• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //! Parsing interface for parsing a token stream into a syntax tree node.
2 //!
3 //! Parsing in Syn is built on parser functions that take in a [`ParseStream`]
4 //! and produce a [`Result<T>`] where `T` is some syntax tree node. Underlying
5 //! these parser functions is a lower level mechanism built around the
6 //! [`Cursor`] type. `Cursor` is a cheaply copyable cursor over a range of
7 //! tokens in a token stream.
8 //!
9 //! [`Result<T>`]: Result
10 //! [`Cursor`]: crate::buffer::Cursor
11 //!
12 //! # Example
13 //!
14 //! Here is a snippet of parsing code to get a feel for the style of the
15 //! library. We define data structures for a subset of Rust syntax including
16 //! enums (not shown) and structs, then provide implementations of the [`Parse`]
17 //! trait to parse these syntax tree data structures from a token stream.
18 //!
19 //! Once `Parse` impls have been defined, they can be called conveniently from a
20 //! procedural macro through [`parse_macro_input!`] as shown at the bottom of
21 //! the snippet. If the caller provides syntactically invalid input to the
22 //! procedural macro, they will receive a helpful compiler error message
23 //! pointing out the exact token that triggered the failure to parse.
24 //!
25 //! [`parse_macro_input!`]: crate::parse_macro_input!
26 //!
27 //! ```
28 //! # extern crate proc_macro;
29 //! #
30 //! use proc_macro::TokenStream;
31 //! use syn::{braced, parse_macro_input, token, Field, Ident, Result, Token};
32 //! use syn::parse::{Parse, ParseStream};
33 //! use syn::punctuated::Punctuated;
34 //!
35 //! enum Item {
36 //!     Struct(ItemStruct),
37 //!     Enum(ItemEnum),
38 //! }
39 //!
40 //! struct ItemStruct {
41 //!     struct_token: Token![struct],
42 //!     ident: Ident,
43 //!     brace_token: token::Brace,
44 //!     fields: Punctuated<Field, Token![,]>,
45 //! }
46 //! #
47 //! # enum ItemEnum {}
48 //!
49 //! impl Parse for Item {
50 //!     fn parse(input: ParseStream) -> Result<Self> {
51 //!         let lookahead = input.lookahead1();
52 //!         if lookahead.peek(Token![struct]) {
53 //!             input.parse().map(Item::Struct)
54 //!         } else if lookahead.peek(Token![enum]) {
55 //!             input.parse().map(Item::Enum)
56 //!         } else {
57 //!             Err(lookahead.error())
58 //!         }
59 //!     }
60 //! }
61 //!
62 //! impl Parse for ItemStruct {
63 //!     fn parse(input: ParseStream) -> Result<Self> {
64 //!         let content;
65 //!         Ok(ItemStruct {
66 //!             struct_token: input.parse()?,
67 //!             ident: input.parse()?,
68 //!             brace_token: braced!(content in input),
69 //!             fields: content.parse_terminated(Field::parse_named)?,
70 //!         })
71 //!     }
72 //! }
73 //! #
74 //! # impl Parse for ItemEnum {
75 //! #     fn parse(input: ParseStream) -> Result<Self> {
76 //! #         unimplemented!()
77 //! #     }
78 //! # }
79 //!
80 //! # const IGNORE: &str = stringify! {
81 //! #[proc_macro]
82 //! # };
83 //! pub fn my_macro(tokens: TokenStream) -> TokenStream {
84 //!     let input = parse_macro_input!(tokens as Item);
85 //!
86 //!     /* ... */
87 //! #   "".parse().unwrap()
88 //! }
89 //! ```
90 //!
91 //! # The `syn::parse*` functions
92 //!
93 //! The [`syn::parse`], [`syn::parse2`], and [`syn::parse_str`] functions serve
94 //! as an entry point for parsing syntax tree nodes that can be parsed in an
95 //! obvious default way. These functions can return any syntax tree node that
96 //! implements the [`Parse`] trait, which includes most types in Syn.
97 //!
98 //! [`syn::parse`]: crate::parse()
99 //! [`syn::parse2`]: crate::parse2()
100 //! [`syn::parse_str`]: crate::parse_str()
101 //!
102 //! ```
103 //! use syn::Type;
104 //!
105 //! # fn run_parser() -> syn::Result<()> {
106 //! let t: Type = syn::parse_str("std::collections::HashMap<String, Value>")?;
107 //! #     Ok(())
108 //! # }
109 //! #
110 //! # run_parser().unwrap();
111 //! ```
112 //!
113 //! The [`parse_quote!`] macro also uses this approach.
114 //!
115 //! [`parse_quote!`]: crate::parse_quote!
116 //!
117 //! # The `Parser` trait
118 //!
119 //! Some types can be parsed in several ways depending on context. For example
120 //! an [`Attribute`] can be either "outer" like `#[...]` or "inner" like
121 //! `#![...]` and parsing the wrong one would be a bug. Similarly [`Punctuated`]
122 //! may or may not allow trailing punctuation, and parsing it the wrong way
123 //! would either reject valid input or accept invalid input.
124 //!
125 //! [`Attribute`]: crate::Attribute
126 //! [`Punctuated`]: crate::punctuated
127 //!
128 //! The `Parse` trait is not implemented in these cases because there is no good
129 //! behavior to consider the default.
130 //!
131 //! ```compile_fail
132 //! # extern crate proc_macro;
133 //! #
134 //! # use syn::punctuated::Punctuated;
135 //! # use syn::{PathSegment, Result, Token};
136 //! #
137 //! # fn f(tokens: proc_macro::TokenStream) -> Result<()> {
138 //! #
139 //! // Can't parse `Punctuated` without knowing whether trailing punctuation
140 //! // should be allowed in this context.
141 //! let path: Punctuated<PathSegment, Token![::]> = syn::parse(tokens)?;
142 //! #
143 //! #     Ok(())
144 //! # }
145 //! ```
146 //!
147 //! In these cases the types provide a choice of parser functions rather than a
148 //! single `Parse` implementation, and those parser functions can be invoked
149 //! through the [`Parser`] trait.
150 //!
151 //!
152 //! ```
153 //! # extern crate proc_macro;
154 //! #
155 //! use proc_macro::TokenStream;
156 //! use syn::parse::Parser;
157 //! use syn::punctuated::Punctuated;
158 //! use syn::{Attribute, Expr, PathSegment, Result, Token};
159 //!
160 //! fn call_some_parser_methods(input: TokenStream) -> Result<()> {
161 //!     // Parse a nonempty sequence of path segments separated by `::` punctuation
162 //!     // with no trailing punctuation.
163 //!     let tokens = input.clone();
164 //!     let parser = Punctuated::<PathSegment, Token![::]>::parse_separated_nonempty;
165 //!     let _path = parser.parse(tokens)?;
166 //!
