• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*------------------------------------------------------------------------
2  * Vulkan Conformance Tests
3  * ------------------------
4  *
5  * Copyright (c) 2016 The Khronos Group Inc.
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  * you may not use this file except in compliance with the License.
9  * You may obtain a copy of the License at
10  *
11  *      http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing, software
14  * distributed under the License is distributed on an "AS IS" BASIS,
15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  * See the License for the specific language governing permissions and
17  * limitations under the License.
18  *
19  *//*!
20  * \file  vktSparseResourcesImageSparseBinding.cpp
21  * \brief Sparse fully resident images with mipmaps tests
22  *//*--------------------------------------------------------------------*/
23 
24 #include "vktSparseResourcesBufferSparseBinding.hpp"
25 #include "vktSparseResourcesTestsUtil.hpp"
26 #include "vktSparseResourcesBase.hpp"
27 #include "vktTestCaseUtil.hpp"
28 
29 #include "vkDefs.hpp"
30 #include "vkRef.hpp"
31 #include "vkRefUtil.hpp"
32 #include "vkPlatform.hpp"
33 #include "vkPrograms.hpp"
34 #include "vkMemUtil.hpp"
35 #include "vkBarrierUtil.hpp"
36 #include "vkBuilderUtil.hpp"
37 #include "vkImageUtil.hpp"
38 #include "vkQueryUtil.hpp"
39 #include "vkTypeUtil.hpp"
40 #include "vkCmdUtil.hpp"
41 
42 #include "deUniquePtr.hpp"
43 #include "deStringUtil.hpp"
44 #include "tcuTextureUtil.hpp"
45 
46 #include <string>
47 #include <vector>
48 
49 using namespace vk;
50 
51 namespace vkt
52 {
53 namespace sparse
54 {
55 namespace
56 {
57 
58 class ImageSparseBindingCase : public TestCase
59 {
60 public:
61 	ImageSparseBindingCase			(tcu::TestContext&	testCtx,
62 									 const std::string&	name,
63 									 const std::string&	description,
64 									 const ImageType	imageType,
65 									 const tcu::UVec3&	imageSize,
66 									 const VkFormat		format,
67 									 const bool			useDeviceGroups = false);
68 
69 	TestInstance*	createInstance	(Context&			context) const;
70 	virtual void	checkSupport			(Context&					context) const;
71 
72 private:
73 	const bool			m_useDeviceGroups;
74 	const ImageType		m_imageType;
75 	const tcu::UVec3	m_imageSize;
76 	const VkFormat		m_format;
77 };
78 
ImageSparseBindingCase(tcu::TestContext & testCtx,const std::string & name,const std::string & description,const ImageType imageType,const tcu::UVec3 & imageSize,const VkFormat format,const bool useDeviceGroups)79 ImageSparseBindingCase::ImageSparseBindingCase (tcu::TestContext&	testCtx,
80 												const std::string&	name,
81 												const std::string&	description,
82 												const ImageType		imageType,
83 												const tcu::UVec3&	imageSize,
84 												const VkFormat		format,
85 												const bool			useDeviceGroups)
86 
87 	: TestCase			(testCtx, name, description)
88 	, m_useDeviceGroups	(useDeviceGroups)
89 	, m_imageType		(imageType)
90 	, m_imageSize		(imageSize)
91 	, m_format			(format)
92 {
93 }
94 
checkSupport(Context & context) const95 void ImageSparseBindingCase::checkSupport (Context& context) const
96 {
97 	context.requireDeviceCoreFeature(DEVICE_CORE_FEATURE_SPARSE_BINDING);
98 
99 	if (!isImageSizeSupported(context.getInstanceInterface(), context.getPhysicalDevice(), m_imageType, m_imageSize))
100 		TCU_THROW(NotSupportedError, "Image size not supported for device");
101 
102 	if (formatIsR64(m_format))
103 	{
