• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2020 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/utils/SkRandom.h"
9 #include "src/core/SkGeometry.h"
10 #include "src/gpu/geometry/GrPathUtils.h"
11 #include "tests/Test.h"
12 
is_linear(SkPoint p0,SkPoint p1,SkPoint p2)13 static bool is_linear(SkPoint p0, SkPoint p1, SkPoint p2) {
14     return SkScalarNearlyZero((p0 - p1).cross(p2 - p1));
15 }
16 
is_linear(const SkPoint p[4])17 static bool is_linear(const SkPoint p[4]) {
18     return is_linear(p[0],p[1],p[2]) && is_linear(p[0],p[2],p[3]) && is_linear(p[1],p[2],p[3]);
19 }
20 
check_cubic_convex_180(skiatest::Reporter * r,const SkPoint p[4])21 static void check_cubic_convex_180(skiatest::Reporter* r, const SkPoint p[4]) {
22     bool areCusps = false;
23     float inflectT[2], convex180T[2];
24     if (int inflectN = SkFindCubicInflections(p, inflectT)) {
25         // The curve has inflections. findCubicConvex180Chops should return the inflection
26         // points.
27         int convex180N = GrPathUtils::findCubicConvex180Chops(p, convex180T, &areCusps);
28         REPORTER_ASSERT(r, inflectN == convex180N);
29         if (!areCusps) {
30             REPORTER_ASSERT(r, inflectN == 1 ||
31                             fabsf(inflectT[0] - inflectT[1]) >= SK_ScalarNearlyZero);
32         }
33         for (int i = 0; i < convex180N; ++i) {
34             REPORTER_ASSERT(r, SkScalarNearlyEqual(inflectT[i], convex180T[i]));
35         }
36     } else {
37         float totalRotation = SkMeasureNonInflectCubicRotation(p);
38         int convex180N = GrPathUtils::findCubicConvex180Chops(p, convex180T, &areCusps);
39         SkPoint chops[10];
40         SkChopCubicAt(p, chops, convex180T, convex180N);
41         float radsSum = 0;
42         for (int i = 0; i <= convex180N; ++i) {
43             float rads = SkMeasureNonInflectCubicRotation(chops + i*3);
44             SkASSERT(rads < SK_ScalarPI + SK_ScalarNearlyZero);
45             radsSum += rads;
46         }
47         if (totalRotation < SK_ScalarPI - SK_ScalarNearlyZero) {
48             // The curve should never chop if rotation is <180 degrees.
49             REPORTER_ASSERT(r, convex180N == 0);
50         } else if (!is_linear(p)) {
51             REPORTER_ASSERT(r, SkScalarNearlyEqual(radsSum, totalRotation));
52             if (totalRotation > SK_ScalarPI + SK_ScalarNearlyZero) {
53                 REPORTER_ASSERT(r, convex180N == 1);
54                 // This works because cusps take the "inflection" path above, so we don't get
55                 // non-lilnear curves that lose rotation when chopped.
56                 REPORTER_ASSERT(r, SkScalarNearlyEqual(
57                     SkMeasureNonInflectCubicRotation(chops), SK_ScalarPI));
58                 REPORTER_ASSERT(r, SkScalarNearlyEqual(
59                     SkMeasureNonInflectCubicRotation(chops + 3), totalRotation - SK_ScalarPI));
60             }
61             REPORTER_ASSERT(r, !areCusps);
62         } else {
63             REPORTER_ASSERT(r, areCusps);
64         }
65     }
66 }
67 
DEF_TEST(GrPathUtils_findCubicConvex180Chops,r)68 DEF_TEST(GrPathUtils_findCubicConvex180Chops, r) {
69     // Test all combinations of corners from the square [0,0,1,1]. This covers every cubic type as
70     // well as a wide variety of special cases for cusps, lines, loops, and inflections.