167 //!     // Parse a possibly empty sequence of expressions terminated by commas with
168 //!     // an optional trailing punctuation.
169 //!     let tokens = input.clone();
170 //!     let parser = Punctuated::<Expr, Token![,]>::parse_terminated;
171 //!     let _args = parser.parse(tokens)?;
172 //!
173 //!     // Parse zero or more outer attributes but not inner attributes.
174 //!     let tokens = input.clone();
175 //!     let parser = Attribute::parse_outer;
176 //!     let _attrs = parser.parse(tokens)?;
177 //!
178 //!     Ok(())
179 //! }
180 //! ```
181 //!
182 //! ---
183 //!
184 //! *This module is available only if Syn is built with the `"parsing"` feature.*
185 
186 #[path = "discouraged.rs"]
187 pub mod discouraged;
188 
189 use crate::buffer::{Cursor, TokenBuffer};
190 use crate::error;
191 use crate::lookahead;
192 #[cfg(all(
193     not(all(target_arch = "wasm32", any(target_os = "unknown", target_os = "wasi"))),
194     feature = "proc-macro"
195 ))]
196 use crate::proc_macro;
197 use crate::punctuated::Punctuated;
198 use crate::token::Token;
199 use proc_macro2::{self, Delimiter, Group, Literal, Punct, Span, TokenStream, TokenTree};
200 use std::cell::Cell;
201 use std::fmt::{self, Debug, Display};
202 #[cfg(feature = "extra-traits")]
203 use std::hash::{Hash, Hasher};
204 use std::marker::PhantomData;
205 use std::mem;
206 use std::ops::Deref;
207 use std::rc::Rc;
208 use std::str::FromStr;
209 
210 pub use crate::error::{Error, Result};
211 pub use crate::lookahead::{Lookahead1, Peek};
212 
213 /// Parsing interface implemented by all types that can be parsed in a default
214 /// way from a token stream.
215 ///
216 /// Refer to the [module documentation] for details about implementing and using
217 /// the `Parse` trait.
218 ///
219 /// [module documentation]: self
220 pub trait Parse: Sized {
parse(input: ParseStream) -> Result<Self>221     fn parse(input: ParseStream) -> Result<Self>;
222 }
223 
224 /// Input to a Syn parser function.
225 ///
226 /// See the methods of this type under the documentation of [`ParseBuffer`]. For
227 /// an overview of parsing in Syn, refer to the [module documentation].
228 ///
229 /// [module documentation]: self
230 pub type ParseStream<'a> = &'a ParseBuffer<'a>;
231 
232 /// Cursor position within a buffered token stream.
233 ///
234 /// This type is more commonly used through the type alias [`ParseStream`] which
235 /// is an alias for `&ParseBuffer`.
236 ///
237 /// `ParseStream` is the input type for all parser functions in Syn. They have
238 /// the signature `fn(ParseStream) -> Result<T>`.
239 ///
240 /// ## Calling a parser function
241 ///
242 /// There is no public way to construct a `ParseBuffer`. Instead, if you are
243 /// looking to invoke a parser function that requires `ParseStream` as input,
244 /// you will need to go through one of the public parsing entry points.
245 ///
246 /// - The [`parse_macro_input!`] macro if parsing input of a procedural macro;
247 /// - One of [the `syn::parse*` functions][syn-parse]; or
248 /// - A method of the [`Parser`] trait.
249 ///
250 /// [`parse_macro_input!`]: crate::parse_macro_input!
251 /// [syn-parse]: self#the-synparse-functions
252 pub struct ParseBuffer<'a> {
253     scope: Span,
254     // Instead of Cell<Cursor<'a>> so that ParseBuffer<'a> is covariant in 'a.
255     // The rest of the code in this module needs to be careful that only a
256     // cursor derived from this `cell` is ever assigned to this `cell`.
257     //
258     // Cell<Cursor<'a>> cannot be covariant in 'a because then we could take a
259     // ParseBuffer<'a>, upcast to ParseBuffer<'short> for some lifetime shorter
260     // than 'a, and then assign a Cursor<'short> into the Cell.
261     //
262     // By extension, it would not be safe to expose an API that accepts a
263     // Cursor<'a> and trusts that it lives as long as the cursor currently in
264     // the cell.
265     cell: Cell<Cursor<'static>>,
266     marker: PhantomData<Cursor<'a>>,
267     unexpected: Cell<Option<Rc<Cell<Unexpected>>>>,
268 }
269 
270 impl<'a> Drop for ParseBuffer<'a> {
drop(&mut self)271     fn drop(&mut self) {
272         if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(self.cursor()) {
273             let (inner, old_span) = inner_unexpected(self);
274             if old_span.is_none() {
275                 inner.set(Unexpected::Some(unexpected_span));
276             }
277         }
278     }
279 }
280 
281 impl<'a> Display for ParseBuffer<'a> {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result282     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
283         Display::fmt(&self.cursor().token_stream(), f)
284     }
285 }
286 
287 impl<'a> Debug for ParseBuffer<'a> {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result288     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
289         Debug::fmt(&self.cursor().token_stream(), f)
290     }
291 }
292 
293 /// Cursor state associated with speculative parsing.
294 ///
295 /// This type is the input of the closure provided to [`ParseStream::step`].
296 ///
297 /// [`ParseStream::step`]: ParseBuffer::step
298 ///
299 /// # Example
300 ///
301 /// ```
302 /// use proc_macro2::TokenTree;
303 /// use syn::Result;
304 /// use syn::parse::ParseStream;
305 ///
306 /// // This function advances the stream past the next occurrence of `@`. If
307 /// // no `@` is present in the stream, the stream position is unchanged and
308 /// // an error is returned.
309 /// fn skip_past_next_at(input: ParseStream) -> Result<()> {
310 ///     input.step(|cursor| {
311 ///         let mut rest = *cursor;
312 ///         while let Some((tt, next)) = rest.token_tree() {
313 ///             match &tt {
314 ///                 TokenTree::Punct(punct) if punct.as_char() == '@' => {
315 ///                     return Ok(((), next));
316 ///                 }
317 ///                 _ => rest = next,
318 ///             }
319 ///         }
320 ///         Err(cursor.error("no `@` was found after this point"))
321 ///     })
322 /// }
323 /// #
324 /// # fn remainder_after_skipping_past_next_at(
325 /// #     input: ParseStream,
326 /// # ) -> Result<proc_macro2::TokenStream> {
327 /// #     skip_past_next_at(input)?;
328 /// #     input.parse()
329 /// # }
330 /// #
331 /// # use syn::parse::Parser;
332 /// # let remainder = remainder_after_skipping_past_next_at
333 /// #     .parse_str("a @ b c")
334 /// #     .unwrap();
335 /// # assert_eq!(remainder.to_string(), "b c");
336 /// ```
337 pub struct StepCursor<'c, 'a> {
338     scope: Span,
339     // This field is covariant in 'c.
