• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * arch/arm/include/asm/pgtable-3level.h
4  *
5  * Copyright (C) 2011 ARM Ltd.
6  * Author: Catalin Marinas <catalin.marinas@arm.com>
7  */
8 #ifndef _ASM_PGTABLE_3LEVEL_H
9 #define _ASM_PGTABLE_3LEVEL_H
10 
11 /*
12  * With LPAE, there are 3 levels of page tables. Each level has 512 entries of
13  * 8 bytes each, occupying a 4K page. The first level table covers a range of
14  * 512GB, each entry representing 1GB. Since we are limited to 4GB input
15  * address range, only 4 entries in the PGD are used.
16  *
17  * There are enough spare bits in a page table entry for the kernel specific
18  * state.
19  */
20 #define PTRS_PER_PTE		512
21 #define PTRS_PER_PMD		512
22 #define PTRS_PER_PGD		4
23 
24 #define PTE_HWTABLE_PTRS	(0)
25 #define PTE_HWTABLE_OFF		(0)
26 #define PTE_HWTABLE_SIZE	(PTRS_PER_PTE * sizeof(u64))
27 
28 #define MAX_POSSIBLE_PHYSMEM_BITS 40
29 
30 /*
31  * PGDIR_SHIFT determines the size a top-level page table entry can map.
32  */
33 #define PGDIR_SHIFT		30
34 
35 /*
36  * PMD_SHIFT determines the size a middle-level page table entry can map.
37  */
38 #define PMD_SHIFT		21
39 
40 #define PMD_SIZE		(1UL << PMD_SHIFT)
41 #define PMD_MASK		(~((1 << PMD_SHIFT) - 1))
42 #define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
43 #define PGDIR_MASK		(~((1 << PGDIR_SHIFT) - 1))
44 
45 /*
46  * section address mask and size definitions.
47  */
48 #define SECTION_SHIFT		21
49 #define SECTION_SIZE		(1UL << SECTION_SHIFT)
50 #define SECTION_MASK		(~((1 << SECTION_SHIFT) - 1))
51 
52 #define USER_PTRS_PER_PGD	(PAGE_OFFSET / PGDIR_SIZE)
53 
54 /*
55  * Hugetlb definitions.
56  */
57 #define HPAGE_SHIFT		PMD_SHIFT
58 #define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
59 #define HPAGE_MASK		(~(HPAGE_SIZE - 1))
60 #define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
61 
62 /*
63  * "Linux" PTE definitions for LPAE.
64  *
65  * These bits overlap with the hardware bits but the naming is preserved for
66  * consistency with the classic page table format.
67  */
68 #define L_PTE_VALID		(_AT(pteval_t, 1) << 0)		/* Valid */
69 #define L_PTE_PRESENT		(_AT(pteval_t, 3) << 0)		/* Present */
70 #define L_PTE_USER		(_AT(pteval_t, 1) << 6)		/* AP[1] */
71 #define L_PTE_SHARED		(_AT(pteval_t, 3) << 8)		/* SH[1:0], inner shareable */
72 #define L_PTE_YOUNG		(_AT(pteval_t, 1) << 10)	/* AF */
73 #define L_PTE_XN		(_AT(pteval_t, 1) << 54)	/* XN */
74 #define L_PTE_DIRTY		(_AT(pteval_t, 1) << 55)
75 #define L_PTE_SPECIAL		(_AT(pteval_t, 1) << 56)
76 #define L_PTE_NONE		(_AT(pteval_t, 1) << 57)	/* PROT_NONE */
77 #define L_PTE_RDONLY		(_AT(pteval_t, 1) << 58)	/* READ ONLY */
78 
79 #define L_PMD_SECT_VALID	(_AT(pmdval_t, 1) << 0)
80 #define L_PMD_SECT_DIRTY	(_AT(pmdval_t, 1) << 55)
81 #define L_PMD_SECT_NONE		(_AT(pmdval_t, 1) << 57)
82 #define L_PMD_SECT_RDONLY	(_AT(pteval_t, 1) << 58)
83 
84 /*
85  * To be used in assembly code with the upper page attributes.
86  */
87 #define L_PTE_XN_HIGH		(1 << (54 - 32))
88 #define L_PTE_DIRTY_HIGH	(1 << (55 - 32))
89 
90 /*
91  * AttrIndx[2:0] encoding (mapping attributes defined in the MAIR* registers).
