1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * arch/arm/include/asm/pgtable-3level.h
4 *
5 * Copyright (C) 2011 ARM Ltd.
6 * Author: Catalin Marinas <catalin.marinas@arm.com>
7 */
8 #ifndef _ASM_PGTABLE_3LEVEL_H
9 #define _ASM_PGTABLE_3LEVEL_H
10
11 /*
12 * With LPAE, there are 3 levels of page tables. Each level has 512 entries of
13 * 8 bytes each, occupying a 4K page. The first level table covers a range of
14 * 512GB, each entry representing 1GB. Since we are limited to 4GB input
15 * address range, only 4 entries in the PGD are used.
16 *
17 * There are enough spare bits in a page table entry for the kernel specific
18 * state.
19 */
20 #define PTRS_PER_PTE 512
21 #define PTRS_PER_PMD 512
22 #define PTRS_PER_PGD 4
23
24 #define PTE_HWTABLE_PTRS (0)
25 #define PTE_HWTABLE_OFF (0)
26 #define PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(u64))
27
28 #define MAX_POSSIBLE_PHYSMEM_BITS 40
29
30 /*
31 * PGDIR_SHIFT determines the size a top-level page table entry can map.
32 */
33 #define PGDIR_SHIFT 30
34
35 /*
36 * PMD_SHIFT determines the size a middle-level page table entry can map.
37 */
38 #define PMD_SHIFT 21
39
40 #define PMD_SIZE (1UL << PMD_SHIFT)
41 #define PMD_MASK (~((1 << PMD_SHIFT) - 1))
42 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
43 #define PGDIR_MASK (~((1 << PGDIR_SHIFT) - 1))
44
45 /*
46 * section address mask and size definitions.
47 */
48 #define SECTION_SHIFT 21
49 #define SECTION_SIZE (1UL << SECTION_SHIFT)
50 #define SECTION_MASK (~((1 << SECTION_SHIFT) - 1))
51
52 #define USER_PTRS_PER_PGD (PAGE_OFFSET / PGDIR_SIZE)
53
54 /*
55 * Hugetlb definitions.
56 */
57 #define HPAGE_SHIFT PMD_SHIFT
58 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
59 #define HPAGE_MASK (~(HPAGE_SIZE - 1))
60 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
61
62 /*
63 * "Linux" PTE definitions for LPAE.
64 *
65 * These bits overlap with the hardware bits but the naming is preserved for
66 * consistency with the classic page table format.
67 */
68 #define L_PTE_VALID (_AT(pteval_t, 1) << 0) /* Valid */
69 #define L_PTE_PRESENT (_AT(pteval_t, 3) << 0) /* Present */
70 #define L_PTE_USER (_AT(pteval_t, 1) << 6) /* AP[1] */
71 #define L_PTE_SHARED (_AT(pteval_t, 3) << 8) /* SH[1:0], inner shareable */
72 #define L_PTE_YOUNG (_AT(pteval_t, 1) << 10) /* AF */
73 #define L_PTE_XN (_AT(pteval_t, 1) << 54) /* XN */
74 #define L_PTE_DIRTY (_AT(pteval_t, 1) << 55)
75 #define L_PTE_SPECIAL (_AT(pteval_t, 1) << 56)
76 #define L_PTE_NONE (_AT(pteval_t, 1) << 57) /* PROT_NONE */
77 #define L_PTE_RDONLY (_AT(pteval_t, 1) << 58) /* READ ONLY */
78
79 #define L_PMD_SECT_VALID (_AT(pmdval_t, 1) << 0)
80 #define L_PMD_SECT_DIRTY (_AT(pmdval_t, 1) << 55)
81 #define L_PMD_SECT_NONE (_AT(pmdval_t, 1) << 57)
82 #define L_PMD_SECT_RDONLY (_AT(pteval_t, 1) << 58)
83
84 /*
85 * To be used in assembly code with the upper page attributes.
86 */
87 #define L_PTE_XN_HIGH (1 << (54 - 32))
88 #define L_PTE_DIRTY_HIGH (1 << (55 - 32))
89
90 /*
91 * AttrIndx[2:0] encoding (mapping attributes defined in the MAIR* registers).