340     cursor: Cursor<'c>,
341     // This field is contravariant in 'c. Together these make StepCursor
342     // invariant in 'c. Also covariant in 'a. The user cannot cast 'c to a
343     // different lifetime but can upcast into a StepCursor with a shorter
344     // lifetime 'a.
345     //
346     // As long as we only ever construct a StepCursor for which 'c outlives 'a,
347     // this means if ever a StepCursor<'c, 'a> exists we are guaranteed that 'c
348     // outlives 'a.
349     marker: PhantomData<fn(Cursor<'c>) -> Cursor<'a>>,
350 }
351 
352 impl<'c, 'a> Deref for StepCursor<'c, 'a> {
353     type Target = Cursor<'c>;
354 
deref(&self) -> &Self::Target355     fn deref(&self) -> &Self::Target {
356         &self.cursor
357     }
358 }
359 
360 impl<'c, 'a> Copy for StepCursor<'c, 'a> {}
361 
362 impl<'c, 'a> Clone for StepCursor<'c, 'a> {
clone(&self) -> Self363     fn clone(&self) -> Self {
364         *self
365     }
366 }
367 
368 impl<'c, 'a> StepCursor<'c, 'a> {
369     /// Triggers an error at the current position of the parse stream.
370     ///
371     /// The `ParseStream::step` invocation will return this same error without
372     /// advancing the stream state.
error<T: Display>(self, message: T) -> Error373     pub fn error<T: Display>(self, message: T) -> Error {
374         error::new_at(self.scope, self.cursor, message)
375     }
376 }
377 
advance_step_cursor<'c, 'a>(proof: StepCursor<'c, 'a>, to: Cursor<'c>) -> Cursor<'a>378 pub(crate) fn advance_step_cursor<'c, 'a>(proof: StepCursor<'c, 'a>, to: Cursor<'c>) -> Cursor<'a> {
379     // Refer to the comments within the StepCursor definition. We use the
380     // fact that a StepCursor<'c, 'a> exists as proof that 'c outlives 'a.
381     // Cursor is covariant in its lifetime parameter so we can cast a
382     // Cursor<'c> to one with the shorter lifetime Cursor<'a>.
383     let _ = proof;
384     unsafe { mem::transmute::<Cursor<'c>, Cursor<'a>>(to) }
385 }
386 
new_parse_buffer( scope: Span, cursor: Cursor, unexpected: Rc<Cell<Unexpected>>, ) -> ParseBuffer387 pub(crate) fn new_parse_buffer(
388     scope: Span,
389     cursor: Cursor,
390     unexpected: Rc<Cell<Unexpected>>,
391 ) -> ParseBuffer {
392     ParseBuffer {
393         scope,
394         // See comment on `cell` in the struct definition.
395         cell: Cell::new(unsafe { mem::transmute::<Cursor, Cursor<'static>>(cursor) }),
396         marker: PhantomData,
397         unexpected: Cell::new(Some(unexpected)),
398     }
399 }
400 
401 pub(crate) enum Unexpected {
402     None,
403     Some(Span),
404     Chain(Rc<Cell<Unexpected>>),
405 }
406 
407 impl Default for Unexpected {
default() -> Self408     fn default() -> Self {
409         Unexpected::None
410     }
411 }
412 
413 impl Clone for Unexpected {
clone(&self) -> Self414     fn clone(&self) -> Self {
415         match self {
416             Unexpected::None => Unexpected::None,
417             Unexpected::Some(span) => Unexpected::Some(*span),
418             Unexpected::Chain(next) => Unexpected::Chain(next.clone()),
419         }
420     }
421 }
422 
423 // We call this on Cell<Unexpected> and Cell<Option<T>> where temporarily
424 // swapping in a None is cheap.
cell_clone<T: Default + Clone>(cell: &Cell<T>) -> T425 fn cell_clone<T: Default + Clone>(cell: &Cell<T>) -> T {
426     let prev = cell.take();
427     let ret = prev.clone();
428     cell.set(prev);
429     ret
430 }
431 
inner_unexpected(buffer: &ParseBuffer) -> (Rc<Cell<Unexpected>>, Option<Span>)432 fn inner_unexpected(buffer: &ParseBuffer) -> (Rc<Cell<Unexpected>>, Option<Span>) {
433     let mut unexpected = get_unexpected(buffer);
434     loop {
435         match cell_clone(&unexpected) {
436             Unexpected::None => return (unexpected, None),
437             Unexpected::Some(span) => return (unexpected, Some(span)),
438             Unexpected::Chain(next) => unexpected = next,
439         }
440     }
441 }
442 
get_unexpected(buffer: &ParseBuffer) -> Rc<Cell<Unexpected>>443 pub(crate) fn get_unexpected(buffer: &ParseBuffer) -> Rc<Cell<Unexpected>> {
444     cell_clone(&buffer.unexpected).unwrap()
445 }
446 
span_of_unexpected_ignoring_nones(mut cursor: Cursor) -> Option<Span>447 fn span_of_unexpected_ignoring_nones(mut cursor: Cursor) -> Option<Span> {
448     if cursor.eof() {
449         return None;
450     }
451     while let Some((inner, _span, rest)) = cursor.group(Delimiter::None) {
452         if let Some(unexpected) = span_of_unexpected_ignoring_nones(inner) {
453             return Some(unexpected);
454         }
455         cursor = rest;
456     }
457     if cursor.eof() {
458         None
459     } else {
460         Some(cursor.span())
461     }
462 }
463 
464 impl<'a> ParseBuffer<'a> {
465     /// Parses a syntax tree node of type `T`, advancing the position of our
466     /// parse stream past it.
parse<T: Parse>(&self) -> Result<T>467     pub fn parse<T: Parse>(&self) -> Result<T> {
468         T::parse(self)
469     }
470 
471     /// Calls the given parser function to parse a syntax tree node of type `T`
472     /// from this stream.
473     ///
474     /// # Example
475     ///
476     /// The parser below invokes [`Attribute::parse_outer`] to parse a vector of
477     /// zero or more outer attributes.
478     ///
479     /// [`Attribute::parse_outer`]: crate::Attribute::parse_outer
480     ///
481     /// ```
482     /// use syn::{Attribute, Ident, Result, Token};
483     /// use syn::parse::{Parse, ParseStream};
484     ///
485     /// // Parses a unit struct with attributes.