104 		context.requireDeviceFunctionality("VK_EXT_shader_image_atomic_int64");
105 
106 		if (context.getShaderImageAtomicInt64FeaturesEXT().sparseImageInt64Atomics == VK_FALSE)
107 		{
108 			TCU_THROW(NotSupportedError, "sparseImageInt64Atomics is not supported for device");
109 		}
110 	}
111 }
112 
113 class ImageSparseBindingInstance : public SparseResourcesBaseInstance
114 {
115 public:
116 	ImageSparseBindingInstance	(Context&			context,
117 								 const ImageType	imageType,
118 								 const tcu::UVec3&	imageSize,
119 								 const VkFormat		format,
120 								 const bool			useDeviceGroups);
121 
122 	tcu::TestStatus	iterate		(void);
123 
124 private:
125 	const bool			m_useDeviceGroups;
126 	const ImageType		m_imageType;
127 	const tcu::UVec3	m_imageSize;
128 	const VkFormat		m_format;
129 };
130 
ImageSparseBindingInstance(Context & context,const ImageType imageType,const tcu::UVec3 & imageSize,const VkFormat format,const bool useDeviceGroups)131 ImageSparseBindingInstance::ImageSparseBindingInstance (Context&			context,
132 														const ImageType		imageType,
133 														const tcu::UVec3&	imageSize,
134 														const VkFormat		format,
135 														const bool			useDeviceGroups)
136 
137 	: SparseResourcesBaseInstance	(context, useDeviceGroups)
138 	, m_useDeviceGroups				(useDeviceGroups)
139 	, m_imageType					(imageType)
140 	, m_imageSize					(imageSize)
141 	, m_format						(format)
142 {
143 }
144 
iterate(void)145 tcu::TestStatus ImageSparseBindingInstance::iterate (void)
146 {
147 	const InstanceInterface&	instance		= m_context.getInstanceInterface();
148 
149 	{
150 		// Create logical device supporting both sparse and compute queues
151 		QueueRequirementsVec queueRequirements;
152 		queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u));
153 		queueRequirements.push_back(QueueRequirements(VK_QUEUE_COMPUTE_BIT, 1u));
154 
155 		createDeviceSupportingQueues(queueRequirements);
156 	}
157 
158 	const VkPhysicalDevice		physicalDevice	= getPhysicalDevice();
159 	VkImageCreateInfo			imageSparseInfo;
160 	std::vector<DeviceMemorySp>	deviceMemUniquePtrVec;
161 
162 	const DeviceInterface&			deviceInterface		= getDeviceInterface();
163 	const Queue&					sparseQueue			= getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0);
164 	const Queue&					computeQueue		= getQueue(VK_QUEUE_COMPUTE_BIT, 0);
165 	const PlanarFormatDescription	formatDescription	= getPlanarFormatDescription(m_format);
166 
167 	// Go through all physical devices
168 	for (deUint32 physDevID = 0; physDevID < m_numPhysicalDevices; ++physDevID)
169 	{
170 		const deUint32	firstDeviceID	= physDevID;
171 		const deUint32	secondDeviceID	= (firstDeviceID + 1) % m_numPhysicalDevices;
172 
173 		imageSparseInfo.sType					= VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;					//VkStructureType		sType;
174 		imageSparseInfo.pNext					= DE_NULL;												//const void*			pNext;
175 		imageSparseInfo.flags					= VK_IMAGE_CREATE_SPARSE_BINDING_BIT;					//VkImageCreateFlags	flags;
176 		imageSparseInfo.imageType				= mapImageType(m_imageType);							//VkImageType			imageType;
177 		imageSparseInfo.format					= m_format;												//VkFormat				format;
178 		imageSparseInfo.extent					= makeExtent3D(getLayerSize(m_imageType, m_imageSize));	//VkExtent3D			extent;
179 		imageSparseInfo.arrayLayers				= getNumLayers(m_imageType, m_imageSize);				//deUint32				arrayLayers;
180 		imageSparseInfo.samples					= VK_SAMPLE_COUNT_1_BIT;								//VkSampleCountFlagBits	samples;
