• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 use crate::syntax::atom::Atom::{self, *};
2 use crate::syntax::report::Errors;
3 use crate::syntax::visit::{self, Visit};
4 use crate::syntax::{
5     error, ident, trivial, Api, Array, Enum, ExternFn, ExternType, Impl, Lang, Lifetimes,
6     NamedType, Ptr, Receiver, Ref, Signature, SliceRef, Struct, Trait, Ty1, Type, TypeAlias, Types,
7 };
8 use proc_macro2::{Delimiter, Group, Ident, TokenStream};
9 use quote::{quote, ToTokens};
10 use std::fmt::Display;
11 use syn::{GenericParam, Generics, Lifetime};
12 
13 pub(crate) struct Check<'a> {
14     apis: &'a [Api],
15     types: &'a Types<'a>,
16     errors: &'a mut Errors,
17     generator: Generator,
18 }
19 
20 pub(crate) enum Generator {
21     // cxx-build crate, cxxbridge cli, cxx-gen.
22     #[allow(dead_code)]
23     Build,
24     // cxxbridge-macro. This is relevant in that the macro output is going to
25     // get fed straight to rustc, so for errors that rustc already contains
26     // logic to catch (probably with a better diagnostic than what the proc
27     // macro API is able to produce), we avoid duplicating them in our own
28     // diagnostics.
29     #[allow(dead_code)]
30     Macro,
31 }
32 
typecheck(cx: &mut Errors, apis: &[Api], types: &Types, generator: Generator)33 pub(crate) fn typecheck(cx: &mut Errors, apis: &[Api], types: &Types, generator: Generator) {
34     do_typecheck(&mut Check {
35         apis,
36         types,
37         errors: cx,
38         generator,
39     });
40 }
41 
do_typecheck(cx: &mut Check)42 fn do_typecheck(cx: &mut Check) {
43     ident::check_all(cx, cx.apis);
44 
45     for ty in cx.types {
46         match ty {
47             Type::Ident(ident) => check_type_ident(cx, ident),
48             Type::RustBox(ptr) => check_type_box(cx, ptr),
49             Type::RustVec(ty) => check_type_rust_vec(cx, ty),
50             Type::UniquePtr(ptr) => check_type_unique_ptr(cx, ptr),
51             Type::SharedPtr(ptr) => check_type_shared_ptr(cx, ptr),
52             Type::WeakPtr(ptr) => check_type_weak_ptr(cx, ptr),
53             Type::CxxVector(ptr) => check_type_cxx_vector(cx, ptr),
54             Type::Ref(ty) => check_type_ref(cx, ty),
55             Type::Ptr(ty) => check_type_ptr(cx, ty),
56             Type::Array(array) => check_type_array(cx, array),
57             Type::Fn(ty) => check_type_fn(cx, ty),
58             Type::SliceRef(ty) => check_type_slice_ref(cx, ty),
59             Type::Str(_) | Type::Void(_) => {}
60         }
61     }
62 
63     for api in cx.apis {
64         match api {
65             Api::Include(_) => {}
66             Api::Struct(strct) => check_api_struct(cx, strct),
67             Api::Enum(enm) => check_api_enum(cx, enm),
68             Api::CxxType(ety) | Api::RustType(ety) => check_api_type(cx, ety),
69             Api::CxxFunction(efn) | Api::RustFunction(efn) => check_api_fn(cx, efn),
70             Api::TypeAlias(alias) => check_api_type_alias(cx, alias),
71             Api::Impl(imp) => check_api_impl(cx, imp),
72         }
73     }
74 }
75 
76 impl Check<'_> {
error(&mut self, sp: impl ToTokens, msg: impl Display)77     pub(crate) fn error(&mut self, sp: impl ToTokens, msg: impl Display) {
78         self.errors.error(sp, msg);
79     }
80 }
81 
check_type_ident(cx: &mut Check, name: &NamedType)82 fn check_type_ident(cx: &mut Check, name: &NamedType) {
83     let ident = &name.rust;
84     if Atom::from(ident).is_none()
85         && !cx.types.structs.contains_key(ident)
86         && !cx.types.enums.contains_key(ident)
87         && !cx.types.cxx.contains(ident)
88         && !cx.types.rust.contains(ident)
89     {
90         let msg = format!("unsupported type: {}", ident);
91         cx.error(ident, msg);
92     }
93 }
94 
check_type_box(cx: &mut Check, ptr: &Ty1)95 fn check_type_box(cx: &mut Check, ptr: &Ty1) {
96     if let Type::Ident(ident) = &ptr.inner {
97         if cx.types.cxx.contains(&ident.rust)
98             && !cx.types.aliases.contains_key(&ident.rust)
99             && !cx.types.structs.contains_key(&ident.rust)
100             && !cx.types.enums.contains_key(&ident.rust)