486     /// //
487     /// //     #[path = "s.tmpl"]
488     /// //     struct S;
489     /// struct UnitStruct {
490     ///     attrs: Vec<Attribute>,
491     ///     struct_token: Token![struct],
492     ///     name: Ident,
493     ///     semi_token: Token![;],
494     /// }
495     ///
496     /// impl Parse for UnitStruct {
497     ///     fn parse(input: ParseStream) -> Result<Self> {
498     ///         Ok(UnitStruct {
499     ///             attrs: input.call(Attribute::parse_outer)?,
500     ///             struct_token: input.parse()?,
501     ///             name: input.parse()?,
502     ///             semi_token: input.parse()?,
503     ///         })
504     ///     }
505     /// }
506     /// ```
call<T>(&self, function: fn(ParseStream) -> Result<T>) -> Result<T>507     pub fn call<T>(&self, function: fn(ParseStream) -> Result<T>) -> Result<T> {
508         function(self)
509     }
510 
511     /// Looks at the next token in the parse stream to determine whether it
512     /// matches the requested type of token.
513     ///
514     /// Does not advance the position of the parse stream.
515     ///
516     /// # Syntax
517     ///
518     /// Note that this method does not use turbofish syntax. Pass the peek type
519     /// inside of parentheses.
520     ///
521     /// - `input.peek(Token![struct])`
522     /// - `input.peek(Token![==])`
523     /// - `input.peek(Ident)`&emsp;*(does not accept keywords)*
524     /// - `input.peek(Ident::peek_any)`
525     /// - `input.peek(Lifetime)`
526     /// - `input.peek(token::Brace)`
527     ///
528     /// # Example
529     ///
530     /// In this example we finish parsing the list of supertraits when the next
531     /// token in the input is either `where` or an opening curly brace.
532     ///
533     /// ```
534     /// use syn::{braced, token, Generics, Ident, Result, Token, TypeParamBound};
535     /// use syn::parse::{Parse, ParseStream};
536     /// use syn::punctuated::Punctuated;
537     ///
538     /// // Parses a trait definition containing no associated items.
539     /// //
540     /// //     trait Marker<'de, T>: A + B<'de> where Box<T>: Clone {}
541     /// struct MarkerTrait {
542     ///     trait_token: Token![trait],
543     ///     ident: Ident,
544     ///     generics: Generics,
545     ///     colon_token: Option<Token![:]>,
546     ///     supertraits: Punctuated<TypeParamBound, Token![+]>,
547     ///     brace_token: token::Brace,
548     /// }
549     ///
550     /// impl Parse for MarkerTrait {
551     ///     fn parse(input: ParseStream) -> Result<Self> {
552     ///         let trait_token: Token![trait] = input.parse()?;
553     ///         let ident: Ident = input.parse()?;
554     ///         let mut generics: Generics = input.parse()?;
555     ///         let colon_token: Option<Token![:]> = input.parse()?;
556     ///
557     ///         let mut supertraits = Punctuated::new();
558     ///         if colon_token.is_some() {
559     ///             loop {
560     ///                 supertraits.push_value(input.parse()?);
561     ///                 if input.peek(Token![where]) || input.peek(token::Brace) {
562     ///                     break;
563     ///                 }
564     ///                 supertraits.push_punct(input.parse()?);
565     ///             }
566     ///         }
567     ///
568     ///         generics.where_clause = input.parse()?;
569     ///         let content;
570     ///         let empty_brace_token = braced!(content in input);
571     ///
572     ///         Ok(MarkerTrait {
573     ///             trait_token,
574     ///             ident,
575     ///             generics,
576     ///             colon_token,
577     ///             supertraits,
578     ///             brace_token: empty_brace_token,
579     ///         })
580     ///     }
581     /// }
582     /// ```
peek<T: Peek>(&self, token: T) -> bool583     pub fn peek<T: Peek>(&self, token: T) -> bool {
584         let _ = token;
585         T::Token::peek(self.cursor())
586     }
587 
588     /// Looks at the second-next token in the parse stream.
589     ///
590     /// This is commonly useful as a way to implement contextual keywords.
591     ///
592     /// # Example
593     ///
594     /// This example needs to use `peek2` because the symbol `union` is not a
595     /// keyword in Rust. We can't use just `peek` and decide to parse a union if
596     /// the very next token is `union`, because someone is free to write a `mod
597     /// union` and a macro invocation that looks like `union::some_macro! { ...
598     /// }`. In other words `union` is a contextual keyword.
599     ///
600     /// ```
601     /// use syn::{Ident, ItemUnion, Macro, Result, Token};
602     /// use syn::parse::{Parse, ParseStream};
603     ///
604     /// // Parses either a union or a macro invocation.
605     /// enum UnionOrMacro {
606     ///     // union MaybeUninit<T> { uninit: (), value: T }
607     ///     Union(ItemUnion),
608     ///     // lazy_static! { ... }
609     ///     Macro(Macro),
610     /// }
611     ///
612     /// impl Parse for UnionOrMacro {
613     ///     fn parse(input: ParseStream) -> Result<Self> {
614     ///         if input.peek(Token![union]) && input.peek2(Ident) {
615     ///             input.parse().map(UnionOrMacro::Union)
616     ///         } else {
617     ///             input.parse().map(UnionOrMacro::Macro)
618     ///         }
619     ///     }
620     /// }
621     /// ```
peek2<T: Peek>(&self, token: T) -> bool622     pub fn peek2<T: Peek>(&self, token: T) -> bool {
623         fn peek2(buffer: &ParseBuffer, peek: fn(Cursor) -> bool) -> bool {
624             if let Some(group) = buffer.cursor().group(Delimiter::None) {
625                 if group.0.skip().map_or(false, peek) {
626                     return true;
627                 }
628             }
629             buffer.cursor().skip().map_or(false, peek)
630         }
631 
632         let _ = token;
633         peek2(self, T::Token::peek)
634     }
635 
636     /// Looks at the third-next token in the parse stream.
peek3<T: Peek>(&self, token: T) -> bool637     pub fn peek3<T: Peek>(&self, token: T) -> bool {
638         fn peek3(buffer: &ParseBuffer, peek: fn(Cursor) -> bool) -> bool {
639             if let Some(group) = buffer.cursor().group(Delimiter::None) {
640                 if group.0.skip().and_then(Cursor::skip).map_or(false, peek) {
641                     return true;
642                 }
643             }
644             buffer
645                 .cursor()
646                 .skip()
647                 .and_then(Cursor::skip)
648                 .map_or(false, peek)
649         }
650 
651         let _ = token;
652         peek3(self, T::Token::peek)
653     }
654 
655     /// Parses zero or more occurrences of `T` separated by punctuation of type
656     /// `P`, with optional trailing punctuation.
