• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/random/discrete_distribution.h"
16 
17 namespace absl {
18 ABSL_NAMESPACE_BEGIN
19 namespace random_internal {
20 
21 // Initializes the distribution table for Walker's Aliasing algorithm, described
22 // in Knuth, Vol 2. as well as in https://en.wikipedia.org/wiki/Alias_method
InitDiscreteDistribution(std::vector<double> * probabilities)23 std::vector<std::pair<double, size_t>> InitDiscreteDistribution(
24     std::vector<double>* probabilities) {
25   // The empty-case should already be handled by the constructor.
26   assert(probabilities);
27   assert(!probabilities->empty());
28 
29   // Step 1. Normalize the input probabilities to 1.0.
30   double sum = std::accumulate(std::begin(*probabilities),
31                                std::end(*probabilities), 0.0);
32   if (std::fabs(sum - 1.0) > 1e-6) {
33     // Scale `probabilities` only when the sum is too far from 1.0.  Scaling
34     // unconditionally will alter the probabilities slightly.
35     for (double& item : *probabilities) {
36       item = item / sum;
37     }
38   }
39 
40   // Step 2. At this point `probabilities` is set to the conditional
41   // probabilities of each element which sum to 1.0, to within reasonable error.
42   // These values are used to construct the proportional probability tables for
43   // the selection phases of Walker's Aliasing algorithm.
44   //
45   // To construct the table, pick an element which is under-full (i.e., an
46   // element for which `(*probabilities)[i] < 1.0/n`), and pair it with an
47   // element which is over-full (i.e., an element for which
48   // `(*probabilities)[i] > 1.0/n`). The smaller value can always be retired.
49   // The larger may still be greater than 1.0/n, or may now be less than 1.0/n,
50   // and put back onto the appropriate collection.
51   const size_t n = probabilities->size();
52   std::vector<std::pair<double, size_t>> q;
53   q.reserve(n);
54 
55   std::vector<size_t> over;
56   std::vector<size_t> under;
57   size_t idx = 0;
58   for (const double item : *probabilities) {
59     assert(item >= 0);
60     const double v = item * n;
61     q.emplace_back(v, 0);
62     if (v < 1.0) {
63       under.push_back(idx++);
64     } else {
65       over.push_back(idx++);
66     }
67   }
68   while (!over.empty() && !under.empty()) {
69     auto lo = under.back();
70     under.pop_back();
71     auto hi = over.back();
72     over.pop_back();
73 
74     q[lo].second = hi;
75     const double r = q[hi].first - (1.0 - q[lo].first);
76     q[hi].first = r;
77     if (r < 1.0) {
78       under.push_back(hi);
79     } else {
80       over.push_back(hi);
81     }
82   }
83 
84   // Due to rounding errors, there may be un-paired elements in either
85   // collection; these should all be values near 1.0.  For these values, set `q`
86   // to 1.0 and set the alternate to the identity.
87   for (auto i : over) {
88     q[i] = {1.0, i};
89   }
90   for (auto i : under) {
91     q[i] = {1.0, i};
92   }
93   return q;
94 }
95 
96 }  // namespace random_internal
97 ABSL_NAMESPACE_END
98 }  // namespace absl
99