92 */
93 #define L_PTE_MT_UNCACHED (_AT(pteval_t, 0) << 2) /* strongly ordered */
94 #define L_PTE_MT_BUFFERABLE (_AT(pteval_t, 1) << 2) /* normal non-cacheable */
95 #define L_PTE_MT_WRITETHROUGH (_AT(pteval_t, 2) << 2) /* normal inner write-through */
96 #define L_PTE_MT_WRITEBACK (_AT(pteval_t, 3) << 2) /* normal inner write-back */
97 #define L_PTE_MT_WRITEALLOC (_AT(pteval_t, 7) << 2) /* normal inner write-alloc */
98 #define L_PTE_MT_DEV_SHARED (_AT(pteval_t, 4) << 2) /* device */
99 #define L_PTE_MT_DEV_NONSHARED (_AT(pteval_t, 4) << 2) /* device */
100 #define L_PTE_MT_DEV_WC (_AT(pteval_t, 1) << 2) /* normal non-cacheable */
101 #define L_PTE_MT_DEV_CACHED (_AT(pteval_t, 3) << 2) /* normal inner write-back */
102 #define L_PTE_MT_MASK (_AT(pteval_t, 7) << 2)
103
104 /*
105 * Software PGD flags.
106 */
107 #define L_PGD_SWAPPER (_AT(pgdval_t, 1) << 55) /* swapper_pg_dir entry */
108
109 #ifndef __ASSEMBLY__
110
111 #define pud_none(pud) (!pud_val(pud))
112 #define pud_bad(pud) (!(pud_val(pud) & 2))
113 #define pud_present(pud) (pud_val(pud))
114 #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
115 PMD_TYPE_TABLE)
116 #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
117 PMD_TYPE_SECT)
118 #define pmd_large(pmd) pmd_sect(pmd)
119 #define pmd_leaf(pmd) pmd_sect(pmd)
120
121 #define pud_clear(pudp) \
122 do { \
123 *pudp = __pud(0); \
124 clean_pmd_entry(pudp); \
125 } while (0)
126
127 #define set_pud(pudp, pud) \
128 do { \
129 *pudp = pud; \
130 flush_pmd_entry(pudp); \
131 } while (0)
132
pud_pgtable(pud_t pud)133 static inline pmd_t *pud_pgtable(pud_t pud)
134 {
135 return __va(pud_val(pud) & PHYS_MASK & (s32)PAGE_MASK);
136 }
137
138 #define pmd_bad(pmd) (!(pmd_val(pmd) & 2))
139
140 #define copy_pmd(pmdpd,pmdps) \
141 do { \
142 *pmdpd = *pmdps; \
143 flush_pmd_entry(pmdpd); \
144 } while (0)
145
146 #define pmd_clear(pmdp) \
147 do { \
148 *pmdp = __pmd(0); \
149 clean_pmd_entry(pmdp); \
150 } while (0)
151
152 /*
153 * For 3 levels of paging the PTE_EXT_NG bit will be set for user address ptes
154 * that are written to a page table but not for ptes created with mk_pte.
155 *
156 * In hugetlb_no_page, a new huge pte (new_pte) is generated and passed to
157 * hugetlb_cow, where it is compared with an entry in a page table.
158 * This comparison test fails erroneously leading ultimately to a memory leak.
159 *
160 * To correct this behaviour, we mask off PTE_EXT_NG for any pte that is
161 * present before running the comparison.