657     ///
658     /// Parsing continues until the end of this parse stream. The entire content
659     /// of this parse stream must consist of `T` and `P`.
660     ///
661     /// # Example
662     ///
663     /// ```
664     /// # use quote::quote;
665     /// #
666     /// use syn::{parenthesized, token, Ident, Result, Token, Type};
667     /// use syn::parse::{Parse, ParseStream};
668     /// use syn::punctuated::Punctuated;
669     ///
670     /// // Parse a simplified tuple struct syntax like:
671     /// //
672     /// //     struct S(A, B);
673     /// struct TupleStruct {
674     ///     struct_token: Token![struct],
675     ///     ident: Ident,
676     ///     paren_token: token::Paren,
677     ///     fields: Punctuated<Type, Token![,]>,
678     ///     semi_token: Token![;],
679     /// }
680     ///
681     /// impl Parse for TupleStruct {
682     ///     fn parse(input: ParseStream) -> Result<Self> {
683     ///         let content;
684     ///         Ok(TupleStruct {
685     ///             struct_token: input.parse()?,
686     ///             ident: input.parse()?,
687     ///             paren_token: parenthesized!(content in input),
688     ///             fields: content.parse_terminated(Type::parse)?,
689     ///             semi_token: input.parse()?,
690     ///         })
691     ///     }
692     /// }
693     /// #
694     /// # let input = quote! {
695     /// #     struct S(A, B);
696     /// # };
697     /// # syn::parse2::<TupleStruct>(input).unwrap();
698     /// ```
parse_terminated<T, P: Parse>( &self, parser: fn(ParseStream) -> Result<T>, ) -> Result<Punctuated<T, P>>699     pub fn parse_terminated<T, P: Parse>(
700         &self,
701         parser: fn(ParseStream) -> Result<T>,
702     ) -> Result<Punctuated<T, P>> {
703         Punctuated::parse_terminated_with(self, parser)
704     }
705 
706     /// Returns whether there are tokens remaining in this stream.
707     ///
708     /// This method returns true at the end of the content of a set of
709     /// delimiters, as well as at the very end of the complete macro input.
710     ///
711     /// # Example
712     ///
713     /// ```
714     /// use syn::{braced, token, Ident, Item, Result, Token};
715     /// use syn::parse::{Parse, ParseStream};
716     ///
717     /// // Parses a Rust `mod m { ... }` containing zero or more items.
718     /// struct Mod {
719     ///     mod_token: Token![mod],
720     ///     name: Ident,
721     ///     brace_token: token::Brace,
722     ///     items: Vec<Item>,
723     /// }
724     ///
725     /// impl Parse for Mod {
726     ///     fn parse(input: ParseStream) -> Result<Self> {
727     ///         let content;
728     ///         Ok(Mod {
729     ///             mod_token: input.parse()?,
730     ///             name: input.parse()?,
731     ///             brace_token: braced!(content in input),
732     ///             items: {
733     ///                 let mut items = Vec::new();
734     ///                 while !content.is_empty() {
735     ///                     items.push(content.parse()?);
736     ///                 }
737     ///                 items
738     ///             },
739     ///         })
740     ///     }
741     /// }
742     /// ```
is_empty(&self) -> bool743     pub fn is_empty(&self) -> bool {
744         self.cursor().eof()
745     }
746 
747     /// Constructs a helper for peeking at the next token in this stream and
748     /// building an error message if it is not one of a set of expected tokens.
749     ///
750     /// # Example
751     ///
752     /// ```
753     /// use syn::{ConstParam, Ident, Lifetime, LifetimeDef, Result, Token, TypeParam};
754     /// use syn::parse::{Parse, ParseStream};
755     ///
756     /// // A generic parameter, a single one of the comma-separated elements inside
757     /// // angle brackets in:
758     /// //
759     /// //     fn f<T: Clone, 'a, 'b: 'a, const N: usize>() { ... }
760     /// //
761     /// // On invalid input, lookahead gives us a reasonable error message.
762     /// //
763     /// //     error: expected one of: identifier, lifetime, `const`
764     /// //       |
765     /// //     5 |     fn f<!Sized>() {}
766     /// //       |          ^
767     /// enum GenericParam {
768     ///     Type(TypeParam),
769     ///     Lifetime(LifetimeDef),
770     ///     Const(ConstParam),
771     /// }
772     ///
773     /// impl Parse for GenericParam {
774     ///     fn parse(input: ParseStream) -> Result<Self> {
775     ///         let lookahead = input.lookahead1();
776     ///         if lookahead.peek(Ident) {
777     ///             input.parse().map(GenericParam::Type)
778     ///         } else if lookahead.peek(Lifetime) {
779     ///             input.parse().map(GenericParam::Lifetime)
780     ///         } else if lookahead.peek(Token![const]) {
781     ///             input.parse().map(GenericParam::Const)
782     ///         } else {
783     ///             Err(lookahead.error())
784     ///         }
785     ///     }
786     /// }
787     /// ```
lookahead1(&self) -> Lookahead1<'a>788     pub fn lookahead1(&self) -> Lookahead1<'a> {
789         lookahead::new(self.scope, self.cursor())
790     }
791 
792     /// Forks a parse stream so that parsing tokens out of either the original
793     /// or the fork does not advance the position of the other.
794     ///
795     /// # Performance
796     ///
797     /// Forking a parse stream is a cheap fixed amount of work and does not
798     /// involve copying token buffers. Where you might hit performance problems
799     /// is if your macro ends up parsing a large amount of content more than
800     /// once.
801     ///
802     /// ```
803     /// # use syn::{Expr, Result};
804     /// # use syn::parse::ParseStream;
805     /// #
806     /// # fn bad(input: ParseStream) -> Result<Expr> {
807     /// // Do not do this.
808     /// if input.fork().parse::<Expr>().is_ok() {
809     ///     return input.parse::<Expr>();
810     /// }
811     /// # unimplemented!()
812     /// # }
813     /// ```
814     ///
815     /// As a rule, avoid parsing an unbounded amount of tokens out of a forked
816     /// parse stream. Only use a fork when the amount of work performed against
817     /// the fork is small and bounded.
818     ///
819     /// When complex speculative parsing against the forked stream is
820     /// unavoidable, use [`parse::discouraged::Speculative`] to advance the
821     /// original stream once the fork's parse is determined to have been
822     /// successful.
823     ///
824     /// For a lower level way to perform speculative parsing at the token level,
825     /// consider using [`ParseStream::step`] instead.
826     ///
827     /// [`parse::discouraged::Speculative`]: discouraged::Speculative
828     /// [`ParseStream::step`]: ParseBuffer::step
829     ///
830     /// # Example
831     ///
832     /// The parse implementation shown here parses possibly restricted `pub`
833     /// visibilities.