101         {
102             cx.error(ptr, error::BOX_CXX_TYPE.msg);
103         }
104 
105         if Atom::from(&ident.rust).is_none() {
106             return;
107         }
108     }
109 
110     cx.error(ptr, "unsupported target type of Box");
111 }
112 
check_type_rust_vec(cx: &mut Check, ty: &Ty1)113 fn check_type_rust_vec(cx: &mut Check, ty: &Ty1) {
114     match &ty.inner {
115         Type::Ident(ident) => {
116             if cx.types.cxx.contains(&ident.rust)
117                 && !cx.types.aliases.contains_key(&ident.rust)
118                 && !cx.types.structs.contains_key(&ident.rust)
119                 && !cx.types.enums.contains_key(&ident.rust)
120             {
121                 cx.error(ty, "Rust Vec containing C++ type is not supported yet");
122                 return;
123             }
124 
125             match Atom::from(&ident.rust) {
126                 None | Some(Bool) | Some(Char) | Some(U8) | Some(U16) | Some(U32) | Some(U64)
127                 | Some(Usize) | Some(I8) | Some(I16) | Some(I32) | Some(I64) | Some(Isize)
128                 | Some(F32) | Some(F64) | Some(RustString) => return,
129                 Some(CxxString) => {}
130             }
131         }
132         Type::Str(_) => return,
133         _ => {}
134     }
135 
136     cx.error(ty, "unsupported element type of Vec");
137 }
138 
check_type_unique_ptr(cx: &mut Check, ptr: &Ty1)139 fn check_type_unique_ptr(cx: &mut Check, ptr: &Ty1) {
140     if let Type::Ident(ident) = &ptr.inner {
141         if cx.types.rust.contains(&ident.rust) {
142             cx.error(ptr, "unique_ptr of a Rust type is not supported yet");
143             return;
144         }
145 
146         match Atom::from(&ident.rust) {
147             None | Some(CxxString) => return,
148             _ => {}
149         }
150     } else if let Type::CxxVector(_) = &ptr.inner {
151         return;
152     }
153 
154     cx.error(ptr, "unsupported unique_ptr target type");
155 }
156 
check_type_shared_ptr(cx: &mut Check, ptr: &Ty1)157 fn check_type_shared_ptr(cx: &mut Check, ptr: &Ty1) {
158     if let Type::Ident(ident) = &ptr.inner {
159         if cx.types.rust.contains(&ident.rust) {
160             cx.error(ptr, "shared_ptr of a Rust type is not supported yet");
161             return;
162         }
163 
164         match Atom::from(&ident.rust) {
165             None | Some(Bool) | Some(U8) | Some(U16) | Some(U32) | Some(U64) | Some(Usize)
166             | Some(I8) | Some(I16) | Some(I32) | Some(I64) | Some(Isize) | Some(F32)
167             | Some(F64) | Some(CxxString) => return,
168             Some(Char) | Some(RustString) => {}
169         }
170     } else if let Type::CxxVector(_) = &ptr.inner {
171         cx.error(ptr, "std::shared_ptr<std::vector> is not supported yet");
172         return;
173     }
174 
175     cx.error(ptr, "unsupported shared_ptr target type");
176 }
177 
check_type_weak_ptr(cx: &mut Check, ptr: &Ty1)178 fn check_type_weak_ptr(cx: &mut Check, ptr: &Ty1) {
179     if let Type::Ident(ident) = &ptr.inner {
180         if cx.types.rust.contains(&ident.rust) {
181             cx.error(ptr, "weak_ptr of a Rust type is not supported yet");
182             return;
183         }
184 
185         match Atom::from(&ident.rust) {
186             None | Some(Bool) | Some(U8) | Some(U16) | Some(U32) | Some(U64) | Some(Usize)
187             | Some(I8) | Some(I16) | Some(I32) | Some(I64) | Some(Isize) | Some(F32)
188             | Some(F64) | Some(CxxString) => return,
189             Some(Char) | Some(RustString) => {}
190         }
191     } else if let Type::CxxVector(_) = &ptr.inner {
192         cx.error(ptr, "std::weak_ptr<std::vector> is not supported yet");
193         return;
194     }
195 
196     cx.error(ptr, "unsupported weak_ptr target type");
197 }
198 
check_type_cxx_vector(cx: &mut Check, ptr: &Ty1)199 fn check_type_cxx_vector(cx: &mut Check, ptr: &Ty1) {
200     if let Type::Ident(ident) = &ptr.inner {
201         if cx.types.rust.contains(&ident.rust) {
202             cx.error(
203                 ptr,
