1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2017 SiFive
4 */
5
6 #include <linux/cpu.h>
7 #include <linux/of.h>
8 #include <linux/of_device.h>
9 #include <asm/cacheinfo.h>
10
11 static struct riscv_cacheinfo_ops *rv_cache_ops;
12
riscv_set_cacheinfo_ops(struct riscv_cacheinfo_ops * ops)13 void riscv_set_cacheinfo_ops(struct riscv_cacheinfo_ops *ops)
14 {
15 rv_cache_ops = ops;
16 }
17 EXPORT_SYMBOL_GPL(riscv_set_cacheinfo_ops);
18
19 const struct attribute_group *
cache_get_priv_group(struct cacheinfo * this_leaf)20 cache_get_priv_group(struct cacheinfo *this_leaf)
21 {
22 if (rv_cache_ops && rv_cache_ops->get_priv_group)
23 return rv_cache_ops->get_priv_group(this_leaf);
24 return NULL;
25 }
26
get_cacheinfo(u32 level,enum cache_type type)27 static struct cacheinfo *get_cacheinfo(u32 level, enum cache_type type)
28 {
29 /*
30 * Using raw_smp_processor_id() elides a preemptability check, but this
31 * is really indicative of a larger problem: the cacheinfo UABI assumes
32 * that cores have a homonogenous view of the cache hierarchy. That
33 * happens to be the case for the current set of RISC-V systems, but
34 * likely won't be true in general. Since there's no way to provide
35 * correct information for these systems via the current UABI we're
36 * just eliding the check for now.
37 */
38 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(raw_smp_processor_id());
39 struct cacheinfo *this_leaf;
40 int index;
41
42 for (index = 0; index < this_cpu_ci->num_leaves; index++) {
43 this_leaf = this_cpu_ci->info_list + index;
44 if (this_leaf->level == level && this_leaf->type == type)
45 return this_leaf;
46 }
47
48 return NULL;
49 }
50
get_cache_size(u32 level,enum cache_type type)51 uintptr_t get_cache_size(u32 level, enum cache_type type)
52 {
53 struct cacheinfo *this_leaf = get_cacheinfo(level, type);
54
55 return this_leaf ? this_leaf->size : 0;
56 }
57
get_cache_geometry(u32 level,enum cache_type type)58 uintptr_t get_cache_geometry(u32 level, enum cache_type type)
59 {
60 struct cacheinfo *this_leaf = get_cacheinfo(level, type);
61
62 return this_leaf ? (this_leaf->ways_of_associativity << 16 |
63 this_leaf->coherency_line_size) :
64 0;
65 }
66
ci_leaf_init(struct cacheinfo * this_leaf,enum cache_type type,unsigned int level,unsigned int size,unsigned int sets,unsigned int line_size)67 static void ci_leaf_init(struct cacheinfo *this_leaf, enum cache_type type,
68 unsigned int level, unsigned int size,
69 unsigned int sets, unsigned int line_size)
70 {
71 this_leaf->level = level;
72 this_leaf->type = type;
73 this_leaf->size = size;
74 this_leaf->number_of_sets = sets;
75 this_leaf->coherency_line_size = line_size;
76
77 /*
78 * If the cache is fully associative, there is no need to
79 * check the other properties.
80 */
81 if (sets == 1)
82 return;
83
84 /*
85 * Set the ways number for n-ways associative, make sure
86 * all properties are big than zero.
87 */
88 if (sets > 0 && size > 0 && line_size > 0)
89 this_leaf->ways_of_associativity = (size / sets) / line_size;
90 }
91
fill_cacheinfo(struct cacheinfo ** this_leaf,struct device_node * node,unsigned int level)92 static void fill_cacheinfo(struct cacheinfo **this_leaf,
93 struct device_node *node, unsigned int level)
94 {
95 unsigned int size, sets, line_size;
96
97 if (!of_property_read_u32(node, "cache-size", &size) &&
98 !of_property_read_u32(node, "cache-block-size", &line_size) &&
99 !of_property_read_u32(node, "cache-sets", &sets)) {
100 ci_leaf_init((*this_leaf)++, CACHE_TYPE_UNIFIED, level, size, sets, line_size);
101 }
102
103 if (!of_property_read_u32(node, "i-cache-size", &size) &&
104 !of_property_read_u32(node, "i-cache-sets", &sets) &&
105 !of_property_read_u32(node, "i-cache-block-size", &line_size)) {
106 ci_leaf_init((*this_leaf)++, CACHE_TYPE_INST, level, size, sets, line_size);
107 }
108
109 if (!of_property_read_u32(node, "d-cache-size", &size) &&
110 !of_property_read_u32(node, "d-cache-sets", &sets) &&
111 !of_property_read_u32(node, "d-cache-block-size", &line_size)) {
112 ci_leaf_init((*this_leaf)++, CACHE_TYPE_DATA, level, size, sets, line_size);
113 }
114 }
115
init_cache_level(unsigned int cpu)116 int init_cache_level(unsigned int cpu)
117 {
118 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
119 struct device_node *np = of_cpu_device_node_get(cpu);
120 struct device_node *prev = NULL;
121 int levels = 0, leaves = 0, level;
122
123 if (of_property_read_bool(np, "cache-size"))
124 ++leaves;
125 if (of_property_read_bool(np, "i-cache-size"))
126 ++leaves;
127 if (of_property_read_bool(np, "d-cache-size"))
128 ++leaves;
129 if (leaves > 0)
130 levels = 1;
131
132 prev = np;
133 while ((np = of_find_next_cache_node(np))) {
134 of_node_put(prev);
135 prev = np;
136 if (!of_device_is_compatible(np, "cache"))
137 break;
138 if (of_property_read_u32(np, "cache-level", &level))
139 break;
140 if (level <= levels)
141 break;
142 if (of_property_read_bool(np, "cache-size"))
143 ++leaves;
144 if (of_property_read_bool(np, "i-cache-size"))
145 ++leaves;
146 if (of_property_read_bool(np, "d-cache-size"))
147 ++leaves;
148 levels = level;
149 }
150
151 of_node_put(np);
152 this_cpu_ci->num_levels = levels;
153 this_cpu_ci->num_leaves = leaves;
154
155 return 0;
156 }
157
populate_cache_leaves(unsigned int cpu)158 int populate_cache_leaves(unsigned int cpu)
159 {
160 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
161 struct cacheinfo *this_leaf = this_cpu_ci->info_list;
162 struct device_node *np = of_cpu_device_node_get(cpu);
163 struct device_node *prev = NULL;
164 int levels = 1, level = 1;
165
166 /* Level 1 caches in cpu node */
167 fill_cacheinfo(&this_leaf, np, level);
168
169 /* Next level caches in cache nodes */
170 prev = np;
171 while ((np = of_find_next_cache_node(np))) {
172 of_node_put(prev);
173 prev = np;
174
175 if (!of_device_is_compatible(np, "cache"))
176 break;
177 if (of_property_read_u32(np, "cache-level", &level))
178 break;
179 if (level <= levels)
180 break;
181
182 fill_cacheinfo(&this_leaf, np, level);
183
184 levels = level;
185 }
186 of_node_put(np);
187
188 return 0;
189 }
190