
47   } else {
48     src_index = src_loc.index();
49     // For operands that occupy multiple slots, the index refers to the last
50     // slot. On little-endian architectures, we start at the high slot and use a
51     // negative step so that register-to-slot moves are in the correct order.
52     src_step = -slot_size;
53   }
54   int dst_index = -1;
55   int dst_step = 1;
56   if (dst_kind == LocationOperand::REGISTER) {
57     dst_index = dst_loc.register_code() * aliases;
58   } else {
59     dst_index = dst_loc.index();
60     dst_step = -slot_size;
61   }
62 
63   // Reuse 'move' for the first fragment. It is not pending.
64   move->set_source(AllocatedOperand(src_kind, smaller_rep, src_index));
65   move->set_destination(AllocatedOperand(dst_kind, smaller_rep, dst_index));
66   // Add the remaining fragment moves.
67   for (int i = 1; i < aliases; ++i) {
68     src_index += src_step;
69     dst_index += dst_step;
70     moves->AddMove(AllocatedOperand(src_kind, smaller_rep, src_index),
71                    AllocatedOperand(dst_kind, smaller_rep, dst_index));
72   }
73   // Return the first fragment.
74   return move;
75 }
76 
77 enum MoveOperandKind : uint8_t { kConstant, kGpReg, kFpReg, kStack };
78 
GetKind(const InstructionOperand & move)79 MoveOperandKind GetKind(const InstructionOperand& move) {
80   if (move.IsConstant()) return kConstant;
81   LocationOperand loc_op = LocationOperand::cast(move);
82   if (loc_op.location_kind() != LocationOperand::REGISTER) return kStack;
83   return IsFloatingPoint(loc_op.representation()) ? kFpReg : kGpReg;
84 }
85 
86 }  // namespace
87 
Resolve(ParallelMove * moves)88 void GapResolver::Resolve(ParallelMove* moves) {
89   base::EnumSet<MoveOperandKind, uint8_t> source_kinds;
90   base::EnumSet<MoveOperandKind, uint8_t> destination_kinds;
91 
92   // Remove redundant moves, collect source kinds and destination kinds to
93   // detect simple non-overlapping moves, and collect FP move representations if
94   // aliasing is non-simple.
95   int fp_reps = 0;
96   size_t nmoves = moves->size();
97   for (size_t i = 0; i < nmoves;) {
98     MoveOperands* move = (*moves)[i];
99     if (move->IsRedundant()) {
100       nmoves--;
101       if (i < nmoves) (*moves)[i] = (*moves)[nmoves];
102       continue;
103     }
104     i++;
105     source_kinds.Add(GetKind(move->source()));
106     destination_kinds.Add(GetKind(move->destination()));
107     if (kFPAliasing == AliasingKind::kCombine &&
108         move->destination().IsFPRegister()) {
109       fp_reps |= RepresentationBit(
110           LocationOperand::cast(move->destination()).representation());
111     }
112   }
113   if (nmoves != moves->size()) moves->resize(nmoves);
114 
115   if ((source_kinds & destination_kinds).empty() || moves->size() < 2) {
116     // Fast path for non-conflicting parallel moves.
117     for (MoveOperands* move : *moves) {
118       assembler_->AssembleMove(&move->source(), &move->destination());
119     }
120     return;
121   }
122 
123   if (kFPAliasing == AliasingKind::kCombine) {
124     if (fp_reps && !base::bits::IsPowerOfTwo(fp_reps)) {
125       // Start with the smallest FP moves, so we never encounter smaller moves
126       // in the middle of a cycle of larger moves.
127       if ((fp_reps & RepresentationBit(MachineRepresentation::kFloat32)) != 0) {
128         split_rep_ = MachineRepresentation::kFloat32;
129         for (size_t i = 0; i < moves->size(); ++i) {
130           auto move = (*moves)[i];
131           if (!move->IsEliminated() && move->destination().IsFloatRegister())
132             PerformMove(moves, move);
133         }
134       }
135       if ((fp_reps & RepresentationBit(MachineRepresentation::kFloat64)) != 0) {
136         split_rep_ = MachineRepresentation::kFloat64;
137         for (size_t i = 0; i < moves->size(); ++i) {
138           auto move = (*moves)[i];
139           if (!move->IsEliminated() && move->destination().IsDoubleRegister())
140             PerformMove(moves, move);
141         }
142       }
143     }
144     split_rep_ = MachineRepresentation::kSimd128;
145   }
146 
147   for (size_t i = 0; i < moves->size(); ++i) {
148     auto move = (*moves)[i];
149     if (!move->IsEliminated()) PerformMove(moves, move);
150   }
151 }
152 
PerformMove(ParallelMove * moves,MoveOperands * move)153 void GapResolver::PerformMove(ParallelMove* moves, MoveOperands* move) {
154   // Each call to this function performs a move and deletes it from the move
155   // graph.  We first recursively perform any move blocking this one.  We mark a
156   // move as "pending" on entry to PerformMove in order to detect cycles in the
157   // move graph.  We use operand swaps to resolve cycles, which means that a
158   // call to PerformMove could change any source operand in the move graph.