204                 "C++ vector containing a Rust type is not supported yet",
205             );
206             return;
207         }
208 
209         match Atom::from(&ident.rust) {
210             None | Some(U8) | Some(U16) | Some(U32) | Some(U64) | Some(Usize) | Some(I8)
211             | Some(I16) | Some(I32) | Some(I64) | Some(Isize) | Some(F32) | Some(F64)
212             | Some(CxxString) => return,
213             Some(Char) => { /* todo */ }
214             Some(Bool) | Some(RustString) => {}
215         }
216     }
217 
218     cx.error(ptr, "unsupported vector element type");
219 }
220 
check_type_ref(cx: &mut Check, ty: &Ref)221 fn check_type_ref(cx: &mut Check, ty: &Ref) {
222     if ty.mutable && !ty.pinned {
223         if let Some(requires_pin) = match &ty.inner {
224             Type::Ident(ident) if ident.rust == CxxString || is_opaque_cxx(cx, &ident.rust) => {
225                 Some(ident.rust.to_string())
226             }
227             Type::CxxVector(_) => Some("CxxVector<...>".to_owned()),
228             _ => None,
229         } {
230             cx.error(
231                 ty,
232                 format!(
233                     "mutable reference to C++ type requires a pin -- use Pin<&mut {}>",
234                     requires_pin,
235                 ),
236             );
237         }
238     }
239 
240     match ty.inner {
241         Type::Fn(_) | Type::Void(_) => {}
242         Type::Ref(_) => {
243             cx.error(ty, "C++ does not allow references to references");
244             return;
245         }
246         _ => return,
247     }
248 
249     cx.error(ty, "unsupported reference type");
250 }
251 
check_type_ptr(cx: &mut Check, ty: &Ptr)252 fn check_type_ptr(cx: &mut Check, ty: &Ptr) {
253     match ty.inner {
254         Type::Fn(_) | Type::Void(_) => {}
255         Type::Ref(_) => {
256             cx.error(ty, "C++ does not allow pointer to reference as a type");
257             return;
258         }
259         _ => return,
260     }
261 
262     cx.error(ty, "unsupported pointer type");
263 }
264 
check_type_slice_ref(cx: &mut Check, ty: &SliceRef)265 fn check_type_slice_ref(cx: &mut Check, ty: &SliceRef) {
266     let supported = !is_unsized(cx, &ty.inner)
267         || match &ty.inner {
268             Type::Ident(ident) => {
269                 cx.types.rust.contains(&ident.rust) || cx.types.aliases.contains_key(&ident.rust)
270             }
271             _ => false,
272         };
273 
274     if !supported {
275         let mutable = if ty.mutable { "mut " } else { "" };
276         let mut msg = format!("unsupported &{}[T] element type", mutable);
277         if let Type::Ident(ident) = &ty.inner {
278             if is_opaque_cxx(cx, &ident.rust) {
279                 msg += ": opaque C++ type is not supported yet";
280             }
281         }
282         cx.error(ty, msg);
283     }
284 }
285 
check_type_array(cx: &mut Check, ty: &Array)286 fn check_type_array(cx: &mut Check, ty: &Array) {
287     let supported = !is_unsized(cx, &ty.inner);
288 
289     if !supported {
290         cx.error(ty, "unsupported array element type");
291     }
292 }
293 
check_type_fn(cx: &mut Check, ty: &Signature)294 fn check_type_fn(cx: &mut Check, ty: &Signature) {
295     if ty.throws {
296         cx.error(ty, "function pointer returning Result is not supported yet");
297     }
298 
299     for arg in &ty.args {
300         if let Type::Ptr(_) = arg.ty {
301             if ty.unsafety.is_none() {
302                 cx.error(
303                     arg,
304                     "pointer argument requires that the function pointer be marked unsafe",
305                 );
306             }
307         }
308     }
309 }
310 
check_api_struct(cx: &mut Check, strct: &Struct)311 fn check_api_struct(cx: &mut Check, strct: &Struct) {
312     let name = &strct.name;
313     check_reserved_name(cx, &name.rust);
314     check_lifetimes(cx, &strct.generics);
315 
316     if strct.fields.is_empty() {
317         let span = span_for_struct_error(strct);
318         cx.error(span, "structs without any fields are not supported");
319     }
320 
