1 /* 2 * Copyright 2016 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #ifndef SkArenaAlloc_DEFINED 9 #define SkArenaAlloc_DEFINED 10 11 #include "include/core/SkTypes.h" 12 #include "include/private/SkTFitsIn.h" 13 #include "include/private/SkTo.h" 14 15 #include <array> 16 #include <cassert> 17 #include <cstddef> 18 #include <cstdint> 19 #include <cstdlib> 20 #include <cstring> 21 #include <limits> 22 #include <new> 23 #include <type_traits> 24 #include <utility> 25 #include <vector> 26 27 // We found allocating strictly doubling amounts of memory from the heap left too 28 // much unused slop, particularly on Android. Instead we'll follow a Fibonacci-like 29 // progression. 30 31 // SkFibonacci47 is the first 47 Fibonacci numbers. Fib(47) is the largest value less than 2 ^ 32. 32 extern std::array<const uint32_t, 47> SkFibonacci47; 33 template<uint32_t kMaxSize> 34 class SkFibBlockSizes { 35 public: 36 // staticBlockSize, and firstAllocationSize are parameters describing the initial memory 37 // layout. staticBlockSize describes the size of the inlined memory, and firstAllocationSize 38 // describes the size of the first block to be allocated if the static block is exhausted. By 39 // convention, firstAllocationSize is the first choice for the block unit size followed by 40 // staticBlockSize followed by the default of 1024 bytes. SkFibBlockSizes(uint32_t staticBlockSize,uint32_t firstAllocationSize)41 SkFibBlockSizes(uint32_t staticBlockSize, uint32_t firstAllocationSize) : fIndex{0} { 42 fBlockUnitSize = firstAllocationSize > 0 ? firstAllocationSize : 43 staticBlockSize > 0 ? staticBlockSize : 1024; 44 45 SkASSERT_RELEASE(0 < fBlockUnitSize); 46 SkASSERT_RELEASE(fBlockUnitSize < std::min(kMaxSize, (1u << 26) - 1)); 47 } 48 nextBlockSize()49 uint32_t nextBlockSize() { 50 uint32_t result = SkFibonacci47[fIndex] * fBlockUnitSize; 51 52 if (SkTo<size_t>(fIndex + 1) < SkFibonacci47.size() && 53 SkFibonacci47[fIndex + 1] < kMaxSize / fBlockUnitSize) 54 { 55 fIndex += 1; 56 } 57 58 return result; 59 } 60 61 private: 62 uint32_t fIndex : 6; 63 uint32_t fBlockUnitSize : 26; 64 }; 65 66 // SkArenaAlloc allocates object and destroys the allocated objects when destroyed. It's designed 67 // to minimize the number of underlying block allocations. SkArenaAlloc allocates first out of an 68 // (optional) user-provided block of memory, and when that's exhausted it allocates on the heap, 69 // starting with an allocation of firstHeapAllocation bytes. If your data (plus a small overhead) 70 // fits in the user-provided block, SkArenaAlloc never uses the heap, and if it fits in 71 // firstHeapAllocation bytes, it'll use the heap only once. If 0 is specified for 72 // firstHeapAllocation, then blockSize is used unless that too is 0, then 1024 is used. 73 // 74 // Examples: 75 // 76 // char block[mostCasesSize]; 77 // SkArenaAlloc arena(block, mostCasesSize); 78 // 79 // If mostCasesSize is too large for the stack, you can use the following pattern. 80 // 81 // std::unique_ptr<char[]> block{new char[mostCasesSize]}; 82 // SkArenaAlloc arena(block.get(), mostCasesSize, almostAllCasesSize); 83 // 84 // If the program only sometimes allocates memory, use the following pattern. 85 // 86 // SkArenaAlloc arena(nullptr, 0, almostAllCasesSize); 87 // 88 // The storage does not necessarily need to be on the stack. Embedding the storage in a class also 89 // works. 90 // 91 // class Foo { 92 // char storage[mostCasesSize]; 93 // SkArenaAlloc arena (storage, mostCasesSize); 94 // }; 95 // 96 // In addition, the system is optimized to handle POD data including arrays of PODs (where 97 // POD is really data with no destructors). For POD data it has zero overhead per item, and a 98 // typical per block overhead of 8 bytes. For non-POD objects there is a per item overhead of 4 99 // bytes. For arrays of non-POD objects there is a per array overhead of typically 8 bytes. There 100 // is an addition overhead when switching from POD data to non-POD data of typically 8 bytes. 