71     for (int i = 0; i < (1 << 8); ++i) {
72         SkPoint p[4] = {SkPoint::Make((i>>0)&1, (i>>1)&1),
73                         SkPoint::Make((i>>2)&1, (i>>3)&1),
74                         SkPoint::Make((i>>4)&1, (i>>5)&1),
75                         SkPoint::Make((i>>6)&1, (i>>7)&1)};
76         check_cubic_convex_180(r, p);
77     }
78 
79     {
80         // This cubic has a convex-180 chop at T=1-"epsilon"
81         static const uint32_t hexPts[] = {0x3ee0ac74, 0x3f1e061a, 0x3e0fc408, 0x3f457230,
82                                           0x3f42ac7c, 0x3f70d76c, 0x3f4e6520, 0x3f6acafa};
83         SkPoint p[4];
84         memcpy(p, hexPts, sizeof(p));
85         check_cubic_convex_180(r, p);
86     }
87 
88     // Now test an exact quadratic.
89     SkPoint quad[4] = {{0,0}, {2,2}, {4,2}, {6,0}};
90     float T[2];
91     bool areCusps;
92     REPORTER_ASSERT(r, GrPathUtils::findCubicConvex180Chops(quad, T, &areCusps) == 0);
93 
94     // Now test that cusps and near-cusps get flagged as cusps.
95     SkPoint cusp[4] = {{0,0}, {1,1}, {1,0}, {0,1}};
96     REPORTER_ASSERT(r, GrPathUtils::findCubicConvex180Chops(cusp, T, &areCusps) == 1);
97     REPORTER_ASSERT(r, areCusps == true);
98 
99     // Find the height of the right side of "cusp" at which the distance between its inflection
100     // points is kEpsilon (in parametric space).
101     constexpr static double kEpsilon = 1.0 / (1 << 11);
102     constexpr static double kEpsilonSquared = kEpsilon * kEpsilon;
103     double h = (1 - kEpsilonSquared) / (3 * kEpsilonSquared + 1);
104     double dy = (1 - h) / 2;
105     cusp[1].fY = (float)(1 - dy);
106     cusp[2].fY = (float)(0 + dy);
107     REPORTER_ASSERT(r, SkFindCubicInflections(cusp, T) == 2);
108     REPORTER_ASSERT(r, SkScalarNearlyEqual(T[1] - T[0], (float)kEpsilon, (float)kEpsilonSquared));
109 
110     // Ensure two inflection points barely more than kEpsilon apart do not get flagged as cusps.
111     cusp[1].fY = (float)(1 - 1.1 * dy);
112     cusp[2].fY = (float)(0 + 1.1 * dy);
113     REPORTER_ASSERT(r, GrPathUtils::findCubicConvex180Chops(cusp, T, &areCusps) == 2);
114     REPORTER_ASSERT(r, areCusps == false);
115 
116     // Ensure two inflection points barely less than kEpsilon apart do get flagged as cusps.
117     cusp[1].fY = (float)(1 - .9 * dy);
118     cusp[2].fY = (float)(0 + .9 * dy);
119     REPORTER_ASSERT(r, GrPathUtils::findCubicConvex180Chops(cusp, T, &areCusps) == 1);
120     REPORTER_ASSERT(r, areCusps == true);
121 }
122 
DEF_TEST(GrPathUtils_convertToCubic,r)123 DEF_TEST(GrPathUtils_convertToCubic, r) {
124     SkPoint cubic[4];
125     skgpu::VertexWriter cubicWriter(cubic);
126     GrPathUtils::writeLineAsCubic({0,0}, {3,6}, &cubicWriter);
127     REPORTER_ASSERT(r, cubic[0] == SkPoint::Make(0,0));
128     REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[1].fX, 1));
129     REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[1].fY, 2));
130     REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[2].fX, 2));
131     REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[2].fY, 4));
132     REPORTER_ASSERT(r, cubic[3] == SkPoint::Make(3,6));
133 
134     SkPoint quad[3] = {{0,0}, {3,3}, {6,0}};
135     GrPathUtils::convertQuadToCubic(quad, cubic);
136     REPORTER_ASSERT(r, cubic[0] == SkPoint::Make(0,0));
137     REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[1].fX, 2));
138     REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[1].fY, 2));
139     REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[2].fX, 4));
140     REPORTER_ASSERT(r, SkScalarNearlyEqual(cubic[2].fY, 2));
141     REPORTER_ASSERT(r, cubic[3] == SkPoint::Make(6,0));
142 }
143