321     if cx.types.cxx.contains(&name.rust) {
322         if let Some(ety) = cx.types.untrusted.get(&name.rust) {
323             let msg = "extern shared struct must be declared in an `unsafe extern` block";
324             cx.error(ety, msg);
325         }
326     }
327 
328     for derive in &strct.derives {
329         if derive.what == Trait::ExternType {
330             let msg = format!("derive({}) on shared struct is not supported", derive);
331             cx.error(derive, msg);
332         }
333     }
334 
335     for field in &strct.fields {
336         if let Type::Fn(_) = field.ty {
337             cx.error(
338                 field,
339                 "function pointers in a struct field are not implemented yet",
340             );
341         } else if is_unsized(cx, &field.ty) {
342             let desc = describe(cx, &field.ty);
343             let msg = format!("using {} by value is not supported", desc);
344             cx.error(field, msg);
345         }
346     }
347 }
348 
check_api_enum(cx: &mut Check, enm: &Enum)349 fn check_api_enum(cx: &mut Check, enm: &Enum) {
350     check_reserved_name(cx, &enm.name.rust);
351     check_lifetimes(cx, &enm.generics);
352 
353     if enm.variants.is_empty() && !enm.explicit_repr && !enm.variants_from_header {
354         let span = span_for_enum_error(enm);
355         cx.error(
356             span,
357             "explicit #[repr(...)] is required for enum without any variants",
358         );
359     }
360 
361     for derive in &enm.derives {
362         if derive.what == Trait::Default || derive.what == Trait::ExternType {
363             let msg = format!("derive({}) on shared enum is not supported", derive);
364             cx.error(derive, msg);
365         }
366     }
367 }
368 
check_api_type(cx: &mut Check, ety: &ExternType)369 fn check_api_type(cx: &mut Check, ety: &ExternType) {
370     check_reserved_name(cx, &ety.name.rust);
371     check_lifetimes(cx, &ety.generics);
372 
373     for derive in &ety.derives {
374         if derive.what == Trait::ExternType && ety.lang == Lang::Rust {
375             continue;
376         }
377         let lang = match ety.lang {
378             Lang::Rust => "Rust",
379             Lang::Cxx => "C++",
380         };
381         let msg = format!(
382             "derive({}) on opaque {} type is not supported yet",
383             derive, lang,
384         );
385         cx.error(derive, msg);
386     }
387 
388     if !ety.bounds.is_empty() {
389         let bounds = &ety.bounds;
390         let span = quote!(#(#bounds)*);
391         cx.error(span, "extern type bounds are not implemented yet");
392     }
393 
394     if let Some(reasons) = cx.types.required_trivial.get(&ety.name.rust) {
395         let msg = format!(
396             "needs a cxx::ExternType impl in order to be used as {}",
397             trivial::as_what(&ety.name, reasons),
398         );
399         cx.error(ety, msg);
400     }
401 }
402 
check_api_fn(cx: &mut Check, efn: &ExternFn)403 fn check_api_fn(cx: &mut Check, efn: &ExternFn) {
404     match efn.lang {
405         Lang::Cxx => {
406             if !efn.generics.params.is_empty() && !efn.trusted {
407                 let ref span = span_for_generics_error(efn);
408                 cx.error(span, "extern C++ function with lifetimes must be declared in `unsafe extern \"C++\"` block");
409             }
410         }
411         Lang::Rust => {
412             if !efn.generics.params.is_empty() && efn.unsafety.is_none() {
413                 let ref span = span_for_generics_error(efn);
414                 let message = format!(
415                     "must be `unsafe fn {}` in order to expose explicit lifetimes to C++",
416                     efn.name.rust,
417                 );
418                 cx.error(span, message);
419             }
420         }
421     }
422 
423     check_generics(cx, &efn.sig.generics);
424 
425     if let Some(receiver) = &efn.receiver {
426         let ref span = span_for_receiver_error(receiver);
427 
428         if receiver.ty.rust == "Self" {
429             let mutability = match receiver.mutable {