181 		imageSparseInfo.tiling					= VK_IMAGE_TILING_OPTIMAL;								//VkImageTiling			tiling;
182 		imageSparseInfo.initialLayout			= VK_IMAGE_LAYOUT_UNDEFINED;							//VkImageLayout			initialLayout;
183 		imageSparseInfo.usage					= VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
184 												  VK_IMAGE_USAGE_TRANSFER_DST_BIT;						//VkImageUsageFlags		usage;
185 		imageSparseInfo.sharingMode				= VK_SHARING_MODE_EXCLUSIVE;							//VkSharingMode			sharingMode;
186 		imageSparseInfo.queueFamilyIndexCount	= 0u;													//deUint32				queueFamilyIndexCount;
187 		imageSparseInfo.pQueueFamilyIndices		= DE_NULL;												//const deUint32*		pQueueFamilyIndices;
188 
189 		if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY)
190 		{
191 			imageSparseInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
192 		}
193 
194 		{
195 			VkImageFormatProperties imageFormatProperties;
196 			if (instance.getPhysicalDeviceImageFormatProperties(physicalDevice,
197 				imageSparseInfo.format,
198 				imageSparseInfo.imageType,
199 				imageSparseInfo.tiling,
200 				imageSparseInfo.usage,
201 				imageSparseInfo.flags,
202 				&imageFormatProperties) == VK_ERROR_FORMAT_NOT_SUPPORTED)
203 			{
204 				TCU_THROW(NotSupportedError, "Image format does not support sparse binding operations");
205 			}
206 
207 			imageSparseInfo.mipLevels = getMipmapCount(m_format, formatDescription, imageFormatProperties, imageSparseInfo.extent);
208 		}
209 
210 		// Create sparse image
211 		const Unique<VkImage> imageSparse(createImage(deviceInterface, getDevice(), &imageSparseInfo));
212 
213 		// Create sparse image memory bind semaphore
214 		const Unique<VkSemaphore> imageMemoryBindSemaphore(createSemaphore(deviceInterface, getDevice()));
215 
216 		// Get sparse image general memory requirements
217 		const VkMemoryRequirements imageMemoryRequirements = getImageMemoryRequirements(deviceInterface, getDevice(), *imageSparse);
218 
219 		// Check if required image memory size does not exceed device limits
220 		if (imageMemoryRequirements.size > getPhysicalDeviceProperties(instance, getPhysicalDevice(secondDeviceID)).limits.sparseAddressSpaceSize)
221 			TCU_THROW(NotSupportedError, "Required memory size for sparse resource exceeds device limits");
222 
223 		DE_ASSERT((imageMemoryRequirements.size % imageMemoryRequirements.alignment) == 0);
224 
225 		{
226 			std::vector<VkSparseMemoryBind>	sparseMemoryBinds;
227 			const deUint32					numSparseBinds	= static_cast<deUint32>(imageMemoryRequirements.size / imageMemoryRequirements.alignment);
228 			const deUint32					memoryType		= findMatchingMemoryType(instance, getPhysicalDevice(secondDeviceID), imageMemoryRequirements, MemoryRequirement::Any);
229 
230 			if (memoryType == NO_MATCH_FOUND)
231 				return tcu::TestStatus::fail("No matching memory type found");
232 
233 			if (firstDeviceID != secondDeviceID)
234 			{
235 				VkPeerMemoryFeatureFlags	peerMemoryFeatureFlags = (VkPeerMemoryFeatureFlags)0;
236 				const deUint32				heapIndex = getHeapIndexForMemoryType(instance, getPhysicalDevice(secondDeviceID), memoryType);
237 				deviceInterface.getDeviceGroupPeerMemoryFeatures(getDevice(), heapIndex, firstDeviceID, secondDeviceID, &peerMemoryFeatureFlags);
238 
239 				if (((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT) == 0) ||
240 					((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_DST_BIT) == 0))
241 				{
242 					TCU_THROW(NotSupportedError, "Peer memory does not support COPY_SRC and COPY_DST");
243 				}
244 			}
245 
