• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* adler32.c -- compute the Adler-32 checksum of a data stream
2  * Copyright (C) 1995-2011, 2016 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 /* @(#) $Id$ */
7 
8 #include "zutil.h"
9 
10 #define BASE 65521U     /* largest prime smaller than 65536 */
11 #define NMAX 5552
12 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
13 
14 #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
15 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
16 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
17 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
18 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
19 
20 /* use NO_DIVIDE if your processor does not do division in hardware --
21    try it both ways to see which is faster */
22 #ifdef NO_DIVIDE
23 /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
24    (thank you to John Reiser for pointing this out) */
25 #  define CHOP(a) \
26     do { \
27         unsigned long tmp = a >> 16; \
28         a &= 0xffffUL; \
29         a += (tmp << 4) - tmp; \
30     } while (0)
31 #  define MOD28(a) \
32     do { \
33         CHOP(a); \
34         if (a >= BASE) a -= BASE; \
35     } while (0)
36 #  define MOD(a) \
37     do { \
38         CHOP(a); \
39         MOD28(a); \
40     } while (0)
41 #  define MOD63(a) \
42     do { /* this assumes a is not negative */ \
43         z_off64_t tmp = a >> 32; \
44         a &= 0xffffffffL; \
45         a += (tmp << 8) - (tmp << 5) + tmp; \
46         tmp = a >> 16; \
47         a &= 0xffffL; \
48         a += (tmp << 4) - tmp; \
49         tmp = a >> 16; \
50         a &= 0xffffL; \
51         a += (tmp << 4) - tmp; \
52         if (a >= BASE) a -= BASE; \
53     } while (0)
54 #else
55 #  define MOD(a) a %= BASE
56 #  define MOD28(a) a %= BASE
57 #  define MOD63(a) a %= BASE
58 #endif
59 
60 #include "cpu_features.h"
61 #if defined(ADLER32_SIMD_SSSE3) || defined(ADLER32_SIMD_NEON)
62 #include "adler32_simd.h"
63 #endif
64 
65 /* ========================================================================= */
adler32_z(uLong adler,const Bytef * buf,z_size_t len)66 uLong ZEXPORT adler32_z(uLong adler, const Bytef *buf, z_size_t len) {
67     unsigned long sum2;
68     unsigned n;
69 
70 #if defined(ADLER32_SIMD_SSSE3)
71     if (buf != Z_NULL && len >= 64 && x86_cpu_enable_ssse3)
72         return adler32_simd_(adler, buf, len);
73 #elif defined(ADLER32_SIMD_NEON)
74     if (buf != Z_NULL && len >= 64)
75         return adler32_simd_(adler, buf, len);
76 #endif
77 
78     /* split Adler-32 into component sums */
79     sum2 = (adler >> 16) & 0xffff;
80     adler &= 0xffff;
81 
82     /* in case user likes doing a byte at a time, keep it fast */
83     if (len == 1) {
84         adler += buf[0];
85         if (adler >= BASE)
86             adler -= BASE;
87         sum2 += adler;
88         if (sum2 >= BASE)
89             sum2 -= BASE;
90         return adler | (sum2 << 16);
91     }
92 
93 #if defined(ADLER32_SIMD_SSSE3)
94     /*
95      * Use SSSE3 to compute the adler32. Since this routine can be
96      * freely used, check CPU features here. zlib convention is to
97      * call adler32(0, NULL, 0), before making calls to adler32().
98      * So this is a good early (and infrequent) place to cache CPU
99      * features for those later, more interesting adler32() calls.
100      */
101     if (buf == Z_NULL) {
102         if (!len) /* Assume user is calling adler32(0, NULL, 0); */
103             cpu_check_features();
104         return 1L;
105     }
106 #else
107     /* initial Adler-32 value (deferred check for len == 1 speed) */
108     if (buf == Z_NULL)
109         return 1L;
110 #endif
111 
112     /* in case short lengths are provided, keep it somewhat fast */
113     if (len < 16) {
114         while (len--) {
115             adler += *buf++;
116             sum2 += adler;
117         }
118         if (adler >= BASE)
119             adler -= BASE;
120         MOD28(sum2);            /* only added so many BASE's */
121         return adler | (sum2 << 16);
122     }
123 
124     /* do length NMAX blocks -- requires just one modulo operation */
125     while (len >= NMAX) {
126         len -= NMAX;
127         n = NMAX / 16;          /* NMAX is divisible by 16 */
128         do {
129             DO16(buf);          /* 16 sums unrolled */
130             buf += 16;
131         } while (--n);
132         MOD(adler);
133         MOD(sum2);
134     }
135 
136     /* do remaining bytes (less than NMAX, still just one modulo) */
137     if (len) {                  /* avoid modulos if none remaining */
138         while (len >= 16) {
139             len -= 16;
140             DO16(buf);
141             buf += 16;
142         }
143         while (len--) {
144             adler += *buf++;
145             sum2 += adler;
146         }
147         MOD(adler);
148         MOD(sum2);
149     }
150 
151     /* return recombined sums */
152     return adler | (sum2 << 16);
153 }
154 
155 /* ========================================================================= */
adler32(uLong adler,const Bytef * buf,uInt len)156 uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len) {
157     return adler32_z(adler, buf, len);
158 }
159 
160 /* ========================================================================= */
adler32_combine_(uLong adler1,uLong adler2,z_off64_t len2)161 local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2) {
162     unsigned long sum1;
163     unsigned long sum2;
164     unsigned rem;
165 
166     /* for negative len, return invalid adler32 as a clue for debugging */
167     if (len2 < 0)
168         return 0xffffffffUL;
169 
170     /* the derivation of this formula is left as an exercise for the reader */
171     MOD63(len2);                /* assumes len2 >= 0 */
172     rem = (unsigned)len2;
173     sum1 = adler1 & 0xffff;
174     sum2 = rem * sum1;
175     MOD(sum2);
176     sum1 += (adler2 & 0xffff) + BASE - 1;
177     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
178     if (sum1 >= BASE) sum1 -= BASE;
179     if (sum1 >= BASE) sum1 -= BASE;
180     if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
181     if (sum2 >= BASE) sum2 -= BASE;
182     return sum1 | (sum2 << 16);
183 }
184 
185 /* ========================================================================= */
adler32_combine(uLong adler1,uLong adler2,z_off_t len2)186 uLong ZEXPORT adler32_combine(uLong adler1, uLong adler2, z_off_t len2) {
187     return adler32_combine_(adler1, adler2, len2);
188 }
189 
adler32_combine64(uLong adler1,uLong adler2,z_off64_t len2)190 uLong ZEXPORT adler32_combine64(uLong adler1, uLong adler2, z_off64_t len2) {
191     return adler32_combine_(adler1, adler2, len2);
192 }
193