430                 true => "mut ",
431                 false => "",
432             };
433             let msg = format!(
434                 "unnamed receiver type is only allowed if the surrounding extern block contains exactly one extern type; use `self: &{mutability}TheType`",
435                 mutability = mutability,
436             );
437             cx.error(span, msg);
438         } else if cx.types.enums.contains_key(&receiver.ty.rust) {
439             cx.error(
440                 span,
441                 "unsupported receiver type; C++ does not allow member functions on enums",
442             );
443         } else if !cx.types.structs.contains_key(&receiver.ty.rust)
444             && !cx.types.cxx.contains(&receiver.ty.rust)
445             && !cx.types.rust.contains(&receiver.ty.rust)
446         {
447             cx.error(span, "unrecognized receiver type");
448         } else if receiver.mutable && !receiver.pinned && is_opaque_cxx(cx, &receiver.ty.rust) {
449             cx.error(
450                 span,
451                 format!(
452                     "mutable reference to opaque C++ type requires a pin -- use `self: Pin<&mut {}>`",
453                     receiver.ty.rust,
454                 ),
455             );
456         }
457     }
458 
459     for arg in &efn.args {
460         if let Type::Fn(_) = arg.ty {
461             if efn.lang == Lang::Rust {
462                 cx.error(
463                     arg,
464                     "passing a function pointer from C++ to Rust is not implemented yet",
465                 );
466             }
467         } else if let Type::Ptr(_) = arg.ty {
468             if efn.sig.unsafety.is_none() {
469                 cx.error(
470                     arg,
471                     "pointer argument requires that the function be marked unsafe",
472                 );
473             }
474         } else if is_unsized(cx, &arg.ty) {
475             let desc = describe(cx, &arg.ty);
476             let msg = format!("passing {} by value is not supported", desc);
477             cx.error(arg, msg);
478         }
479     }
480 
481     if let Some(ty) = &efn.ret {
482         if let Type::Fn(_) = ty {
483             cx.error(ty, "returning a function pointer is not implemented yet");
484         } else if is_unsized(cx, ty) {
485             let desc = describe(cx, ty);
486             let msg = format!("returning {} by value is not supported", desc);
487             cx.error(ty, msg);
488         }
489     }
490 
491     if efn.lang == Lang::Cxx {
492         check_mut_return_restriction(cx, efn);
493     }
494 }
495 
check_api_type_alias(cx: &mut Check, alias: &TypeAlias)496 fn check_api_type_alias(cx: &mut Check, alias: &TypeAlias) {
497     check_lifetimes(cx, &alias.generics);
498 
499     for derive in &alias.derives {
500         let msg = format!("derive({}) on extern type alias is not supported", derive);
501         cx.error(derive, msg);
502     }
503 }
504 
check_api_impl(cx: &mut Check, imp: &Impl)505 fn check_api_impl(cx: &mut Check, imp: &Impl) {
506     let ty = &imp.ty;
507 
508     check_lifetimes(cx, &imp.impl_generics);
509 
510     if let Some(negative) = imp.negative_token {
511         let span = quote!(#negative #ty);
512         cx.error(span, "negative impl is not supported yet");
513         return;
514     }
515 
516     match ty {
517         Type::RustBox(ty)
518         | Type::RustVec(ty)
519         | Type::UniquePtr(ty)
520         | Type::SharedPtr(ty)
521         | Type::WeakPtr(ty)
522         | Type::CxxVector(ty) => {
523             if let Type::Ident(inner) = &ty.inner {
524                 if Atom::from(&inner.rust).is_none() {
525                     return;
526                 }
527             }
528         }
529         _ => {}
530     }
531 
532     cx.error(imp, "unsupported Self type of explicit impl");
533 }
534 
check_mut_return_restriction(cx: &mut Check, efn: &ExternFn)535 fn check_mut_return_restriction(cx: &mut Check, efn: &ExternFn) {
536     if efn.sig.unsafety.is_some() {
537         // Unrestricted as long as the function is made unsafe-to-call.