834     ///
835     /// - `pub`
836     /// - `pub(crate)`
837     /// - `pub(self)`
838     /// - `pub(super)`
839     /// - `pub(in some::path)`
840     ///
841     /// To handle the case of visibilities inside of tuple structs, the parser
842     /// needs to distinguish parentheses that specify visibility restrictions
843     /// from parentheses that form part of a tuple type.
844     ///
845     /// ```
846     /// # struct A;
847     /// # struct B;
848     /// # struct C;
849     /// #
850     /// struct S(pub(crate) A, pub (B, C));
851     /// ```
852     ///
853     /// In this example input the first tuple struct element of `S` has
854     /// `pub(crate)` visibility while the second tuple struct element has `pub`
855     /// visibility; the parentheses around `(B, C)` are part of the type rather
856     /// than part of a visibility restriction.
857     ///
858     /// The parser uses a forked parse stream to check the first token inside of
859     /// parentheses after the `pub` keyword. This is a small bounded amount of
860     /// work performed against the forked parse stream.
861     ///
862     /// ```
863     /// use syn::{parenthesized, token, Ident, Path, Result, Token};
864     /// use syn::ext::IdentExt;
865     /// use syn::parse::{Parse, ParseStream};
866     ///
867     /// struct PubVisibility {
868     ///     pub_token: Token![pub],
869     ///     restricted: Option<Restricted>,
870     /// }
871     ///
872     /// struct Restricted {
873     ///     paren_token: token::Paren,
874     ///     in_token: Option<Token![in]>,
875     ///     path: Path,
876     /// }
877     ///
878     /// impl Parse for PubVisibility {
879     ///     fn parse(input: ParseStream) -> Result<Self> {
880     ///         let pub_token: Token![pub] = input.parse()?;
881     ///
882     ///         if input.peek(token::Paren) {
883     ///             let ahead = input.fork();
884     ///             let mut content;
885     ///             parenthesized!(content in ahead);
886     ///
887     ///             if content.peek(Token![crate])
888     ///                 || content.peek(Token![self])
889     ///                 || content.peek(Token![super])
890     ///             {
891     ///                 return Ok(PubVisibility {
892     ///                     pub_token,
893     ///                     restricted: Some(Restricted {
894     ///                         paren_token: parenthesized!(content in input),
895     ///                         in_token: None,
896     ///                         path: Path::from(content.call(Ident::parse_any)?),
897     ///                     }),
898     ///                 });
899     ///             } else if content.peek(Token![in]) {
900     ///                 return Ok(PubVisibility {
901     ///                     pub_token,
902     ///                     restricted: Some(Restricted {
903     ///                         paren_token: parenthesized!(content in input),
904     ///                         in_token: Some(content.parse()?),
905     ///                         path: content.call(Path::parse_mod_style)?,
906     ///                     }),
907     ///                 });
908     ///             }
909     ///         }
910     ///
911     ///         Ok(PubVisibility {
912     ///             pub_token,
913     ///             restricted: None,
914     ///         })
915     ///     }
916     /// }
917     /// ```
fork(&self) -> Self918     pub fn fork(&self) -> Self {
919         ParseBuffer {
920             scope: self.scope,
921             cell: self.cell.clone(),
922             marker: PhantomData,
923             // Not the parent's unexpected. Nothing cares whether the clone
924             // parses all the way unless we `advance_to`.
925             unexpected: Cell::new(Some(Rc::new(Cell::new(Unexpected::None)))),
926         }
927     }
928 
929     /// Triggers an error at the current position of the parse stream.
930     ///
931     /// # Example
932     ///
933     /// ```
934     /// use syn::{Expr, Result, Token};
935     /// use syn::parse::{Parse, ParseStream};
936     ///
937     /// // Some kind of loop: `while` or `for` or `loop`.
938     /// struct Loop {
939     ///     expr: Expr,
940     /// }
941     ///
942     /// impl Parse for Loop {
943     ///     fn parse(input: ParseStream) -> Result<Self> {
944     ///         if input.peek(Token![while])
945     ///             || input.peek(Token![for])
946     ///             || input.peek(Token![loop])
947     ///         {
948     ///             Ok(Loop {
949     ///                 expr: input.parse()?,
950     ///             })
951     ///         } else {
952     ///             Err(input.error("expected some kind of loop"))
953     ///         }
954     ///     }
955     /// }
956     /// ```
error<T: Display>(&self, message: T) -> Error957     pub fn error<T: Display>(&self, message: T) -> Error {
958         error::new_at(self.scope, self.cursor(), message)
959     }
960 
961     /// Speculatively parses tokens from this parse stream, advancing the
962     /// position of this stream only if parsing succeeds.
963     ///
964     /// This is a powerful low-level API used for defining the `Parse` impls of
965     /// the basic built-in token types. It is not something that will be used
966     /// widely outside of the Syn codebase.
967     ///
968     /// # Example
969     ///
970     /// ```
971     /// use proc_macro2::TokenTree;
972     /// use syn::Result;
973     /// use syn::parse::ParseStream;
974     ///
975     /// // This function advances the stream past the next occurrence of `@`. If
976     /// // no `@` is present in the stream, the stream position is unchanged and
977     /// // an error is returned.
978     /// fn skip_past_next_at(input: ParseStream) -> Result<()> {
979     ///     input.step(|cursor| {
980     ///         let mut rest = *cursor;
981     ///         while let Some((tt, next)) = rest.token_tree() {
982     ///             match &tt {
983     ///                 TokenTree::Punct(punct) if punct.as_char() == '@' => {
984     ///                     return Ok(((), next));
985     ///                 }
986     ///                 _ => rest = next,
987     ///             }
988     ///         }
989     ///         Err(cursor.error("no `@` was found after this point"))
990     ///     })
991     /// }
992     /// #
993     /// # fn remainder_after_skipping_past_next_at(
994     /// #     input: ParseStream,
995     /// # ) -> Result<proc_macro2::TokenStream> {
996     /// #     skip_past_next_at(input)?;
997     /// #     input.parse()
998     /// # }
999     /// #
1000     /// # use syn::parse::Parser;
1001     /// # let remainder = remainder_after_skipping_past_next_at
1002     /// #     .parse_str("a @ b c")
1003     /// #     .unwrap();
1004     /// # assert_eq!(remainder.to_string(), "b c");
1005     /// ```
step<F, R>(&self, function: F) -> Result<R> where F: for<'c> FnOnce(StepCursor<'c, 'a>) -> Result<(R, Cursor<'c>)>,1006     pub fn step<F, R>(&self, function: F) -> Result<R>
1007     where
1008         F: for<'c> FnOnce(StepCursor<'c, 'a>) -> Result<(R, Cursor<'c>)>,
1009     {
1010         // Since the user's function is required to work for any 'c, we know
1011         // that the Cursor<'c> they return is either derived from the input
1012         // StepCursor<'c, 'a> or from a Cursor<'static>.