159   DCHECK(!move->IsPending());
160   DCHECK(!move->IsRedundant());
161 
162   // Clear this move's destination to indicate a pending move.  The actual
163   // destination is saved on the side.
164   InstructionOperand source = move->source();
165   DCHECK(!source.IsInvalid());  // Or else it will look eliminated.
166   InstructionOperand destination = move->destination();
167   move->SetPending();
168 
169   // We may need to split moves between FP locations differently.
170   const bool is_fp_loc_move = kFPAliasing == AliasingKind::kCombine &&
171                               destination.IsFPLocationOperand();
172 
173   // Perform a depth-first traversal of the move graph to resolve dependencies.
174   // Any unperformed, unpending move with a source the same as this one's
175   // destination blocks this one so recursively perform all such moves.
176   for (size_t i = 0; i < moves->size(); ++i) {
177     auto other = (*moves)[i];
178     if (other->IsEliminated()) continue;
179     if (other->IsPending()) continue;
180     if (other->source().InterferesWith(destination)) {
181       if (is_fp_loc_move &&
182           LocationOperand::cast(other->source()).representation() >
183               split_rep_) {
184         // 'other' must also be an FP location move. Break it into fragments
185         // of the same size as 'move'. 'other' is set to one of the fragments,
186         // and the rest are appended to 'moves'.
187         other = Split(other, split_rep_, moves);
188         // 'other' may not block destination now.
189         if (!other->source().InterferesWith(destination)) continue;
190       }
191       // Though PerformMove can change any source operand in the move graph,
192       // this call cannot create a blocking move via a swap (this loop does not
193       // miss any).  Assume there is a non-blocking move with source A and this
194       // move is blocked on source B and there is a swap of A and B.  Then A and
195       // B must be involved in the same cycle (or they would not be swapped).
196       // Since this move's destination is B and there is only a single incoming
197       // edge to an operand, this move must also be involved in the same cycle.
198       // In that case, the blocking move will be created but will be "pending"
199       // when we return from PerformMove.
200       PerformMove(moves, other);
201     }
202   }
203 
204   // This move's source may have changed due to swaps to resolve cycles and so
205   // it may now be the last move in the cycle.  If so remove it.
206   source = move->source();
207   if (source.EqualsCanonicalized(destination)) {
208     move->Eliminate();
209     return;
210   }
211 
212   // We are about to resolve this move and don't need it marked as pending, so
213   // restore its destination.
214   move->set_destination(destination);
215 
216   // The move may be blocked on a (at most one) pending move, in which case we
217   // have a cycle.  Search for such a blocking move and perform a swap to
218   // resolve it.
219   auto blocker =
220       std::find_if(moves->begin(), moves->end(), [&](MoveOperands* move) {
221         return !move->IsEliminated() &&
222                move->source().InterferesWith(destination);
223       });
224   if (blocker == moves->end()) {
225     // The easy case: This move is not blocked.
226     assembler_->AssembleMove(&source, &destination);
227     move->Eliminate();
228     return;
229   }
230 
231   // Ensure source is a register or both are stack slots, to limit swap cases.
232   if (source.IsStackSlot() || source.IsFPStackSlot()) {
233     std::swap(source, destination);
234   }
235   assembler_->AssembleSwap(&source, &destination);
236   move->Eliminate();
237 
238   // Update outstanding moves whose source may now have been moved.
239   if (is_fp_loc_move) {
240     // We may have to split larger moves.
241     for (size_t i = 0; i < moves->size(); ++i) {
242       auto other = (*moves)[i];
243       if (other->IsEliminated()) continue;
244       if (source.InterferesWith(other->source())) {
245         if (LocationOperand::cast(other->source()).representation() >
246             split_rep_) {
247           other = Split(other, split_rep_, moves);
248           if (!source.InterferesWith(other->source())) continue;
249         }
250         other->set_source(destination);
251       } else if (destination.InterferesWith(other->source())) {
252         if (LocationOperand::cast(other->source()).representation() >
253             split_rep_) {
254           other = Split(other, split_rep_, moves);
255           if (!destination.InterferesWith(other->source())) continue;
256         }
257         other->set_source(source);
258       }
259     }
260   } else {
261     for (auto other : *moves) {
262       if (other->IsEliminated()) continue;
263       if (source.EqualsCanonicalized(other->source())) {
264         other->set_source(destination);
265       } else if (destination.EqualsCanonicalized(other->source())) {
266         other->set_source(source);
267       }
268     }
269   }
270 }
271 }  // namespace compiler
272 }  // namespace internal
273 }  // namespace v8
274