538         return;
539     }
540 
541     match &efn.ret {
542         Some(Type::Ref(ty)) if ty.mutable => {}
543         Some(Type::SliceRef(slice)) if slice.mutable => {}
544         _ => return,
545     }
546 
547     if let Some(receiver) = &efn.receiver {
548         if receiver.mutable {
549             return;
550         }
551         let resolve = match cx.types.try_resolve(&receiver.ty) {
552             Some(resolve) => resolve,
553             None => return,
554         };
555         if !resolve.generics.lifetimes.is_empty() {
556             return;
557         }
558     }
559 
560     struct FindLifetimeMut<'a> {
561         cx: &'a Check<'a>,
562         found: bool,
563     }
564 
565     impl<'t, 'a> Visit<'t> for FindLifetimeMut<'a> {
566         fn visit_type(&mut self, ty: &'t Type) {
567             self.found |= match ty {
568                 Type::Ref(ty) => ty.mutable,
569                 Type::SliceRef(slice) => slice.mutable,
570                 Type::Ident(ident) if Atom::from(&ident.rust).is_none() => {
571                     match self.cx.types.try_resolve(ident) {
572                         Some(resolve) => !resolve.generics.lifetimes.is_empty(),
573                         None => true,
574                     }
575                 }
576                 _ => false,
577             };
578             visit::visit_type(self, ty);
579         }
580     }
581 
582     let mut visitor = FindLifetimeMut { cx, found: false };
583 
584     for arg in &efn.args {
585         visitor.visit_type(&arg.ty);
586     }
587 
588     if visitor.found {
589         return;
590     }
591 
592     cx.error(
593         efn,
594         "&mut return type is not allowed unless there is a &mut argument",
595     );
596 }
597 
check_reserved_name(cx: &mut Check, ident: &Ident)598 fn check_reserved_name(cx: &mut Check, ident: &Ident) {
599     if ident == "Box"
600         || ident == "UniquePtr"
601         || ident == "SharedPtr"
602         || ident == "WeakPtr"
603         || ident == "Vec"
604         || ident == "CxxVector"
605         || ident == "str"
606         || Atom::from(ident).is_some()
607     {
608         cx.error(ident, "reserved name");
609     }
610 }
611 
check_reserved_lifetime(cx: &mut Check, lifetime: &Lifetime)612 fn check_reserved_lifetime(cx: &mut Check, lifetime: &Lifetime) {
613     if lifetime.ident == "static" {
614         match cx.generator {
615             Generator::Macro => { /* rustc already reports this */ }
616             Generator::Build => {
617                 cx.error(lifetime, error::RESERVED_LIFETIME);
618             }
619         }
620     }
621 }
622 
check_lifetimes(cx: &mut Check, generics: &Lifetimes)623 fn check_lifetimes(cx: &mut Check, generics: &Lifetimes) {
624     for lifetime in &generics.lifetimes {
625         check_reserved_lifetime(cx, lifetime);
626     }
627 }
628 
check_generics(cx: &mut Check, generics: &Generics)629 fn check_generics(cx: &mut Check, generics: &Generics) {
630     for generic_param in &generics.params {
631         if let GenericParam::Lifetime(def) = generic_param {
632             check_reserved_lifetime(cx, &def.lifetime);
633         }
634     }
635 }
636 
is_unsized(cx: &mut Check, ty: &Type) -> bool637 fn is_unsized(cx: &mut Check, ty: &Type) -> bool {
638     match ty {
639         Type::Ident(ident) => {
640             let ident = &ident.rust;
641             ident == CxxString || is_opaque_cxx(cx, ident) || cx.types.rust.contains(ident)
642         }
643         Type::Array(array) => is_unsized(cx, &array.inner),
644         Type::CxxVector(_) | Type::Fn(_) | Type::Void(_) => true,
645         Type::RustBox(_)
646         | Type::RustVec(_)
647         | Type::UniquePtr(_)