101 // 102 // If additional blocks are needed they are increased exponentially. This strategy bounds the 103 // recursion of the RunDtorsOnBlock to be limited to O(log size-of-memory). Block size grow using 104 // the Fibonacci sequence which means that for 2^32 memory there are 48 allocations, and for 2^48 105 // there are 71 allocations. 106 class SkArenaAlloc { 107 public: 108 SkArenaAlloc(char* block, size_t blockSize, size_t firstHeapAllocation); 109 SkArenaAlloc(size_t firstHeapAllocation)110 explicit SkArenaAlloc(size_t firstHeapAllocation) 111 : SkArenaAlloc(nullptr, 0, firstHeapAllocation) {} 112 113 SkArenaAlloc(const SkArenaAlloc&) = delete; 114 SkArenaAlloc& operator=(const SkArenaAlloc&) = delete; 115 SkArenaAlloc(SkArenaAlloc&&) = delete; 116 SkArenaAlloc& operator=(SkArenaAlloc&&) = delete; 117 118 ~SkArenaAlloc(); 119 120 template <typename Ctor> 121 auto make(Ctor&& ctor) -> decltype(ctor(nullptr)) { 122 using T = std::remove_pointer_t<decltype(ctor(nullptr))>; 123 124 uint32_t size = SkToU32(sizeof(T)); 125 uint32_t alignment = SkToU32(alignof(T)); 126 char* objStart; 127 if (std::is_trivially_destructible<T>::value) { 128 objStart = this->allocObject(size, alignment); 129 fCursor = objStart + size; 130 } else { 131 objStart = this->allocObjectWithFooter(size + sizeof(Footer), alignment); 132 // Can never be UB because max value is alignof(T). 133 uint32_t padding = SkToU32(objStart - fCursor); 134 135 // Advance to end of object to install footer. 136 fCursor = objStart + size; 137 FooterAction* releaser = [](char* objEnd) { 138 char* objStart = objEnd - (sizeof(T) + sizeof(Footer)); 139 ((T*)objStart)->~T(); 140 return objStart; 141 }; 142 this->installFooter(releaser, padding); 143 } 144 145 // This must be last to make objects with nested use of this allocator work. 146 return ctor(objStart); 147 } 148 149 template <typename T, typename... Args> make(Args &&...args)150 T* make(Args&&... args) { 151 return this->make([&](void* objStart) { 152 return new(objStart) T(std::forward<Args>(args)...); 153 }); 154 } 155 156 template <typename T> makeArrayDefault(size_t count)157 T* makeArrayDefault(size_t count) { 158 T* array = this->allocUninitializedArray<T>(count); 159 for (size_t i = 0; i < count; i++) { 160 // Default initialization: if T is primitive then the value is left uninitialized. 161 new (&array[i]) T; 162 } 163 return array; 164 } 165 166 template <typename T> makeArray(size_t count)167 T* makeArray(size_t count) { 168 T* array = this->allocUninitializedArray<T>(count); 169 for (size_t i = 0; i < count; i++) { 170 // Value initialization: if T is primitive then the value is zero-initialized. 171 new (&array[i]) T(); 172 } 173 return array; 174 } 175 176 template <typename T, typename Initializer> makeInitializedArray(size_t count,Initializer initializer)177 T* makeInitializedArray(size_t count, Initializer initializer) { 178 T* array = this->allocUninitializedArray<T>(count); 179 for (size_t i = 0; i < count; i++) { 180 new (&array[i]) T(initializer(i)); 181 } 182 return array; 183 } 184 185 // Only use makeBytesAlignedTo if none of the typed variants are impractical to use. makeBytesAlignedTo(size_t size,size_t align)186 void* makeBytesAlignedTo(size_t size, size_t align) { 187 AssertRelease(SkTFitsIn<uint32_t>(size)); 188 auto objStart = this->allocObject(SkToU32(size), SkToU32(align)); 189 fCursor = objStart + size; 190 return objStart; 191 } 192 193 private: AssertRelease(bool cond)194 static void AssertRelease(bool cond) { if (!cond) { ::abort(); } } 195 196 using FooterAction = char* (char*); 197 struct Footer { 198 uint8_t unaligned_action[sizeof(FooterAction*)]; 199 uint8_t padding; 200 }; 201 202 static char* SkipPod(char* footerEnd); 203 static void RunDtorsOnBlock(char* footerEnd); 204 static char* NextBlock(char* footerEnd); 205 206 template <typename T> installRaw(const T & val)207 void installRaw(const T& val) { 208 memcpy(fCursor, &val, sizeof(val)); 209 fCursor += sizeof(val); 210 } 211 void installFooter(FooterAction* releaser, uint32_t padding); 212 213 void ensureSpace(uint32_t