92  */
93 #define L_PTE_MT_UNCACHED	(_AT(pteval_t, 0) << 2)	/* strongly ordered */
94 #define L_PTE_MT_BUFFERABLE	(_AT(pteval_t, 1) << 2)	/* normal non-cacheable */
95 #define L_PTE_MT_WRITETHROUGH	(_AT(pteval_t, 2) << 2)	/* normal inner write-through */
96 #define L_PTE_MT_WRITEBACK	(_AT(pteval_t, 3) << 2)	/* normal inner write-back */
97 #define L_PTE_MT_WRITEALLOC	(_AT(pteval_t, 7) << 2)	/* normal inner write-alloc */
98 #define L_PTE_MT_DEV_SHARED	(_AT(pteval_t, 4) << 2)	/* device */
99 #define L_PTE_MT_DEV_NONSHARED	(_AT(pteval_t, 4) << 2)	/* device */
100 #define L_PTE_MT_DEV_WC		(_AT(pteval_t, 1) << 2)	/* normal non-cacheable */
101 #define L_PTE_MT_DEV_CACHED	(_AT(pteval_t, 3) << 2)	/* normal inner write-back */
102 #define L_PTE_MT_MASK		(_AT(pteval_t, 7) << 2)
103 
104 /*
105  * Software PGD flags.
106  */
107 #define L_PGD_SWAPPER		(_AT(pgdval_t, 1) << 55)	/* swapper_pg_dir entry */
108 
109 #ifndef __ASSEMBLY__
110 
111 #define pud_none(pud)		(!pud_val(pud))
112 #define pud_bad(pud)		(!(pud_val(pud) & 2))
113 #define pud_present(pud)	(pud_val(pud))
114 #define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
115 						 PMD_TYPE_TABLE)
116 #define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
117 						 PMD_TYPE_SECT)
118 #define pmd_large(pmd)		pmd_sect(pmd)
119 #define pmd_leaf(pmd)		pmd_sect(pmd)
120 
121 #define pud_clear(pudp)			\
122 	do {				\
123 		*pudp = __pud(0);	\
124 		clean_pmd_entry(pudp);	\
125 	} while (0)
126 
127 #define set_pud(pudp, pud)		\
128 	do {				\
129 		*pudp = pud;		\
130 		flush_pmd_entry(pudp);	\
131 	} while (0)
132 
pud_pgtable(pud_t pud)133 static inline pmd_t *pud_pgtable(pud_t pud)
134 {
135 	return __va(pud_val(pud) & PHYS_MASK & (s32)PAGE_MASK);
136 }
137 
138 #define pmd_bad(pmd)		(!(pmd_val(pmd) & 2))
139 
140 #define copy_pmd(pmdpd,pmdps)		\
141 	do {				\
142 		*pmdpd = *pmdps;	\
143 		flush_pmd_entry(pmdpd);	\
144 	} while (0)
145 
146 #define pmd_clear(pmdp)			\
147 	do {				\
148 		*pmdp = __pmd(0);	\
149 		clean_pmd_entry(pmdp);	\
150 	} while (0)
151 
152 /*
153  * For 3 levels of paging the PTE_EXT_NG bit will be set for user address ptes
154  * that are written to a page table but not for ptes created with mk_pte.
155  *
156  * In hugetlb_no_page, a new huge pte (new_pte) is generated and passed to
157  * hugetlb_cow, where it is compared with an entry in a page table.
158  * This comparison test fails erroneously leading ultimately to a memory leak.
159  *
160  * To correct this behaviour, we mask off PTE_EXT_NG for any pte that is
161  * present before running the comparison.