246 			for (deUint32 sparseBindNdx = 0; sparseBindNdx < numSparseBinds; ++sparseBindNdx)
247 			{
248 				const VkSparseMemoryBind sparseMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
249 					imageMemoryRequirements.alignment, memoryType, imageMemoryRequirements.alignment * sparseBindNdx);
250 
251 				deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(sparseMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
252 
253 				sparseMemoryBinds.push_back(sparseMemoryBind);
254 			}
255 
256 			const VkSparseImageOpaqueMemoryBindInfo opaqueBindInfo = makeSparseImageOpaqueMemoryBindInfo(*imageSparse, static_cast<deUint32>(sparseMemoryBinds.size()), sparseMemoryBinds.data());
257 
258 			const VkDeviceGroupBindSparseInfo devGroupBindSparseInfo =
259 			{
260 				VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO_KHR,	//VkStructureType							sType;
261 				DE_NULL,												//const void*								pNext;
262 				firstDeviceID,											//deUint32									resourceDeviceIndex;
263 				secondDeviceID,											//deUint32									memoryDeviceIndex;
264 			};
265 
266 			const VkBindSparseInfo bindSparseInfo =
267 			{
268 				VK_STRUCTURE_TYPE_BIND_SPARSE_INFO,						//VkStructureType							sType;
269 				m_useDeviceGroups ? &devGroupBindSparseInfo : DE_NULL,	//const void*								pNext;
270 				0u,														//deUint32									waitSemaphoreCount;
271 				DE_NULL,												//const VkSemaphore*						pWaitSemaphores;
272 				0u,														//deUint32									bufferBindCount;
273 				DE_NULL,												//const VkSparseBufferMemoryBindInfo*		pBufferBinds;
274 				1u,														//deUint32									imageOpaqueBindCount;
275 				&opaqueBindInfo,										//const VkSparseImageOpaqueMemoryBindInfo*	pImageOpaqueBinds;
276 				0u,														//deUint32									imageBindCount;
277 				DE_NULL,												//const VkSparseImageMemoryBindInfo*		pImageBinds;
278 				1u,														//deUint32									signalSemaphoreCount;
279 				&imageMemoryBindSemaphore.get()							//const VkSemaphore*						pSignalSemaphores;
280 			};
281 
282 			// Submit sparse bind commands for execution
283 			VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL));
284 		}
285 
286 		deUint32 imageSizeInBytes = 0;
287 
288 		for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
289 			for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
290 				imageSizeInBytes += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
291 
292 		std::vector<VkBufferImageCopy> bufferImageCopy(formatDescription.numPlanes * imageSparseInfo.mipLevels);
293 		{
294 			deUint32 bufferOffset = 0;
295 			for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
296 			{
297 				const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
298 
299 				for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
300 				{
301 					bufferImageCopy[planeNdx*imageSparseInfo.mipLevels + mipmapNdx] =
302 					{
303 						bufferOffset,																		//	VkDeviceSize				bufferOffset;
304 						0u,																					//	deUint32					bufferRowLength;
305 						0u,																					//	deUint32					bufferImageHeight;
306 						makeImageSubresourceLayers(aspect, mipmapNdx, 0u, imageSparseInfo.arrayLayers),		//	VkImageSubresourceLayers	imageSubresource;
307 						makeOffset3D(0, 0, 0),																//	VkOffset3D					imageOffset;
308 						vk::getPlaneExtent(formatDescription, imageSparseInfo.extent, planeNdx, mipmapNdx)	//	VkExtent3D					imageExtent;
309 					};
310 					bufferOffset += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
311 				}
312 			}
313 		}