size, uint32_t alignment); 214 allocObject(uint32_t size,uint32_t alignment)215 char* allocObject(uint32_t size, uint32_t alignment) { 216 uintptr_t mask = alignment - 1; 217 uintptr_t alignedOffset = (~reinterpret_cast<uintptr_t>(fCursor) + 1) & mask; 218 uintptr_t totalSize = size + alignedOffset; 219 AssertRelease(totalSize >= size); 220 if (totalSize > static_cast<uintptr_t>(fEnd - fCursor)) { 221 this->ensureSpace(size, alignment); 222 alignedOffset = (~reinterpret_cast<uintptr_t>(fCursor) + 1) & mask; 223 } 224 225 char* object = fCursor + alignedOffset; 226 227 SkASSERT((reinterpret_cast<uintptr_t>(object) & (alignment - 1)) == 0); 228 SkASSERT(object + size <= fEnd); 229 230 return object; 231 } 232 233 char* allocObjectWithFooter(uint32_t sizeIncludingFooter, uint32_t alignment); 234 235 template <typename T> allocUninitializedArray(size_t countZ)236 T* allocUninitializedArray(size_t countZ) { 237 AssertRelease(SkTFitsIn<uint32_t>(countZ)); 238 uint32_t count = SkToU32(countZ); 239 240 char* objStart; 241 AssertRelease(count <= std::numeric_limits<uint32_t>::max() / sizeof(T)); 242 uint32_t arraySize = SkToU32(count * sizeof(T)); 243 uint32_t alignment = SkToU32(alignof(T)); 244 245 if (std::is_trivially_destructible<T>::value) { 246 objStart = this->allocObject(arraySize, alignment); 247 fCursor = objStart + arraySize; 248 } else { 249 constexpr uint32_t overhead = sizeof(Footer) + sizeof(uint32_t); 250 AssertRelease(arraySize <= std::numeric_limits<uint32_t>::max() - overhead); 251 uint32_t totalSize = arraySize + overhead; 252 objStart = this->allocObjectWithFooter(totalSize, alignment); 253 254 // Can never be UB because max value is alignof(T). 255 uint32_t padding = SkToU32(objStart - fCursor); 256 257 // Advance to end of array to install footer. 258 fCursor = objStart + arraySize; 259 this->installRaw(SkToU32(count)); 260 this->installFooter( 261 [](char* footerEnd) { 262 char* objEnd = footerEnd - (sizeof(Footer) + sizeof(uint32_t)); 263 uint32_t count; 264 memmove(&count, objEnd, sizeof(uint32_t)); 265 char* objStart = objEnd - count * sizeof(T); 266 T* array = (T*) objStart; 267 for (uint32_t i = 0; i < count; i++) { 268 array[i].~T(); 269 } 270 return objStart; 271 }, 272 padding); 273 } 274 275 return (T*)objStart; 276 } 277 278 char* fDtorCursor; 279 char* fCursor; 280 char* fEnd; 281 282 SkFibBlockSizes<std::numeric_limits<uint32_t>::max()> fFibonacciProgression; 283 }; 284 285 class SkArenaAllocWithReset : public SkArenaAlloc { 286 public: 287 SkArenaAllocWithReset(char* block, size_t blockSize, size_t firstHeapAllocation); 288 SkArenaAllocWithReset(size_t firstHeapAllocation)289 explicit SkArenaAllocWithReset(size_t firstHeapAllocation) 290 : SkArenaAllocWithReset(nullptr, 0, firstHeapAllocation) {} 291 292 // Destroy all allocated objects, free any heap allocations. 293 void reset(); 294 295 private: 296 char* const fFirstBlock; 297 const uint32_t fFirstSize; 298 const uint32_t fFirstHeapAllocationSize; 299 }; 300 301 // Helper for defining allocators with inline/reserved storage. 302 // For argument declarations, stick to the base type (SkArenaAlloc). 303 // Note: Inheriting from the storage first means the storage will outlive the 304 // SkArenaAlloc, letting ~SkArenaAlloc read it as it calls destructors. 305 // (This is mostly only relevant for strict tools like MSAN.) 306 template <size_t InlineStorageSize> 307 class SkSTArenaAlloc : private std::array<char, InlineStorageSize>, public SkArenaAlloc { 308 public: 309 explicit SkSTArenaAlloc(size_t firstHeapAllocation = InlineStorageSize) 310 : SkArenaAlloc{this->data(), this->size(), firstHeapAllocation} {} 311 }; 312 313 template <size_t InlineStorageSize> 314 class SkSTArenaAllocWithReset 315 : private std::array<char, InlineStorageSize>, public SkArenaAllocWithReset { 316 public: 317 explicit SkSTArenaAllocWithReset(size_t firstHeapAllocation = InlineStorageSize) 318 : SkArenaAllocWithReset{this->data(), this->size(), firstHeapAllocation} {} 319 }; 320 321 #endif // SkArenaAlloc_DEFINED 322