162  */
163 #define __HAVE_ARCH_PTE_SAME
164 #define pte_same(pte_a,pte_b)	((pte_present(pte_a) ? pte_val(pte_a) & ~PTE_EXT_NG	\
165 					: pte_val(pte_a))				\
166 				== (pte_present(pte_b) ? pte_val(pte_b) & ~PTE_EXT_NG	\
167 					: pte_val(pte_b)))
168 
169 #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,__pte(pte_val(pte)|(ext)))
170 
171 #define pte_huge(pte)		(pte_val(pte) && !(pte_val(pte) & PTE_TABLE_BIT))
172 #define pte_mkhuge(pte)		(__pte(pte_val(pte) & ~PTE_TABLE_BIT))
173 
174 #define pmd_isset(pmd, val)	((u32)(val) == (val) ? pmd_val(pmd) & (val) \
175 						: !!(pmd_val(pmd) & (val)))
176 #define pmd_isclear(pmd, val)	(!(pmd_val(pmd) & (val)))
177 
178 #define pmd_present(pmd)	(pmd_isset((pmd), L_PMD_SECT_VALID))
179 #define pmd_young(pmd)		(pmd_isset((pmd), PMD_SECT_AF))
180 #define pte_special(pte)	(pte_isset((pte), L_PTE_SPECIAL))
pte_mkspecial(pte_t pte)181 static inline pte_t pte_mkspecial(pte_t pte)
182 {
183 	pte_val(pte) |= L_PTE_SPECIAL;
184 	return pte;
185 }
186 
187 #define pmd_write(pmd)		(pmd_isclear((pmd), L_PMD_SECT_RDONLY))
188 #define pmd_dirty(pmd)		(pmd_isset((pmd), L_PMD_SECT_DIRTY))
189 #define pud_page(pud)		pmd_page(__pmd(pud_val(pud)))
190 #define pud_write(pud)		pmd_write(__pmd(pud_val(pud)))
191 
192 #define pmd_hugewillfault(pmd)	(!pmd_young(pmd) || !pmd_write(pmd))
193 #define pmd_thp_or_huge(pmd)	(pmd_huge(pmd) || pmd_trans_huge(pmd))
194 
195 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
196 #define pmd_trans_huge(pmd)	(pmd_val(pmd) && !pmd_table(pmd))
197 #endif
198 
199 #define PMD_BIT_FUNC(fn,op) \
200 static inline pmd_t pmd_##fn(pmd_t pmd) { pmd_val(pmd) op; return pmd; }
201 
202 PMD_BIT_FUNC(wrprotect,	|= L_PMD_SECT_RDONLY);
203 PMD_BIT_FUNC(mkold,	&= ~PMD_SECT_AF);
204 PMD_BIT_FUNC(mkwrite,   &= ~L_PMD_SECT_RDONLY);
205 PMD_BIT_FUNC(mkdirty,   |= L_PMD_SECT_DIRTY);
206 PMD_BIT_FUNC(mkclean,   &= ~L_PMD_SECT_DIRTY);
207 PMD_BIT_FUNC(mkyoung,   |= PMD_SECT_AF);
208 
209 #define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
210 
211 #define pmd_pfn(pmd)		(((pmd_val(pmd) & PMD_MASK) & PHYS_MASK) >> PAGE_SHIFT)
212 #define pfn_pmd(pfn,prot)	(__pmd(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)))
213 #define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
214 
215 /* No hardware dirty/accessed bits -- generic_pmdp_establish() fits */
216 #define pmdp_establish generic_pmdp_establish
217 
218 /* represent a notpresent pmd by faulting entry, this is used by pmdp_invalidate */
pmd_mkinvalid(pmd_t pmd)219 static inline pmd_t pmd_mkinvalid(pmd_t pmd)
220 {
221 	return __pmd(pmd_val(pmd) & ~L_PMD_SECT_VALID);
222 }
223 
pmd_modify(pmd_t pmd,pgprot_t newprot)224 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
225 {
226 	const pmdval_t mask = PMD_SECT_USER | PMD_SECT_XN | L_PMD_SECT_RDONLY |
227 				L_PMD_SECT_VALID | L_PMD_SECT_NONE;
228 	pmd_val(pmd) = (pmd_val(pmd) & ~mask) | (pgprot_val(newprot) & mask);
229 	return pmd;
230 }
231 
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)232 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
233 			      pmd_t *pmdp, pmd_t pmd)
234 {
235 	BUG_ON(addr >= TASK_SIZE);
236 
237 	/* create a faulting entry if PROT_NONE protected */
238 	if (pmd_val(pmd) & L_PMD_SECT_NONE)
239 		pmd_val(pmd) &= ~L_PMD_SECT_VALID;
240 
241 	if (pmd_write(pmd) && pmd_dirty(pmd))
242 		pmd_val(pmd) &= ~PMD_SECT_AP2;
243 	else
244 		pmd_val(pmd) |= PMD_SECT_AP2;
245 
246 	*pmdp = __pmd(pmd_val(pmd) | PMD_SECT_nG);
247 	flush_pmd_entry(pmdp);
248 }
249 
250 #endif /* __ASSEMBLY__ */
251 
252 #endif /* _ASM_PGTABLE_3LEVEL_H */
253