648         | Type::SharedPtr(_)
649         | Type::WeakPtr(_)
650         | Type::Ref(_)
651         | Type::Ptr(_)
652         | Type::Str(_)
653         | Type::SliceRef(_) => false,
654     }
655 }
656 
is_opaque_cxx(cx: &mut Check, ty: &Ident) -> bool657 fn is_opaque_cxx(cx: &mut Check, ty: &Ident) -> bool {
658     cx.types.cxx.contains(ty)
659         && !cx.types.structs.contains_key(ty)
660         && !cx.types.enums.contains_key(ty)
661         && !(cx.types.aliases.contains_key(ty) && cx.types.required_trivial.contains_key(ty))
662 }
663 
span_for_struct_error(strct: &Struct) -> TokenStream664 fn span_for_struct_error(strct: &Struct) -> TokenStream {
665     let struct_token = strct.struct_token;
666     let mut brace_token = Group::new(Delimiter::Brace, TokenStream::new());
667     brace_token.set_span(strct.brace_token.span);
668     quote!(#struct_token #brace_token)
669 }
670 
span_for_enum_error(enm: &Enum) -> TokenStream671 fn span_for_enum_error(enm: &Enum) -> TokenStream {
672     let enum_token = enm.enum_token;
673     let mut brace_token = Group::new(Delimiter::Brace, TokenStream::new());
674     brace_token.set_span(enm.brace_token.span);
675     quote!(#enum_token #brace_token)
676 }
677 
span_for_receiver_error(receiver: &Receiver) -> TokenStream678 fn span_for_receiver_error(receiver: &Receiver) -> TokenStream {
679     let ampersand = receiver.ampersand;
680     let lifetime = &receiver.lifetime;
681     let mutability = receiver.mutability;
682     if receiver.shorthand {
683         let var = receiver.var;
684         quote!(#ampersand #lifetime #mutability #var)
685     } else {
686         let ty = &receiver.ty;
687         quote!(#ampersand #lifetime #mutability #ty)
688     }
689 }
690 
span_for_generics_error(efn: &ExternFn) -> TokenStream691 fn span_for_generics_error(efn: &ExternFn) -> TokenStream {
692     let unsafety = efn.unsafety;
693     let fn_token = efn.fn_token;
694     let generics = &efn.generics;
695     quote!(#unsafety #fn_token #generics)
696 }
697 
describe(cx: &mut Check, ty: &Type) -> String698 fn describe(cx: &mut Check, ty: &Type) -> String {
699     match ty {
700         Type::Ident(ident) => {
701             if cx.types.structs.contains_key(&ident.rust) {
702                 "struct".to_owned()
703             } else if cx.types.enums.contains_key(&ident.rust) {
704                 "enum".to_owned()
705             } else if cx.types.aliases.contains_key(&ident.rust) {
706                 "C++ type".to_owned()
707             } else if cx.types.cxx.contains(&ident.rust) {
708                 "opaque C++ type".to_owned()
709             } else if cx.types.rust.contains(&ident.rust) {
710                 "opaque Rust type".to_owned()
711             } else if Atom::from(&ident.rust) == Some(CxxString) {
712                 "C++ string".to_owned()
713             } else if Atom::from(&ident.rust) == Some(Char) {
714                 "C char".to_owned()
715             } else {
716                 ident.rust.to_string()
717             }
718         }
719         Type::RustBox(_) => "Box".to_owned(),
720         Type::RustVec(_) => "Vec".to_owned(),
721         Type::UniquePtr(_) => "unique_ptr".to_owned(),
722         Type::SharedPtr(_) => "shared_ptr".to_owned(),
723         Type::WeakPtr(_) => "weak_ptr".to_owned(),
724         Type::Ref(_) => "reference".to_owned(),
725         Type::Ptr(_) => "raw pointer".to_owned(),
726         Type::Str(_) => "&str".to_owned(),
727         Type::CxxVector(_) => "C++ vector".to_owned(),
728         Type::SliceRef(_) => "slice".to_owned(),
729         Type::Fn(_) => "function pointer".to_owned(),
730         Type::Void(_) => "()".to_owned(),
731         Type::Array(_) => "array".to_owned(),
732     }
733 }
734