314 
315 		// Create command buffer for compute and transfer operations
316 		const Unique<VkCommandPool>		commandPool(makeCommandPool(deviceInterface, getDevice(), computeQueue.queueFamilyIndex));
317 		const Unique<VkCommandBuffer>	commandBuffer(allocateCommandBuffer(deviceInterface, getDevice(), *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY));
318 
319 		// Start recording commands
320 		beginCommandBuffer(deviceInterface, *commandBuffer);
321 
322 		const VkBufferCreateInfo		inputBufferCreateInfo	= makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
323 		const Unique<VkBuffer>			inputBuffer				(createBuffer(deviceInterface, getDevice(), &inputBufferCreateInfo));
324 		const de::UniquePtr<Allocation>	inputBufferAlloc		(bindBuffer(deviceInterface, getDevice(), getAllocator(), *inputBuffer, MemoryRequirement::HostVisible));
325 
326 		std::vector<deUint8>			referenceData(imageSizeInBytes);
327 		for (deUint32 valueNdx = 0; valueNdx < imageSizeInBytes; ++valueNdx)
328 		{
329 			referenceData[valueNdx] = static_cast<deUint8>((valueNdx % imageMemoryRequirements.alignment) + 1u);
330 		}
331 
332 		{
333 			deMemcpy(inputBufferAlloc->getHostPtr(), referenceData.data(), imageSizeInBytes);
334 			flushAlloc(deviceInterface, getDevice(), *inputBufferAlloc);
335 
336 			const VkBufferMemoryBarrier inputBufferBarrier = makeBufferMemoryBarrier (
337 				VK_ACCESS_HOST_WRITE_BIT,
338 				VK_ACCESS_TRANSFER_READ_BIT,
339 				*inputBuffer,
340 				0u,
341 				imageSizeInBytes
342 			);
343 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &inputBufferBarrier, 0u, DE_NULL);
344 		}
345 
346 		{
347 			std::vector<VkImageMemoryBarrier> imageSparseTransferDstBarriers;
348 
349 			for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
350 			{
351 				const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
352 
353 				imageSparseTransferDstBarriers.push_back( makeImageMemoryBarrier (
354 					0u,
355 					VK_ACCESS_TRANSFER_WRITE_BIT,
356 					VK_IMAGE_LAYOUT_UNDEFINED,
357 					VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
358 					*imageSparse,
359 					makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers),
360 					sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? sparseQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED,
361 					sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? computeQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED
362 				));
363 			}
364 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast<deUint32>(imageSparseTransferDstBarriers.size()), imageSparseTransferDstBarriers.data());
365 		}
366 
367 		deviceInterface.cmdCopyBufferToImage(*commandBuffer, *inputBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, static_cast<deUint32>(bufferImageCopy.size()), bufferImageCopy.data());
368 
369 		{
370 			std::vector<VkImageMemoryBarrier> imageSparseTransferSrcBarriers;
371 
372 			for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
373 			{
374 				const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
375 
376 				imageSparseTransferSrcBarriers.push_back( makeImageMemoryBarrier (
377 					VK_ACCESS_TRANSFER_WRITE_BIT,
378 					VK_ACCESS_TRANSFER_READ_BIT,
379 					VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
380 					VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
381 					*imageSparse,
382 					makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers)
383 				));
384 			}
385 
386 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast<deUint32>(imageSparseTransferSrcBarriers.size()), imageSparseTransferSrcBarriers.data());