162 */
163 #define __HAVE_ARCH_PTE_SAME
164 #define pte_same(pte_a,pte_b) ((pte_present(pte_a) ? pte_val(pte_a) & ~PTE_EXT_NG \
165 : pte_val(pte_a)) \
166 == (pte_present(pte_b) ? pte_val(pte_b) & ~PTE_EXT_NG \
167 : pte_val(pte_b)))
168
169 #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,__pte(pte_val(pte)|(ext)))
170
171 #define pte_huge(pte) (pte_val(pte) && !(pte_val(pte) & PTE_TABLE_BIT))
172 #define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
173
174 #define pmd_isset(pmd, val) ((u32)(val) == (val) ? pmd_val(pmd) & (val) \
175 : !!(pmd_val(pmd) & (val)))
176 #define pmd_isclear(pmd, val) (!(pmd_val(pmd) & (val)))
177
178 #define pmd_present(pmd) (pmd_isset((pmd), L_PMD_SECT_VALID))
179 #define pmd_young(pmd) (pmd_isset((pmd), PMD_SECT_AF))
180 #define pte_special(pte) (pte_isset((pte), L_PTE_SPECIAL))
pte_mkspecial(pte_t pte)181 static inline pte_t pte_mkspecial(pte_t pte)
182 {
183 pte_val(pte) |= L_PTE_SPECIAL;
184 return pte;
185 }
186
187 #define pmd_write(pmd) (pmd_isclear((pmd), L_PMD_SECT_RDONLY))
188 #define pmd_dirty(pmd) (pmd_isset((pmd), L_PMD_SECT_DIRTY))
189 #define pud_page(pud) pmd_page(__pmd(pud_val(pud)))
190 #define pud_write(pud) pmd_write(__pmd(pud_val(pud)))
191
192 #define pmd_hugewillfault(pmd) (!pmd_young(pmd) || !pmd_write(pmd))
193 #define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd))
194
195 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
196 #define pmd_trans_huge(pmd) (pmd_val(pmd) && !pmd_table(pmd))
197 #endif
198
199 #define PMD_BIT_FUNC(fn,op) \
200 static inline pmd_t pmd_##fn(pmd_t pmd) { pmd_val(pmd) op; return pmd; }
201
202 PMD_BIT_FUNC(wrprotect, |= L_PMD_SECT_RDONLY);
203 PMD_BIT_FUNC(mkold, &= ~PMD_SECT_AF);
204 PMD_BIT_FUNC(mkwrite, &= ~L_PMD_SECT_RDONLY);
205 PMD_BIT_FUNC(mkdirty, |= L_PMD_SECT_DIRTY);
206 PMD_BIT_FUNC(mkclean, &= ~L_PMD_SECT_DIRTY);
207 PMD_BIT_FUNC(mkyoung, |= PMD_SECT_AF);
208
209 #define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
210
211 #define pmd_pfn(pmd) (((pmd_val(pmd) & PMD_MASK) & PHYS_MASK) >> PAGE_SHIFT)
212 #define pfn_pmd(pfn,prot) (__pmd(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)))
213 #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
214
215 /* No hardware dirty/accessed bits -- generic_pmdp_establish() fits */
216 #define pmdp_establish generic_pmdp_establish
217
218 /* represent a notpresent pmd by faulting entry, this is used by pmdp_invalidate */
pmd_mkinvalid(pmd_t pmd)219 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
220 {
221 return __pmd(pmd_val(pmd) & ~L_PMD_SECT_VALID);
222 }
223
pmd_modify(pmd_t pmd,pgprot_t newprot)224 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
225 {
226 const pmdval_t mask = PMD_SECT_USER | PMD_SECT_XN | L_PMD_SECT_RDONLY |
227 L_PMD_SECT_VALID | L_PMD_SECT_NONE;
228 pmd_val(pmd) = (pmd_val(pmd) & ~mask) | (pgprot_val(newprot) & mask);
229 return pmd;
230 }
231
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)232 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
233 pmd_t *pmdp, pmd_t pmd)
234 {
235 BUG_ON(addr >= TASK_SIZE);
236
237 /* create a faulting entry if PROT_NONE protected */
238 if (pmd_val(pmd) & L_PMD_SECT_NONE)
239 pmd_val(pmd) &= ~L_PMD_SECT_VALID;
240
241 if (pmd_write(pmd) && pmd_dirty(pmd))
242 pmd_val(pmd) &= ~PMD_SECT_AP2;
243 else
244 pmd_val(pmd) |= PMD_SECT_AP2;
245
246 *pmdp = __pmd(pmd_val(pmd) | PMD_SECT_nG);
247 flush_pmd_entry(pmdp);
248 }
249
250 #endif /* __ASSEMBLY__ */
251
252 #endif /* _ASM_PGTABLE_3LEVEL_H */
253