1013         //
1014         // It would not be legal to write this function without the invariant
1015         // lifetime 'c in StepCursor<'c, 'a>. If this function were written only
1016         // in terms of 'a, the user could take our ParseBuffer<'a>, upcast it to
1017         // a ParseBuffer<'short> which some shorter lifetime than 'a, invoke
1018         // `step` on their ParseBuffer<'short> with a closure that returns
1019         // Cursor<'short>, and we would wrongly write that Cursor<'short> into
1020         // the Cell intended to hold Cursor<'a>.
1021         //
1022         // In some cases it may be necessary for R to contain a Cursor<'a>.
1023         // Within Syn we solve this using `advance_step_cursor` which uses the
1024         // existence of a StepCursor<'c, 'a> as proof that it is safe to cast
1025         // from Cursor<'c> to Cursor<'a>. If needed outside of Syn, it would be
1026         // safe to expose that API as a method on StepCursor.
1027         let (node, rest) = function(StepCursor {
1028             scope: self.scope,
1029             cursor: self.cell.get(),
1030             marker: PhantomData,
1031         })?;
1032         self.cell.set(rest);
1033         Ok(node)
1034     }
1035 
1036     /// Returns the `Span` of the next token in the parse stream, or
1037     /// `Span::call_site()` if this parse stream has completely exhausted its
1038     /// input `TokenStream`.
span(&self) -> Span1039     pub fn span(&self) -> Span {
1040         let cursor = self.cursor();
1041         if cursor.eof() {
1042             self.scope
1043         } else {
1044             crate::buffer::open_span_of_group(cursor)
1045         }
1046     }
1047 
1048     /// Provides low-level access to the token representation underlying this
1049     /// parse stream.
1050     ///
1051     /// Cursors are immutable so no operations you perform against the cursor
1052     /// will affect the state of this parse stream.
cursor(&self) -> Cursor<'a>1053     pub fn cursor(&self) -> Cursor<'a> {
1054         self.cell.get()
1055     }
1056 
check_unexpected(&self) -> Result<()>1057     fn check_unexpected(&self) -> Result<()> {
1058         match inner_unexpected(self).1 {
1059             Some(span) => Err(Error::new(span, "unexpected token")),
1060             None => Ok(()),
1061         }
1062     }
1063 }
1064 
1065 #[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1066 impl<T: Parse> Parse for Box<T> {
parse(input: ParseStream) -> Result<Self>1067     fn parse(input: ParseStream) -> Result<Self> {
1068         input.parse().map(Box::new)
1069     }
1070 }
1071 
1072 #[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1073 impl<T: Parse + Token> Parse for Option<T> {
parse(input: ParseStream) -> Result<Self>1074     fn parse(input: ParseStream) -> Result<Self> {
1075         if T::peek(input.cursor()) {
1076             Ok(Some(input.parse()?))
1077         } else {
1078             Ok(None)
1079         }
1080     }
1081 }
1082 
1083 #[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1084 impl Parse for TokenStream {
parse(input: ParseStream) -> Result<Self>1085     fn parse(input: ParseStream) -> Result<Self> {
1086         input.step(|cursor| Ok((cursor.token_stream(), Cursor::empty())))
1087     }
1088 }
1089 
1090 #[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1091 impl Parse for TokenTree {
parse(input: ParseStream) -> Result<Self>1092     fn parse(input: ParseStream) -> Result<Self> {
1093         input.step(|cursor| match cursor.token_tree() {
1094             Some((tt, rest)) => Ok((tt, rest)),
1095             None => Err(cursor.error("expected token tree")),
1096         })
1097     }
1098 }
1099 
1100 #[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1101 impl Parse for Group {
parse(input: ParseStream) -> Result<Self>1102     fn parse(input: ParseStream) -> Result<Self> {
1103         input.step(|cursor| {
1104             for delim in &[Delimiter::Parenthesis, Delimiter::Brace, Delimiter::Bracket] {
1105                 if let Some((inside, span, rest)) = cursor.group(*delim) {
1106                     let mut group = Group::new(*delim, inside.token_stream());
1107                     group.set_span(span);
1108                     return Ok((group, rest));
1109                 }
1110             }
1111             Err(cursor.error("expected group token"))
1112         })
1113     }
1114 }
1115 
1116 #[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1117 impl Parse for Punct {
parse(input: ParseStream) -> Result<Self>1118     fn parse(input: ParseStream) -> Result<Self> {
1119         input.step(|cursor| match cursor.punct() {
1120             Some((punct, rest)) => Ok((punct, rest)),
1121             None => Err(cursor.error("expected punctuation token")),
1122         })
1123     }
1124 }
1125 
1126 #[cfg_attr(doc_cfg, doc(cfg(feature = "parsing")))]
1127 impl Parse for Literal {
parse(input: ParseStream) -> Result<Self>1128     fn parse(input: ParseStream) -> Result<Self> {
1129         input.step(|cursor| match cursor.literal() {
1130             Some((literal, rest)) => Ok((literal, rest)),
1131             None => Err(cursor.error("expected literal token")),
1132         })
1133     }
1134 }
1135 
1136 /// Parser that can parse Rust tokens into a particular syntax tree node.
1137 ///
1138 /// Refer to the [module documentation] for details about parsing in Syn.
1139 ///
1140 /// [module documentation]: self
1141 ///
1142 /// *This trait is available only if Syn is built with the `"parsing"` feature.*
1143 pub trait Parser: Sized {
1144     type Output;
1145 
1146     /// Parse a proc-macro2 token stream into the chosen syntax tree node.
1147     ///
1148     /// This function will check that the input is fully parsed. If there are
1149     /// any unparsed tokens at the end of the stream, an error is returned.
parse2(self, tokens: TokenStream) -> Result<Self::Output>1150     fn parse2(self, tokens: TokenStream) -> Result<Self::Output>;
1151 
1152     /// Parse tokens of source code into the chosen syntax tree node.
1153     ///
1154     /// This function will check that the input is fully parsed. If there are
1155     /// any unparsed tokens at the end of the stream, an error is returned.
1156     ///
1157     /// *This method is available only if Syn is built with both the `"parsing"` and
1158     /// `"proc-macro"` features.*
1159     #[cfg(all(
1160         not(all(target_arch = "wasm32", any(target_os = "unknown", target_os = "wasi"))),
1161         feature = "proc-macro"
1162     ))]
parse(self, tokens: proc_macro::TokenStream) -> Result<Self::Output>1163     fn parse(self, tokens: proc_macro::TokenStream) -> Result<Self::Output> {
1164         self.parse2(proc_macro2::TokenStream::from(tokens))
1165     }
1166 
1167     /// Parse a string of Rust code into the chosen syntax tree node.