387 		}
388 
389 		const VkBufferCreateInfo		outputBufferCreateInfo	= makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
390 		const Unique<VkBuffer>			outputBuffer			(createBuffer(deviceInterface, getDevice(), &outputBufferCreateInfo));
391 		const de::UniquePtr<Allocation>	outputBufferAlloc		(bindBuffer(deviceInterface, getDevice(), getAllocator(), *outputBuffer, MemoryRequirement::HostVisible));
392 
393 		deviceInterface.cmdCopyImageToBuffer(*commandBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *outputBuffer, static_cast<deUint32>(bufferImageCopy.size()), bufferImageCopy.data());
394 
395 		{
396 			const VkBufferMemoryBarrier outputBufferBarrier = makeBufferMemoryBarrier
397 			(
398 				VK_ACCESS_TRANSFER_WRITE_BIT,
399 				VK_ACCESS_HOST_READ_BIT,
400 				*outputBuffer,
401 				0u,
402 				imageSizeInBytes
403 			);
404 
405 			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u, &outputBufferBarrier, 0u, DE_NULL);
406 		}
407 
408 		// End recording commands
409 		endCommandBuffer(deviceInterface, *commandBuffer);
410 
411 		const VkPipelineStageFlags stageBits[] = { VK_PIPELINE_STAGE_TRANSFER_BIT };
412 
413 		// Submit commands for execution and wait for completion
414 		submitCommandsAndWait(deviceInterface, getDevice(), computeQueue.queueHandle, *commandBuffer, 1u, &imageMemoryBindSemaphore.get(), stageBits,
415 			0, DE_NULL, m_useDeviceGroups, firstDeviceID);
416 
417 		// Retrieve data from buffer to host memory
418 		invalidateAlloc(deviceInterface, getDevice(), *outputBufferAlloc);
419 
420 		// Wait for sparse queue to become idle
421 		deviceInterface.queueWaitIdle(sparseQueue.queueHandle);
422 
423 		const deUint8*	outputData		= static_cast<const deUint8*>(outputBufferAlloc->getHostPtr());
424 		bool			ignoreLsb6Bits	= areLsb6BitsDontCare(imageSparseInfo.format);
425 		bool			ignoreLsb4Bits	= areLsb4BitsDontCare(imageSparseInfo.format);
426 
427 		for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
428 		{
429 			for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
430 			{
431 				const deUint32 mipLevelSizeInBytes	= getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx);
432 				const deUint32 bufferOffset			= static_cast<deUint32>(bufferImageCopy[ planeNdx * imageSparseInfo.mipLevels + mipmapNdx].bufferOffset);
433 
434 				// Validate results
435 				for (size_t byteNdx = 0; byteNdx < mipLevelSizeInBytes; byteNdx++)
436 				{
437 					const deUint8	res	= *(outputData + bufferOffset + byteNdx);
438 					const deUint8	ref	= referenceData[bufferOffset + byteNdx];
439 
440 					deUint8 mask = 0xFF;
441 
442 					if (!(byteNdx & 0x01) && (ignoreLsb6Bits))
443 						mask = 0xC0;
444 					else if (!(byteNdx & 0x01) && (ignoreLsb4Bits))
445 						mask = 0xF0;
446 
447 					if ((res & mask) != (ref & mask))
448 					{
449 						return tcu::TestStatus::fail("Failed");
450 					}
451 				}
452 			}
453 		}
454 	}
455 
456 	return tcu::TestStatus::pass("Passed");
457 }
458 
createInstance(Context & context) const459 TestInstance* ImageSparseBindingCase::createInstance (Context& context) const
460 {
461 	return new ImageSparseBindingInstance(context, m_imageType, m_imageSize, m_format, m_useDeviceGroups);
462 }
463 
464 } // anonymous ns
465 
createImageSparseBindingTestsCommon(tcu::TestContext & testCtx,de::MovePtr<tcu::TestCaseGroup> testGroup,const bool useDeviceGroup=false)466 tcu::TestCaseGroup* createImageSparseBindingTestsCommon(tcu::TestContext& testCtx, de::MovePtr<tcu::TestCaseGroup> testGroup, const bool useDeviceGroup = false)