1168     ///
1169     /// This function will check that the input is fully parsed. If there are
1170     /// any unparsed tokens at the end of the string, an error is returned.
1171     ///
1172     /// # Hygiene
1173     ///
1174     /// Every span in the resulting syntax tree will be set to resolve at the
1175     /// macro call site.
parse_str(self, s: &str) -> Result<Self::Output>1176     fn parse_str(self, s: &str) -> Result<Self::Output> {
1177         self.parse2(proc_macro2::TokenStream::from_str(s)?)
1178     }
1179 
1180     // Not public API.
1181     #[doc(hidden)]
1182     #[cfg(any(feature = "full", feature = "derive"))]
__parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output>1183     fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
1184         let _ = scope;
1185         self.parse2(tokens)
1186     }
1187 
1188     // Not public API.
1189     #[doc(hidden)]
1190     #[cfg(any(feature = "full", feature = "derive"))]
__parse_stream(self, input: ParseStream) -> Result<Self::Output>1191     fn __parse_stream(self, input: ParseStream) -> Result<Self::Output> {
1192         input.parse().and_then(|tokens| self.parse2(tokens))
1193     }
1194 }
1195 
tokens_to_parse_buffer(tokens: &TokenBuffer) -> ParseBuffer1196 fn tokens_to_parse_buffer(tokens: &TokenBuffer) -> ParseBuffer {
1197     let scope = Span::call_site();
1198     let cursor = tokens.begin();
1199     let unexpected = Rc::new(Cell::new(Unexpected::None));
1200     new_parse_buffer(scope, cursor, unexpected)
1201 }
1202 
1203 impl<F, T> Parser for F
1204 where
1205     F: FnOnce(ParseStream) -> Result<T>,
1206 {
1207     type Output = T;
1208 
parse2(self, tokens: TokenStream) -> Result<T>1209     fn parse2(self, tokens: TokenStream) -> Result<T> {
1210         let buf = TokenBuffer::new2(tokens);
1211         let state = tokens_to_parse_buffer(&buf);
1212         let node = self(&state)?;
1213         state.check_unexpected()?;
1214         if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(state.cursor()) {
1215             Err(Error::new(unexpected_span, "unexpected token"))
1216         } else {
1217             Ok(node)
1218         }
1219     }
1220 
1221     #[cfg(any(feature = "full", feature = "derive"))]
__parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output>1222     fn __parse_scoped(self, scope: Span, tokens: TokenStream) -> Result<Self::Output> {
1223         let buf = TokenBuffer::new2(tokens);
1224         let cursor = buf.begin();
1225         let unexpected = Rc::new(Cell::new(Unexpected::None));
1226         let state = new_parse_buffer(scope, cursor, unexpected);
1227         let node = self(&state)?;
1228         state.check_unexpected()?;
1229         if let Some(unexpected_span) = span_of_unexpected_ignoring_nones(state.cursor()) {
1230             Err(Error::new(unexpected_span, "unexpected token"))
1231         } else {
1232             Ok(node)
1233         }
1234     }
1235 
1236     #[cfg(any(feature = "full", feature = "derive"))]
__parse_stream(self, input: ParseStream) -> Result<Self::Output>1237     fn __parse_stream(self, input: ParseStream) -> Result<Self::Output> {
1238         self(input)
1239     }
1240 }
1241 
1242 #[cfg(any(feature = "full", feature = "derive"))]
parse_scoped<F: Parser>(f: F, scope: Span, tokens: TokenStream) -> Result<F::Output>1243 pub(crate) fn parse_scoped<F: Parser>(f: F, scope: Span, tokens: TokenStream) -> Result<F::Output> {
1244     f.__parse_scoped(scope, tokens)
1245 }
1246 
1247 #[cfg(any(feature = "full", feature = "derive"))]
parse_stream<F: Parser>(f: F, input: ParseStream) -> Result<F::Output>1248 pub(crate) fn parse_stream<F: Parser>(f: F, input: ParseStream) -> Result<F::Output> {
1249     f.__parse_stream(input)
1250 }
1251 
1252 /// An empty syntax tree node that consumes no tokens when parsed.
1253 ///
1254 /// This is useful for attribute macros that want to ensure they are not
1255 /// provided any attribute args.
1256 ///
1257 /// ```
1258 /// # extern crate proc_macro;
1259 /// #
1260 /// use proc_macro::TokenStream;
1261 /// use syn::parse_macro_input;
1262 /// use syn::parse::Nothing;
1263 ///
1264 /// # const IGNORE: &str = stringify! {
1265 /// #[proc_macro_attribute]
1266 /// # };
1267 /// pub fn my_attr(args: TokenStream, input: TokenStream) -> TokenStream {
1268 ///     parse_macro_input!(args as Nothing);
1269 ///
1270 ///     /* ... */
1271 /// #   "".parse().unwrap()
1272 /// }
1273 /// ```
1274 ///
1275 /// ```text
1276 /// error: unexpected token
1277 ///  --> src/main.rs:3:19
1278 ///   |
1279 /// 3 | #[my_attr(asdf)]
1280 ///   |           ^^^^
1281 /// ```
1282 pub struct Nothing;
1283 
1284 impl Parse for Nothing {
parse(_input: ParseStream) -> Result<Self>1285     fn parse(_input: ParseStream) -> Result<Self> {
1286         Ok(Nothing)
1287     }
1288 }
1289 
1290 #[cfg(feature = "extra-traits")]
1291 #[cfg_attr(doc_cfg, doc(cfg(feature = "extra-traits")))]
1292 impl Debug for Nothing {
fmt(&self, f: &mut fmt::Formatter) -> fmt::Result1293     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1294         f.write_str("Nothing")
1295     }
1296 }
1297 
1298 #[cfg(feature = "extra-traits")]
1299 #[cfg_attr(doc_cfg, doc(cfg(feature = "extra-traits")))]
1300 impl Eq for Nothing {}
1301 
1302 #[cfg(feature = "extra-traits")]
1303 #[cfg_attr(doc_cfg, doc(cfg(feature = "extra-traits")))]
1304 impl PartialEq for Nothing {
eq(&self, _other: &Self) -> bool1305     fn eq(&self, _other: &Self) -> bool {
1306         true
1307     }
1308 }
1309 
1310 #[cfg(feature = "extra-traits")]
1311 #[cfg_attr(doc_cfg, doc(cfg(feature = "extra-traits")))]
1312 impl Hash for Nothing {
hash<H: Hasher>(&self, _state: &mut H)1313     fn hash<H: Hasher>(&self, _state: &mut H) {}
1314 }
1315