467 {
468 	const std::vector<TestImageParameters> imageParameters =
469 	{
470 		{ IMAGE_TYPE_1D,			{ tcu::UVec3(512u, 1u,   1u ),	tcu::UVec3(1024u, 1u,   1u),	tcu::UVec3(11u,  1u,   1u) },	getTestFormats(IMAGE_TYPE_1D) },
471 		{ IMAGE_TYPE_1D_ARRAY,		{ tcu::UVec3(512u, 1u,   64u),	tcu::UVec3(1024u, 1u,   8u),	tcu::UVec3(11u,  1u,   3u) },	getTestFormats(IMAGE_TYPE_1D_ARRAY) },
472 		{ IMAGE_TYPE_2D,			{ tcu::UVec3(512u, 256u, 1u ),	tcu::UVec3(1024u, 128u, 1u),	tcu::UVec3(11u,  137u, 1u) },	getTestFormats(IMAGE_TYPE_2D) },
473 		{ IMAGE_TYPE_2D_ARRAY,		{ tcu::UVec3(512u, 256u, 6u ),	tcu::UVec3(1024u, 128u, 8u),	tcu::UVec3(11u,  137u, 3u) },	getTestFormats(IMAGE_TYPE_2D_ARRAY) },
474 		{ IMAGE_TYPE_3D,			{ tcu::UVec3(512u, 256u, 6u ),	tcu::UVec3(1024u, 128u, 8u),	tcu::UVec3(11u,  137u, 3u) },	getTestFormats(IMAGE_TYPE_3D) },
475 		{ IMAGE_TYPE_CUBE,			{ tcu::UVec3(256u, 256u, 1u ),	tcu::UVec3(128u,  128u, 1u),	tcu::UVec3(137u, 137u, 1u) },	getTestFormats(IMAGE_TYPE_CUBE) },
476 		{ IMAGE_TYPE_CUBE_ARRAY,	{ tcu::UVec3(256u, 256u, 6u ),	tcu::UVec3(128u,  128u, 8u),	tcu::UVec3(137u, 137u, 3u) },	getTestFormats(IMAGE_TYPE_CUBE_ARRAY) }
477 	};
478 
479 	for (size_t imageTypeNdx = 0; imageTypeNdx < imageParameters.size(); ++imageTypeNdx)
480 	{
481 		const ImageType					imageType		= imageParameters[imageTypeNdx].imageType;
482 		de::MovePtr<tcu::TestCaseGroup> imageTypeGroup	(new tcu::TestCaseGroup(testCtx, getImageTypeName(imageType).c_str(), ""));
483 
484 		for (size_t formatNdx = 0; formatNdx < imageParameters[imageTypeNdx].formats.size(); ++formatNdx)
485 		{
486 			VkFormat						format				= imageParameters[imageTypeNdx].formats[formatNdx].format;
487 			tcu::UVec3						imageSizeAlignment	= getImageSizeAlignment(format);
488 			de::MovePtr<tcu::TestCaseGroup> formatGroup			(new tcu::TestCaseGroup(testCtx, getImageFormatID(format).c_str(), ""));
489 
490 			for (size_t imageSizeNdx = 0; imageSizeNdx < imageParameters[imageTypeNdx].imageSizes.size(); ++imageSizeNdx)
491 			{
492 				const tcu::UVec3 imageSize = imageParameters[imageTypeNdx].imageSizes[imageSizeNdx];
493 
494 				// skip test for images with odd sizes for some YCbCr formats
495 				if ((imageSize.x() % imageSizeAlignment.x()) != 0)
496 					continue;
497 				if ((imageSize.y() % imageSizeAlignment.y()) != 0)
498 					continue;
499 
500 				std::ostringstream	stream;
501 				stream << imageSize.x() << "_" << imageSize.y() << "_" << imageSize.z();
502 
503 				formatGroup->addChild(new ImageSparseBindingCase(testCtx, stream.str(), "", imageType, imageSize, format, useDeviceGroup));
504 			}
505 			imageTypeGroup->addChild(formatGroup.release());
506 		}
507 		testGroup->addChild(imageTypeGroup.release());
508 	}
509 
510 	return testGroup.release();
511 }
512 
createImageSparseBindingTests(tcu::TestContext & testCtx)513 tcu::TestCaseGroup* createImageSparseBindingTests(tcu::TestContext& testCtx)
514 {
515 	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "image_sparse_binding", "Image Sparse Binding"));
516 	return createImageSparseBindingTestsCommon(testCtx, testGroup);
517 }
518 
createDeviceGroupImageSparseBindingTests(tcu::TestContext & testCtx)519 tcu::TestCaseGroup* createDeviceGroupImageSparseBindingTests(tcu::TestContext& testCtx)
520 {
521 	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "device_group_image_sparse_binding", "Device Group Image Sparse Binding"));
522 	return createImageSparseBindingTestsCommon(testCtx, testGroup, true);
523 }
524 
525 } // sparse
526 } // vkt
527